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Abstract

We prove a comparison theorem between the étale cohomology of algebraic varieties
over Stein compacta and the singular cohomology of their analytifications. We de-
duce that the field of meromorphic functions in a neighborhood of a connected Stein
compact subset of a normal complex space of dimension n has cohomological dimen-
sion n. As an application of Gal(C/R)-equivariant variants of these results, we obtain
a quantitative version of Hilbert’s 17th problem on compact subsets of real-analytic
spaces.

1 Introduction
1.1 Hilbert’s 17th problem

Hilbert discovered in [43] that real polynomials f € R[xy, ..., x,] that are positive
semidefinite (i.e., that only take nonnegative values on R") may not always be writ-
ten as sums of squares of polynomials. He however conjectured, in his celebrated
17th problem, that this issue may be resolved by allowing denominators: the polyno-
mial f should always be a sum of squares of rational functions. This problem was
solved positively by E. Artin [10, Satz 4] in 1927. Forty years later, Pfister [60, Theo-
rem 1] obtained a quantitative improvement of Artin’s theorem bounding the number
of squares required. It states that a positive semidefinite f € R[xy,..., x,] is a sum
of 2" squares in R(x1, ..., x,).

1.2 The real-analytic variant

As an application of the main results of this article, we prove a quantitative theorem
a la Pfister in real-analytic geometry.
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Theorem 1.1 (Theorem 7.5) Let M be a normal real-analytic variety of pure dimen-
sion n. Let K C M be compact. Let f : M — R be a nonnegative real-analytic func-
tion. Then there exists an open neighborhood U of K in M such that f|y is a sum
of 2" squares of real-analytic meromorphic functions on U .

If M is compact and K = M, Theorem 1.1 states that a nonnegative real-analytic
function on M is a sum of 2" squares of real-analytic meromorphic functions on M.

Much less is known on Hilbert’s 17th problem in the real-analytic setting, first con-
sidered in [18] (see [6] for an up-to-date survey), than in the algebraic case. A non-
negative real-analytic function on a normal and pure-dimensional real-analytic vari-
ety M is a sum of squares of real-analytic meromorphic functions in dimension <2
(see [47, Corollary 2] and [7, Theorem 1]), under a compactness hypothesis (see [61,
Theorem 1] and [48, Theorem 1]) or, when M is a manifold, under a discreteness
hypothesis on the zeros of f [19, Theorem 1]. However, whether a nonnegative real-
analytic function on R” is a sum of squares of real-analytic meromorphic functions
is still an open problem for n > 3.

In addition, quantitative results are known in dimension < 2. A nonnegative real-
analytic function on a normal real-analytic surface M is a sum of 3 squares of real-
analytic functions if M is a manifold [47, Corollary 2], and a sum of 5 squares of
real-analytic meromorphic functions in general (see [2, Theorem 1.2] or the more
general [27, Theorem 1.3]). No bounds on the required number of squares were
known if n > 3 (except in the local case, for which see [11, Theorem 0.2]). Theo-
rem 1.1 rectifies this situation, under a compactness hypothesis.

Although the qualitative content of Theorem 1.1 is not new (see [48, Theorem 1]),
the quantitative bounds it provides (more precisely, that these bounds only depend
on the dimension of M) do imply new cases of (the qualitative version of) the real-
analytic Hilbert’s 17th problem. Indeed, work of Acquistapace, Broglia, Fernando
and Ruiz [3, Proposition 1.8] readily implies the following.

Corollary 1.2 Let f be a nonnegative real-analytic function on a real-analytic mani-
fold. If the zero set of f is a disjoint union of compact sets, then f is a finite sum of
squares of real-analytic meromorphic functions.

The best results to date in this vein handled the case where the zero locus of f is
the union of a compact set and of a discrete set (see [49, Theorem 2] or [3, Corol-
lary 1.10]), or concerned infinite sums of squares [3, Corollary 1.9]. We also refer to
[4, Theorem 1.1] for quantitative results in this direction.

1.3 From real-analytic to complex-analytic geometry

In real algebraic geometry, it is very important to consider not only the sets of real
points of real algebraic varieties, but also their sets of complex points, endowed with
the action of G := Gal(C/R) by complex conjugation. For the same reason, it is
crucial for our proof of Theorem 1.1 to work in the setting of G-equivariant complex-
analytic geometry (see §6.3 for our conventions) instead of real-analytic geometry.
This point of view also leads to a more general theorem on sums of squares,
from which Theorem 1.1 is easily derived using the successive works of Cartan [21],
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Etale cohomology of algebraic varieties over Stein compacta 499

Grauert [31] and Tognoli [69] on complexifications of real-analytic spaces. Recall
that a compact subset of a complex space is said to be Stein if it admits a basis of
Stein open neighborhoods.

Theorem 1.3 (Theorem 7.4) Let S be a reduced G-equivariant Stein space of dimen-
sionn. Let K C S be a G-invariant Stein compact subset. Any G-invariant holomor-
phic function on S which is nonnegative on SC is a sum of 2"* squares of G -invariant
meromorphic functions in a neighborhood of K .

We believe that this G-equivariant variation on the analytic Hilbert’s 17th prob-
lem is novel, and that the new statements it comprises (for instance when § = C"
and K C S is the closed unit ball) are of interest. We insist that Theorem 1.3 is already
interesting and nontrivial when S¢ = @, in which case the nonnegativity hypothesis
is automatically satisfied.

1.4 Cohomological dimension of fields of meromorphic functions

It has been known since Voevodsky’s proof of the Milnor conjectures [71] that
quadratic forms over a field are largely governed by the Galois cohomology of the
field. As a consequence of these results, the validity of Theorem 1.3 is controlled by
the vanishing of a single Galois cohomology class of degree n + 1 (see [11, Proposi-
tion 2.1]). Using this point of view, Theorem 1.3 is a consequence of an upper bound
for the cohomological dimension of fields of G-invariant meromorphic functions on
G-equivariant Stein compacta (Corollary 6.8). In this introduction, let us only state a
non-G-equivariant version of this theorem.

Theorem 1.4 (Corollary 6.11 and Remark 6.12 (ii)) Let K be a connected Stein com-
pact subset of a normal Stein space S of dimension n. The field M(K) of germs of
meromorphic functions in a neighborhood of K has cohomological dimension n.

In dimension 1, Theorem 1.4 is attributed to M. Artin by Guralnick ([38, Proposi-
tion 3.7], see also [13, Proposition A.6]), with no compactness hypothesis. It is new
in dimension > 2. Theorem 1.4 is an algebraic statement concerning a field of ana-
lytic origin, and its proof uses a mixture of analytic and algebraic tools. As such, it is
deeper than its algebraic counterpart [64, II, Proposition 11] bounding the cohomo-
logical dimension of function fields of algebraic varieties.

We also obtain bounds on the étale cohomological dimension of affine varieties
over (possibly G-equivariant) Stein compacta (see Theorems 6.6 and 6.9). We refer
to the work of Bhatt and Mathew [15, Theorem 7.3 and Remark 7.4] for related
bounds in non-archimedean analytic geometry.

1.5 Etale and singular cohomology
By a complex-analytic incarnation of the weak Lefschetz theorem due to Andreotti
and Frankel [8, §2] in the nonsingular case and to Hamm [40, Satz 1] in general,

a Stein space of dimension n has the homotopy type of a CW complex of dimen-
sion < n. Its singular cohomology therefore vanishes in degree > n. Our strategy of
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proof of Theorem 1.4 is to transfer this topological information on the singular co-
homology of a Stein compactum to algebraic information on the étale cohomology
of its ring of holomorphic functions, and eventually on the Galois cohomology of its
field of meromorphic functions.

In algebraic geometry, such a transfer tool exists in the shape of M. Artin’s com-
parison theorem [35, XVI, Théoréeme 4.1] between the étale cohomology of a com-
plex algebraic variety X and the singular cohomology of its analytification X". In
order to implement the strategy described above, we prove the following analogue of
Artin’s comparison theorem in analytic geometry.

Theorem 1.5 (Theorem 6.1) Let S be a Stein space. Let X be an O(S)-scheme of
finite type and let 1L be a torsion étale abelian sheaf on X . Assume that X is proper
over O(S) or that L is constructible. If one lets U run over all Stein open neighbor-
hoods of a Stein compact subset K of S, the change of topology morphisms

colim HZC X , ]L colim Hk X an, ]Lan
«Xow), Low)) —> (Xow)y) )
are isomorphismsfor k > O

Theorem 1.5 is our main result. The bulk of this article is dedicated to its proof.
For applications to sums of squares, we really need a G-equivariant extension of
Theorem 1.5 (see Theorem 6.5), which we deduce from Theorem 1.5 by means of
the Hochschild—Serre spectral sequence.

1.6 Proof of the comparison theorem

Two proofs of Artin’s comparison theorem appear in [35]. The first [35, XI, §4]
(which only works for smooth varieties and locally constant coefficients) compares
the étale and the classical topology by means of a Leray spectral sequence. It exploits
the fact that points in smooth complex varieties admit good neighborhoods, which are
iterated fibrations in smooth affine curves. The second [35, X VI, §4] uses extensive
dévissage and fibration arguments to reduce to the case of smooth projective curves.

None of these proofs adapt to the setting of Theorem 1.5 as such fibration argu-
ments cannot be successfully implemented in Stein geometry. However, the dévissage
argument of the second proof can indeed be used in the complex-analytic setting to
yield the following easier relative comparison theorem over Stein spaces.

Theorem 1.6 (Theorem 4.9) Let S be a Stein space. Let f : X — Y be a morphism
of O(S)-schemes of finite type and let 1L be a torsion étale abelian sheaf on X . As-
sume that f is proper or that 1L is constructible. Then the base change morphisms
RK £, (L)™ — R¥ ALY are isomorphisms for k > 0.

In contrast, our proof of Theorem 1.5 initially takes the point of view of the first
proof of Artin’s theorem. Reductions based on Theorem 1.6 allow us to assume that
X = Spec(O(S)) and L = Z/m. We then consider the Leray spectral sequence com-
paring the étale and the classical topology. In order to show that this spectral sequence
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degenerates, one has to prove that singular cohomology classes with Z/m coefficients
on analytifications of étale O(S)-schemes are étale-locally trivial.

We proceed in two steps. First, we show that such cohomology classes become
unramified after pull-back to a finite ramified covering (Proposition 5.3). This uses
Theorem 1.6 in an essential way, as well as a vanishing theorem of Bhatt [14, Theo-
rem 1.1]. Second, we show that such unramified cohomology classes may be killed
by a further finite ramified covering (Proposition 3.4). This second step is analytic
in nature. It relies on the Oka—Weil approximation theorem and on Grauert’s bump
method as developed by Henkin and Leiterer [42] and Forstneri¢ [28].

This procedure unfortunately only shows that the relevant singular cohomology
classes are killed on possibly ramified coverings, not on étale coverings. To overcome
this difficulty, our proof of Theorem 1.5 makes use of Voevodsky’s qfh topology
[70, §3.1], which is finer than the étale topology and allows for such coverings.

Our relative comparison theorem (Theorem 1.6) is an analogue for étale sheaves
of the relative GAGA theorem of Hakim [39, VIII, Théoréme 3.2] (see also [17,
Theorem 4.2] or [1, Appendix C]) for coherent sheaves. In the coherent context,
there is no need for an absolute comparison theorem such as Theorem 1.5, as higher
cohomology groups of algebraic coherent sheaves on affine schemes, or of analytic
coherent sheaves on Stein spaces, vanish. This is a marked difference with the étale
setting, in which the absolute comparison theorem lies deeper.

In this article, we make extensive use of relative algebraic geometry over complex
spaces as initiated by Hakim [39], and developed by Bingener [17] when the base is
Stein. We refer to §4.1 for our conventions which follow [17]. In particular, we use
the above-mentioned relative GAGA theorem, through an application of [17, (7.2)],
in Step 4 of the proof of Theorem 1.5.

1.7 Structure of the article

Section 2 gathers general results concerning Stein spaces. Most of this material is
included to fix our conventions, for the convenience of the reader, or for lack of ap-
propriate references. Specialists of Stein geometry might want to skip it. Section 3
contains the main analytic input of our work: a procedure to kill a singular cohomol-
ogy class with torsion coefficients on a Stein compactum, after pull-back to a finite
ramified covering. We deduce Theorem 1.6 from Artin’s comparison theorem and its
proof in Sect. 4, and we use it to kill the ramification of singular cohomology classes
with torsion coefficients on finite ramified coverings in Sect. 5. The above results are
combined in Sect. 6 to prove Theorem 1.5, and to derive cohomological dimension
bounds including Theorem 1.4. Finally, applications to sums of squares problems are
given in Sect. 7.

2 Geometry of Stein spaces

Among the many general facts on Stein spaces and their compact subsets that are col-
lected in this section, let us put forward a descent result for O(S)-convexity along fi-
nite surjective holomorphic maps (Proposition 2.6), and the correspondence between
analytic coverings of connected normal Stein spaces and finite extensions of their
meromorphic function fields (Proposition 2.14).
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2.1 Complex spaces and coherent sheaves

A complex space is a C-ringed space that is locally isomorphic to a model complex
space defined by a finitely generated ideal sheaf in a domain of CV (see [33, I,
§1.5]). We assume that they are second-countable, but not necessarily Hausdorff,
finite-dimensional or reduced.

As in [32], a complex space S is said to be Stein if Hk(S, F)=0forall k >1
and all coherent sheaves F on S. We refer to this property as Cartan’s Theorem B
and to its consequence that coherent sheaves on Stein spaces are globally generated
as Cartan’s Theorem A. Stein spaces are Hausdorff (holomorphic functions separate
distinct 5, 5" € S as H'(S, Zis,s) = 0). A complex space S is Stein if and only if its
reduction S™9 is [32, V, §4.3, Theorem 5]. The following lemma sometimes allows
us to reduce problem about Stein spaces to the case of Stein manifolds.

