COMPLEX ORIENTATIONS OF REAL ALGEBRAIC CURVES

V. A. Rokhlin

In this paper we study the orientations obtainable from the complexification of a plane M-curve of ’
even degree and their influence on the topology of the curve,

1, Preliminary Survey. A curve of degree m in the present paper means a nonsingular real plane
projective algebraic curve of degree m, i.e., a set in the real projective plane RP?, free of singularities,
defined by an equation of the form

P (JCO, Zy, -'52) = 0, (1)

where P is a homogeneous real polynomial of degree m and x;, X4, X, are homogeneous coordinates. The
components of such a set are homeomorphic to circles, and if m is even, then they are all two-sided in

RPz, but if m is odd, then there is a one-sided component. Two-sided components are called ovals., The
number of components does not exceed g + 1, where g = (m—1) (m—2)/2, but if Eq. (1) has singularities

(real or imaginary), then the number of components of the set defined by it in RP? is less than g + 1, Curves
of degree m with g + 1 components exist for any m and are called M-curves, Details and references to the
literature can be found in a survey by D. A. Gudkov [1].

The fundamental problem of the topology of real plane algebraic curves consists of enumerating the
isotopy types of M-curves. At the present time this problem is solved only for M-curves of degree m <6
(see [1]). For m > 6, evidently both our information about the topological properties of M-curves and the
proposed methods of constructing them are insufficient: the known isotopy types of M-curves are very few
(see [1]), and the topological properties of M-curves found in the literature amount to an inequality of
Petrovsky [2] (see also [3]), an inequality of Arnol'd [3], a congruence of Gudkov [4], and several obvious
corollaries of an inequality of Bez according to which a curve of degree m, situated in general position with
respect to a curve of degree m can have no more than mm, points in common with it. Petrovsky's theorem
asserts that for a curve of even degree 2 k (with any number of ovals), we have

[2(p —r) —1] < 3k — 3k + 1, (@)

where p is thé number of even ovals, i.e., ovals lying inside of an even number of other ovals, and n is the
number of odd, i.e., remaining, ovals, Arnol'd's theorem asserts that, moreover,

pa e B2 n_+no<(k—1)2(k—2) (3)
2 1 )
p‘>n_.§£_(%:1_).’ n'>p_.£M_‘Z—.__”__1y (4;

where p~ is the number of even ovals bounding the outside of a component of the complement of the curve
(in RP% with negative Euler characteristic, p° is the number of even ovals bounding the outside of a com-
ponent of the complement with zero Euler characteristic, and n~ and n’ are the same numbers relative to
odd ovals.* Gudkov's congruence asserts that for M-curves of even degree 2k

*In Arnol'd's paper this theorem is formulated more cautiously, namely, inequalities (3) and (4) are ac-
companied by additional homological conditions without which it is asserted only that

h—1) (k—2) Ck—1) (k—2) 3k (k —1) 3k (k — 1)
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Actually, as is easy to establish with the aid of the Smith Z,-sequence written out for the branched cover-
ing Y — CP?consideredby Arnol'd, his homological condition is always satisfied.
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p —nr = k*mod 8. (5)

The 51mp1est topologlcal corollary of Bez's inequality (obtained for m; = 1) consists of the fact that if C,,
e Cpi Cl, .o CS are pairwise dls]omt curves of degree m and Cj lies inside of Cjyfori=2,.. . r
and Cj lies inside of Cj =1 forj=2,...,s, then 2(r + s) =m, Let us add that inequalities (2) and (4) are
trivial corollaries of a conjecture that had already been formulated in 1906 by V. Rogsdale [5], and neither
proved nor disproved since then, according to which for a curve of even degree 2k (with any number of -
ovals)

p<3k(k2—1)+1’ n<3k(k—1) . ©)

and that a weakened version
» p —n=kmod4 ' 1Y)
of congruence (5) was originally proved by V. L. Arnol'd [3].

