Géométrie Différentielle, TD 5 du 5 mars 2020

1	Questions	diverses	Δ	EVIRE	$\Delta V/\Delta VIT$	IF -	ΓD
ı.	CALICITY	uiverses	- ~	IAIIVL	AVAINI		117

Le rang d'un fibré vectoriel est la dimension des espaces vectoriels fibres de ce fibré.

- 1- Soit M une variété de dimension n. Montrer que $M \times \mathbb{R}^p$ est naturellement muni d'une structure de fibré vectoriel de rang p sur M.
 - On dit qu'un fibré vectoriel de rang p sur M isomorphe à $M \times \mathbb{R}^p$ est **trivial**. Une variété est dite **parallélisable** si son fibré tangent est trivial.
- 2- Montrer qu'une variété M de dimension n est parallélisable ssi il existe des champs de vecteurs C^{∞} X_1, \ldots, X_n sur M tels que $\forall x \in M, (X_1(x), \ldots, X_n(x))$ est une base de T_xM .
- 3– Montrer que tout groupe de Lie est parallélisable.

Solution:

- 1– C'est tautologique : on peut prendre comme unique carte de fibré la carte $M \times \mathbb{R}^p$. Il n'y a alors rien à vérifier.
- 2- Supposons M parallélisable. Il existe un isomorphisme de fibrés vectoriels $\varphi: M \times \mathbb{R}^n \to TM$. On pose $X_i := M \to TM, x \mapsto \varphi(x, e_i)$ où e_i est le *i*-ième vecteur de la base standard de \mathbb{R}^n . La famille (X_1, \ldots, X_n) convient.
 - Réciproquement, étant donné une telle famille on pose $\varphi: M \times \mathbb{R}^n \to TM, (x, \lambda) \mapsto \sum_{i=1}^n \lambda_i X_i(x)$. L'application φ est bijective, commute aux projections sur M et est linéaire fibre à fibre. Il suffit de montrer que φ est C^{∞} pour conclure que c'est un isomorphisme de fibrés vectoriels (la régularité de φ^{-1} est alors automatique, voir cours). Pour montrer que φ est C^{∞} , on se place dans une carte et le résultat est direct.
- 3- On se donne une base (v_1, \ldots, v_n) de l'espace tangent T_eG en l'élement neutre puis on considère X_1, \ldots, X_n les champs de vecteurs G invariants à gauche qui prolongent v_1, \ldots, v_n . Ils conviennent.

2. Fibré normal

1– Soit M sous-variété de \mathbb{R}^n de dimension p. Montrer que l'ensemble

$$\{(x,v)\in M\times\mathbb{R}^n\mid v\in (T_xM)^\perp\}$$

est une sous-variété de $M \times \mathbb{R}^n$ de dimension n, puis un fibré vectoriel sur M de rang n-p. On l'appelle le **fibré normal** de M, noté N(M).

2- Montrer que le fibré normal de $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ est trivial.

3- Soit $f: \mathbb{R}^n \to \mathbb{R}^{n-p}$ une submersion et $M = f^{-1}(\{0\})$. Montrer que N(M) est trivial.

Solution:

1- Soit $x \in M$. On montre que N(M) est une sous variété de $M \times \mathbb{R}^n$ au voisinage de tout $(x, v) \in N(M)$. Il existe U voisinage ouvert de x dans M et des champs de vecteurs $X_1, \ldots, X_n : U \to \mathbb{R}^n$ tels que pour tout $y \in U$, la famille $(X_1(y), \ldots, X_n(y))$ est une base orthonormée de \mathbb{R}^n , et $(X_1(y), \ldots, X_m(y))$ une base de T_yM . On a

$$N(M) \cap U \times \mathbb{R}^n = \{(y, \sum \lambda_i X_i(y)) \in U \times \mathbb{R}^n, \lambda_1 = \dots = \lambda_p = 0\}$$

Soit $p: U \times \mathbb{R}^n \to \mathbb{R}^p$, $(y, \sum \lambda_i X_i(y))) \mapsto (\lambda_1, \dots, \lambda_p)$. C'est une submersion C^{∞} , donc $N(M) \cap U \times \mathbb{R}^n = p^{-1}(0)$ est une sous variété de $U \times \mathbb{R}^n$ donc de $M \times \mathbb{R}^n$. Finalement N(M) est une sous variété de $M \times \mathbb{R}^n$.