Lemma2.1 Let S be a Stein space of dimension n. Then there exist a Stein manifold S’
of dimension 2n+ 1 and a proper injective holomorphic map i : S — S’ such that i (S)
is a strong deformation retract of S'.

Proof Let i : S — C?'*! be a proper injective holomorphic map (see [56, Theo-
rem 5]). As O(S) — O(S5™) is onto (by Cartan’s Theorem B), one may extend it
to a proper injective holomorphic map i : § — C>"*1. Its image i(S) c C***! is a
Stein analytic subset (by [33, 3, §1.3, Proposition] and [32, V, §1, Theorem 1 b)]).
The existence of S’ now follows from [55, Theorem 3.1]. O

If S is a complex space and F is a coherent sheaf on S, we endow H O(S , F) with
the canonical Fréchet topology defined in [32, V, §6] and use freely its properties
listed in [32, V, §6.4]. When S is reduced and F = Oy, it coincides with the topology
of uniform convergence on compact subsets [32, V, §6.6, Theorem 8].

2.2 Runge domains

If K C S is a compact subset of a complex space, its O(S)-convex hull is

Kog)={seS|1f©) < f;lll()lf(t)l forall f € O(S)}.

By [32, V, §4.2, Theorem 3], a complex space S is Stein if and only if

(i) the global holomorphic functions O(S) separates the points of S, and
(ii) the O(S)-convex hull Kp(s) C S of any compact subset K C S is compact.

An open subset €2 in a Stein space S is said to be Runge if it satisfies any of the
equivalent properties of the following proposition. As we could not find a precise
discussion in the literature when S is possibly nonreduced, we include a brief proof.
Such a generality will be useful in the proof of Proposition 2.6.

Proposition 2.2 Let Q2 C S be an open subset in a Stein space. The following asser-
tions are equivalent, and hold for (S, Q2) if and only if they hold for (S*9, Q).
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(1) For all compact subsets K C 2, one has k\O(Q) = fo(g).
(ii) The image of the restriction map O(S) — O(Q) is dense, and Q2 is Stein.
(iii) For any coherent sheaf F on S, the restriction map HO(S, F)— HOYQ, F) has
dense image, and <2 is Stein.

Proof Write (%)™ for assertion (x) for the pair ($™4, Q™d). Then (i)™d, (ii)d
and (i)™ are equivalent by [37, VII, A, Corollary 9 and VIII, A, Theorem 11]. The
implication (iii)=>(ii) is obvious. If (ii) holds, the continuity and surjectivity of the
restriction map O(2) — O(Q™%) show that (ii)™? also holds. That (i)*¢ implies (i)
follows from the surjectivity of O(S) — O(S™). Conversely, if (i) holds, then
is Stein (O(L2) separates the points of Q2 because O(S) separates the points of §)
and (i)™ follows from the surjectivity of O(Q) — O(Q™).

To prove (i)' = (iii), we argue as in [59, Lemma 1.10]. The characterization
[32, V, §6.2, Theorem 4] of the topology on HO(Q, F) shows that it is the initial
topology with respect to the restriction maps H%(Q, F) — H%(Q/, F) with Q' c Q
relatively compact. By [58, (1.1)], we may restrict to those ' such that (€)™ is
Runge in ™. We may thus replace € with such an ' and assume that 2 is rela-
tively compact in S. Let ' C Oy be the nilradical of Og. As  is relatively compact
in S, there exists k > 0 such that N¥ = 0 on Q. Then F is a successive extension of
FINF, ..., N-VF/NkF and N¥F. As the set of coherent sheaves satisfying (iii)
is stable by extensions (use [59, Lemma 1.9]), we may suppose that N'F =0 on .
As Ho(S, F) — H(S, F/NF) is onto by Cartan’s Theorem B, we may replace F
with F /N F.Now F may be identified with a coherent sheaf on 5™ and the required
density statement follows from (iii)™d. O

2.3 O(S)-convex compact subsets
A compact subset K of a complex space S is said to be O(S)-convex if I?@( 5 =K.
In the following lemma, C*° strongly plurisubharmonic (psh) functions are meant in

the sense of [57, §2].

Lemma 2.3 Let p: S — R be a C* strongly psh function on a reduced Stein space.

(i) For c € R, the open subset {s € S| p(s) < c} of S is Runge.
(ii)) Forc eR,if S<.:={s € S| p(s) <c}is compact, then it is O(S)-convex.

Proof Assertion (i) is [57, Theorem 3]. The compactness of S<. and (i) together
imply that S<. has a basis of Runge neighborhoods in S, hence is O(S)-convex. [

We also include the next lemma, proven in [58, (1.1)] for later reference.

Lemma 2.4 Let S be a Stein space and let K C S be an O(S)-convex compact subset.
Then K admits a basis of Runge open neighborhoods in S.

We now analyze how O(S)-convexity behaves with respect to finite morphisms.
Our goal is Proposition 2.6 (ii) which will be used in the proof of Proposition 3.4.
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Lemma2.5 Let p: T — S be a finite surjective holomorphic map between connected
normal Stein spaces. Let K C S be a compact subset. Then

o —

p! (K)o = P_I(I?O(S))-

Proof The inclusion p—l(K)O(T) C p_l(lf(\@@)) is obvious. To prove the converse
inclusion, we use the norm morphism N, : p,Or — Og of p (it is defined on the
locus over which p is an unramified finite covering of manifolds by summing over
the fibers and it extends to all of S by Riemann’s extension theorem [33, 7, § 4.2]
because S is normal).

Choose t € T \ p—l(K)O(T) and set s := p(t). Let § be the maximal cardinal-
ity of the fibers of p over some compact neighborhood of K. By the version [28,
Theorem 2.8.4] of/th\e Oka—Weil approximation theorem, there exists g € O(T)
with |g| <1 on p—l(K)O(T), with g =0 on p~'({s}) \ {#} and with g(r) =8 + 1.
Then f :=N,(g) € O(S) satisfies | f| <& on K, and | f(s)| > 6 (to see it, use that p
is open by [33, 3, §3.2, Criterion of Openness]). Hence s ¢ Ko s). g

Proposition 2.6 Let p : T — S be a finite holomorphic map between Stein spaces,
and let K C S be a compact subset.

() If K is O(S)-convex, then p~'(K) is O(T)-convex.
(i) pr_l(K) is O(T)-convex and p is surjective, then K is O(S)-convex.

Proof Assertion (i) is immediate from the definitions and we now prove (ii). Using (i),
one may replace T with its normalization and hence assume that 7" is normal. We may
also replace S with its reduction and assume that it is reduced.

Choose s € S\ K. To construct f € O(S) such that | f| <1 on K and | f(s)| =1,
we may first construct it in restriction to the (finite) union of irreducible components
of S intersecting K U {s} and then extend it to S using Cartan’s Theorem B. We may
thus assume that S has finite dimension » and argue by induction on r.

Let S be the normalization of S. Using the natural factorization 7 — S— Sof D,
we may either assume that S is normal or that p is a normalization morphism. In the
first case, we may suppose that S is connected, and replace 7' by any of its connected
components dominating S. The result then follows from Lemma 2.5.

We now deal with the second case where p is a normalization morphism.
Let Z € Og be the annihilitor of the cokernel of Og < p,O7 (the conductor of p).
It is a coherent sheaf of Og-ideals by [33, Annex, §4.4] which is also, in view of
its definition, a sheaf of p,Op-ideals. We let S C S and T’ C T be the (possibly
nonreduced) complex subspaces defined by Z. By construction, the subset S” of §
is the locus over which p is not an isomorphism, i.e. the nonnormal locus of S. As
a consequence, one has dim(S") < dim(S). We get a commutative exact diagram of
coherent sheaves on S:

0 — 7 — p,Of —— p,Opp —— 0

¢ ¢ 2.1)

|
0 7 Oy Oy 0.
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By (i) applied to the inclusion T’ < T, the subset p~'(S'NK) =T'N p~1(K)
of T’ is O(T’)-convex. The induction hypothesis applied to p|7 : T' — S’ then
shows that §’ N K is O(S’)-convex. Use Lemma 2.3 to choose a Runge neighbor-
hood 2 of S’ N K in S’ such that s ¢ Q. Apply Lemma 2.3 again to construct a rela-
tively compact Runge neighborhood © of p~!(K) in T that is disjoint from p~!({s}),
and such that 7/ N O C p~1(Q).

The restriction map O(®) — O(T' N ®) is continuous, and surjective by Cartan’s
Theorem B. It thus follows from the open mapping theorem for Fréchet spaces that
there exists a neighborhood U C O(T’ N ©®) of the origin such that for all a € U,
there exists b € O(O) such that b|7/ne =a and |b| < 1 on p~1(K). Let V. C O(RQ)
be the inverse image of U by the (continuous) pull-back map O(2) — O(T' N O).

Set F:= Oy if s ¢ " and F := T, C Oy if s € §’. By Proposition 2.2 (iii), there
exists c € HY(S', F) c O(S’) with (1 +¢)|g € V. Setd := 1 + p*c € O(T’) so that
a :=d|pne € U. By our choice of U, there exists b € O(0) with b|rne =d|71ne
and |b| < 1 on p~!(K). The Oka—Weil approximation theorem [28, Theorem 2.8.4]
now shows the existence of e € O(T') with e|7» = d, and such that |¢| < 1 on p_1 (K)
and e =1 on p~!({s}).

Diagram (2.1) remains exact after taking global sections by Cartan’s Theorem B.
A diagram chase in the resulting diagram shows the existence of f € O(S) with
p*f=ec€O(T).Onehas f(s)=1and |f| < 1on K, so K is O(S)-convex. O

Remarks 2.7 (i) In Proposition 2.6 (ii), one cannot remove the assumption that S
and T are Stein, even if f is a reduction morphism (see [63, (8.5)]) or a normalization
morphism (see [54, Theorem 3]).

(i) In the setting of Proposition 2.6, the equality p—! (K)o = p! (I?O(T)) does
not hold in general, for instance if T = {(x, y) € C%|lxy=0}if p:S— T if the
normalization morphism, and if K = {(x,0) € C?l|Ix|=1}CT.

2.4 Stein compact subsets

If F is a sheaf on a complex space S and K C S is closed, we let 7(K) denote the
set of germs of sections of F in a neighborhood of K.

A compact subset of a complex space S is said to be Stein if it admits a basis of
Stein open neighborhoods. A Stein compactum is the germ of a complex space along
a Stein compact subset. As the intersection of two Stein open subsets is Stein (see
[32, p. 127]), an intersection of Stein compact subsets is again Stein. By Lemma 2.3,
an O(S)-convex compact subset of a Stein space is Stein.

Lemma 2.8 Let S be a Stein space and let K C L C S be Stein compact subsets. Then
the ring morphisms O(S) — O(K) and O(L) — O(K) are flat.

Proof That O(S) — O(K) is flat is proven in [51, Proof of Lemma 2.2]. There, the
compact subset K is assumed to be O(S)-convex, but only the fact that it is Stein is
used. In addition, the Stein space S is assumed to be a connected manifold. The proof
extends to our more general setting, replacing references to Hérmander’s book with
applications of Cartan’s Theorems A and B (in the generality of [32]).
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Let (U;);en be a decreasing basis of Stein open neighborhoods of L in S. By the
above, the ring O(K) is flat over O(U;) for all i € N. By the equational criterion of
flatness [26, Lemma O0HK], the ring O(K) is flat over colim;cn(O(U;)) = O(L).

a

We will say that a Stein compact subset K of a Stein space S is excellent if the
ring O(K) is noetherian. By a theorem of Siu [66, Theorem 1], this is the case if and
only if for every germ Z of closed analytic subset along K, the subset Z N K of K
has finitely many connected components. This holds in particular if K is semianalytic
(see [29, Théoreme 1.9]). Excellent Stein compact subsets are plentiful as the next
lemma shows.

Lemma 2.9 Let S be a Stein space and let K C S be a compact subset.

(i) The subset K has a semianalytic O(S)-convex compact neighborhood in S.
(1) If K is Stein, it has a basis of semianalytic Stein compact neighborhoods in S.

Proof After replacing it with $™, we may assume that S is reduced. Let p : § — R be
a real-analytic strongly psh exhaustion function (see [57, Lemma p. 358]). For ¢ > 0,
the semianalytic compact subset {s € S | p(s) < ¢} is a neighborhood of K which
is O(S)-convex by Lemma 2.3 (ii), proving (i).

If K is Stein, it admits a basis of Stein open neighborhoods each of which is
exhausted by semianalytic Stein compact subsets by (i). This proves (ii). O

Lemma 2.10 Let K be a Stein compact subset of a Stein space S. There exists a
basis of Stein compact neighborhoods (L j) jey of K in § such that L j admits a basis
(U,-)l-€1j of Stein open neighborhoods and L j is O(U;)-convex for j € J and i € I;.

Proof Let U be a Stein open neighborhood of K in S. By Lemma 2.9 (i), there exists
a compact neighborhood L of K in U that is O(U)-convex. By Lemma 2.3, the
subset L admits a basis of Runge open neighborhoods (U;);cy in U. It follows that L
is O(U;)-convex for all i € I. This concludes. Il

If K is a compact subset of Stein space S, we define Sk C O(S) to be the subset
of holomorphic functions that do not vanish on K, and O(S)g := O(S)[SIEI]. Such
rings are studied in [51] and [5], at least if S is reduced.