2. Main Formula, In this section an M-curve A of degree m is assumed given, Since its equation
does not have singularities in CP?, the set CA defined by the equation in CP? represents a submanifold of
the plane CP? in the complex-analytic sense diffeomorphic to a sphere with g handles. It is well known that
A separates CA into two halves diffeomorphic to spheres with g + 1 holes and taken into each other by com-
plex conjugation conj: CP? — CP? with inverted orientation. We denote these halves by X and Y, orient
them in accordance with the natural orientation of the manifold CA, and orient A like 6X or 9Y. Further,
we call an injective pair of ovals of A, i.e., a pair of ovals one of which lies inside of the other, positive if
the orientations of the ovals induce an orientation of the annulus bounded by them in RP?, and negative in
the opposite case, and we denote the number of positive pairs by II* and the number of negative pairs by
II-. It turns out that for an even number m = 2k, we have

M — T — (k——i)Z(A-—‘)\ @)

Proof, Denote by B the disc bounded by the oval C in RP? and complete X to a sphere Z by adding
nonintersecting copies of the disk Bg. ILet T be the sphere obtained from Y by the same procedure, and
let 9: T— CP?and §: T— CP® be mappings fixed on X and Y and superimposing copies of B¢ onto these
dikes. Further, let £ and 7 be elements of the (integral) homology group sz(CPz) determined by the map-
pings ¢ and ¢ and the natural orientations of the spheres T and T (i.e., the orientations obtained from X and
Y). We shall establish Eq. (8) by computing the intersection index ¢7 by two procedures.

The first procedure is based on the fact that £7 can be interpreted as the algebraic number of points
in the intersection of the oriented singular spheres ¢: Z — CP?and §: T —CP% This number cannot be
determined directly, since the intersection consists of whole disks, and we begin by applying a deformation
to ¢, making the intersection more regular. Letu be some tangent vector field on RP? with a finite num-
ber of zeros, not having zeros on A and normal to A on A, Since the field iu is normal to RP? in CP? and
normal to CA on A, it can be normally extended to some field v on RP? U X (the latter, of course, will have
zeros inside of X); let y: RP> U X — CP? be a geodesic translation defined by the field év, where 6 is a
sufficiently small positive number, and ¢': T — CP? be the mapping defined by the formula ¢'(x) = ¥(¢(x)).
For ¢' the algebraic number of points of intersection with ¢ is determined directly and can be found in the
following way. Since the sum index of the singularities of u in each of the disks Bc is equal to 1 and mul-
tiplication by i anti-isomcrphically maps the tangent bundle of RP? onto its normal bundle in CP? the sum
index of v on each of the disks B¢ is equal to —1. Consequently, the contribution added by the pair of disks
Bc and B! to the algebraic number of intersection points that we are interested in is equal to +1 if C = C',
equal to +2 if the pair C,C' is negative, and equal to —2 if the pair C,C’' is positive, and this number itself
is equal to g + 1 + 2(II"—TII*), Since ¢' is homotopic to ¢, the index &7 is also like that, and thus

By = 2k —3k 4 2 4+ 2 (II" —II+). (9)

The second procedure reduces to two remarks, First, the class of £ + 1 is realized by the surface
CA and therefore coincides with 2ka, where o is a natural generator of the group HZ(CPZ). Second, since
the homomorphism conjs: Hy(CP?) — H,(CP?) represents multiplication by —1 and takes ¢ to —7, we have
£ =1, From these remarks it follows that ¢ =ka, n=ka, and &9 = K2, Comparing the last equation with
(9), we obtain (8),
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3. Real Corollaries, Since the numbers II* and M1~ depend on the orientations received by the ovals
of A from a complex region, the information contained in Eq. (8) directly relates not to the relative disposi-
tion of these ovals in RP?, which is a subject of the topology of real algebraic curves, but to the relative
disposition of the surfaces CA and RP? in CP?, At the same time we can draw purely real corollaries from
Eq. (8).