Notons $\pi: N(M) \to M$ la projection sur M. Elle est bien C^{∞} comme restriction de la projection de $M \times \mathbb{R}^n$ sur M. La fibre au dessus d'un point $x \in M$ s'identifie à $T_x M^{\perp}$ et a donc une structure d'espace vectoriel naturelle. Il reste à prouver l'existence de trivialisations locales. On se donne x, U, X_i comme précédemment. On pose $\Phi: U \times \mathbb{R}^{n-p} \to \pi^{-1}(U)$ l'application définie par $\Phi(y, \lambda) = (y, \sum_{i=1}^{n-p} \lambda_i X_{i+p}(y))$. C'est un difféomorphisme qui commute aux projections sur M et est linéaire fibre à fibre. C'est donc une trivialisation locale.

2- On note $\langle .,. \rangle$ le produit scalaire standard sur \mathbb{R}^n . Soit

$$\varphi: \begin{array}{ccc} N(\mathbb{S}^n) & \to & \mathbb{S}^n \times \mathbb{R} \\ (x,v) & \mapsto & (x,\langle x,v\rangle) \end{array}$$

L'application f est C^{∞} car c'est la restriction d'une application C^{∞} de $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \times \mathbb{R}$. C'est un isomorphisme de fibrés car elle fait commuter le diagramme des projections et elle réalise un isomorphisme sur chaque fibre.

3- Soit

$$\varphi: \begin{array}{ccc} N(M) & \to & M \times \mathbb{R}^{n-p} \\ (x,v) & \mapsto & (x,d_xf(v)) \end{array}$$

Comme $T_xM = \ker d_xf$, cette application est un isomorphisme de fibrés.

3. Théorème du voisinage tubulaire

Soit M une sous-variété C^{∞} de \mathbb{R}^n compacte. On note $N(M) \subseteq M \times \mathbb{R}^n$ le fibré normal de M (cf. exercice précédent).

1- On définit une application $f: N(M) \longrightarrow \mathbb{R}^n$ par f(x,v) = x+v où $x \in M, v \in T_x M^{\perp}$. Montrer que f est C^{∞} .

On veut montrer que la restriction de f à $N_{\varepsilon}(M) := \{(x, v) \in N(M) \mid ||v|| < \varepsilon\}$ définit un difféomorphisme de $N_{\varepsilon}M$ sur un voisinage ouvert de M si ε est assez petit.

- 2- Vérifier que pour $x \in M$, on a $T_{(x,0)}N(M) \equiv T_xM \times (T_xM)^{\perp}$. En déduire que $T_{(x,v)}f$ est inversible pour $(x,v) \in N_{\varepsilon}(M)$ avec $\varepsilon > 0$ assez petit.
- 3- Soit (x_n) et (y_n) deux suites de points de M ayant même limite z et telles que $x_n \neq y_n$ pour tout n. Montrer que toute valeur d'adhérence de $\frac{x_n y_n}{\|x_n y_n\|}$ est dans $T_z M$.
- 4- Montrer que f est injective sur $N_{\varepsilon}(M)$ si ε est assez petit (on pourra raisonner par l'absurde). Conclure.
- 5- Pour un tel $\varepsilon > 0$, l'image $f(N_{\varepsilon}(M))$ est appelée "voisinage tubulaire de M". Montrer que pour un point $y = f(x, v) \in f(N_{\varepsilon}(M))$, on a d(y, M) = ||v||.

Solution:

- 1- L'application f est C^{∞} comme restriction de l'application $\Phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, (x, v) \mapsto x + v$ qui est C^{∞} .
- 2- Montrons que $T_{(x,0)}N(M) \equiv T_xM \times (T_xM)^{\perp}$. On rappelle que

$$T_x M \equiv \{c'(0), c:]-1, 1[\to M \ C^1 \text{ tel que } c(0) = x\}$$

$$T_{(x,0)}N(M) \equiv \{\gamma'(0), \ \gamma:]-1, 1[\to N(M) \ C^1 \text{ tel que } \gamma(0)=(x,0) \}$$

En différenciant des chemins de la forme $\gamma(t) = (c(t), 0)$, on constate que $T_x M \times \{0\} \subseteq T_{(x,0)}N(M)$. On différenciant des chemins de la forme $\gamma(t) = (x, v(t))$ on obtient que $\{0\} \times T_x M^{\perp} \subseteq T_{(x,0)}N(M)$. On a donc $T_x M \times (T_x M)^{\perp} \subseteq T_{(x,0)}N(M)$ puis égalité en comparant les dimensions.