Lemma 2.11 Let S be a Stein space and let K C S be a compact subset.

(1) If K is O(S)-convex, the ring morphism O(S)x — O(K) is faithfully flat.
(ii) The ring O(S)k is excellent.
(iii) If K is Stein and excellent, the ring O(K) is excellent.

Proof By Lemma 2.8, the ring O(K) is O(S)-flat, hence O(S)g-flat. If K is
O(S)-convex, the description given in [5, Corollary 3.3 (v)] of the maximal ideals
of O(S)k now implies assertion (i) (use [26, Lemma 00HQ]).

Assertion (ii) is proven in [5, Theorem 3.5]. As the noetherianity of O(S)k is
not explicitly proven there, we give an argument. If K’ is an excellent O(S)-convex
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compact neighborhood of K in S (which exists by Lemma 2.9 (i)), then O(S)k is a
localization of O(S)g’. We may thus assume that K is excellent and O(S)-convex.
As O(K) is noetherian, so is O(S)k by (i) and [26, Lemma 033E]. To dispel any
doubt as to whether the excellence of O(S)g holds if S is possibly nonreduced, one
can reduce to the reduced case using [52, Main Theorem 1].

Assertion (iii) is proven in [16, Bemerkung pp.152-153] (there, the Stein compact
subset K is assumed to be semianalytic but only its excellence is used). g

Let K be a Stein compact subset in a Stein space S. By [72, Theorem 4.7], for
every prime ideal p C O(K), there exist s € K and a germ Z of closed analytic
subset along K which is essentially irreducible at s in the sense of [72, p. 118], and
such that p = { f € O(K) | f|z vanishes identically near s}.

Lemma 2.12 With the above notation, the following are equivalent.

(i) The ring O(K)y, is regular.
(1) The germ of Z at s is not included in the singular locus of S.

Proof Assume first that O(K), is regular. Use Lemma 2.9 (ii) to find an ex-
cellent Stein compact neighborhood L of K such that Z extends to a germ of
closed analytic subset along L. We still denote by p the corresponding ideal
of O(L). As O(L)p — O(K); is flat by Lemma 2.8, the ring O(L), is regular
(see [26, Lemma 00OF]). As O(L) is excellent by Lemma 2.11 (iii), the singu-
lar locus of Spec(O(L)) is closed, defined by an ideal I C O(L). One can thus
choose fel\p. As f ¢ p and s € L, any neighborhood of s in S contains a
pointr € ZNL with f(¢) # 0. If m C O(L) is the ideal of functions vanishing at ¢, the
ring O(L)y, is regular because f € I. It is moreover of dimension d := dim,(Z) (see
[72, Proof of Corollary 4.9]). As m/m2 = ms,,/mét (see [50, below Lemma 2]),
the ring Os ; is regular, so S is nonsingular at ¢ (see [33, 6,8 2.1)).

Assume now that (ii) holds. Let Z’ be an irreducible component of the germ of Z
at s which is not included in S*"¢, If p’ C Oy, is the ideal of functions vanishing
on Z', then (Oyg y), is regular by [44, Théoreme 3]. Since O(K)p — (Oy,¢)y is a flat
local morphism of local noetherian rings (by Lemma 2.8 and [72, Proposition 4.11]),
the ring O(K)y is regular by [26, Lemma 00OF]. g

Recall that a ring morphism A — B is regular if it is flat and the induced mor-
phism Spec(B) — Spec(A) has locally noetherian and geometrically regular fibers
(see [26, Definition 07R7]). Lemma 2.13 is used in the proof of Lemma 4.7.

Lemma 2.13 Let S be a Stein space and let K C L C S be excellent Stein compact
subsets. Then the ring morphisms O(L) — O(K) and O(S)x — O(K) are regular.

Proof The first assertion is proven in [17, (2.2)] (there, Lemmas 2.8 and 2.12 are
used as well-known facts, and K and L are assumed to be semianalytic but only
their excellence is used). We prove the second assertion following the arguments of
loc. cit. As O(K) is O(S)k-flat by Lemma 2.8, and in view of [26, Lemma 038V
(1)<(3)], it suffices to show that the fibers of Spec(O(K)) — Spec(O(S)k) are
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regular. Fix p € Spec(O(K)) and let q be its image in Spec(O(S)). We will show the
regularity of O(K)/qO(K) atp.Set T :={s € S| f(s) =0forall f € q}.

The restriction morphism O(K)/qO(K) — O(T N K) is surjective by Cartan’s
Theorem B. It is also injective, as for any relatively compact Stein open neighbor-
hood U of K in S, one can find (f;)1<;<x in q such that O?k —(ﬁZ) Ir|y is onto, and
apply Cartan’s Theorem B to show that Zr (K) = q O(K). After replacing S with T
and K with 7 N K, we may thus assume that ¢ =0 (and S is reduced).

Let s € K and Z be as in Lemma 2.12. As q = 0, no nonzero element of O(S)
vanishes on the germ of Z at s. As § is reduced, S has a nonzero equation in O(S),
and hence the germ of Z at s is not included in $*"¢. By Lemma 2.12, the ring O(K)p
is regular, as wanted. O

2.5 Meromorphic functions and ramified coverings

A finite holomorphic map p : T — § between reduced complex spaces is an an-
alytic covering if there exists a nowhere dense closed analytic subset ¥ C S such
that p~!(X) is nowhere dense in 7' and Ply-1is\x) p~I(S\Z) = S\ = is alocal
biholomorphism (unlike in [33, 7, §2.1], we do not insist that p be surjective). It is
said to be of degree d if the fibers of p|,-1(g\ 5 have cardinality d.

We let M denote the sheaf of germs of meromorphic functions on a complex space
(see [33, 6, §3.1]). If S is a reduced and irreducible Stein space, then M(S) is the
fraction field of the domain O(S) (because the sheaf of denominators of & € M (S)
defined in [33, 6, §3.2] is coherent and nonzero, hence admits a nonzero global sec-
tion). The following proposition is classical in dimension 1, see e.g. [65, 1, §4.14,
Corollaries 4 and 5].

Proposition 2.14 Let S be a reduced and irreducible Stein space. Then the functor

analytic coverings p: T — S finite field extensions
with T connected and normal M(S)CF

which associates with p : T — S the extension M(S) C M(T) of meromorphic func-
tion fields is an equivalence of categories.

Proof After replacing S with its normalization (which is legitimate by [33, 8, §1.3,
Lifting Lemma]), we may assume that S is connected and normal.

We first show that the functor is well-defined. Let S8 and 75" be the singular
loci of S and T. Then Z := §%"2 U p(T%"2) is a closed analytic subset of S which
has codimension > 2 by [33, 6, §5.3]. Set U := S\ Z. The locus W C T \ p’l(Z)
where p is not a local biholomorphism is an analytic subset of pure codimension 1
because it is the zero locus of the Jabobian of p. Over U \ p(W), the map p
is a finite local biholomorphism. As U \ p(W) is connected by [33, 9, §1.2], the
map p|,-1yy: p~N(U) — U is a degree d analytic covering of complex manifolds
for some integer d > 1. It then follows from [33, 7, §3.1, Corollary 2] that the
field extension M(U) C M(p~'(U)) is finite (of degree < d). As M(S) = M(U)
and M(T) = M(p~'(U)) by [33, 9, §5.2], the field extension M (S) C M(T) is
finite (of degree < d).
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Let p; : T1 — S and p> : T, — S be analytic coverings of connected normal Stein
spaces. By [45, Theorem II], any morphism M(T}) C M(T») of C-algebras is in-
duced by a unique holomorphic map f : 7> — Tj, and the former is a morphism of
M(S)-algebras if and only if pp = p; o f. The functor is therefore full and faithful.

We finally prove that the functor is essentially S d]ectlve Let F be a finite ex-
tension of degree d of M(S). Let P(x) = x4 + Yoiso aix' € M(S)[x] be an ir-
reducible polynomial with splitting field F. Let b € O(S) be a nonzero element
with ba; € O(S) for i € {0,...,d — 1}, and let R C P'(C) x S be the zero locus
of bX + Zf;ol ba; X'Y?~!, where [X : Y] are homogeneous coordinates of P! (C).
Let R’ be an irreducible component of R dominating S, let R — R” — § be the
Stein factorization of the projection R" — S (see [33, 10, §6.1]), and let T be the
normalization of R”, with projection p : T — S. As the inverse image by R — S of a
general point of S has cardinality < d, the same holds for the inverse image by p of a
general point of S (note that the normalization morphism 7" — R” is an isomorphism
above the complement of a discrete subset of R”). We deduce from the first para-
graph of this proof that the field extension M(S) C M(T) has degree < d. As the
element X/Y € M(T) is annihilated by P, we get inclusions M (S) C F € M(T).
A degree argument now shows that ' and M(T") are isomorphic extensions (of de-
gree d) of M(S). O

Remark 2.15 Tt follows from the proof of Proposition 2.14 that a finite extension
M(S) C F of degree d corresponds to an analytic covering p : T — § of degree d.

We deduce at once from Proposition 2.14 the following corollary.

Corollary 2.16 Let S be a reduced Stein space with finitely many irreducible compo-
nents. Associating with p : T — S the M(S)-algebra M(T) induces an equivalence
of categories

analytic coverings p: T — S N finite étale
with T normal M(S)-algebras

The next lemma will be used in the proofs of Propositions 3.1 (ii) and 5.2.

Lemma 2.17 Let g : R — S be an analytic covering of connected normal Stein
spaces. There exists an analytic covering p' : T — R of connected normal Stein
spaces and a finite group T acting on T and acting trivially on S, such that p :== qo p’
is I'-equivariant and T" acts transitively on the fibers of p.

Proof The field extension M(S) C M(R) is finite by Proposition 2.14. We let
M(S) C F be its Galois closure, with Galois group I'. Let p’ : T — R be the
analytic covering associated with M(R) C F through the equivalence of cate-
gories of Proposition 2.14. By functoriality, the finite group I' acts on 7 and
p :=q o p’ is '-equivariant. The quotient complex space T/T (see [20, Theo-
rem 4]) is connected, normal and admits a natural finite holomorphic map 7/ " — S.
One deduces from the field inclusions M(S) C M(T/T) Cc M(T)'' = M(S) that
M(S) = M(T/T). In view of Proposition 2.14, the projection T/I" — § is a bi-
holomorphism. Consequently, the group I' acts transitively on each fiber of p. O
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3 Killing cohomology classes on finite coverings

The goal of this section is Proposition 3.4, proven in §3.3 by induction on the de-
gree of a cohomology class. We cover the base case of the induction in §3.1 and the
induction procedure relies on Grauert’s bump method described in §3.2.

3.1 Finite coverings of O(S)-convex compact subsets
The following proposition will be key in dealing with degree 1 cohomology classes.

Proposition 3.1 Let S be a Stein manifold of dimension n, let K C S be an
O(8)-convex compact subset, let U C S be an open neighborhood of K and
let f:U — U be a finite surjective local biholomorphism.

(i) After maybe shrinking U, there exist a finite surjective holomorphic map
q : R — S and an open embedding h : U <> R such thatgoh = f.

(i1) After maybe shrinking U, there exist a finite surjective holomorphic map
p: T — S and a holomorphic map g : p~" (U) — U with fog=rl,-1w-

Proof of (i) By Lemma 2.3, we may assume that U is Stein after shrinking it, hence
that so is U by [32, V, §1, Theorem 1 d)]. By [56, Theorem 3], one can then find an
embedding i : U< CN (with N =2n+1).Let j : U <> CN x U be the embedding
defined by j(z) = (i(z), f(z)). Write pr; : CN x U — CN and pr, : CN x U - U
for the projections. For any continuous ¢ : U — ]0, 4-00[, define

O, :={(a,b) € cNxu |dce U with f(c)=bandl|a—i(c)| <e)}. (3.1

Choose ¢ sufficiently small so that the element ¢ in (3.1) is always unique and de-
fine the map 7 : ®, — U by the property that 7 (a, b) = c. Geometrically, the sub-
set O, of CV x U is a tubular neighborhood of j(17 ) in the sense that the retraction
jom:B,—j (U) of the inclusion map is a disc bundle. By [24, Proposition 2.1],
there exists a neighborhood €2 of j(ﬁ ) in O that is Runge in CV x U. Finally,
choose § : U —]0, +o00[ continuous sufficiently small so that 05 C Q.

Define a holomorphic map ¢ : @ — CV by setting ¢(z) = pri(z) — i o w(2).
The map ¢ is submersive along ®;, and its zero locus in Oy is included in ©j
and projects biholomorphically to U by . All these properties persist (after maybe
shrinking U) if one replaces ¢ with a holomorphic map ¢’ : @ — CV close enough
to ¢ on @5 N pr, '(K) in the CO-topology (hence in the C!-topology by the Cauchy
estimates). We construct such a ¢’ as follows. First approximate ¢ by the restric-
tion of a holomorphic map CV x U — C using that  is Runge in CV x U. Ex-
pand this map as N power series in N variables with coefficients in O(U), truncate
these power series to turn them into N polynomials in N variables with coefficients
in O(U), and then use the Oka—Weil approximation theorem [37, VII, A, Theo-
rem 6] to approximate these coefficients on K by restrictions of elements of O(S).
Let ¥ : CVN x § — CV be the holomorphic map (polynomial in the first variable)
obtained in this way and set ¢’ := ¥r|q.
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Let Wy,..., Wy e O(S)[Xo, ..., Xn] be the homogenizations of the components
of ¥, and let RcPV (C) x S be the locus where they all vanish, with projec-
tion g : R — S. The map ¢ is surjective by [41, I, Theorem 7.2]. Hence so is the
finite holomorphic map ¢ : R — S appearing in the Stein factorization [33, 10, §6.1]
of . By our choice of ¢’, the intersection of R _with Oj is blholomorphlc (via the
map 1) to U. The resulting open embedding h:U — R satisfies § qo h= f.