In order to do this we note that the definitions of the numbers I+ and II” can be repeated assuming
as a basis a perfectly arbitrary orientation of A. This leads to the idea of calling the orientation of an M-
curve of degree 2k quasi~complex if the corresponding numbers I+ and II” satisfy relation (8). The ex-
haustive real information included in Eq. (8) is contained in the fact that an M-curve of even degree pos-
sesses a quasi-complex orientation,

It turns out that this information is not new with respect to the topological properties of M-curves
enumerated in Sec, 1. More precisely, let a topological M-curve of degree 2k mean an arbitrary collec~
tion of 2k’—3k + 2 pairwise disjoint circles lying two~sided in RP?, and let us extend to the nonalgebraic
case the definitions of even and odd ovals, the notation p, n, . . ., II¥, II", and the definition of quasi-com-
plex orientation; it turns out that every topological M-curve of degree 2k satisfying the right half of in-
equality (4) and congruence (7) possesses a quasi-complex orientation,

For the proof we first provide the curve with an alternating orientation, i.e., an orientation with re-
spect to which an injective pair of ovals is positive if and only if one oval is even and the other is odd. It
is clear that with this orientation II*—II~ = n, which in particular settles the case where n = (k—1) (k—2)/2.
In the general case, we take into consideration the difference 6 = n—((k—1) (k—2)/2) and note that congru-
ence (7) is equivalent to 6 being even, and the right halves of (3) and (4) are equivalent to the inequalities
6 <n* and —6 = n-, where nt is the number of empty odd ovals, If 6 > 0, then we invert the orientation of
6/2 empty odd ovals; this reduces II*—II" by 6 and converts the alternating orientation of the curve to a
quasi-complex orientation. If & < 0, then the alternating orientation is transformed into a quasi-complex
one in two steps, First, we invert the orientation of every oval except the outermost and the empty ones
that are odd; this enlarges the difference IT* —I~ by 2(q—n"—n’), where q is the number of even ovals that
are not outermost, and makes it equal to n + 2(q—n‘—n°), which is larger than (k—1) (k—2)/2 since q—
n~—n' = n~ (for every finite collection of pairwise disjoint two-sided circles in RP?) and 2n~ >n~ = —4.
Second, we invert the orientation of ™ empty even ovals that are not outermost and v empty odd ovals; this
reduces II* —II~ by 2(27 + v) and makes the orientation of the curve quasi-complex if 27 + v = (8/2) + q—
n-—n’., The possibility of choosing such a 7 and v follows from the fact that it is only subject to the in-
equalities 7 =q* and v = n*, where q* is the number of empty even ovals that are not outermost, and the
fact that 2q* + nt* is known to exceed (6/2) + g—n~—n’; the latter is obvious if we take into consideration
the fact that 2¢g+ 4+ n* > g+ 4+ n* = g+ -+ n —n~ —n’, that gt + n = q (for every finite collection of pairwise
disjoint {wo-sided circles in RP?), and that 6 < 0.

Two Special Corollaries. Two special corollaries of the existence of quasi-complex orientations de-
serve attention: the inequality

> k= 1)9(1:—2) ’ (10)
where II is the total number of injective pairs of ovals, and the congruence
M= EZDED 42, 1

To derive them from Eq. (8) it is sufficient to note that I = II* + I~,

Inequality (10) is also a consequence of the right half of inequality (4) and the inequality I Z n+n7,
which is satisfied for every finite collection of pairwise disjoint two-sided circles in RP?, and for topologi-
cal M-curves of degree 2k congruence (11) is equivalent to congruence (7), since the latter is equivalent to
the congruence n = (k—1) (k—2)/2 mod 2, and n and II are connected by the congruence Il = n mod 2.

4, A New Interpretation of Congruence (5). An odd oval of an oriented M-curve of even degree is
called disoriented if it forms a negative pair with the innermost of the ovals outside of it. The number of
disoriented ovals is denoted by d, the number of positive pairs with disoriented outer oval by D*, and the
number of negative pairs with disoriented outer oval by D”, Obviously

I+ —-=n—~2d+ D —D*. (12).
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From this formula and the equation p + n = 2k*=3k + 2 it follows that the orientation's being quasx—complex
is equivalent to the equation

B —(p —n)=4(d+ D" —D+. (13)

Equation (13) sheds a new light on Arnol'd's congruence (7), Gudkov's congruence (5), and Rogsdale's
conjecture (6). In particular, it shows that congruence (5) is equivalent in the case of quasi-complex orien-
tation to the congruence

d+ D —D+=0 mod 2, (14)
and the left half of (6) is equivalent to the inequality d + D~—D" = 0,
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