ATTENTION, cette égalité n'est plus vraie en dehors de la section nulle au sens où il est faux que : pour tout $(x,v) \in N(M)$, on a $T_{(x,v)}N(M) \equiv T_xM \times (T_xM)^{\perp}$. Cela vient du fait que lorsque la composante x varie, la composante v ne peut pas rester constante sans être nulle. On peut construire un contrexemple en spécifiant $M = S^1$. Soit $x \in S^1$, on a $(x,x) \in N(S^1)$ et on vérifie par la même méthode que ci dessus que $T_{(x,x)}N(S^1) = \{(w,w), w \in T_xM\} \oplus \{0\} \times T_xM^{\perp}$.

Comme f est restriction de l'application somme $\Phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, (x,v) \mapsto x+v$ qui est linéaire, on a $df_{(x,0)} = d\Phi_{(x,0)|T_{(x,0)}N(M)} = \Phi_{|T_xM\times(T_xM)^{\perp}}$ qui est clairement un isomorphisme sur \mathbb{R}^n . Ainsi pour tout $x\in M$, on a $df_{(x,0)}$ est inversible et cela reste vrai pour $df_{(x,v)}$ si ||v|| assez petit car $GL_n(\mathbb{R})$ est ouvert dans $M_n(R)$. Plus précisément, pour tout $x\in M$, il existe un ouvert $U\subseteq M$ contenant x et un $\varepsilon>0$ tel que pour tout $x'\in U$, pour tout $v\in T_{x'}M^{\perp}$ tel que $||v||<\varepsilon$, on a $df_{(x',v)}$ inversible. On peut recouvrir M par un nombre fini de tels ouverts par compacité, puis choisir un ε qui convient pour tous, ce qui conclut.

3- Soit ψ une carte locale en z de M, $x_n = \psi(u_n), y_n = \psi(v_n)$ avec $u_n, v_n \in \mathbb{R}^n$ et $\lim_n u_n = \lim_n v_n = 0$. Alors

$$x_n - y_n = \psi(u_n) - \psi(v_n) = d\psi(0)(u_n - v_n) + o(\|u_n - v_n\|)$$

Justifions cette égalité. Il s'agit de voir

$$\frac{\psi(u_n) - \psi(v_n)}{\|u_n - v_n\|} = d\psi(0) \left(\frac{u_n - v_n}{\|u_n - v_n\|}\right) + o(1)$$

On peut réécrire le membre de gauche sous la forme

$$\frac{\psi(u_n) - \psi(v_n)}{\|u_n - v_n\|} = \int_{[0,1]} d\psi_{v_n + t(u_n - v_n)} \left(\frac{u_n - v_n}{\|u_n - v_n\|}\right) dt$$

L'égalité à justifier en découle en se rappelant que ψ est de classe C^{∞} donc que sa différentielle est continue.

Par ailleurs, en remarquant que ψ^{-1} est localement Lipschitzienne, on a

$$||u_n - v_n|| = O(||x_n - y_n||)$$

. On peut finalement écrire

$$\frac{x_n - y_n}{\|x_n - y_n\|} = d\psi(0) \left(\frac{u_n - v_n}{\|x_n - y_n\|}\right) + \frac{\|u_n - v_n\|}{\|x_n - y_n\|} o(1)
= d\psi(0) \left(\frac{u_n - v_n}{\|x_n - y_n\|}\right) + o(1)$$

Donc toute valeur d'adhérence v de $(\frac{x_n-y_n}{\|x_n-y_n\|})_{n\geqslant 0}$ est aussi valeur d'adhérence de $d\psi(0)(\frac{u_n-v_n}{\|x_n-y_n\|})\in T_zM$, impliquant que $v\in T_zM$.

4- 1ere méthode: Supposons que pour tout $\varepsilon > 0$, $f_{|N_{\varepsilon}(M)}$ n'est pas injective. Alors il existe des suites (x_n, v_n) et (y_n, w_n) de N(M) dont les composantes normales (v_n) et (w_n) tendent vers 0 et telles que pour tout n, on a $(x_n, v_n) \neq (y_n, w_n)$ et $f(x_n, v_n) = f(y_n, w_n)$. Comme M est compacte, quitte à extraire, on peut supposer $x_n \to x \in M$ et $y_n \to y \in M$. Comme on a $x_n + v_n = y_n + w_n$ pour tout n, en passant à la limite on obtient x = y. Comme v_n et w_n tendent vers 0, cela contredit l'injectivité locale en x de la question 2).