The uniqueness of the Stein factorization shows that it is compatible with base
change by open embeddings. As h(U) is a connected component of ¢~ (U ) such
that g7 - h(U ) — U is finite (as f is), we deduce that the composition of h with

the natural map R— Risan open embedding % : U — R such that goh=f. [O

Proofof(ii) Let g : R — S, and h : U <> Y be as in (i). We may assume that R
is normal after normalizing it, and that § is connected after replacing it with
one of its connected components. After shrinking U, we may suppose that it has
finitely many connected components Uy, ..., U,. If p; : T; — S solves our problem
for flr-1w,: f~N(U;) = U; instead of f, then we may choose T to be the fiber
product 77 X5 - - - X 5 T-. We may thus assume that U is connected. Replacing U with
one of its connected components, we may also suppose that U is connected. Finally
replacing R with its connected component containing h([7 ), we reduce to the case
where R is connected.

Let p/: T — R and T be as in Lemma 2.17, and set p :=¢q o p’. Let V be
a connected component of p~!(U). By the transitivity of the action of I" on the
fibers of p, one may choose yy € I' such that yy (V) C p’_l(ﬁ). One then de-
fines g(x) :=p'oyy(x) forx € V. d

3.2 Grauert’s bump method

To prove Proposition 3.4, we will use Grauert’s bump method as developed by Henkin
and Leiterer [42]. In Proposition 3.3 below, we sum up what we exactly need, relying
on the exposition by Forstneri¢ [28].

Lemma 3.2 Let S be a Stein manifold of dimension n. Any point s € S admits
an O(S)-convex compact neighborhood B C S such that B admits a basis of con-
tractible open neighborhoods in S.

Proof By [56, Theorem 3], one may view S as a submanifold of CV for N > 0.
Then p : S — R defined by p(x) := |x —s|* is a C* strongly psh exhaustion function,
and B := {p < ¢} works for 0 < ¢ <« 1 (see Lemma 2.3 (ii)). O

Proposition 3.3 Let S be a Stein manifold of dimension n. Then there exist sequences
(Ao, A1, ...) and (By, By, ...) of compact subsets of S such that:

(i) the subsets A; and B; are O(S)-convex;

(ii) the subset B; has a basis of contractible open neighborhoods;
(iii) one has Ao = @ and Aj4+1 C A; U Bj;
(iv) for any compact subset K C S, one has K C A; fori > 0.
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Proof Let p : S — R be a C% strongly psh exhaustion function (see
[57, Lemma p. 358]). By [30, Proposition 6.13] and [28, Lemma 3.10.3], we may
assume that its critical points are nondegenerate, have distinct images by p, and are
nice in the sense of [28, Definition 3.10.2].

We adopt the following nonstandard terminology. We say that a pair (A, A”)
of O(S)-convex compact subsets of S is a bump if there exists an O(S)-convex com-
pact subset B C S with a basis of contractible neighborhoods with A’ C A U B. The
proof has two parts, which, combined, prove the proposition.

In the first part (the noncritical extension case), we show that if ¢ < ¢’ are
such that p has no critical values in [c, ¢'], then one can go from A := {p < ¢}
to A" :={p < ¢’} by a sequence of bumps containing A. This follows at once from
[28, Proof of Lemma 5.10.3]. Indeed, it is explained there how to go from A to A’
by an increasing sequence of sublevel sets of (varying) C* psh exhaustion functions
(which are O(S)-convex by Lemma 2.3 (ii)), in a way that the difference between
two successive ones is included in an open subset of any fixed open covering of A’. In
view of Lemma 3.2, one can ensure that this difference is included in an O(S)-convex
compact subset with a basis of contractible neighborhoods.

In the second part (the critical extension case), we fix a critical value of p
(assumed without loss of generality to be equal to 0), with associated criti-
cal point pg € S. We show that there exist ¢ < 0 < ¢’ such that one can go
from A:={p<c} to A :={p < '} by a sequence of bumps containing A. To
do so, use Lemma 3.2 to choose a compact O(S)-convex neighborhood of pg
in S with a basis of contractible open neighborhoods. Apply the constructions
of [28, p. 102] with ¢ =1 and U C B an open neighborhood of pg. In partic-
ular, choose cgp > 0 small enough so that [28, Proposition 3.11.4] applies, and
let 0 <ty <t and 7:{p <3cp} = R be as in loc. cit. Set ¢ := —ty and ¢’ := ¢p.
One can go from A to {t <t — fp} by a bump by [28, Proposition 3.11.4 (c)]. Ar-
guing as in the noncritical extension case (using the C* strongly psh function t
on Q := {p < 3cp}, which is legitimate by [28, Proposition 3.11.4 (d)]), one sees
that one can go from {t <t} — 7o} to {t < 2c¢p} by a sequence of bumps (the in-
volved compact O(£2)-convex sets are also O(S)-convex because €2 is Runge in §
by Lemma 2.3 (i)). Finally, one can go from {t < 2¢¢} to A’ by a bump by [28,
Proposition 3.11.4 (b)]. Il

3.3 Induction on the cohomological degree
We finally reach our goal.

Proposition 3.4 Let S be a Stein space, let K C S be an O(S)-convex compact sub-
set, and let U C S be an open neighborhood of K. Fix integers k,m > 1. For all
a € HX(U, Z/m), there exist a finite surjective holomorphic map p : T — S and an
open neighborhood V of K in U such that a| ,-1y) =0 in HY(p~'(V),Z/m).

In the statement of Proposition 3.4, we use the notation «| p-l(vy to denote the
pull-back of & by the map p| -1y, : p (V)= U.
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Proof We argue by induction on k > 1, which we fix. Using Proposition 2.6 (i), we
may replace S with an irreducible component of its reduction, and assume that § is
irreducible, hence of finite dimension n. We further reduce to the case where § is
a manifold as follows. Let i : S — S’ be as in Lemma 2.1, fix a continuous retrac-
tion r: ' — i(S) and replace S, K, U and « by S', i(K), r~'(U) and r*a, not-
ing that i (K) is O(i(S))-convex by Proposition 2.6 (ii), hence O(S’)-convex. This
is legitimate because, if the proposition is proved for r*« using a finite surjective
map p’:T'— §, then it is also proved for i*r*a = o using the finite surjective
map p: T’ xg S — S obtained from p’ by base change by i : S — S'.

Assume first that k = 1. Let f : U — U be the degree m unramified cyclic
covering associated with «. After p0551b1y shrinking U, choose holomorphic
maps p:T — S and g:p~'(U) - U with f o g = ply-1y) as in Proposi-
tion 3.1 (ii). As f*a =0 by choice of f, one has a| -1y = g* f*a = 0, as wanted.

Assume now that k > 2. After shrinking U, we may assume that it is a Runge
domain in S (see Lemma 2.3). Let (Ao, A1, ...) and (By, Bi,...) be as in Propo-
sition 3.3 applied to the Stein manifold U. As U is Runge in X, it follows from
Proposition 3.3 (i) that the A; and the B; are O(S)-convex compact subsets of S.

We will now show by induction on i > 0 that there exists an open neighbor-
hood V; of A; in U and a finite surjective holomorphic map p; : T; — S such
that [ -1y =0 in H*(p7'(Vi), Z/m). When i = 0, one can take Vo = &

Assume that we have proven the statement for i and let us prove it for i + 1. Let W;
be a contractible open neighborhood of B; in U (see Proposition 3.3 (ii)). Consider
the boundary map

3 " (p7 (Vi nWi), Z/m) — H*(p7 (Vi UW;), Z/m)

in the Mayer—Vietoris exact sequence. As a| ~1,1,, = 0 by the induction hypothesis

(Vi)
on i and o] priwn = (pil —I(W)) (a|lw;) = 0 because W; is contractible, there ex-

ists B € HF ‘(pjl(v N W), Z/m) such that 3(8) = al -1y, .-
hypothesis on the cohomological degree (applied in degree k — 1 to the O(T;)-convex
compact subset p;” ! (A; N B;) of T;, see Proposition 2.6 (1)), there exist a finite surjec-

By the induction

tive holomorphlc map ¢; : Ti+1 — T; and an open neighborhood €2; of p*1 (A; N B;)

in p;” (V N W;) such that S| alen = =0.Let V/ and W/ be open neighborhoods of A;

and B; in V; and W; respectively, such that p_l(V’ NW/) C Q;.Set piy1:=piog;

and Vi1 := V/UW/. Then al -1y, ) is the image of B| - by the boundary
i1 Vit

map

Lwvinw)

o H (o (v n W), Z/m) - HY(p S (v U W), Z/m)

of the Mayer—Vietoris exact sequence, by compatibility of 3 and 8’. As 8] Pl viow))

vanishes (because ﬂlqi—l @) = =0), it follows that 01|p_+11 VieD)

In view of Proposition 3.3 (iv), one can take V = V; and p = p; fori > 0. O

=0, as required.
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4 A relative comparison theorem

After studying analytifications of algebraic varieties over Stein algebras in §4.1, and
étale sheaves on them in §4.2, we prove the relative Artin comparison theorem in
Stein geometry in §4.3 (Theorem 4.9).

4.1 Analytification of algebraic varieties over Stein algebras

Fix a Stein space S. Beware that the ring O(S) is in general not noetherian. Let (P)
be a property of morphisms of schemes. A morphism f : X — Y of O(S)-schemes is
said to interiorly satisfy (P) if there exists an open covering (U;);c; of S such that the
morphisms fow,) : Xow,) = Yow,) satisfy (P). We say that an O(S)-scheme X
interiorly satisfies (P) if so does the structural morphism X — Spec(O(S)).

Lemma 4.1 Let (P) be a property of morphisms of schemes that is stable by base
change and fpqc local on the base. Let S be a Stein space and let f : X — Y be a
morphism of O(S)-schemes that interiorly satisfies (P).

(i) For K C § compact, for): Xowk) = Yo(k) satisfies (P).
(ii) For K C S compact, fos)x : Xows)x —> Yo(s), satisfies (P).
(iii) For U C S open and relatively compact, fow) : Xow) — Yow) satisfies (P).

Proof To prove (i) and (ii), we may replace K with f@(s) (by base change), and
consequently assume that K is O(S)-convex, hence Stein. Any s € S has a basis of
Stein compact neighborhoods (see Lemma 2.9 (ii)). By hypothesis on f and the base
change property, each s € K has a Stein compact neighborhood K such that fo )
satisfies (P). By compactness of K, we may extract a finite family (K;)1<;<k cov-
ering K. Replacing K; with K; N K (and using the base change property again), we
may assume that K; C K for 1 <i < k. The morphism O(K) — [[;_; O(K;) is flat
by Lemma 2.8, hence faithfully flat by [26, Lemma 00HQ] and the description of the
maximal ideals of O(K) given in [72, Corollary 3.3]. Assertion (i) follows since (P)
is fpqc local on the base. So does (ii) by Lemma 2.11 (i). Assertion (iii) follows
from (i) applied with K = U (by base change). g

An O(S)-scheme interiorly locally of finite type is interiorly locally of finite pre-
sentation (use Lemmas 2.9 (ii) and 4.1 (i)), i.e., belongs to the category K in the ter-
minology of Bingener [17, p. 23]. With such an O(S)-scheme X, Bingener associates
its analytification X" (see [17, Satz 1.1] when X is of finite presentation over O(S);
the construction and its properties extend under our more general hypotheses as in-
dicated in [17, p. 23] as one sees by applying them to the O(U)-schemes Xy for
relatively compact Stein open subsets U C S).

The analytification X" of X is a (possibly nonseparated) complex space over S
endowed with amap ix : X* — X of locally ringed spaces, characterized by the fact
that the map

Homg(7, X*") — Homps) (T, X)

h = ixoh.
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is bijective for all complex spaces T over S. In particular, with each point x € X"
corresponds a closed point of X with complex residue field, also denoted by x.

When X is an affine O(S)-scheme of finite presentation, with coordinate
ring O(S)[x1,...,xnx]1/{f1,..., fu), the analytification X*" of X can be described
concretely as the zero locus in § x CN of fi,..., fur € O(S x CV). The analytifi-
cation of an O(S)-scheme locally of finite presentation can then be constructed by
gluing the analytifications of affine open subsets covering X. In the general inte-
riorly locally of finite type case, one glues the analytifications of O(U;)-schemes
of the form Xo(,), where (U;);cr is a cover of S by relatively compact Stein
open subsets. Concrete examples of analytifications include Spec(O(S))*" = S,
(Ads)™ =S x CY and (P )™ = S x PV(C).

This construction is functorial [17, p. 2] (and we let f2": X2 — Y2 denote the
holomorphic map induced by a morphism f : X — Y of O(S)-schemes interiorly
locally of finite type), commutes with the formation of fiber products [17, p. 3], and
is compatible with change of the base Stein space [17, (1.2)]. The next proposition is
a consequence of [17, Satz 3.1].

Proposition 4.2 Let S be a Stein space. Let f : X — Y be a morphism interiorly of
finite type between O(S)-schemes interiorly locally of finite type. If f is interiorly
surjective (resp. separated, proper, finite, flat, étale, a closed embedding, an open
embedding), then [ is surjective (resp. separated, proper, finite, flat, a local biholo-
morphism, a closed embedding, an open emebdding).

We also state the following proposition for later reference.

Proposition 4.3 Let S be a Stein space. Fix s € S. Let f : X — Y be a morphism
interiorly of finite type between O(S)-schemes interiorly locally of finite type.

