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1. Results 

The question of vector fields on spheres arises in homotopy theory and 
in the theory of fibre bundles, and i t  presents a classical problem, which 
may be explained as follows. For each n ,  let S"-' be the unit sphere in 
euclidean n-space R". A vector field on S"-' is a continuous function v 
assigning to each point X of S"-' a vector v(x) tangent to S"-' a t  X. Given 
r such fields v,, v,, . , v,, we say that  they are linearly independent if 
the vectors v,(x), v,(x), S ,  v,(x) are linearly independent for all X. The 
problem, then, is the following: for each n ,  what is the maximum number 
r of linearly independent vector fields on S"-'? For previous work and 
background material on this problem, we refer the reader to [ l ,  10, 11, 12, 
13, 14, 15, 161. In particular, we recall that  if we are given r linearly inde- 
pendent vector fields v,(x), then by orthogonalisation i t  is easy to construct 
r fields w,(x) such that  w,(x), w,(x), . . . , w,(x) are orthonormal for each X. 

These r fields constitute a cross-section of the appropriate Stiefel fibering. 
The strongest known positive result about the problem derives from 

the Hurwitz-Radon-Eckmann theorem in linear algebra [g]. It may be 
stated as follows (cf. James [13]). Let us write n = (2a + 1)2b and b = 
c + 4d, where a ,  b, c and d are integers and 0 5 c 5 3; let us define 
p(n) = 2' + +d. Then there exist p(n) - 1 linearly independent vector 
fields on S"-'. 

It is the object of the present paper to prove that  the positive result 
stated above is best possible. 

THEOREM 1.1. If p(%) i s  a s  defined above, then there do not exist p(n) 
linearly independent vector fields on S"-'. 

Heuristically, it is plausible that  the "depth" of this result increases 
with b (where n = (2a + 1)2b, as above). For b 5 3, the result is due to  
Steenrod and Whitehead [15]. For b 5 10, the result is due to Toda [16]. 

The theorem, as stated, belongs properly to the theory of fibre bundles. 
However, we shall utilise a known reduction of the problem to one in 
homotopy theory, concerning real projective spaces. We write R P Q  for 
real projective q-space, although this notation is not consistent with tha t  
employed by James and Atiyah [12,1]. If p < q, then R P P  is imbedded in 
RPq ,  and we write R P q / R P P  for the quotient space obtained from R P q  by 
identifying R P P  to a single point. Our main task is to prove the following 
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theorem. 

THEOREM 1.2. RPm+p!m'/RPm-l i s  not co-reducible; that i s ,  there i s  no 
map 

such that the composite 

has degree 1. 
Theorem 1.1 has the following corollary in homotopy theory. 

COROLLARY 1.3. The Whitehead product [c ,-,, c,-1] i n  jr ,,-, (Sn-') i s  a 
(p(n) - l)-fold suspension but not a p(n)-fold suspension. 

I t  is also more or less well known that  Theorem 1.1 is relevant to the 
study of the stable J-homomorphism (cf. [16]). More precisely, one should 
consider the map 

One should deduce from Theorem 1.1 or Theorem 1.2 that  J @  2, is mono- 
morphic. However, i t  appears to the  author tha t  one can obtain much 
better results on the J-homomorphism by using the methods, rather than 
the results, of the present paper. On these grounds, it seems best to post- 
pone discussion of the J-homomorphism to a subsequent paper. 

A summary of the present paper will be found a t  the  end of 8 2. 

2.  Methods 

The proof of Theorem 1.2 will be formulated in terms of the "extra- 
ordinary cohomology theory" K ( X )  of Grothendieck, Atiyah and Hirzebruch 
12, 31. We propose to introduce "cohomology operations" into the  "coho- 
mology theory" K; these operations will be functions from K ( X )  to K ( X )  
which are natural for maps of X. If the space Xis  reducible or CO-reducible, 
then the corresponding group K ( X )  will split as a direct sum, and the 
homomorphisms of the splitting will commute with our operations. We 
shall find that  K(RPmLP(ml/RPm-l) does not admit any splitting of the sort 
required. 

The author hopes that  this line of proof is self-justifying; however, a 
few historical remarks may serve to put i t  in perspective. The author's 
original approach to the present problem was directly inspired by the work 
of Steenrod and Whitehead [15], and consisted of an attempt to replace 
the Steenrod squares used in [l51 by cohomology operations of higher 
kinds. This attempt is reasonable, but i t  involves several difficulties; the 
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first of these is the selection of cohomology operations well-adapted to 
the solution of this particular problem. The author's work on this topic 
may be left in decent obscurity, like the bottom nine-tenths of an iceberg. 
However, i t  led to the following conclusions. 

(1) The required operations should be constructed from universal 
examples. 

(2) The universal examples should be fiberings induced by certain hypo- 
thetical maps f: BO -+ BO. (Here BO denotes the classifying space of the  
infinite orthogonal group.) 

(3) The hypothetical maps f should satisfy certain stringent algebraic 
specifications. 

At this point the advisability of reformulating matters in terms in the  
K-theory became evident. The hypothetical maps f led immediately to  
the notion of cohomology operations in the K-theory. The algebraic con- 
ditions mentioned in (3) led easily to the correct operations. 

The remainder of this paper is organised as follows. In 8 3 we define 
the ring K,(X). Since our cohomology operations are defined with the 
aid of group representations, we also define the ring K.{(G) of virtual 
representations of G. The remainder of the  section is devoted to necessary 
preliminaries. In 8 4 we define and study the  virtual representations 
which we need; in 8 5 they are applied to construct our cohomology 
operations. In 8 6 we present further material on K,(X), needed for 8 7. 
In 8 7 we compute the values of our operations in projective spaces. In 

8 we complete the proof of Theorem 1.2, by the method indicated above. 
In 8 9 we deduce Theorem 1.1 and Corollary 1.3, by citing appropriate 
references. 

3. The ring K,,(X) 

In this section we shall define the cohomology ring K,(X) and the 
representation ring K:(G). We proceed to discuss composition, and this 
leads to the basic lemma which will enable us to define operations in K,. 
This lemma is stated as Lemma 3.8, near the end of the section. 