2eme méthode:

On reprend les suites précédentes, mais on utilise la question 3). On a alors $x_n - y_n = w_n - v_n$. Soit v valeur d'adhérence de $\frac{x_n - y_n}{\|x_n - y_n\|}$. D'après la question précédente, $v \in T_x M$. Montrons que $v \in T_x M^{\perp}$. Pour cela, on prend des champs de vecteurs V_i tels que $T_z M = Vect(V_i(z))$ au voisinage de la limite x de (x_n) et (y_n) . Alors, comme les V_i sont localement Lipschitziens de constant C

$$|\langle \frac{w_n - v_n}{\|x_n - y_n\|} | V_i(x_n) \rangle| = |\langle \frac{w_n}{\|x_n - y_n\|} | V_i(x_n) \rangle| = |\langle \frac{w_n}{\|x_n - y_n\|} | V_i(x_n) - V_i(y_n) \rangle| \leqslant C \|w_n\|$$

En passant à la limite, on obtient $\langle v|V_i(x)\rangle = 0$, donc $v \in T_x M^{\perp}$. On en déduit v = 0, ce qui est absurde car v est limite de vecteurs unitaires.

Pour conclure, supposons que pour tout n, f ne soit pas injective sur $D_{\frac{1}{n}}M$. Alors on obtient deux suites qui vérifient les hypothèses de cette question, ce qui est absurde. On en déduit que pour ε assez petit, f est injective sur $D_{\varepsilon}M$ et un difféomorphisme local en tout point : c'est donc un difféomorphisme sur son image.

5- Comme la variété M est compacte, la distance de y à M est réalisée : il existe un point $z \in M$ tel que d(y,M) = d(y,z). En particulier $||y-z|| \leq ||v|| < \varepsilon$. On montre que $y-z \in (T_zM)^{\perp}$. Si c'est le cas, alors $(z,y-z) \in N_{\varepsilon}(M)$ et f(z,y-z) = y, puis $z=x,\ y-x=v$ par injectivité de $f_{|N_{\varepsilon}(M)|}$ ce qui conclut. Soit $c:]-1,1[\to M$ un chemin C^1 tel que c(0)=z. La fonction $]-1,1[\to \mathbb{R},t\mapsto ||y-c(t)||^2$ est dérivable et atteint un minimum en t=0. La dérivée s'annule donc en t=0 ce qui donne $2\langle y-z,c'(0)\rangle=0$. Comme tout vecteur de T_zM est de la forme c'(0) pour un tel chemin c, on obtient $y-z\perp T_zM$, ce qui termine la preuve.

4. Ruban de Möbius

Dans cet exercice, on montre que le ruban de Möbius peut se voir comme un fibré vectoriel de rang 1 non trivial sur le cercle.

- 1- Identifions \mathbb{S}^1 au cercle unité dans \mathbb{C} , de sorte que $z \mapsto -z$ est une involution sans point fixe de \mathbb{S}^1 . Quel est le quotient X de \mathbb{S}^1 par cette involution?
- 2– Soit $\mathbb{S}^1 \times \mathbb{R}$ le fibré vectoriel de rang 1 trivial sur \mathbb{S}^1 . Montrer que le quotient de ce fibré vectoriel par l'involution $(z,t) \mapsto (-z,-t)$ est un fibré vectoriel E de rang 1 sur X
- 3– Montrer que $E \to X$ n'est pas un fibré vectoriel trivial.
- 4- Généralisation : On pose $E:=\{(D,x)\in\mathbb{RP}^n\times\mathbb{R}^{n+1}\mid x\in D\}$ et $p:E\to\mathbb{RP}^n,(D,x)\mapsto D$. Montrer que (E,p) est un fibré vectoriel de rang 1 non trivial sur \mathbb{RP}^n (c'est le "fibré tautologique").

Remarque : On peut démontrer qu'il n'y a pas d'autre fibré en droites sur le cercle S^1 que le fibré trivial et le ruban de Möbius.