O If fos, : Xog, = Yoy, has dense image, there exists a Stein neighborhood
U C S of s such that (fow)™ : Xow)™ = Yow))*" has dense image.

(i) If fos, is a codimension c closed embedding of regular schemes, there exists a
Stein neighborhood U C S of s such that (fow))™" is a codimension c closed
embedding of complex manifolds.

Proof Assertion (i) is [17, Satz 3.1 (6)] applied with K = {s}.

As for assertion (ii), it follows from [17, (2.7)] (applied with K = {s} and to
the regularity property, see [17, (2.4) (2)]) that we may assume, after shrinking S,
that X" and Y?" are manifolds. After further shrinking S, one can also assume
that /2" is a closed embedding (see [17, Satz 3.1]). The codimension assertion can
then be ensured after shrinking S by applying [17, (2.7)] with K = {s} to the property
[17, (2.4) (4)] of the ideal sheaf of Y in X. O

Lemmas 4.4 and 4.5 give examples of O(S)-schemes interiorly of finite type with
interesting analytifications.

Lemma4.4 Let Z be a closed analytic subspace of a Stein space S. Then there exists
an open immersion j : V < Spec(O(S)) interiorly of finite type such that j*" identi-
fies with S\ Z — S. If Z is set-theoretically defined by the vanishing of finitely many
elements of O(S), one may moreover choose j to be quasi-compact.
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Proof Set V := Spec(O(S)) \ Spec(O(S)/Zz(S)), where Z; be the ideal sheaf of Z
in S. Let U C S be a relatively compact Stein open subset. By Lemma 4.6 below,

VU =V XSpec(O(S)) Spec((’)(U)) = Spec((’)(U)) \ SpeC(O(U)/IZ(U))

and Zz (U) is finitely generated over O(U). We deduce that Vy is an O(U)-scheme
of finite type. The description of j2" follows from the concrete construction of the
analytification that is recalled above (see also [17, Proof of Satz 1.1]).

If Z is set-theoretically defined by the vanishing of finitely many elements
of O(S), we apply the above construction after replacing Z with the complex sub-
space defined by the vanishing of these equations. This ensures that Zz(S) is a finitely
generated ideal of O(S) and hence that j is quasi-compact. g

Lemmad4.5 If p: T — S is a finite holomorphic map of Stein spaces, then the induced
morphism f : Spec(O(T)) — Spec(O(S)) is interiorly finite and f*™ = p.

Proof Let U C S be a relatively compact Stein open subset. By Lemma 4.6 be-
low applied to F := p,Or, the O(U)-module O(T) ®¢o sy OU) is finitely gen-
erated. It follows that f is interiorly finite. As O(T) sy O(U) — O(p~(U)) by
Lemma 4.6, that f*" = p may be verified locally on S. We may thus assume that S,
hence also 7, is a finite-dimensional Stein space. Under this assumption, it is shown
in [17, (1.3)] that the analytifications of Spec(O(T)) viewed as an O(S)-scheme or
as an O(T)-scheme coincide. This exactly means that f2" = p. O

Lemma4.6 Let U be a relatively compact Stein open subset of a Stein space S. Let F
be a coherent sheaf on S. The O(U)-module F(U) is generated by finitely many
elements of F(S), and F(S) Qo) OU) — FU) is an isomorphism.

Proof As U is relatively compact, Cartan’s Theorem A implies that there exist ele-
ments ap, ..., a, € F(S) generating F on U. The first assertion of the lemma and the
surjectivity of the morphism F(5) ® o5y O(U) — F(U) follow from the vanishing
of H' (U, Ker(02" & Fly)).

Now,let 3% _; b ®c; € F(S)®0(s) O(U) besuchthat y-°_; bjc; = 0in F(U).

. bj
Consider the exact sequence 0 — N — O % F, 50 (cj) € N(U). By the
surjectivity result applied to A/, there exist (dj1),...,(d}j;) € N(S) C O($)®*
andeq,...,e; € O(U) with ZZ=] erdjr=cjforl <j<s.Then

s s t t s
Shiee;=Y Y bioadii=3 (Y bidix) ® e =0.
j=1

J=1k=1 =1 =1 O
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4.2 Etale sheaves on algebraic varieties over Stein algebras

Let S be a Stein space, and let X be an O(S)-scheme interiorly locally of finite type.
There is a commutative diagram of morphisms of sites

(Xan)cl L_ Xan
e i i @.1)

Xg — X,

where X is the small étale site of the scheme X, and X3 is the site of local iso-
morphisms of the topological space X" (see [35, X1, §4.0]). Indeed, if f:Y — X
is étale, then f2": Y3 — X3 ig a local isomorphism by Proposition 4.2. It follows
from [34, III, Théoreme 4.1] that §, induces an equivalence of topoi.

If L is an abelian sheaf on X, we define L?" := §,&*LL. For x € X?", one still
denotes by x € X the associated closed point with complex residue field, and one
has L3" = LL,.. Finally, we say that L is interiorly constructible if there exists an open
covering (U;);es of S such that the étale sheaves L| Xow;) are constructible.

Lemma 4.7 Let K be an excellent Stein compact subset of a Stein space S.
Let f: X — Y be a morphism interiorly of finite type of O(S)-schemes interiorly
locally of finite type. Fix a torsion abelian sheaf I on X¢. Then the base change
morphisms R¥ £.1) |y, x, = R¥(fox))«Wlxo,) are isomorphisms for k > 0.

Proof Fix k > 0. As O(S) — O(S)k is a localization, the description of the fibers of
higher push-forwards in étale cohomology given in [26, Theorem 03Q9] implies that
the base change morphism

R* £ (W) lvoqs), = R (fors)o)«Lixogs, ) (4.2)

is an isomorphism. By Néron—Popescu desingularization (see [67, Theorem 1.1])
and Lemma 2.13, the ring O(K) is a filtered colimit of smooth O(S) -algebras.
By smooth base change (see [26, Lemma OF09]), the base change morphism

(R (fois)x )+ Wlxows ) Yow = RE (o)« Lixox,) (4.3)

is also an isomorphism. The lemma follows from (4.2) and (4.3). O

Lemma 4.8 Let S be a Stein space. Let f : X — Y be a morphism interiorly of finite
type of O(S)-schemes interiorly locally of finite type. Let L. be an interiorly con-
structible sheaf on X¢. Then R¥ f,1L is interiorly constructible for k > 0.

Proof Working locally on Y, we may suppose that X and Y are interiorly of finite
type over O(S). Fix s € S. Let K be an excellent Stein compact neighborhood of s
in § chosen small enough so that L|x., is constructible (see Lemma 2.9 (ii)).
As fow) 1 Xowk) = Yok is a morphism of O(K)-schemes of finite type (see
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Lemma 4.1 (i)), which are excellent noetherian schemes by Lemma 2.11 (iii), the
sheaf Rk(f@(K))*(MXO(K)) is constructible by [35, XIX, Théoréme 5.1] and [68,

Theorem 1.1]. It follows from Lemma 4.7 that (R¥ f,LL)| Xow, is constructible for
any open neighborhood U of s in K. O

4.3 Arelative Artin comparison theorem over Stein spaces

Here is the statement of our relative comparison theorem. In the constructible case,
its proof is entirely parallel to that of [35, X VI, Théoreme 4.1].

Theorem 4.9 Let S be a Stein space. Let f : X — Y be a morphism interiorly of
finite type of O(S)-schemes interiorly locally of finite type. Let L be a torsion abelian
sheaf on Xg. If either f is interiorly proper or L is interiorly constructible, the base
change morphisms R f,(L)™ — R¥ f2(L2) are isomorphisms for k > 0.

Proof Fix y € Y*" and let s be the image of y in S. To show that the morphism
1 Wi — RK fan(an) y is an isomorphism for k£ > 0, we proceed in several steps.

Step 1 We first deal with the case where f is interiorly proper.
By Lemma 4.1 (i), the base change fo,, : Xog, = Yo, of [ is proper. By
Lemma 4.7, proper base change [26, Theorem 095T], and Artin’s comparison theo-

rem [35, XVI, Théoreme 4.1], the base change morphisms

(ka*L)y - (Rk(fOs.x)*(leos.s ))

N Helct(Xy’ Lix,) — Hk(Xi;n, ]Lan|x;l,")

Y (4.4)

are isomorphisms. As f" is proper by Proposition 4.2, proper base change in topol-
ogy (see [46, III, Theorem 6.2]) implies that the base change morphism

RE £y — HE (X, L xan) 4.5)

is also an isomorphism. Combining (4.4) and (4.5) shows that the base change mor-
phism R f,(IL)3" — R¥ f2"(IL™"), is an isomorphism, as wanted.

Step 2 Setup of the proof when L is interiorly constructible.

By Lemma 4.7, if U C § is a Stein open neighborhood of s, the base change mor-
phism (Rk fill)y — (Rk(fO(U))*(MXO(U)))y is an isomorphism. Therefore, to check
that R¥ f, MW§" — RK fan(1am) y is an isomorphism, we may at any time replace S
with a Stein open neighborhood of s in S. As one can moreover work locally on Y,
one may assume that f is a morphism of finite presentation between O(S)-schemes
of finite presentation, that L. is constructible, that Y is separated, and that X" is
finite-dimensional. We argue by induction on the dimension of X",

Step 3 We reduce to the case where f is an open immersion of reduced separated
O(S)-schemes of finite presentation such that fo = has dense image, and L. =Z/m.
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By [26, Lemmas 0977, 095R and 03RX], the sheaf L. admits a resolution
O->L—>Ly—>L;i—>--- (4.6)

by constructible sheaves IL,, that are finite products of sheaves of the form 7, M
with w : Z — X finite of finite presentation and M constant constructible on Zg.
Making use of the spectral sequences

EV?=RIf (L))" = R £,@L)™  and
E{’sq — R4 ffn(ﬂ_‘?,n) — Rp+q ffn(Lan)

associated with the resolution (4.6), we reduce to the case where IL is of the
form m,M. As the higher direct images of = and 7*" vanish by [26, Proposi-
tion 03QP] and [46, III, Theorem 6.2], and as 7, (M)*"* = 72*(M?") by Step 1,
we may further assume that IL is constant (after replacing X with Z and L with M),
and then that L >~ Z/m.

Let U = (U;)ier be a finite affine covering of X. Computing cohomology us-
ing Cech spectral sequences associated with I/, we may replace f with f lu,»
where U := Njey U; for J C I. Since X was quasi-separated (as is any O(S)-scheme
of finite presentation), this trick reduces us to the case where X is separated.

As the étale and classical topologies are insensitive to nilpotents (see [26, Propo-
sition 03S1]), we may assume that X and Y are reduced.

Write fo,, as the composition X iR X ﬁ) Yo, of an open immersion gs
with dense image and of a proper morphism %, using Nagata’s compactification
theorem [26, Theorem OF41]. Use a limit argument based on [26, Lemmas 01ZM,
086Q, OEUU and 081F] to extend, after shrinking S, these morphisms of schemes to

a diagram X £X LS Y of reduced separated O(S)-schemes of finite presentation,
where g is an open immersion and % is proper. As Theorem 4.9 holds for & (and
any torsion étale sheaf) by Step 1, the composite functors spectral sequence comput-
ing RK(h o g)47Z/m reduces us to proving it for g.

Step 4 We reduce to the case where moreover Y | is regular.

Let wu; : 17 s — Yo, be a resolution of singularities (use [68, Theorem 1.1] and
Lemma 2.11 (iii)). Set )N(s =X XYoy, ?S, let js : Us — X, be a dense open subset
over which pg is an isomorphism, and let fs Uy —> )?s be the lift of j;. By a limit
argument based on [26, Lemmas 01ZM, OEUU and 081F], the above schemes and
morphisms arise by base change, after shrinking S, from a cartesian diagram

VR
U— X —7Y
| e, e
U— X —7Y

s
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whose horizontal arrows are quasi-compact open immersions and whose vertical ar-
rows are proper of finite presentation. Let i : Z — X and i : Z — X be the inclu-
sions of the complements of U in X and X respectively. As j; and j; have dense
image, both dim(Z?") and dim((Z)*") are < dim(X?®") after possibly shrinking S
by Proposition 4.3 (i). The induction hypothesis thus shows that Theorem 4.9 holds
for (f oi,Z/m) and (f oi,Z/m), hence for (f,i,Z/m) and (f,i.Z/m).

The five lemma applied to long exact sequences induced by the short exact se-
quence 0 > jiZ/m — Z/m — i,Z/m — O now shows that, to prove Theorem 4.9
for (f, Z/m), it suffices to prove it for (f, ji Z/m).

One computes using proper base change in étale cohomology [26, Theorem 095T]
that (ux)s(j1 Z/m) = jiZ/m and R?(ux)«(ji Z/m) = 0 if ¢ > 0, and using proper
base change in topology [46, III, Theorem 6.2] that (u§").( ],a“ Z/m) = jZ/m
and RY(u§)«( J,a“ Z/m) =0 if g > 0. Using the composite functors spectral se-
quences computing Rk( f Sy x)« and Rk(( f o ux)™),, we deduce that it suffices to
prove Theorem 4.9 for (f, j Z /m). By another application of the five lemma based
on the short exact sequence 0 — jiZ/m — Z/m — I*Z/m — 0, it remains to prove
Theorem 4.9 for (f,Z/m).

Step 5 Under the additional hypotheses to which Steps 3 and 4 have reduced us to,
we prove the theorem in the equivalent form (in view of Lemma 4.7) that the natural
morphisms R¥(fog )«(Z/m)y — R¥ f2(Z/m), are isomorphisms for k > 0.