We begin by defining K,,(X). (Throughout this paper, the symbols 
A, A' will denote either the real field R or the complex field C.) Suppose 
given a finite cw-complex X, we consider the A-vector-bundles over X. 
(That is, we consider real vector bundles or complex vector bundles 
according to the choice of -1. It is immaterial whether the group of our 
bundles is the full linear group G L ( ~ ,  A) or a compact subgroup o(n) or 
u(n); but for definiteness we suppose i t  is G L ( ~ ,  A). If X were not con- 
nected, we would allow our bundles to have fibres of different dimensions 
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over the different components of X; however, for our purposes it will 
suffice to consider only connected complexes X.) We divide the A-vector 
bundles E over X into equivalence classes {E), and take these classes a s  
generators for a free abelian group F, (X) .  For each pair of bundles E, 7 
over X we form the element t = {E @ 7) - {E) - {v), where @ denotes 
the Whitney sum. We write T,(X) for the subgroup of F , (X)  generated 
by such elements t ;  we define K,(X) to be the quotient group F,(X)/T,(X). 

We proceed to define K:(G) in a closely analogous way. Suppose given 
a topological group G. A representation a of G (of degree n ,  over A) is a 
continuous function a: G -+ GL(YL, A) which preserves products. Two such 
representations are equivalent if they coincide up to an inner automor- 
phism of G L ( ~ ,  A). We divide the representations a of G over A into 
equivalence classes {a), and take these classes as generators for a free 
abelian group F:(G). For each pair of representations a ,  P we form the 
element t = {a  @ p)  - {a) - {P), where @ denotes the direct sum of 
representations. We write T:(G) for the subgroup of F:(G) generated by 
such elements t .  We define K:(G) to be the quotient group F;(G)/T:(G). 
An element of K:(G) is called a virtual representation (of G, over A). 

It is clear that  we can define a homomorphism from F:(G) to t h e  
integers which assigns to each representation its degree. This homomor- 
phism passes to the quotient, and defines the virtual degree of a virtual 
representation. 

We next discuss composition. I t  will shorten explanations if we adopt 
a convention. The letters f ,  g, h will denote maps of complexes such a s  
X. The letters E, 7,  g will denote bundles, and the letters K ,  X, p will 
denote elements of K,(X). The letters a ,  P ,  y will denote representations, 
and the letters 8, p, $I- will denote virtual representations. 

The basic sorts of composition are easily enumerated if we interpret a 
bundle E as a classifying map E: X-+ BGL(YL, A) and a representation a a s  
a map of classifying spaces. We have to define compositions 

P e a ,  a . E ,  E . f ,  f . s  
(Composition will be written with a dot, to distinguish i t  from any other 
product.) The formal definitions are as follows. 

If a :  G -+ G L ( ~ ,  A) and P: G L ( ~ ,  A) -+ G L ( ~ ' ,  A') are representations, 
then p a is their composite in the usual sense. If E is a bundle over X 
with group G L ( ~ ,  A) and a: GL(YL, A) -+ GL(nl, A') is a representation, then 
a .  E is the induced bundle, defined by using the same coordinate neighbour- 
hoods and applying a to the coordinate transformation functions. If E is 
a bundle over Y and f: X-+ Y is a map, then E f is the induced bundle 
over X,  defined by applying f - l  to the coordinate neighbourhoods and 
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composing the coordinate transformation functions with f. If f: X -+ Y 
and g: Y-+ Z are maps, then g .  f is their composite in the usual sense. 

We next wish to linearize over the first factor. 

LEMMA 3.1. I t  is possible to de$ne composites of the form g, a ,  8 .  E 
and  li- f ,  so that g, a lies i n  the appropriate group Ki(G), 8 E and  K f 
lie i n  appropriate groups K,(X), and  they have the following properties. 

( i ) Each composite is l inear  i n  i t s  Jirst factor. 
( i i)  If we replace g,, B or  li- by p ,  a or  E (respectively), then these com- 

posites reduce to those considered above. 
(iii) The following associativity formudae hold. 

(iv) I f a = l , t h e n p . a = g , .  I f f = l , t h e n l i - . f = l i - .  
PROOF. The required composites are defined by (i) and (ii), and i t  is 

easy to check that  they are well defined. The formulae (iii), (iv) follow by 
linearity from those that  hold before linearizing. 

We next wish to linearize over the second factor. For this purpose we 
require a first factor which can act on G L ( ~ ,  A) for any n. We therefore 
introduce the notion of a sequence O = (B,), where, for each n ,  B, is a 
virtual representation of G L ( ~ ,  A) over A'. We reserve the  letters O, Q, 'P 
for such sequences. In  order to linearize over the second factor, we 
require a linearity condition on the first factor. In order to state this con- 
dition, we write 

for the projections of G L ( ~ ,  A) X G L ( ~ ,  A) onto its two factors. These 
projections are representations. 

DEFINITION 3.2. The sequence O = (8,) is additive if we have 

for all n ,  m. 

LEMMA 3.3. Suppose O is additive. Then for any two representations 
a: G -+ G L ( ~ ,  A), P: G -+ G L ( ~ ,  A) we have 

B,;, ( a  e3 P) = (6% a )  + (8, - 6 )  

Moreover, for any  two bundles E, 7 over X with groups G L ( ~ ,  A), G L ( ~ ,  A) 
we have 

B,+, (E CB 7) = (8% E) 4- (8, . 7) 
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We postpone the proof for a few lines. 

LEMMA 3.4. If 0 ,  a ,  W. run  over additive sequences, then i t  is possible 
to defme composites of the form 0 ,  CD. B and O K so that Q.  O is a n  
additive sequence, @ B lies irt the appropriate group Ki(G), O .  K lies i n  
the appropriate group K,,(X), and they have the following properties. 

( i ) Each composite is bilinear i n  its factors. 
( i )  ( a), = B .  If a :  G -+ G L ( ~ ,  A) is a representation then 
a = 9, . a (in the sense of Lemma 3.1). If f is a G L ( ~ ,  A)-bundle over 

X then O . f = B, . f (in the sense of Lemma 3.1). 
(iii) The following associativit y formulae hold. 

( T . @ ) . @  = 'P*(@.@),  (@.@).K = @ . ( @ . K ) ,  

(@.K) .  f = @ . ( K .  f ) .  