Solution:

- 1– L'espace topologique quotient est $X = \mathbb{S}^1$ avec une projection $\pi : \mathbb{S}^1 \to X$ donnée par $z \mapsto z^2$. Comme cette application est un difféomorphisme local, la variété quotient est bien $X = \mathbb{S}^1$.
- 2- On munit E de sa structure de variété quotient. La projection $\mathbb{S}^1 \times \mathbb{R} \to \mathbb{S}^1$ passe au quotient en une application $p: E \to X$ qui est une submersion surjective. On a alors

un diagramme commutatif de projections:

$$\begin{array}{ccc}
\mathbb{S}^{1} \times \mathbb{R} & \xrightarrow{p'} & \mathbb{S}^{1} \\
\pi' \downarrow & & \downarrow \pi \\
E & \xrightarrow{p} X
\end{array}$$

Soit $x \in X$, $u \in \mathbb{S}^1$ tel que $\pi(u) = x$. La fibre $p^{-1}(x) \subseteq E$ s'identifie à \mathbb{R} via l'application $i : \mathbb{R} \to p^{-1}(x), t \mapsto \pi'(u, t)$ celui qui lui donne une structure d'espace vectoriel. Cette structure ne dépend pas de l'antécédent choisi pour x, car si on choisit plutôt u' = -u, et qu'on note i' l'identification associée, on obtient que l'application de transition $i' \circ i^{-1} : \mathbb{R} \to \mathbb{R}$ est -Id donc un isomorphisme linéaire.

Il reste à vérifier que l'on peut trivialiser localement. Soit $x \in X$, $u \in \pi^{-1}(x)$, $U \subseteq \mathbb{S}^1$ un voisinage ouvert u tel que $\pi_{|U}$ est un difféomorphisme sur son image $V := \pi(U)$. On définit $p^{-1}(V) \to V \times \mathbb{R}$, $y = \pi'(u,t) \mapsto (p(y),t)$. C'est une application C^{∞} , un isomorphisme fibre par fibre. L'application réciproque est $V \times \mathbb{R} \to p^{-1}(V)$, $(x',t) \mapsto \pi'(\pi_{|U}^{-1}(x'),t)$, elle est donc C^{∞} . On a donc une trivialisation locale en x ce qui conclut.

- 3– Supposons par l'absurde E trivial, autrement dit qu'on a une section C^{∞} sans point d'annulation $s: X \to E$. On note $\sigma: \mathbb{S}^1 \to \mathbb{S}^1 \times \mathbb{R}$ l'unique section du fibré trivial $p': \mathbb{S}^1 \times \mathbb{R} \to \mathbb{S}^1$ relevant s c'est à dire telle que $\pi' \circ \sigma = s \circ \pi$. Elle est C^{∞} car les projections π, π' sont des difféomorphismes locaux et que σ s'écrit localement " $\pi'^{-1} \circ s \circ \pi$ ". Elle vérifie de plus la relation $\sigma(-z) = -\sigma(z)$ donc prend des valeurs positives et négatives, mais jamais nulles. Ceci contredit la connexité de \mathbb{S}^1 .
- 4– On reprend le raisonnement des questions précédentes où \mathbb{S}^1 est remplacé par \mathbb{S}^n . En effet, on peut identifier \mathbb{RP}^n à \mathbb{S}^n quotienté par l'action de $\mathbb{Z}/2\mathbb{Z}$ par antipodie. On peut aussi identifier E à $(\mathbb{S}^n \times \mathbb{R})/(z,t) \sim (-z,-t)$ via l'application $\mathbb{S}^n \times \mathbb{R} \to E, (z,t) \mapsto (\mathbb{R}z,tz)$ passée au quotient. De plus, les projections correspondent via ces identifiactions. On raisonne alors exactement comme dans les questions précédentes pour conclure.

5. Théorème de la boule chevelue

Le but de cet exercice est de montrer qu'un champ de vecteurs C^{∞} sur une sphère \mathbb{S}^n de dimension paire admet toujours un point d'annulation. On commence par une mise en perspective :

- 1– Montrer que les sphères de dimension impaire admettent des champs de vecteurs C^{∞} qui ne s'annulent pas.
- 2- Montrer que toute sphère (de dimension au moins 1) admet un champ de vecteur s'annulant exactement en un seul point.

Passons maintenant à la preuve du théorème. On suppose $n \ge 1$ pair.

- 3- Soient K une partie compacte de \mathbb{R}^{n+1} , U un ouvert de \mathbb{R}^{n+1} contenant K et v une application de classe C^{∞} de U dans \mathbb{R}^{n+1} . Pour t dans \mathbb{R} , on définit une application $F_t: \left\{ \begin{array}{ccc} U & \to & \mathbb{R}^{n+1} \\ x & \mapsto & x+tv(x) \end{array} \right.$ Montrer qu'il existe un ouvert V de U contenant K et $\varepsilon > 0$ tels que, pour tout t avec $|t| \leqslant \varepsilon$, F_t soit un difféomorphisme de V sur son image. Montrer que la mesure de Lebesgue de $F_t(K)$ est alors un polynôme en t.
- 4- Soit v un champ de vecteurs unitaire sur \mathbb{S}^n . On pose toujours, pour t dans \mathbb{R} et x dans $\mathbb{S}^n \subset \mathbb{R}^{n+1}$, $F_t(x) = x + tv(x)$. Montrer que, pour t suffisamment petit, F_t est un difféomorphisme entre \mathbb{S}^n et la sphère de rayon $\sqrt{1+t^2}$.
- 5- Conclure.