The noetherian scheme Yo, \ fog,(Xog,) is excellent by Lemma 2.11 (iii).
Stratify it by its regular locus, the regular locus of its singular locus, etc. Us-
ing [26, Lemmas 01ZM, 01ZP and OEUU], lift this stratification to a stratification
of Y\ f(X), after maybe shrinking S. One can thus write f = f; o--- o f| where
fi : Xi—1 — X; is a quasi-compact open immersion (with Xg := X and X, :=7Y),
with complementary closed immersion g; : Z; = X; \ fi(X;—1) = Xj, so that fi,oh_
has dense image and (Z;) oy , is regular.

After shrinking Y, we may assume that g; ¢ is a regular immersion of pure
codimension ¢; > 1 (for 1 <i <r), and that y ¢ (f,—1(X,—1))*" (after possibly de-
creasing r). Using Proposition 4.3 (ii), one can ensure after shrinking § that gi"
is a closed embedding of complex manifolds of pure codimension c;. It follows
from these facts that Z/m —> (ff")+Z/m and, in view of [35, XIX, Théoréme 2.1],
that Z/m = (f; 05 )+Z/m.

Assuming for now that Theorem 4.9 holds for all the (f;, Z/m), we prove by
decreasing induction on i that it holds for (f, o---o f;, Z/m). Taking i = 1 concludes
the proof of the theorem. To perform the induction step, we make use of the composite
functors spectral sequences computing Rk((fr,(’)sys 00 fit1,05,) © fi,05,)+L/m
and R¥((fr 00 fir)™o Sf#)«Z/m respectively, noting that Theorem 4.9 holds
for (fy o---0o fit1,RI(fi)«Z/m) when g > 0 by the induction hypothesis (because
the sheaf R?(f;)«Z/m is interiorly constructible by Lemma 4.8 and because it is
supported on Z; which satisfies dim(Z{") < dim(X") = dim(X*")).

It remains to prove the theorem for (f;,Z/m). It follows from the Thom iso-
morphism theorem that (Rk(fia“)*Z/m)y =Z/m if k € {0,2¢ — 1} and that this
group vanishes otherwise. It follows from the purity isomorphism (the analogue
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of the Thom isomorphism theorem in étale cohomology, for which see [35, XIX,
Théorémes 3.2 and 3.4]) that (Rk(f,-’osys)*Z/m)y =7Z/mif k € {0,2c — 1} and that
this group vanishes otherwise. Inspecting the construction of these isomorphisms
shows that they are compatible, and completes the proof of the theorem. |

Remark 4.10 Theorem 4.9 fails if one drops both the properness and the constructibil-
ity hypotheses, already if S is a point, if f : Aé: — Spec(C) is the structural mor-
phism, if k =0, and if IL is a direct sum of skyscraper sheaves at the integers.

5 Killing ramification on finite coverings

The goal of this section is result is Proposition 5.3. It will be used in conjunction with
Proposition 3.4 in the proof of our Theorem 6.1.

5.1 Killing ramification locally

We first apply Theorem 4.9 to kill the ramification of cohomology classes in the local
analytic setting.

Proposition 5.1 Let U be an open subset of a connected normal Stein space S.
Choose s € U. Let Z C S be a closed analytic subset. Fix o € Hk(U \(ZNU),Z/m)
with k, m > 1. There exist a finite surjective holomorphic map q : R — S of connected
normal Stein spaces, a point r € R with q(r) = s, and an open neighborhood ® of r
in g~ (U) with a|g) (-1 (z)ney =0 in H*©\ (¢~ (2)N®),Z/m).

Proof We may assume that Z is nowhere dense in S (otherwise Z = S and the lemma
is trivial). Let Z; C Oy be the ideal sheaf of Z. Use Cartan’s Theorem A to choose
finitely many elements (f;);cs of Zz(S) that generate Z7 ;. After replacing Z with the
vanishing locus of the f;, we may apply Lemma 4.4 to find a quasi-compact open im-
mersion j : V < Spec(O(S)) such that j" identifies with S\ Z < §. Theorem 4.9
then shows that the base change morphism

RFj,Z/m)™ — R¥ j2"Z/m (5.1

is an isomorphism. Let oy be the image of « in (R¥ Ji"7./m); and consider its inverse
image f; € (RKj Z/m) by the isomorphism (5.1).

Let B € Hé‘t(XV, 7Z/m) be a representative of 8, where f : X — Spec(O(S)) is
an integral affine étale neighborhood of s € Spec(O(S)) and Xy := X Xgpec(s)) V-
The scheme (Xv)s := Xv Xspec(O(s)) Spec(O(S)y) is étale of finite type over O(S)s
(use Lemma 4.1 (ii)), hence an excellent noetherian scheme by Lemma 2.11 (ii). By
[14, Theorem 1.1], there exists a finite surjective morphism 5 : Yy — (Xy ), such
that Bly, =01in H ékt(Ys, Z/m) (note that Bhatt’s proof simplifies in our situation, as
the group scheme Z/m is étale, see [14, Remark 3.3]).

Our next goal is to globalize the morphism m;. By a limit argument based
on [26, Lemmas 01ZM, 01ZO and O7RR], there exist an affine open neighbor-
hood W of s in Spec(O(S)) and a finite surjective morphism of finite presentation
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7Y — (Xv) Xspec(O(s)) W such that the base change of 7 by Spec(O(S);) — W
identifies with m;. By [26, Theorem 09YQ], one may assume after shrinking W
that Bly =0 in Hé‘t(Y, Z/m). After replacing X with X xgpeco(s)) W, we may fi-
nally view 7 as a finite surjective morphism of finite presentation 7 : ¥ — Xy such
that 7*8 = 0. As Xy is integral, we may assume that so is Y (after replacing it with

an irreducible component that dominates Xy ).

One may factor f : X — Spec(O(S)) as the composition X 54X ﬂ) Spec(O(S))
of a quasi-compact open immersion a and of a finite morphism b, by Zariski’s Main
Theorem [26, Lemma 05KO0]. A second application of Zariski’s Main Theorem allows

us to factor the natural morphism ¥ — X as the composition ¥ —> Y 4 X ofa
quasi-compact open immersion ¢ and a finite morphism d. After replacing X with
the closure of X in X and Y with the closure of Y in Y, one may assume that X
and Y are integral. Here is a diagram summarizing the situation:

¢

Y Y
T \L ¢ d
Xy — X ‘ X

! b

\% Spec(O(S)).

J

As the natural morphism ¥ — Y x Xy is a proper open immersion with nonempty
source and integral target, it is an isomorphism. Choose x € X" with f2"(x) =s.
As f is étale, the map f2" is a local biholomorphism at x (see Proposition 4.2) so
that X" is normal at x, hence locally irreducible at x. As (Xy)?" is dense in X"
(because Z is nowhere dense in S), and as 7" is finite surjective and d*" is finite
by Proposition 4.2, the restriction (Y x% X)™ — X" of d*" is finite and surjective.
One may thus choose y € (Y xv% X)*" C (Y)® such that d®(y) = x and moreover,
by local irreducibility of X2 at x, such that the image in (X)®" of some irreducible
component C of (Y)2 through y contains a neighborhood of x.
Consider the natural commutative diagram

(R¥juZ/m)y —= (R¥jOZ/m),
| | (5.2)
REe, Z/m)y —= REAZ/m)y.

As 7*B = 0, the image of S, in (R¥c,Z/ m)y vanishes. By commutativity of (5.2),
the image of «; in (R¥c2"Z/ m)y also vanishes. This exactly means that there exists
an open neighborhood ®’ of y in (b* o d*)~1(U) C (Y)® such that «|yane = 0.
If ©' is small enough to be included in (@**)~!(X?"), one has the equality

YPNe =0\ (™" od™1(Z2)Ne).
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To conclude, it suffices to take R to be the normalization of C C ?an, to let r be
any preimage of y in R, and to choose ® to be the inverse image of ®' in R. |

Proposition 5.2 Let S be a Stein space, let U C S be open, and choose s € U. Let
Z C S be a closed analytic subset. Fix o € H*U \(ZNU),Z/m) with k,m > 1.
Then there exist a finite surjective holomorphic map p : T — S and an open neigh-
borhood 2 of s in U such that a| ,-1(q\(zngy) =0 in H*(p~1(Q\ (2N Q)),Z/m).

Proof Let v : S — S be the normalization map and let (5;);c; be the preim-
ages of s by v. Assume that the maps p; : T; — S prove the proposition for
(§, v L(U), 5, v71(Z), v*a) using disjoint open neighborhoods €; of §; in S. Then
the fiber product p : T — § of the maps v o p; solves our original problem for any
neighborhood € of s in S such that v™1(Q) C U;e; ©2;. We may thus assume that §
is normal. After replacing S with its connected component containing s, we may also
suppose that it is connected.

Choose ¢ : R — S, a point r € R and ® C ¢~ !(U) as in Proposition 5.1.
Let p’: T — R and T" be given by Lemma 2.17, and set p := g o p’. Let (¢}) jes
be the preimages of s by p. As p’ is surjective and " acts transitively on the fibers
of p, one can find, for each j € J, anelement y; € I such that p’oy;(t;) =r.Let ;
be a neighborhood of #; in T such that p’ o y;(2;) C ©. After shrinking the 2, we
may assume that they are disjoint. Choosing €2 to be a neighborhood of s in U such
that p_1 (2) C Ujey Q2 concludes the proof. Il

5.2 Killing ramification globally
We finally globalize Proposition 5.2 thanks to the Cech-to-derived spectral sequence.

Proposition 5.3 Let S be a Stein space, let K C S be a compact subset and let U
be an open neighborhood of K in S. Let Z C S be a closed analytic subset, set
V =S8\ Z, and fix « € H*(V N U, Z/m) for some k,m > 1. Then, after maybe
shrinking U, there exist a finite surjective holomorphic map p : T — S and a class
B e H* (p~'(U), Z/m) with a| ;-1 yrpy = Bl -1 vy in H (p™'(V N U), Z/m).

Proof Let H* be the presheaf on S defined by H*(Q2) := HS(R2,Z/m) for Q C §
open. Note that the presheaf 1Y is the constant sheaf Z/m. Let U = (U;)jer be a
finite open covering of U and consider the Cech-to-derived spectral sequence

EY' =H(VNU,H) = H™(VNU,Z/m)

associated with the open covering VNU = (VNUj)ie; of VNU ([26, Lemma 03AZ],
see [26, Definition 03AM] for the definition of Cech cohomology). Let F* be the fil-
tration on its abutment. Let / > 0 be maximal with & € F! H¥ vNnu,zZ/m).
Assume first that [ < k. If J = (ig, ..., i) € I'tL, write U := ﬂizOUi,. Then « is
induced by a class in H'\(V U, H, represented by a cocycle (y;) j¢ji+1, Where

v e H (v nuy) = HNv 0oy, Z/m).
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For each s € K and J € I'T!, one can apply Proposition 5.2 to find an open neigh-
borhood €2, ; of s in U; and a finite surjective holomorphic map ps j: 755 — S

with yy| plvne, ) = 0. Intersecting the €2, ; and taking the fiber product of

the psj:T5 75— S over § for varying J yields an open neighborhood 2 of s
in U and a finite surjective holomorphic map p, : Ty — S. Extract from (Q2)sex
a finite covering of K (which we view, after shrinking U, as a finite cover-
ing U’ of U which refines U/) and let p : T — S be the fiber product over S
of the corresponding maps p,: 7y — S. Our choices ensure that the image in
I:Il(p_l(V) Np~ L), H ! of [yy] € FII(V NU, Hy is represented by the zero
cocycle and hence vanishes. As a consequence, after replacing S, K, V and U
with T, p~1(K), p~' (V) and p~1(U4’), we have managed to increase the value of /.

Repeating this procedure finitely many times, we may assume that [ = k, hence
that « is induced by a class & € H*(V N, 1% = H (Vv nu, Z/m). We may sup-
pose that S is normal and connected (replace it with a connected component of its
normalization) and that Z is nowhere dense in S (otherwise Z = S and o = 0). Then,
if j : V < § is the inclusion morphism, the adjunction morphism Z/m — j. j*Z/m
is an isomorphism (use [33, 9, §1.2, Theorem vii) < viii)]). As a consequence,
the restriction map H* U, Z]m) — H*(V nu, Z/m) is an isomorphism, and we
let B e H* U, 7,/m) be the inverse image of &@. The image 8 € H*(U, Z/m) of B by
the natural morphism H¥(U{, Z/m) — H¥(U,Z/m) then has the required property
that Blyny =« in H*(V N U, Z/m). O

6 An absolute comparison theorem

After fixing in §6.1 our conventions concerning the Grothendieck topologies that we
will use, we prove our main comparison theorem (Theorem 6.1) in §6.2, we extend
it to the Gal(C/R)-equivariant setting in §6.3 and §6.4, and we give applications to
cohomological dimension bounds in §6.5.

6.1 The gfh topology

Our proof of Theorem 6.1 requires the use of a Grothendieck topology for schemes
that is finer than the étale topology. The definition that we use is the one given in [22,
§6.6]. To be precise, we say that a family (f; : ¥; — X);er of morphisms of schemes
that are locally quasi-finite and locally of finite presentation is a gfh covering of X
if for any affine open subset U C X, the induced family (¥; xx U — U);c; can be
refined by a family (g; : Zj — U) jej, where g; = g|z; for some proper surjective
morphism g : Z — X and some affine covering (Z;) je; of Z. As explained in [oc.
cit., it coincides with Voevodsky’s [70, Definition 3.1.2] in the noetherian case.