(iv) If 1 denotes the additive sequence of identity maps 1,: G L ( ~ ,  A) -+ 

G L ( ~ ,  A), then 

PROOF OF LEMMA 3.3. Suppose given two bundles f ,  51 over X, with 
groups G L ( ~ ,  A), G L ( ~ ,  A). Then we can define a bundle f X 51 over X, 
with group G L ( ~ ,  A) X G L ( ~ ,  A). (The coordinate neighbourhoods are the 
intersections of those in E and those in 7; the coordinate transformation 
functions are obtained by lumping together those in f and those in 7.) We 
have (X @ U) (f X 7) = f @ 7 ,  X -  (f X 7) = f ,  M (f X 7) = 7. If O is 
additive we have 

that is. 

The proof for representations is analogous, but slightly more elementary. 
PROOF OF LEMMA 3.4. The required composites are defined by (i) and 

(ii), and it is trivial to check that they are well defined, given the con- 
clusion of Lemma 3.3. The associative laws are preserved a t  each step of 
the construction; finally, conclusion (iv) is trivial. 

We next recall that the tensor product of bundles defines a product in 
K,(X) (cf. [2,3]). Similarly, the tensor product of representations defines 
a product in Ki(G); thus K,(X) and K:(G) become commutative rings with 
unit. Composition behaves well for tensor products of the first factor, as 
is shown by the following formulae. 
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Here, for example, the third formula states that the products in K,(X) 
are natural for maps of X. These formulae are deduced by linearity from 
the corresponding ones for representations and bundles. 

In order to ensure that composition behaves well for tensor products of 
the second factor, we require a condition on the first factor. In order to 
state this condition, we re-adopt the notation of Definition 3.2. 

DEFINITION 3.5. The sequence O = (B,) is multiplicative if we have 

for all n ,  m. 

LEMMA 3.6. Suppose O is  multiplicative. Then for any two repre- 
sentations a: G -+ G L ( ~ ,  A), p: G --+ G L ( ~ ,  A) we have 

Moreover, for any two bundles E, 7 over X with groups G L ( ~ ,  A), G L ( ~ ,  A) 
we have 

The proof is closely similar to that of Lemma 3.3. 

LEMMA 3.7. If is  both additive and multiplicative, then we have 

W (0 @ 9 )  = (W \y. 0) @ ('P 9 )  , 
'Y'(K@X) = (W.K)@(W.X). 

This follows from Lemma 3.6 by linearity. 
We now restate our main results in one omnibus lemma. 

LEMMA 3.8. Suppose given a n  additive sequence O = (B,), where 
8, E K,',(GL(%, A)). Then the function O K of K gives (for each X )  a group 
homomorphism 

with the following properties. 
( i ) @ is  natural for maps of X; that is ,  if f: X -+ Y is  a map, then 

the following diagram i s  commutative. 
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( i i)  If the sequence O i s  multiplicative a s  well a s  additive, then 

preserves products. 
(iii) If B, has virtual  degree 1 ,  then 

maps the unit  i n  K,\(X) into the uni t  i n  K,,,(X). 
PROOF. Except for (iii), this is merely a restatement of what has been 

said above; thus, (i) is the  associativity law (O. K )  f = O (K f )  of 
Lemma 3.4, and (ii) is contained in Lemma 3.7. As for (iii), the unit in 
K,,(X) is the trivial bundle with fibres of dimension 1. Any representation 
of G L ( ~ ,  A) will map this into a trivial bundle of the appropriate dimension; 
hence B, 1 = d ,  where d is the virtual degree of B,. This completes the  
proof. 

As a first application of Lemma 3.8 (which, however, is hardly necessary 
in so trivial a case) we consider the following sequences. 

( i ) The sequence c = (c,), where 

C,: G L ( ~ ,  R) ----+ G L ( ~ ,  C) 

is the standard injection. (The letter "c" for "complexification" is chosen 
to avoid confusion with other injections.) 

(ii) The sequence r = (r,), where 

r,: G L ( ~ ,  C)  - GL(%Z, R)  

is the standard injection. 
(iii) The sequence t = (t,), where 

is defined by t,(M) = M, and M is the complex conjugate of the matrix M. 
All these sequences are additive, while c and t are multiplicative. We 

therefore obtain the following natural group-homomorphisms: 

The functions c and t are homomorphisms of rings. 
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LEMMA 3.9. W e  have 

This  follows immediately f rom t h e  corresponding fac t  for representa- 
tions. (C f .  [7], Proposition 3.1.) 

4. Certain virtual representations 

In  this  section w e  shall define and study t h e  virtual representations 
which w e  need. I t  is a pleasure t o  acknowledge a t  th i s  point helpful con- 
versations w i t h  A. Bore1 and Harish-Chandra; t h e  former kindly read a 
d ra f t  o f  this  section. 

The  result which w e  require is stated as Theorem 4.1; t h e  rest o f  t h e  
section is devoted t o  proving i t .  

THEOREM 4.1. For each integer k (positive, negative or zero) and for 
A = R or C ,  there i s  a sequence V:", such that t h i s  system of sequences has 
the following properties. 

( i ) +';,S i s  a v i r tual  representation of G L ( ~ ,  A )  over A, w i t h  v i r tual  
degree n. 

( i i )  The sequence Y\yk, i s  both addit ive and mult ipl icat ive (in the sense 
o f  8 3). 

(iii) $4, i s  the k th  power of the ident i ty  representation of G L ( ~ ,  A). 
(For  k 2 0 ,  the kth power i s  taken  in the sense of the tensor product. The 
k th  power also makes sense for k < 0 ,  since l-dimensional representations 
are invertible.) 

( i v )  I f  c i s  the sequence of injections c,: GL(n ,  R) -+ G L ( ~ ,  C )  (as  in 8 3) 
then  

Y E . C  = c - w ; .  

( v )  v: 'P1\ = '3y . 
( v i )  Let G be a topological group ( w i t h  typical element g) and let 0 be 

a v i r tual  representation of G over A ;  then  the following formula  holds 
for the characters X. 

