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A polynomial f ∈ R[X1, . . . , Xn] is said to be ≥ 0 if f(x1, . . . , xn) ≥ 0 for every
(x1, . . . , xn) ∈ Rn. The topic of Hilbert’s 17th problem is to try to explain the
positivity of f by writing it as a sum of squares. It was understood by Hilbert
that there is no hope to write f as a sum of squares of polynomials in general,
and that one should consider sums of squares of rational functions instead. This
question was settled by Artin [1]:

Theorem 1 (Artin). A polynomial f ∈ R[X1, . . . , Xn] that is ≥ 0 is a sum of
squares in R(X1, . . . , Xn).

This result was later improved by Pfister [8], who realized that the number of
squares needed only depends on the number of variables:

Theorem 2 (Pfister). A polynomial f ∈ R[X1, . . . , Xn] that is ≥ 0 is a sum of
2n squares in R(X1, . . . , Xn).

Proving that Pfister’s result is optimal (i.e. showing that it is not possible to
improve on the bound 2n) may be the most important related open problem [9,
§4 Problem 1]. If n = 1, it is obviously optimal, because X2

1 + 1 is not a square.
In two variables, it is also known that Pfister’s result is optimal: Cassels, Ellison

and Pfister [4] have shown that the polynomial 1 + X2
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≥ 0, but not a sum of 3 squares in R(X1, X2).
When n ≥ 3, this question is completely open.

We explore another direction: is it possible to improve on Pfister’s result, when
the degree d of f is low ? Two results were previously known. One is very easy:
if f ∈ R[X1, . . . , Xn] is ≥ 0 of degree 2, diagonalization of quadratic forms shows
that it is a sum of n + 1 squares. The other is due to Hilbert [7]: a degree 4
polynomial in R[X1, X2] that is ≥ 0 is a sum of 3 squares.

Our main result [2, Theorem 0.1] generalizes this last theorem in more variables:

Theorem 3. Let n ≥ 2. A polynomial f ∈ R[X1, . . . , Xn] of degree d ≤ 2n that is
≥ 0 is a sum of 2n− 1 squares in R(X1, . . . , Xn), with possible exceptions if n ≥ 7
is odd and d = 2n.

The particular case with 3 variables is new when d = 4 or d = 6:

Corollary 1. A polynomial f ∈ R[X1, X2, X3] that is ≥ 0 and of degree ≤ 6 is a
sum of 7 squares in R(X1, X2, X3).

Another reason why Theorem 3 is interesting lies in the expectation that the
bound d ≤ 2n on the degree is the best possible, and that from d ≥ 2n + 2 on,
there should exist polynomials achieving Pfister’s bound.

The geometric proof of Theorem 3 uses an algebraic variety X naturally asso-
ciated to f , extending to a higher number of variables arguments that have been
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used by Colliot-Thélène [5] when n = 2. Let F ∈ R[X0, . . . , Xn] be the homo-
genization of f , and introduce X := {Y 2 + F (X0, . . . , Xn) = 0}: a real algebraic
variety that is a double cover of Pn

R ramified over the hypersurface {F = 0}.
The first step of the proof is to reformulate Theorem 3 into a geometric state-

ment about X. Using the work of Pfister on multiplicative quadratic forms and
Voevodsky’s proof of the Milnor conjecture, one proves that f being a sum of
2n−1 squares is equivalent to the cohomology class {−1}n ∈ Hn(X,Z /2Z) being
of coniveau 1, that is vanishing on a non-empty Zariski open subset of X.

A key idea is to work with cohomology with integral coefficients (say, 2-adic
cohomology) instead of the mod 2 coefficients that come out of the theory of
quadratic forms. The class {−1} ∈ H1(R,Z /2Z) lifts uniquely to a class ω ∈
H1(R,Z2(1)), and it turns out that f being a sum of 2n−1 squares is also equivalent
to ωn ∈ Hn(X,Z2(n)) being of coniveau 1. Equivalently, we need to show that ωn

vanishes in the unramified cohomology group Hn
nr(X,Z2(n)).

The main tool we use to prove it is Bloch-Ogus theory [3].
Suppose first that X is smooth. Then, an important point in the analysis is the

vanishing of the unramified cohomology group Hn
nr(XC,Z2) [6, Proposition 3.3].

More precisely, that it has no torsion is a consequence of the Milnor conjecture
(this is the argument for which it is crucial to work with integral coefficients)
and it is torsion by decomposition of the diagonal (this uses that XC is rationally
connected for d ≤ 2n: it is the only place where this degree hypothesis is used).

Together with explicit computations for the 2-adic cohomology of X, that
Hn

nr(XC,Z2) = 0 allows us to obtain the required vanishing of ωn ∈ Hn
nr(X,Z2(n)).

Finally, to deal with the case where X is singular, we reduce to the case where
X is smooth using a degeneration argument. To implement this argument, it is
necessary to run the whole proof over an arbitrary real closed field, and not only
over the field R of real numbers.
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