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A field K is said to be Ci if every degree d hypersurface X ⊂ PN
K with di ≤ N

has a K-point. A key example of Ci fields is given by the Tsen–Lang theorem [5].

Theorem 1 (Tsen–Lang). If B is an integral complex variety of dimension i, the
field C(B) is Ci.

Geometrically, this means that hypersurface fibrations over complex varieties
have a rational section, if the degree of the hypersurfaces is low enough. When the
base B is a curve, the inequality d ≤ N exactly means that the hypersurfaces are
in the Fano range. This suggests that one might expect a more general statement,
for rationally connected fibrations: this is the Graber–Harris–Starr theorem [4].

Theorem 2 (Graber–Harris–Starr). If C is an integral complex curve, every ra-
tionally connected variety X over C(C) has a C(C)-point.

Both theorems fail badly if C is replaced by the field R of real numbers, as
some real points of the base might not lift to real points of the total space of the
fibration. For instance, the hypersurface X := {X2

0 + · · · + X2
N = 0} ⊂ PN

R over
B = Spec(R) has no R-point. Lang suggested in [6, p. 379] that one might still
obtain correct statements if the base has no real points (thus expressing the hope
that real varieties with no real points behave as complex varieties).

Conjecture 1 (Lang). If B is an integral real variety of dimension i such that
B(R) = ∅, the field R(B) is Ci.

By analogy with the complex situation, when B is a curve, it is natural to
formulate a real variant of the Graber–Harris–Starr theorem:

Conjecture 2 (Manin, Kollár). If C is an integral real curve with C(R) = ∅,
every rationally connected variety X over R(C) has a R(C)-point.

Applying Conjecture 2 when the base C is the real conic with no real points,
and when X is defined over R (i.e. when the fibration is trivial) would answer
positively the following question of Kollár:

Conjecture 3 (Kollár). Every rationally connected variety over R contains a
geometrically integral curve of geometric genus 0.

Very little is known concerning these conjectures. Lang had answered positively
Conjecture 1 for odd degree hypersurfaces [6, p. 390], mimicking the proof of The-
orem 1 and taking advantage of the fact real polynomials of odd degree have a real
root. Conjecture 2 has been answered positively by Steinberg [8] for compactifi-
cations of varieties that are homogeneous under the action of a connected linear
algebraic group. The case of conics (that is Conjecture 1 for i = 1 and d = 2) was
already known to Witt [9, Satz 22]. Steinberg’s theorem has nothing to do with
real algebraic geometry: it remains valid if one replaces the function field of a real
curve with no real points with any field of cohomological dimension 1.
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Our goal is to solve new cases of Conjectures 1 and 2, providing evidence for
their validity beyond Lang’s and Steinberg’s results.

Theorem 3. Let S be a real surface such that S(R) = ∅. Then every quadric of
dimension ≥ 3 over R(S) has a R(S)-point.

Theorem 4. Let C be a real curve such that C(R) = ∅. Then every degree 4 del
Pezzo surface over R(C) has a R(C)-point.

Theorem 3 is Conjecture 1 for i = d = 2. Theorem 4 follows at once from
Theorem 3, by applying the Amer-Brumer theorem [1, Théorème 1]: a degree 4
del Pezzo surface over K has a rational point if and only if the pencil of quadrics
that defines it, viewed as a quadric over K(t), has a rational point.

It has been understood by Elman, Lam and Pfister (see [7, Proposition 9]) that
Theorem 3 would be a consequence of the following real period–index theorem:

Theorem 5. Let S be a smooth integral surface over R, and let α ∈ Br(S) ⊂
Br(R(S)) be such that α|x = 0 ∈ Br(R) for every x ∈ S(R). Then ind(α) = per(α).

Over the complex numbers, Theorem 5 is the celebrated period–index theorem
of de Jong [3]. Only the particular case where S(R) = ∅ is needed to prove
Theorem 3. The finer hypothesis that α vanish in restriction to real points was
put forward by Pfister in [7].

De Jong’s proof of the period–index theorem does not adapt over R. The
argument given in [2] to prove Theorem 5 uses a different strategy, relying on
Hodge theory. The talk was devoted to explaining the principle of this strategy.

Let us just mention here how Hodge theory enters the picture. One has a short
exact sequence 0 → Pic(S)/n → H2

ét(S, µn) → Br(S)[n] → 0. To show that the
Brauer class associated to β ∈ H2

ét(S, µn) has index dividing n, one has to find a
degree n ramified cover p : T → S such that p∗β ∈ H2

ét(T, µn) is algebraic. This
is only possible if T carries enough algebraic cycles. To ensure this, we choose T
in an appropriate Noether-Lefschetz locus, using Green’s infinitesimal criterion.

References

[1] A. Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sr.

A-B 286 (1978), A679–A681.
[2] O. Benoist, The period–index problem for real surfaces, eprint arXiv 2018.

[3] A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke

Math. J. 123 (2004), 71–94.
[4] T. Graber, J. Harris, J. Starr Families of rationally connected varieties, JAMS 16 (2003),

57–67.
[5] S. Lang, On quasi algebraic closure, Ann. of Math. 55 (1952), 373–390.
[6] S. Lang, The theory of real places, Ann. of Math. 57 (1953), 378–391.
[7] A. Pfister, On quadratic forms and abelian varieties over function fields, In Ordered fields

and real algebraic geometry (San Francisco, Calif., 1981), Contemp. Math. 8, 249–264,
Amer. Math. Soc., Providence, R.I., 1982.

[8] R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. I.H.E.S. 25
(1965), 281–312.

[9] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern., J. Reine Angew. Math.
176 (1937), 31–44.

2