(vi i )  +', , i s  the ident i ty  representation. qO,,, i s  the t r i v ia l  repre- 
sentation of degree n. +;lS i s  the representation deJined by 

where TM i s  the transpose of the m a t r i x  M. 
PROOF. W e  begin b y  recalling t h e  definition o f  t h e  rth exterior power. 
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If V is a vector space over A, then the rth exterior power E T ( V )  is a 
vector space over A given by generators and relations. The generators 
are symbols v, A v, A . A v,(vi E V); the relations state tha t  these 
symbols are multilinear and anti-symmetric in their arguments. Since 
E r ( V )  is a covariant functor, any automorphism of Vinduces one of ET(V).  
Let us choose a base v,, v,, . . a ,  v, in V and take as our base in E r ( V )  the 
elements vi, A vi, A A viT(il < i2 < . . < i?); we obtain a definite rep- 
resentation 

E.;: G L ( ~ ,  A) - G L ( ~ ,  A) , 
where m = n!/(r!(n - r)!). These representations are evidently compatible 
with "complexification", in the  sense tha t  

E,'.c, = c,. E,'. 

We next consider the polynomial   xi)" in the variables 
X,, X,, S ,  X,. Since this polynomial is symmetric, i t  can be written as a 
polynomial in the elementary symmetric functions a,, a,, , a, of 
XI, Xa, " - ,  X,; Say 

ClSisn (xi)' = &;(a,, 02, , Q,) . 
For k 2 0, we now define 

(The polynomial is evaluated in the ring K.((GL(~, A)).) To obtain the 
virtual degree of our representations, we substitute X, = 1,  X, = 1,  a ,  

X, = 1; we find that  the virtual degree of Q:,, is n. 
As trivial cases, we see tha t  W:, and W\Y'P, are as described in conclusion 

(vii), while q:,, is as described in conclusion (iii) for k 2 0. 
We next define V;' t o  be as described in conclusion (vii); t h a t  is, +T', 

is the representation defined by 

+&(M) = YM)-l . 
We define $1" for k > 1 by setting 

I t  is clear that  conclusion (iii) holds for k < 0. 

PROPOSITION 4.2. qi,, c ,  = c .  Qk, ,?L. 

PROOF. Since "complexification" commutes with exterior powers as  
well as with sums and products, this is obvious for k 2 0. It is clear for 
k = -1, and the case k < -1 follows. 

PROPOSITION 4.3. F o r  each matr ix  M i n  G L ( ~ ,  A), we have 
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~($d,n)M = W M " )  , 
where Tr(M") denotes the trace of M". 

PROOF. We begin by recalling the basic facts about characters. If a is 
a representation of G, then its character ~ ( a )  is defined by 

X ( ~ Q  = 

We have 

x(a G3 P) = X@) + x(P) 9 

x(a 0 P) = x(a)x(P) 
By linearity, one defines the character x(B) of a virtual representation B. 

We next remark that ,  in proving Proposition 4.3, i t  is sufficient to 
consider the  case A = C. In fact, if a is a real representation it is clear 
that  ~ ( c .  a )  = ~ ( a ) ;  hence if B is a virtual representation we have ~ ( c  .B) = 
~ ( 0 ) .  This remark, together with Proposition 4.2, enables one to deduce 
the case A = R from the case A = C. 

Let us suppose (to begin with) tha t  M is a diagonal matrix with non- 
zero complex entries X,, X,, . . . , X,. Then E;(M) is a diagonal matrix with 
entries xi,xi, . . xiT(i, < i, < < i,). Hence x(E;)M is the rth elementary 
symmetric function o, of the  xi. It follows that  if Q is any polynomial in 
n variables, we have 

Substituting Q = Q:, we find 

x(QkC,n)M = C15dsrs (xi)' = Tr(Mk) (k >= 0) . 
This result depends only on the  conjugacy class of M in G L ( ~ ,  C), and is 
therefore true for any Mconjugate to a diagonal matrix. But such M are 
everywhere dense in G L ( ~ ,  C), and both sides of the equation are con- 
tinuous in M; therefore the result holds for all M in G L ( ~ ,  C), a t  least if 
k 2 0. I t  remains only to note that  

The proof is complete. 

PROPOSITION 4.4. For  each representation a: G 4 G L ( ~ ,  A) and  each 
g E G we have 

X(+:,, = x ( W  . 
PROOF. Substitute M = a g  in Proposition 4.3. 
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PROPOSITION 4.5. The sequence W[rk, i s  additive and multiplicative. 
PROOF. Let 

be the projections of GL(n, A) X GL(m, A) onto its two factors, as in 3. 
We have to prove 

( i ) + ? , % + m  (X @ W) = (+?,n X) + (Q: m m), 
(ii) QI; n m  (X @ m) = (+:,m X) 8 (Q?,m m). 

We begin by checking that in each equation, the characters of the two 
sides agree. An obvious calculation, based on Proposition 4.4, shows that 

X[+: m+m (X @ ~ ) I Q  = (x(x) + X(m))gTc 
= ~[(+:,m X) + (+:,m m)Ig 

Similarly for equation (ii), the common answer being (~ (n )~ (w) )g ' .  
Consider the case A = C, and examine the subgroup u(n) X ~ ( m )  c 

G L ( ~ ,  C) X G L ( ~ ,  C). This subgroup is compact, and therefore two virtual 
representations coincide on it  if and only if they have the same characters. 
By transporting negative terms to the opposite side of our equations, we 
now face the following situation: two representations are defined on 
G L ( ~ ,  C) X G L ( ~ ,  C) and agree on u(n) X ~ ( m ) ;  we wish to show that they 
agree on GL(n, C) X GL(m, C). Now, i t  is a theorem that  two analytic 
representations which are defined on G L ( ~ ,  C) and agree on u(n) agree also 
on G L ( ~ ,  C). (Such analytic representations define C-linear maps of Lie 
algebras. The Lie algebra of G L ( ~ ,  C) is the space of all n X n complex 
matrices; the Lie algebra of u(n) is the space of skew-hermitian matrices; 
two C-linear maps which agree on the latter agree on the former. The 
map of the Lie algebra determines the map of the Lie group.) The same 
argument clearly applies to the subgroupu(n) X u(m) in G L ( ~ ,  C) X G L ( ~ ,  C). 
Moreover, all our representations are clearly analytic. This completes the 
proof in the case h = C. 

