Géométrie Différentielle, TD 6 du 15 mars 2019

			/>	
1.	Compléments sur l	e crochet de Lie -	(À FAIRE AVANT LE TD'	

- 1- Dans \mathbb{R}^n , Montrer que $[X,Y](x) = d_x Y[X(x)] d_x X[Y(x)]$.
- 2- Soit M une variété, $X \in \Gamma(TM)$. Montrer que si pour tout champ de vecteurs $Y \in \Gamma(TM)$, on a [X,Y] = 0, alors X = 0.

2. Quelques flots classiques (À FAIRE AVANT LE TD)

Calculer les flots des champs de vecteurs suivants :

- 1- Sur \mathbb{R}^n , $X(x) = \frac{\partial}{\partial x_1}$.
- 2– Sur $\mathbb{R}^n \setminus \{0\}$, $X(x) = \frac{x}{\|x\|}$ (vecteur radial).
- 3– Sur $\mathbb{R}^2\setminus\{0\},\,X(x)$ défini tel que $(\frac{x}{\|x\|},X(x))$ soit une base orthonormée directe.
- 4– Sur $\mathbb{R}^2/\mathbb{Z}^2$, $X(x)=a\frac{\partial}{\partial x_1}+b\frac{\partial}{\partial x_2}$. Discuter des trajectoires selon que (a,b) est \mathbb{Q} -libre ou non.
- 5– Sur S^2 , $X=\psi^*(\frac{\partial}{\partial x_1})$ sur $S^2\setminus\{N\}$ et X(N)=0, où $\psi:S^2\setminus\{N\}\to\mathbb{R}^2$ est la projection stéréographique.

3. Redressement d'un champ de vecteurs

On montre qu'un champ de vecteurs sans point d'annulation sur une variété peut être représenté localement par un champ de vecteurs constant.

- 1- Soit X un champ de vecteurs C^{∞} défini sur un voisinage de l'origine de \mathbb{R}^n . On suppose que $X(0) = \frac{\partial}{\partial x_1}$. Notons φ_t le flot local de X. Montrer que l'application $F(x_1, \ldots, x_n) = \varphi_{x_1}(0, x_2, \ldots, x_n)$ est un difféomorphisme local au voisinage de 0.
- 2- Soit G un inverse local de F au voisinage de l'origine. Calculer G_*X .
- 3– Soit M une variété C^{∞} de dimension n, X un champ de vecteurs C^{∞} sur M, et $x \in M$ tel que $X(x) \neq 0$. Montrer qu'il existe un difféomorphisme ψ entre un voisinage U de x dans M et un voisinage V de 0 dans \mathbb{R}^n tel que $\psi_*X|_U = \frac{\partial}{\partial x_1}|_V$.
- 4- En déduire qu'il existe des champs de vecteurs X_2, \dots, X_n tels que (X, X_2, \dots, X_n) soit une base de l'espace tangent sur un voisinage de x.

4. Transitivité des difféomorphismes

1- Soient $x, y \in \mathbb{R}^n$ tels que ||x||, ||y|| < r. Montrer qu'il existe un difféomorphisme φ de \mathbb{R}^n tel que $\varphi(x) = y$ et $\varphi(z) = z$ si ||z|| > r. On pourra utiliser le flot d'un champ de vecteurs adéquat.

- 2- Soit M une variété de dimension n et $x \in M$. Montrer qu'il existe un voisinage V de x tel que, si $y \in V$, il existe un difféomorphisme φ de M tel que $\varphi(x) = y$.
- 3- Soit M une variété connexe. Montrer que le groupe des difféomorphismes de M agit transitivement sur M.
- 4- Soit M une variété connexe de dimension $\geqslant 2$, et soit $k \geqslant 1$. Montrer que le groupe des difféomorphismes de M agit k-transitivement sur M: si $x_1, \ldots, x_k \in M$ sont distincts et si $y_1, \ldots, y_k \in M$ sont distincts, il existe un difféomorphisme φ de M tel que $\varphi(x_i) = y_i$ pour $1 \leqslant i \leqslant k$.

5	Dilatation	d'un	chamn	dе	vecteurs
J.	Dilatation	u un	CHAIHP	uc	vectents

On considère X un champ de vecteurs défini sur une variété M.

- 1- Montrer qu'il existe une fonction lisse f strictement positive de M dans \mathbb{R} telle que fX est un champ de vecteurs complet.
- 2- Comparer les trajectoires de X et fX.

6. Dérivation du flot selon le champ de vecteurs

Soit M variété de dimension n, X champ de vecteurs sur M et φ_t son flot. Soit $x \in M$ et $]-a,b[\subset \mathbb{R}$ l'intervalle sur lequel $\varphi_t(x)$ est défini. Montrer que :

$$\forall t \in]-a, b[, T_x \varphi_t(X(x)) = X(\varphi_t(x))$$

7. Flot d'un champ de vecteurs incompressible

Soit X un champ de vecteurs sur \mathbb{R}^n , de coordonées (X^1, \dots, X^n) . Il est dit *incompressible* si sa divergence est nulle, c'est-à-dire si $\sum_i \frac{\partial X^i}{\partial x_i} \equiv 0$. Montrer qu'alors la différentielle (spatiale) du flot de X a pour déterminant 1.