Let S be a Stein space, and let X be a separated O(S)-scheme of finite type. We
will consider the following commutative diagram of sites:

(X*Mge —= (X*™
¢ ¢ | 6.1)

Xgm — (X&'
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The site (Xg,)’ is the variant of the site X, of (4.1) where one restricts the objects
to those étale X-schemes that are separated and of finite type over O(S), and where
one only considers coverings involving finitely many arrows. As objects of Xg ad-
mit finite Zariski coverings by affine hence separated schemes, the topoi associated
with (Xg)" and X are equivalent by [26, Lemma 03A0]. We may thus use them
interchangeably for cohomological computations.

The site (X*")/, is the variant of the site (X*")¢j of (4.1) where one restricts the
objects to those topological spaces endowed with a local homeomorphism to X"
that are Hausdorff (but we impose no further constraints on coverings). As ob-
jects of (X®) admit open coverings by Hausdorff spaces, the topoi associated
with (X an)/Cl and (X)) are equivalent, again by [26, Lemma 03A0].

The site Xqm has as objects those X-schemes that are separated and of finite type
over O(S), and is endowed with the qth topology [22, §6.6], restricting to coverings
involving only finitely many arrows.

The site (X*")qc has as objects the Hausdorff and locally compact topological
spaces over X" and is endowed with the qc topology [26, Definition 09X0].

The morphisms of sites in (6.1) are the obvious ones (€tale coverings are gfh cov-
erings by [26, Lemma OETV] and analytifications of qfh coverings are qc coverings
as a consequence of [26, Lemma 09X5]).

6.2 Artin’s comparison theorem over Stein compact sets
We may now state and prove the main theorem of this article.
Theorem 6.1 Let S be a Stein space. Let f : X — Spec(O(S)) be an O(S)-scheme
interiorly of finite type. Fix a torsion abelian sheaf 1L on Xg. Assume that f is interi-
orly proper or that 1L is interiorly constructible. If one lets U run over all Stein open
neighborhoods of a Stein compact subset K of S, the base change morphisms
. k . k .
Clglclgl Hy(Xow). Low)) — Clglclgl H (Xow)™ L™ (6.2)
are isomorphisms for k > 0.
Proof We split the proof in several steps.
Step 1 We first reduce to the case where X = Spec(O(S)).
By Lemma 2.9 (ii), the morphism (6.2) identifies with the natural morphism
colim HX(x L — colim H*((X an .amy 6.3
olin «Xow), Low)) olin (Xowy) ) (6.3)
where L runs over all excellent Stein compact neighborhoods of K in S, and

Xow)™ = (f®™)~1(L). Both sides of (6.2) or equivalently (6.3) are computed by
(colimits of) Leray spectral sequences, whose Eg ! terms read respectively

. p .
C[glclan H¢ (Spec(O(L)), R? fil) o)) and Clglclll}l HP(U, R? fL)™),
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where we used Lemma 4.7 and Theorem 4.9 applied with ¥ = Spec(O(S)). These
terms are isomorphic by the X = Spec(O(S)) case of Theorem 6.1 applied to the
sheaves RY f, L.

Step 2 We further reduce to the case where L = Z/m for some m > 1.

The sheaf L is a filtered colimit of constructible sheaves by [26, Lemma 03SA (2)].
In addition, if L is an excellent Stein compact neighborhood of K in S, both the étale
cohomology of Spec(O(L)) and the sheaf cohomology of L commute with filtered
colimits (see [26, Theorem 09YQ] and [46, III, Theorem 5.1]). Consequently, in view
of the description (6.3) of the morphism (6.2), we may assume that L is constructible.
By [26, Lemmas 0977, 095R and 03RX], the sheaf IL has a resolution

0>L—>Ly—sL—-- (6.4)

by constructible sheaves L, that are finite products of sheaves of the form 7, M
with 7 : Z — X finite of finite presentation and M constant constructible on Zy;.
Making use of the spectral sequences

p.g PR . ptg
E;T = CI?ICIUIH H, (Xow). Lp)ow) = C]?lclgl H; " (Xow).Low)) and
EP? = colim H((X an LAY — colim HPTI((X an 20

1 -olin (Xow))™ Ly,) -olin (Xow)y) )

associated with the resolution (6.4), we reduce to the case where IL is of the
form m,M. As the higher direct images of the morphisms induced by 7 and 7"
vanish by [26, Proposition 03QP] and [46, III, Theorem 6.2], and since one
has 7, (M)*" = 72"(M?") by Theorem 4.9, we may further assume that LL is constant
(after replacing S with Z®" and . with M), and then that L. >~ Z/m.

Step 3 We finally assume that X = Spec(O(S)) and L = Z/m for some m > 1.

For any Stein open neighborhood U of K in § (resp. any excellent Stein compact
neighborhood L of K in S), write Xy := Spec(O(U)) (resp. X1 := Spec(O(L))).
Our goal is to show that the morphisms

colim HX (Xy, Z/m) <> colim H* (X, Z/m) (6.5)
Kcu KcU

are isomorphisms. For any excellent Stein compact neighborhood L of K in S,
the change of topology morphisms Hékt(XL,Z/m) — Hk((XL)qm,Z/m) are iso-
morphisms by [70, Theorem 3.4.4]. Taking the colimit over all such L and using
Lemma 2.9 (ii) shows that clglcilr}l Hé‘t(XU, Z/m) — clglcilr}l Hk((XU)qfh, Z/m) is an

isomorphism. As the pull-back morphisms Hk(X';‘]“, Z/m) — Hk((X';‘]“)qc, Z./m) are
also isomorphisms by [26, Lemma 09X4], it follows from diagram (6.1) that (6.5)
may be identified with the morphism

colim H*((Xy)qm, Z/m) £ colim HY(X3M)ge, Z/m). (6.6)
KcU KcU
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The colimit over U of the Leray spectral sequences of ¢ reads

EV? =colim H?((Xy)gmm, R1¢Z/m) = colim HP T (Uye, Z/m).  (6.7)
KcU KcU

We will prove that the adjunction morphism CI?Ii[r]n HP((Xy)qm, Z/m) — Eé’ Ois an
C
isomorphism in Step 4 and that E5*? =0 for ¢ > 0 in Step 5. It follows that the

spectral sequence (6.7) degenerates and that (6.6) hence (6.5) are isomorphisms.

Step 4 One has colim H” ((Xy)gth, Z/m) = colim HP(Xy)qtn, $x2Z/m).
KcU KcU

Let Uy be a fixed Stein open neighborhood of K in § and let Y be a sepa-
rated O(Up)-scheme of finite type. For any Stein open neighborhood U of K in Up,
write Yy ==Y x Xu, Xy . Consider the adjunction morphism

colim H((Yy)gm, Z/m) — colim H((Yy)qm, ¢«Z/m). (6.8)
KcUucuUy KcUcUy

As the étale sheaf Z/m is already a qfh sheaf (see [26, Lemma O0EW8]), the left-hand
side of (6.8) is isomorphic to Kcolljinb HéOt(YU, Z/m). In addition, as the constant
cUcClp

sheaf Z/m for the usual topology is already a qc sheaf (see [26, Lemma 09X3]), the
right-hand side of (6.8) is isomorphic to Kco(}in}] HO((Yy)™, Z/m). All in all, the
cUCclp

morphism (6.8) may be identified with

colim H)(Yy,Z/m)— colim HO((Yy)™, Z/m),
KcUcUy KcUcUy

and hence is an isomorphism by [17, (7.2)].

The computation of the cohomology of the site (Xy)qm using hypercoverings
[26, Proposition 09VZ], the fact that any given qfh hypercovering of Xy involves
only finitely many separated O (U )-schemes of finite type at each simplicial level (as
coverings in (Xy)qm involve only finitely many arrows) and the fact that (6.8) is an
isomorphism for such schemes, together imply that the natural morphism

colim H” (Xy)qm, Z/m) — colim HP (Xy)gth, £+Z/m)
KcU KcU
is an isomorphism, which is what we wanted to prove.

Step 5 One has cI(()ligl HP((Xy)gm, R1¢4Z/m) =0 for g > 0.
c

Fix g > 0. We claim that for any Stein open neighborhood Uy of K in S, and any
separated quasi-finite O(Up)-scheme of finite presentation Y, the group

colim  HO((Yy)gm, R1¢.Z/m) (6.9)
KcUcUy

vanishes. Taking this claim for granted, the computation of the cohomology of
the site (Xy)gm using hypercoverings [26, Proposition 09VZ], the fact that any
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given qfh hypercovering of Xy involves only finitely many separated quasi-finite

O(U)-schemes of finite presentation at each simplicial level, and the fact that (6.9)

vanishes for such schemes, together imply that CI?IiUm HP((Xy)qgm, R1¢Z/m) =0.
C

We now prove the claim. Using Lemma 2.10, we may assume that K admits
a basis (Uj)je; of Stein open neighborhoods such that K is O(U;)-convex for
all i € I. We may thus restrict the colimit (6.9) to such neighborhoods. Fix a Stein
open neighborhood U of K in Up such that K is O(U)-convex and choose a
class « in HO((YU)qﬂl,ng*Z/m). There exists a qfth covering of Yy, which we
may choose to be given by a single morphism W — Yy, such that « is induced by
aclass B € H1(W?,7Z/m). By Zariski’s Main Theorem (see [26, Lemma 05K0]),

there exists a factorization W 5> W = Yy of W — Yy where j is an open immer-
sion and 7 is finite.

By Proposition 5.3 applied to the Stein space (W)™, to the Stein compact sub-
set (72)~1(K), and to the cohomology class B, there exist, after maybe shrinking U,
a finite surjective holomorphic map p : T — (W) and a class y € HI(T, Z/m)
such that Ylp-1qwany = Blpy-1qwany. As K is O(U)-convex, the compact sub-
set ("o p)_l(K) is O(T)-convex (see Proposition 2.6 (i)). One can thus apply
Proposition 3.4 to ensure, after modifying p : T — (W) and further shrinking U,
that y = 0 and hence that B -1 yay = 0.

By Lemma 4.5, the scheme Spec(O(T)) is interiorly finite with analytification
isomorphic to 7 (both when viewed as a W-scheme or as an O(U)-scheme), and the
structural morphism g : Spec(O(T)) — W satisfies g™ = p. Using Lemma 4.1 (iii),
one may assume after shrinking U that g is finite of finite presentation. It follows
that g1y g ' (W) - W is a gfh covering. As Blg-1(wym = 0, we conclude
thato € H 0((YU)qfh, RY9¢,7Z/m) is qth-locally trivial and hence trivial. O

When f is interiorly proper, the statement of Theorem 6.1 takes a simpler form.

Corollary 6.2 Let K be a Stein compact subset of a Stein space S and let X be an
interiorly proper O(S)-scheme. Fix a torsion abelian sheaf I on Xg. For k > 0, there
are canonical isomorphisms Hékt(XO(K)ﬂ Lixox) = Hk((XO(K))a“, Lam),

Proof The isomorphism (6.2) has the required form by [26, Theorem 09YQ] and [46,
III, Lemma 6.3]. O

Remark 6.3 Bingener’s [17, Theorem 7.4] implies the particular case of Theorem 6.1
where k = 1, the sheaf L is constant and X = Spec(O(S)).

6.3 G-equivariant complex spaces

Let G := Gal(C/R) ~ Z/2 be the Galois group of R, generated by the com-
plex conjugation o € G. We use the conventions of [13, Appendix A] concerning
G-equivariant complex-analytic geometry. In particular, a G-equivariant complex
space is a complex space endowed with an action of G (as a locally ringed space)
such that o € G acts C-antilinearly.
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A G-equivariant complex space is said to be Stein if so is its underlying complex
space. A G-invariant Stein compact subset of a G-equivariant complex space S ad-
mits a basis of G-invariant Stein open neighborhoods in S (as the intersection of a
Stein open neighborhood of K in S with its image by o is Stein).

Let S be a complex space with structural morphism u : C — Og. The complex
conjugate S° of S is the complex space which is equal to S as a locally ringed space,
with structural morphism pgo := p oo : C — Og. A G-equivariant complex space
can equivalently be described as a complex space S endowed with an isomorphism
o :S° = S such that o o ” =1dg (see [13, §A.2]).

Note that O(S) = O(S)® ®r C. A morphism f : X — Y of O(S)-schemes is
said to interiorly have a property if such is the case for fos) : Xos) = Yo s)-
If X is an O(S)%-scheme interiorly locally of finite type, the descent datum on
Xos) = X Xspec®) Spec(C) yields an isomorphism o : (X (5))*™)” — (X0(s5))™
which endows (X (s))*" with a structure of G-equivariant complex space: the ana-
lytification X" of X. The site morphism ¢ : (X?")¢q — X of (4.1) is G-equivariant
for the actions of G by complex conjugation. In particular, the analytification IL.*" of
a sheaf IL on Xy, is naturally a G-equivariant sheaf on X?". We will say that LL is
interiorly constructible if so is L|x g, -

We state for later use in the proof of Theorem 7.1 a G-equivariant analogue of
Corollary 2.16, which appears in [13, Proposition A.5] when S has dimension 1.

Proposition 6.4 Let S be a reduced G-equivariant Stein space with finitely many
irreducible components. Associating with p : T — S the M(S)%-algebra M(T)¢
induces an equivalence of categories

G-equivariant analytic coverings p: T — § finite étale
with T normal M(8)C -algebras |

Proof The proposition follows from Corollary 2.16 by using the above description of
G-equivariant complex analytic spaces as complex analytic spaces S endowed with
an isomorphism « : S = § such that o ¢ = Id;. O

6.4 Artin’s comparison theorem over G-equivariant Stein compact sets

Here is an extension of Theorem 6.1 to the G-equivariant setting, which goes back to
Cox [25, Theorem 1.1] when S is a point (see also [62, (15.3.2)]).