We now consider the case A = R. We face the following situation. 
Two real representations are given over G L ( ~ ,  R )  X G L ( ? ~ ,  R);  it has been 
proved that after composing with c ("complexifying") they become equiva- 
lent. We wish to show that  the real representations are equivalent. Now, 
it is a theorem that if two real representations a ,  P of G are equivalent 
over C, then they are equivalent over R. (Suppose given a complex non- 
singular matrix P such that Pa(g) = P(g)P for all g E G. Then for any 
complex number A, the matrix Q = X P  + XP is real and such that Qa(g) = 
,L?(g)Q for all g E G. In order to ensure the non-singularity of Q = 
P(xX-'I + P-lP)X, i t  is sufficient to ensure that --XX-' is not an eigen- 
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value of P-'F.) This completes the proof of Proposition 4.5. 
Since the sequences V: have now been shown to be additive, the  various 

compositions written in Theorem 4.1 are well-defined. Conclusion (iv) is a 
restatement of Proposition 4.2, and conclusion (vi) follows from Propo- 
sition 4.4 by linearity. I t  remains only to prove the  following. 

PROPOSITION 4.6. P: +l,,, = +Yn. 
PROOF. We begin by checking that  the characters of the two sides 

agree. An obvious calculation, based on Proposition 4.3 and conclusion 
(vi), shows that  

The proof is completed as for Proposition 4.5. 
This completes the proof of Theorem 4.1. 

REMARK. Grothendieck has considered abstract rings which admit "ex- 
terior power" operations Xi. It is evidently possible to define operations 
Tk (for k >= 0) in such rings. 

5. Cohomology operations in K,,(X) 

In  this section we shall use the results of $$  3, 4 to construct and study 
certain natural cohomology operations defined in K.,(X). I t  would perhaps 
be interesting to  determine the set of all such operations (as defined by 
some suitable set of axioms); but for our present purposes this is not 
necessary. 

By applying Lemma 3.8 to the sequences of Theorem 4.1, we obtain 
operations 

where k is any integer (positive, negative or zero) and A = R or C. 

THEOREM 5.1. These operations en joy  the  following properties.  
( i ) V: i s  n a t u r a l  for  m a p s  of  X. 
(ii) i s  a homomorphism of  r i n g s  w i t h  unit. 
(iii) If E i s  a l ine  bundle over X ,  t h e n  V\,E = E'. 

(A line bundle is a bundle with fibres of dimension 1. For k >= 0 the kth 
power Ek is taken in the sense of the tensor product. The k"' power also 
makes sense for k < 0, since line bundles are invertible.) 

(iv) T h e  following d i a g r a m  i s  commuta t ive .  
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( V )  %(V.i(K)) = %(K). 
(vi) If K E Ka(X) and  ch4 K denotes the 2q-dimensional component of 

the Chern character eh(/;) [2, 3, 41, then 

(vii) V[, and V;' a r e  identity functions. V:, i s  the function which 
assigns to each bundle over X the t r iv ia l  bundle with fibres of the same 
dimension. V;' coincides with the operation t considered i n  5 3. 

PROOF. Parts  (i) and (ii) of the theorem follow directly from Lemma 
3.8 and Theorem 4.1 (parts (i), (ii)). By using the results of 3 3 where 
necessary, parts (iii), (iv), (v) and (vii) of the  theorem follow from the 
correspondingly-numbered parts of Theorem 4.1, except that  i t  remains 
to  identify V;'. If 11 = R, then any n-plane bundle is equivalent to  one 
with structural group o(n), and for M E  o(n) we have (TM)-l = M. If 
A = C, then any n-plane bundle is equivalent to  one with structural group 
u(n), and for M E u(n) we have (TM)-' = M. This completes the identifi- 
cation of V,'. 

I t  remains to prove (vi). We first recall the basic facts about the Chern 
character. If A = C and is a bundle over X,  then chq (E) is a character- 
istic class of E lying in HZq(X; Q) (where Q denotes the  rationals). The 
main properties of ch = C;=, chq are as follows. 

( i ) ch defines a ring homomorphism from Ka(X) to  H*(X; Q). 
(ii) ch is natural for maps of X. 
(iii) If E is the canonical line bundle over CP", then ch E = e-", where 

X is the  generator of HYCP"; 2) and e-" is interpreted as a power series. 
We now turn to  the  proof. Let  T C ~ ( n )  be a (maximal) torus consisting 

of the  diagonal matrices with diagonal elements of unit modulus. The 
classifying space BT is a product of complex projective spaces CP". Let 
Y c BT be the corresponding product of complex projective spaces CPN,  
where N 2 q; let X,, X,, . .., X, be the  cohomology generators. We may 
evidently imbed Y in a finite cw-complex X ,  and extend the inclusion 
i: Y -+ su(n) to  a map f: X -+ B U ( ~ ) ,  so tha t  f is an equivalence up to  any 
required dimension. We see (by naturality and linearity) that  i t  is 
sufficient to prove (vi) when the  space concerned is X and the  element K 

is the bundle E over Xinduced by f from the canonical u(n)-bundle over 
su(n). 
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Let i: Y-. X be the inclusion. According to Bore1 [5], the map 

i*: Hw(X; Q)- HZq((Q) 

is a monomorphism. Moreover, 

where E,, E,, , E, are line-bundles induced from the  canonical line- 
bundles over the factors of Y. We now have 

i* ch (TkE) = chTt(i*E) 

= eh %(E1 @ E 2  CB @ E,) 
= ch ( T 2 ,  + %E, + + ?V;f,) 

= ch ((E,)" + (E,)" + . + (E,)'") 
= (ch E,)'" + (ch E,)'" + + (ch E,)" 
- e-'""l + e-'""~ + . . . + e-'""" 

Similarly, 

i* ch E = ch i * E  

= ch (El G3 E, @ CB E,) 
= + e-"2 + . . . + e-". 

Comparing the components in dimension 2q, we find the  required result. 
This completes the proof of Theorem 5.1. 
In order to  state the next corollary, we recall some notation [3]. Let P 

denote a point. Then, for any X ,  K,,(P) is a direct summand of K,,(X). 
We write Z~,(X) for the complementary direct summand. Evidently our 
operations act on Z~,(X). (Actually K,,(P) = 2 ,  and Ti: K.,(P) - 
KA(P) is the identity.) 