Solution:

1– Soit v un élément de \mathbb{S}^{2p+1} . Alors le vecteur iv lui est orthogonal (c'est vrai dans \mathbb{C} , donc dans \mathbb{C}^p coordonnée par coordonnée), et on obtient le champ de vecteurs recherché. En coordonnées réelles, il est donné par

$$X(v_1, v_2, \dots, v_{2p+1}, v_{2p+2}) = (-v_2, v_1, \dots, -v_{2p+2}, v_{2p+1}).$$

- 2- Considérons la projection stéréographique depuis le pôle Nord $p: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$. Notons X_{e_1} le champ de vecteur constant sur \mathbb{S}^n de valeur e_1 . Alors $(p^{-1})_*(e^{-||x||^2}X_{e_1})$ convient.
- 3– Sur un voisinage de K, la norme de la différentielle dv_x de v est bornée par une constante C. Alors $dF_t(x) = \operatorname{Id} + t dv_x$ est inversible dès que |t| < 1/C, car $B(\operatorname{Id}, 1) \subset GL(n, \mathbb{R})$ comme le montre la formule $(\operatorname{Id} A)^{-1} = \sum A^n$.

Sur ce voisinage, v est également C'-lipschitzienne pour une certaine constante C'. Si |t| < 1/C', montrons que F_t est injective. En effet, si $x_n + tv(x_n) = y_n + tv(y_n)$, alors

$$|x_n - y_n| = |t||v(x_n) - v(y_n)| \le C'|t||x_n - y_n|$$

donc $x_n = y_n$.

Quitte à prendre un voisinage V un peu plus petit, on peut donc supposer que F_t est une immersion injective sur \overline{V} . En particulier, c'est une bijection continue du compact \overline{V} sur son image, donc un homéomorphisme. En particulier, F_t est encore un homéomorphisme sur V, c'est donc un difféomorphisme.

La formule du changement de variables donne alors

$$Leb(F_t(K)) = \int_{F_t(K)} dx = \int_K JF_t(y) dy,$$

car $JF_t(y)$ est positif pour t assez petit, étant égal à 1 en t=0 et continu. Mais $dF_t(y) = \operatorname{Id} + t dv_y$, et son déterminant est donc un polynôme en t. En intégrant, on obtient que $\operatorname{Leb}(F_t(K))$ est bien un polynôme en t.

4– Pour être dans le cadre de la question précédente, on prolonge v par homogénéité en posant $v(\lambda x) = \lambda v(x)$ pour tout $\lambda > 0$. Pour t assez petit, F_t est donc un difféomorphisme sur un petit voisinage de \mathbb{S}^n , et en particulier une immersion.

On a

$$||F_t(x)||^2 = ||x||^2 + t^2 ||v(x)||^2 = (1+t^2) ||x||^2.$$

Ainsi, F_t se restreint en une application de \mathbb{S}^n dans $\sqrt{1+t^2}\mathbb{S}^n$. C'est une immersion (comme restriction d'une immersion à valeurs dans un espace plus grand) injective, donc un plongement. Son image est ouverte par le théorème d'inversion locale, et fermée par compacité, c'est donc $\sqrt{1+t^2}\mathbb{S}^n$.

5- Par homogénéité, F_t est un difféomorphisme entre les sphères $\lambda \mathbb{S}^n$ et $\sqrt{1+t^2}\lambda \mathbb{S}^n$ pour tout $\lambda > 0$. Soit $K = \{x \in \mathbb{R}^n \mid 1/2 \leqslant \|x\| \leqslant 2\}$. Alors l'image de K par F_t est $\sqrt{1+t^2}K$, de volume $(1+t^2)^{\frac{n+1}{2}}$ Leb(K). D'après la deuxième question, c'est un polynôme en t, donc $\frac{n+1}{2} \in \mathbb{N}$, i.e., n est impair.

Finalement, s'il existe un champ de vecteurs partout non nul sur \mathbb{S}^n , on peut le normaliser de manière à ce qu'il soit partout de norme 1, et l'argument précédent montre donc que n est impair.