Theorem 6.5 Let S be a G-equivariant Stein space. Let f : X — Spec(O(S)G) be an
O(8)C-scheme interiorly of finite type. Fix a torsion abelian sheaf L. on X¢. Assume
that f is interiorly proper or that L is interiorly constructible. If one lets U run over
all G-invariant Stein open neighborhoods of a G-invariant Stein compact subset K
of S, the base change morphisms

. k . k
C[?lclbn Hét(XO(U)G s H‘"O(U)G) — CI?IC]{/II HG ((XO(U)G )an7 ]Lan) (610)
are isomorphisms for k > 0.
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Proof The G-equivariant site morphisms ¢ : (Xo@))*™a — (Xow))é induces
morphisms between the Hochschild—Serre spectral sequences of [62, Remark 10.9]

EP? = HP (G, Hi(Xow). Low)) = H"(Xow)s.Low)) and
E}? = HP(G, HY (Xow)™ L™) = HE ™ (Xow)o)™, L™).

After taking the colimit over U, we get an isomorphism on page 2 by Theorem 6.1,
hence an isomorphism on the abutment. O

6.5 Cohomological dimension

A scheme X is said to have cohomological dimension < n if the étale cohomology of
any torsion abelian sheaf on X vanishes in degree > n. Our next theorem controls
the cohomological dimension of affine varieties over Stein compacta. It is a general-
ization in Stein geometry of the bounds on the cohomogical dimension of complex
and real affine varieties obtained in [35, XIV, Corollaire 3.2] and [62, Corollary 7.21].

Theorem 6.6 Let K be a G-invariant Stein compact subset in a G-equivariant Stein
space S. Let X be an affine O(S)C -scheme interiorly of finite type with (X*)¢ = @.
Then X oG has étale cohomological dimension < dim(X™").

Proof We may suppose that dim(X?") < oo. We wish to show the vanishing of the de-
gree k cohomology of a torsion abelian sheaf on (X (g6 )g if k > dim(X™"). By [26,
Lemma 03SA (2)], any such sheaf is a filtered colimit of constructible sheaves. In
view of [26, Lemma 03Q5 (2)], we may thus only consider constructible sheaves.
By [26, Lemma 09YU], any constructible abelian sheaf on (X g)c)e is of the
form L| X o5)G for some constructible abelian sheaf I on X, after possibly shrink-
ing S. Letting U run over all G-invariant Stein open neighborhoods of K in S, one
computes

Hg (X o6 LiXp06) = c[?lcigl H5 (X ow)e LIX o 6)

: k an | an ©.11)
= C]?lcl{/n He(Xow)a)™ Lo x o 00

where we used successively [26, Theorem 09YQ], and Theorem 6.5.
After shrinking S, we may assume that the affine O(S)©-scheme X is of finite pre-

sentation, and hence is defined in Ag (5)6 for some N > 0 by the vanishing of finitely

many elements of O(S)%[xy, ..., xxy]. It follows from the concrete construction of
the analytification recalled in §4.1 that the G-equivariant complex space (X o;)6)™"
may be realized as a G-invariant closed complex subspace of CV x U. It is therefore
a G-equivariant Stein space.

As L is constructible, the sheaf L?" on X" is weakly constructible (in the sense
that it is locally constant in restriction to the strata of some analytic stratification
of X®). By our hypothesis that (X2)¢ = @, the Artin vanishing theorem of [12,
Theorem 2.6] implies that Hg((X@(U)c)a“, ]La“|(XO(U)G)an) =0 for k > dim(X?"). It

now follows from (6.11) that HA(X ok, LIx  ,¢) = 0 for k > dim(X™). O
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The following application of Theorem 6.6 extends an algebraic result [23, Propo-
sition 1.2.1] attributed to Ax by Colliot-Théleéne and Parimala.

Theorem 6.7 Let K be a G-invariant Stein compact subset of a G-equivariant Stein
space S. Let X be an O(S)Y-scheme interiorly of finite type with (X*)¢ = @.
If Xo(k)c is integral, its function field has cohomological dimension < dim(X®").

Proof We may assume that X is affine (after replacing it with an affine open sub-
set X’ C X such that Xb(K)G is nonempty). Let (U;);ecn be a decreasing basis of
G-invariant Stein open neighborhoods of K in S. If i € N and 7 € O(Xpy,)6) is
nonzero in restriction to X g)c, we define Y; , to be the distinguished affine open
subset of X ;)¢ where i # 0. Then the function field F of X g6 can be written

as the filtered colimit of rings F = co_l}lm O((Yi.n)o(k)6)- By Theorem 6.6 applied
L

to the affine O(U;)%-scheme Yi n, the scheme (Y,-,h)@(K)c has cohomological di-
mension < dim(X?"). We deduce from [26, Lemma OFOR] that F has cohomological
dimension < dim(X?"). O

If (X™)¢ £ &, one may sometimes apply Theorem 6.7 to a Zariski open subset X’
of X such that ((X")®)% = @. The next corollary is obtained in this way.

Corollary 6.8 Let K be a G-invariant Stein compact subset of a G-equivariant
Stein space S. If SO is contained in a nowhere dense closed analytic sub-
set ZC S and O(K)C is a domain, then Frac(O(K)®) has cohomological dimen-
sion < dim(S).

Proof Define V := Spec(O(S)%) \ Spec(O(S)¢/Z,(S)¢). By Lemma 4.4 and its
proof, the O(S)C-scheme V is interiorly of finite type and the analytification of the
open immersion V — Spec(O(S)G) identifies with S\ Z < S. It now suffices to
apply Theorem 6.7 with X = V to conclude. |

If S is a complex space, then the disjoint union 7 := S U S° may be endowed
with a structure of G-equivariant complex space, by letting o € G exchange the
two factors (and act by the identity on the underlying locally ringed spaces). One
then has 7¢ = @ and O(T)%¢ ~ O(S). Using this trick, one can formally deduce
non-G-equivariant statements from G-equivariant ones. For instance, Theorems 6.6
and 6.7 and Corollary 6.8 immediately imply the following.

Theorem 6.9 Let K be a Stein compact subset of a Stein space S. Let X be an
affine O(S)-scheme interiorly of finite type. Then X ) has étale cohomological
dimension < dim(X?").

Theorem 6.10 Let K be a Stein compact subset of a Stein space S. Let X be
an O(S)-scheme interiorly of finite type. If X (k) Is integral, then its function field

has cohomological dimension < dim(X?").

Corollary 6.11 Let K be a Stein compact subset of a Stein space S. If O(K) is a
domain, then Frac(O(K)) has cohomological dimension < dim(S).
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Remarks 6.12 (i) One could have given direct proofs of Theorems 6.9 and 6.10 and
Corollary 6.11, similar to the proofs of Theorems 6.6 and 6.7 and Corollary 6.8 (re-
placing Theorem 6.5 by Theorem 6.1).

(ii) In the setting of Corollary 6.11, if S has pure dimension » and K is nonempty,
the cohomological dimension of Frac(O(K)) is equal to n. To see it, choose s € K.
The local ring morphism O(K); — Og ; is flat by Lemma 2.8. As the maximal
ideal of O(K); generates the maximal ideal of Og because § is Stein, it fol-
lows from [26, Lemmas 033E and O0ON] that O(K); is noetherian of dimension 7.
By [35, X, Corollaire 2.5], the field Frac(O(K)) = Frac(O(K);) has cohomological
dimension > n.

7 Applications to Hilbert’s 17th problem
We may now present our applications to sums of squares of analytic functions.
7.1 Sums of squares

The following theorem is an analogue of Artin’s solution to Hilbert’s 17th prob-
lem [10] on G-equivariant Stein compacta.

Theorem 7.1 Let K be a G-invariant Stein compact subset of a reduced G-equi-
variant Stein space S. Let f € O(K)S be nonnegative on a neighborhood of K¢
in SC. Then f is a sum of squares in M(K)©.

Proof Using [33, 8, §1.3, Proposition], we may replace S by its normalization and
hence assume that it is normal. Let K’ be a Stein compact neighborhood of K in M
such that f € O(K")Y (see Lemma 2.9 (ii)). By compactness of K, we may assume
that K’ has finitely many connected components. Replacing K with a G-orbit of
connected components of K', we may assume that K /G is connected.

We may suppose that f # 0. After shrinking S, we may assume that S/G is
connected, that f € O(S)Y, and that f is nonnegative on S¢. Let p: T — S be
the G-equivariant analytic covering of normal G-equivariant Stein spaces associated
with the finite étale M (S)C-algebra F := M (S)%[x]/(x*> + f) by Proposition 6.4.
The nonnegativity hypothesis on f and the fact that — f is a square in M(T)%,
hence in O(T)® by normality of T, imply that 7€ is contained in the nowhere dense
closed analytic subset { f =0} of T. Let L C T be a G-orbit of connected compo-
nents of p‘1 (K). Itis a G-invariant Stein compact subset of T by [32, V, §1.1, The-
orem 1 d)]. By Corollary 6.8, the field M(L)C has finite cohomological dimension,
and hence cannot be ordered (see e.g. [62, Remark 7.5]).

As M(K)® ¢ M(L)¢ ¢ M(K)®[x]/(x* + f), one has M(L)¢ = M(K)®
or M(L)® = M(K)S[x]/(x>+ f). In the first case, f is a sum of squares in M (K)%
by [53, VIII, Theorem 1.10 and Proposition 1.1 (2)]. In the second case, f is a sum
of squares in M (K )G by [53, VIII, Theorem 1.10 and Basic Lemma 1.4]. O

Remark 7.2 Theorem 7.1 can be proven by the more elementary methods of [48], but
one could not recover in this way the quantitative results of Theorem 7.4.
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7.2 Sums of few squares

If A is aring, we let cdy (A) denote the étale cohomological 2-dimension of Spec(A),
i.e. the largest integer n such that there exists a 2-primary torsion étale sheaf L
on Spec(A) with H ;(Spec(A), L) # 0 (or +oo0 if no such integer exists).

Proposition 7.3 Let F be a field such that cdy(F[x]/(x* 4+ 1)) <n.If f € F is a sum
of squares in F, then it is a sum of 2" squares in F.

Proof 1f char(F) = 2, then sums of squares in F are squares in F', so we may assume
that char(F) # 2. We may also assume that f % 0. Denote by {a} € H'(F, Z/2) the
class induced by a € F* via the Kummer isomorphism F*/(F*)> = H'(F,Z/2).

As f is a sum of squares, it is positive with respect to all the field orderings
of F. By a theorem of Arason [9, Satz 3], the class {f} - (=1} € HNTI(F,7Z/2)
vanishes for N > 0. Consider the étale F-algebra F’ := F[x] /(x* + 1) and
set I' := Gal(F'/F). For all N > 0, the short exact sequence

0— Z/2— Z/2[T — Z/2 — 0

of I"'-modules induces an exact sequence

HY(F',72/2) - HV(F, 2/2) 2% HN*U(F, 7.2).

A decreasing induction on the degree shows that {f} - {—1}Y =0 for all N > n.
The Milnor conjectures proven by Voevodsky [71] now imply that f is a sum of 2"
squares in F (see [11, Proposition 2.1]). g

The next theorem is a quantitative improvement of Theorem 7.1 in the spirit of
Pfister’s theorem [60, Theorem 1].

Theorem 7.4 Let K be a G-invariant Stein compact subset of a reduced G-equi-
variant Stein space S of dimension n. Let f € O(K)Y be nonnegative on a neighbor-
hood of K in SC. Then f is a sum of 2" squares in M(K)©.

Proof Arguing as in the proof of Theorem 7.1, we may assume that S is normal and
that K /G is connected. Then F := M(K)? is a field and F[x]/(x*>+ 1) ~ M(K)
has cohomological dimension < n by Corollary 6.11 applied to the connected com-
ponents of K. Apply Theorem 7.1 and Proposition 7.3 to conclude. g

7.3 Real-analytic geometry

Theorem 7.4 has applications to real-analytic variants of Hilbert’s 17th problem. We
follow the conventions of [36] and refer to [36, II, Definition 1.4] for the defini-
tions of real-analytic spaces and real-analytic varieties. If K is a closed subset of a
real-analytic space M, we denote by O(K) (resp. M(K)) the ring of germs of real-
analytic functions (resp. of real-analytic meromorphic functions) in a neighborhood
of K.
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Theorem 7.5 Let M be a real-analytic space of dimension n with reduced local rings.
Let K C M be a compact subset. Let f € O(K) be nonnegative on a neighborhood
of K in M. Then f is a sum of 2" squares in M(K).

Proof By [36, III, Theorems 3.6 and 3.10], there exist a reduced G-equivariant Stein
space S of dimension n, and an isomorphism M —> SC of real-analytic spaces. In
addition, there exists a proper injective G-equivariant holomorphic map i : S — CV
for N > 0 (see [36, V, Theorem 3.7]).

The compact subset i (K) C RY admits a basis of Stein neighborhoods in CN (see
[66, Lemma 5]) which we may choose to be G-invariant as the intersection of two
Stein open subsets is Stein (see [32, p. 127]). We deduce that K admits a basis of
G-invariant Stein neighborhoods in S (use [32, V, §1.1, Theorem 1 d)]). By [36, III,
Proposition 1.8], one may choose one such neighborhood S with the property that f
extends to a holomorphic map g : § — C. After replacing g with (g + goo0)/2,
we may assume that it is G-equivariant. One may now apply Theorem 7.4 to the
function g to conclude. O

Remark 7.6 Theorem 7.5 applies to normal real-analytic varieties of pure dimension
by [36, IV, Proposition 3.8], hence to real-analytic manifolds.
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