COROLLARY 5.2. The operations 

v;: Ro(s2q) - fZ&Yq) , 
v;: ZR(sZq)  - .J?R(sZq) 

are  given by 

T:(li) = kq/c . 
PROOF. I t  is a well-known corollary of Bott's work that  

maps ZO(szq) isomorphically onto the image of H2q(S2q; 2 ) .  (See, for ex- 
ample, [4] Proposition 2.2.) The result for h = C now follows from 
Theorem 5.1 (vi). 
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It also follows from Bott's work that  if q is even, then 

is monomorphic. (In fact, Imc = 2 if q = 0 mod 4, while Imc = 2 2  if 
q = 2 mod 4. This can be derived from the  corresponding result for the  
homomorphism 

and this in turn  can be obtained from the  results on U/O given in 16, p. 
3151.) The case A = R therefore follows from the case h = C. 

In  order to  state our next corollary, we recall that  according to  [7, 
Theorem l ]  we have the following isomorphisms. 

Here S r X  denotes the rt" suspension of X,  and I ,  J a r e  defined as follows. 
The groups &(s'x), Z R ( x 8 x )  are represented as direct summands in 
Ro(s2 X X) ,  ER(S8 X X) .  We now define 

Here n ,  W denote the  projections of S2 X X, resp. Ss X X on its factors, 
and the  elements k E l?&Y2), p E ZR(S8) are generators. 

COROLLARY 5.3. The following diagrams a re  NOT commutative. 

I n  fact, we have 

PROOF. Consider the  case A = C. Using the previous corollary, we 
have 

Similarly for the  case '1 = R. 
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6. A spectral sequence 

In this section we recall certain extra material on the groups K(X) .  
To begin with, recall from [3] that  one can define the groups of a "co- 

homology theory" as follows. Let Y be a subcomplex of X ,  and let X/  Y 
be the space obtained by identifying Y with a newly-introduced base-point. 
Define 

If Y is empty we have K:(X, p) E K,,(X). 
Using the Bott periodicity (as a t  the end of 8 5) one shows tha t  

One may use these equations to define the abelian groups K,",X, Y) for 
positive values of n. 

Nota bene. Owing to  the state of affairs revealed in Corollary 5.3, we 
shall be most careful not to identify K,-"-'(X, Y) with Kgn(X, Y) or 
KG"-~(X, Y) with Kgn(X, Y). We therefore regard K:(X, Y) as graded 
over Z,  not over Z, or Z,. Given this precaution one can define operations 

in K,f(X, Y) for n 5 0; however, we shall not need such operations. 
We shall use operations V, only in K,(X) and K,,(X) (that is, in dimen- 
sion n = 0); the groups K,"(X, Y) with n # 0 will be used only to help in 
calculating the additive structure of K~!(X, Y). This will avoid any con- 
fusion. 

We next recall from [3] that  one can define induced maps and co- 
boundary maps between the groups Kn(X,  y ) ,  so that  these groups verify 
all the Eilenberg-Steenrod axioms [9] except for the dimension axiom. (If 
one chose to  introduce operations V!, into the groups K,;(X, Y) for n S 0, 
then these operations would commute with induced maps and coboundary 
maps, because both are defined in terms of induced maps of x~ , . )  

We next recall from [3, 5 21 the existence of a certain spectral sequence. 
Let X be a finite cw-complex, and let XP denote its p-skeleton. Then 
each pair X P ,  X4 yields an exact sequence of groups K,". These exact 
sequences yield a spectral sequence. The E, term of the spectral sequence 
is obtained by filtering K,*(X) = C:_"__ K;(X). The E, and E, terms of 
the spectral sequence are given by 

where P is a point. The values of K~!(P) are given by the  homotopy groups 
of BO or BU; they are as follows, by 16, p. 3151. 
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In what follows it will sometimes be useful to know that  the spectral 
sequence is defined in this particular way. For example, I?,(x) is filtered 
by the images of the groups R,,(X/X~-'); and if we are given an explicit 
element K in K.,(x/xP-l), then we can take the image of K in 
K , , ( x ~ - ~ + ~ / x ~ - ~ ) ,  and so, by passing to quotients, obtain an explicit element 
K, in (for 1 5 r 5 C O ) ,  SO that  d , ~ ,  = 0 and the homology class of K, 

is K,+,, while K, is the class containing K .  Again, an element K in 
I?,(xp/xp-l) gives an element in EIP*-P; the space XP/XP-l is a wedge-sum 
of spheres S P ,  and we can tell whether K is a generator or not by examin- 
ing ch K (cf. the proof of Lemma 5.2). 

On the other hand, the work that  follows has been so arranged that  
we do not need any theorem concerning the identification of the differ- 
entials in the spectral sequence in terms of cohomology operations. 

7. Computations for projective spaces 

I t  is a pleasure to acknowledge a t  this point my indebtedness to J. Milnor, 
who read a draft of the following section and suggested several improve- 
ments. 

In this section we shall calculate the various rings K,,(X) which we 
require, together with their operations ?PI",. Our plan is to obtain our 
results in the following order. 

( i ) Results on complex projective spaces for h = C. 
(ii) Results on real projective spaces for h = C. 
(iii) Results on real projective spaces for h = R. 

These results are stated as Theorems 7.2, 7.3 and 7.4. For completeness, 
every stunted projective space is considered, whether or not it arises in 
the applications. The theorems are preceded by one lemma, which we 
need in order to specify generators in our rings. 

LEMMA 7.1. Le t  E be t h e  canonical  r e a l  l ine-bundle  over RPh-'; let 7 
be the  canonical complex  l ine-bundle  over CP"-I; let sr: RP2"-I -+ CP+l 
be t h e  s t a n d a r d  projection.  T h e n  w e  have 

PROOF. Complex line bundles are classified by their first Chern class 
c,. In our case this lies in H2(RP2"-l; Z ) ,  which is Z,, a t  least if n > 1 
(the case n = 1 being trivial). We have c , ~ * ?  = ir*c,? # 0. I t  is there- 
fore sufficient to show that  the bundle cE is non-trivial. Let W denote the 
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total Stiefel-Whitney class, let x be the generator of H'(RP2"-'; Z,), and 
let r be as in Lemma 3.9. Then we have rcE = E @ and w(rcE) = 1 + x2. 
This shows that  cE is non-trivial, and completes the proof. 

In  terms of the canonical line-bundles we introduce the following ele- 
ments X, p ,  U. 

~ = ~ - I E E ? , ( R P ~ ) ,  

p = 7 - 1 E K,(cpn) , 
U = cx = ~ * p  E K,(RP.) . 

In terms of these elements we may write polynomials &(X), &(p), &(v). 

THEOREM 7.2. KC(CPm) i s  a truncated polynomial r ing  (over the 
integers) with one generator p and  one relation p"+' = 0. The operations 
a re  given by 

qr; . p s  - - ( ( l  + p)'" - qs . 
The projection C P n  4 CPn/CPm maps E,(cP~/cP~)  isomorphically 

onto the subgroup of K,(CPn) generated by pm+', pmf2 ,  S ,  p". 
Note. If k is negative, (1 + p)'" may be interpreted by means of the 

binomial expansion 

This expansion terminates because pnf' = 0. 
PROOF. So fa r  as the additive and multiplicative structures go, this 

result is due to Atiyah and Todd; see [4, Propositions 2.3, 3.1 and 3.31. In  
any case, i t  is almost evident. The spectral sequence of 9 6 shows tha t  
K,"(CPn, CPm) is zero for s odd, and free abelian on n - m generators for 
s even. Let us examine matters more closely, and suppose as an induc- 
tive hypothesis that  K,(CPn-I) is as stated (this is trivial for n = l ) .  
Then the  elements 1 ,  p ,  p2,  , p"-' in K,(CPn) project into a 2-base for 
K,(CPn-l). Moreover, the element p" in K,(CPn) projects into zero in 
Kc(CPn-I), so i t  must come from R,(CP"/CP"-~). Let y E H2(CP"; 2 )  be 
the cohomology generator; then ch p = y + y2/2 + and ch p" = yn; 
hence p" comes from a generator of l ? c ( C ~ n / C ~ " - l )  = 2. Using the exact 
sequence of the pair CPn,  GPn-', we see that  1 ,  p ,  p2,  , p" form a 2 -  
base for Kc(CPn). I t  is now clear that  

ch: Kc(CPn) - H*(CPn;  Q) 

is monomorphic. (This also follows from a general theorem; see [3, 2.51, 
[4, Prop. 2.31.) Since ch(pnf1) = 0, we have pn+l = 0. This completes the  
induction, and establishes the result about K,(CPn). The result about 
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K ~ ( c P ~ / c P ~ )  follows immediately from the exact sequence of the pair 
CPn, CP". 

I t  remains to calculate the operations. According to Theorem 5.1 (iii), 
we have W!(?) = 7'"; that  is 

%(l + p) = (1 + p)'" . 
Hence 

and 

This completes the proof. 
In order to state the next theorem, we define certain generators. We 

write p'"1' for the element in K~(CP~/CP"  which maps into p"' in 
Ko(CPN) (see Theorem 7.2). (I t  is clear that  as we alter N the resulting 
elements p'"+" map into one another; this justifies us in not displaying 
N in the notation.) 

The standard projection sr: RPzN+' -+ CPN factors to give 

We write c'"1' = - * '"l' v 'S+l '  = * W P  9 p'"'l'. I t  is clear that  5'"'' maps 
into v'"1', and v'"+f' in turn maps into the element vH1 in KO(RPzN+l); 
this explains the notation. (As above, the dependence of these elements 
on N is negligible.) 

THEOREM 7.3. A s s u m e  m = 2t. T h e n  we  have z 0 ( ~ P n / ~ ~ " )  = &P, 
where f i s  the  integer  part  of  &(n - m). I f  m = 0 t h e n  Ko(RPn) m a y .  
be described by the  generator v a n d  the t w o  relat ions  

(so tha t  2fv = 0). Otherwise  I ? o ( ~ ~ n / ~ ~ m )  i s  generated by v't+" (where  
t = & m, a s  above); a n d  the projection R P n  + RPn/RPm m a p s  &(RPn/RPrn) 
i somorphical ly  onto the subgroup o f  Ko(RPn) generated by vt+l. 

I n  the case w h e n  m i s  odd ,  we  have 

where the .first s u m m a n d  i s  generated by a n d  the second i s  imbedded 
by the projection RPn/RPZt-I -+ RPn/RPZt.  

T h e  operations a r e  g iven  by the following formulae .  
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(k even) 

(k odd) , 

Note 1. As usual, the symbol Z denotes a cyclic infinite group, and the 
symbol Zzf denotes a cyclic group of order 2f. 

Note 2. So far  as the additive structure of Ko(RPn) goes, the result is 
due to  J. Milnor (unpublished). 

Note 3. The factor i: in the final formula will be vitally important in 
what follows; the reader is advised to satisfy himself as to its correct- 
ness. 

PROOF. We begin by establishing the relation v2 = -2v @ Ko(RPn); 
for this purpose we begin work in KR(RPn). A real line-bundle is equiva- 
lent to one with structural group o(1) = { + l ,  -1); i t  is therefore directly 
obvious that ,  for any real line-bundle E, we have E@ E = 1. (Alternatively, 
this may be deduced from the fact tha t  real line-bundles are characterized 
by their first Stiefel-Whitney class W,.) Taking E to  be the  canonical real 
line-bundle over R P n ,  we have E2 = 1,  that  is, (1 + L)" l or X" -2x. 
Applying c, we find ( n * ~ ) ,  = (et), = 1 and v2 = -2v. (Alternatively, the  
former equation may be deduced from the fact that  complex line-bundles 
are characterized by their first Chern class.) 

The relation vf'l = 0 follows from the fact that  vf+' is the image of 
Gf +l E &(RPN/RP~~+') and 2 f + 1 2 m. 

We now apply the spectral sequence of 3 6 to the  space X = RP"/RPm. 
If n and m are even the  group HP(X; Z )  is Z, for even p such that  
m < p 5 n;  otherwise i t  is zero. If m = 2t - 1 we obtain an extra group 
HZ(X; Z )  = Z. If n is odd we obtain an extra group Hn(X; Z )  = 2. Let 
f be the integral part of ( n  - 2t), where m = 2t or 2t - 1. Then the 
elements F ( t + i )  E I?,(RP~/RP~~+~~-~) (i = 1,  2, , f )  yield generators for 
the f groups Z, in our E, term, and survive to E, (as explained in 9 6). 
Again, if m = 2t - 1,  the element V) yields a generator for the corre- 
sponding group Z in our E, term; this also survives to E,. If n is odd 
the group Hn(X; Z )  = Z has odd total degree, and all differentials vanish 
on i t  for dimensional reasons. Our spectral sequence is therefore trivial. 
This leads to the following conclusions. 

( i ) If m = 2t, &(X) can be filtered so that  the successive quotients 
are f copies of Z,, whose generators are the  images of P i " ,  Zi ' t+2 '  , . , 
p + "  

(ii) If m = 2t - 1,  we have an exact sequence 
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in which P' maps to a generator of Z. 
It is now evident that  &(RP"/RP") is monomorphically imbedded in 

&(RP"). 
We have next to determine the group extensions involved in (i) above, 

in the case t = 0. If t = 0 then the generators of the successive quotients 
become v, v2, , vf, and the relation v2 = -2v resolves the  problem; the  
extension is a cyclic group Z2, generated by v. 

We have now done all tha t  is needed to determine the additive and 
multiplicative structures of our groups; i t  remains to calculate the opera- 
tions P;. 

According to Theorem 5.1 (iii) we have P;( = Ek for a line-bundle E. 
As remarked above, the  line-bundle X*? over R P "  satisfies (X*?)' = l. 
Therefore 

(k even) 
T;(X*?) = 1 .:v (k odd) . 

That is, 

1 (k even) 
+ = 1 l + v (L odd) . 

Therefore 

and 

(k even) 
T;(v" = 

(k odd) . 
Since I?,(RP"/RP~~) is monomorphically imbedded in K0(RPn), the result 
about P;vct+l) follows. 

We necessarily have 
qp;yct) E ay(t) + bv(t+l)  

for some coefficients a ,  b; our problem is to  determine them. By using 
the injection RP2t /RP2t-1-+ R P " / R P 2 t 1  and Corollary 5.2 for RPZt/RPzt-l = 

SZt ,  we see that  a = kt. Now project into RPn/RP2t-2;  P) maps into 
and v't+'' into - 2 P ,  and we see that  
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Therefore 

where E = 0 or 1 according as  k is even or odd. This completes the proof. 

REMARK. An alternative method for obtaining the last formula is as 
follows. According to Theorem 7.2, we have in l ? o ( ~ ~ N / ~ ~ t - l )  the  formula 

where I; denotes a sum of higher terms. Applying the projection 
RPZN+IISPZ~-~  - CPN/CP"-', we find 

It is therefore only necessary to evaluate a * C ,  which leads to  the  same 
result. 

In  order to state our next theorem, we define ~ ( n ,  m )  to  be the number 
of integers s such that  m < s 5 n and s - 0 ,1 ,2  or 4 mod 8. 

THEOREM 7.4. Assume m + -1 mod 4. Then we have I?,(RP"/RP") = 
Zzr, where f = ~ ( n ,  m) .  I f  m = 0,  then KR(RPn) may be described by the 
generator X and the two relations 

(so that 2% = 0). Otherwise the projection RP" -+ RP"/RPm maps 
I~ , (RP" /RP")  isomorphically onto the subgroup of &(RP") generated by 
kg'-', where g = ~ ( m ,  0). We write x ( ~ + "  for the element in &(RP"/RP"L) 
which maps into kg+'. 

In  the case m - -1 mod 4 we have 

Here the second summand is  imbedded by the projection RPn/RP4t-1 - 
RP"/RP4t,  and the first is  generated by an element X ( 0 )  which will be 
defined below. ( We have written g for y(4t, O).)  

The operations are given by the following formulae. 

REMARK. SO far  as the additive structure of KR(RPn) goes, the  result 
is due to R. Bott and A. Shapiro (unmimeographed notes). 

PROOF. We begin by applying the spectral sequence of 9 6 to the  space 
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X = RPn/RPm. Let us recall from 9 6 that  

i Z, if q = 1 , 2 m o d 8  
K-q(P)= Z if q = 0 , 4 m o d 8  

0 otherwise . 
The group Hn(X,  2,) is Z, for m < p 5 n ,  otherwise zero. If n and m 
are even the  group H n ( X ; Z )  is Z2 for even p such that  m < p 5 n ,  
otherwise zero. However, if n is odd we obtain an  extra group 
Hn(X; Z )  = Z,  and if m is odd we obtain Hm+l(X; Z )  = Z instead of 2,. 
We can now enumerate the  terms E,",q in our spectral sequence which 
have total degree zero. If m + 1 3 0 mod 4 we find (apart from zero 
groups) just ~ ( n ,  m) copies of 2,. If m + 1 = 0 mod 4 we find ~ ( n ,  m) 
groups, of which one is Z and the remainder 2,. 

LEMMA 7.5. If n - 6 , 7  or  8 mod 8 then 

i s  a n  isomorphism. 
PROOF. The homomorphism c is always an  epimorphism, because 

&(RPn) is generated by v (Theorem 7.3) and v = cX (Lemma 7.1). If 
n - 8t = 6 or 7, then p(n,  0) = 4t + 3, so that  &(RPn) contains a t  most 
24t+3 elements. On the  other hand, I?,(RP~) contains exactly 24tf3 elements, 
by Theorem 7.3. Therefore c is an isomorphism in this case. Similarly if 
n = 8t + 8 (with 4t + 3 replaced 4t + 4). This completes the  proof. 

I t  follows that  &(RPn) is generated by h when n - 6, 7 or 8 mod 8. 
Let us reconsider the spectral sequence for the space X = RPn.  We 

have found p(n,  0) copies of Z, with total degree zero in our E, term; we 
have shown that  if n - 6 , 7  or 8 mod 8 they all survive unchanged to E,. 
It follows that  the same thing holds for smaller values of n. We conclude 
that  for any n we have &(RP") = Zzf,  where f = ~ ( n ,  0); this group is 
generated by X. We have already shown tha t  X2 = -2X (see the  proof of 
Theorem 7.3). The formula Xfil = 0 therefore follows from the fact tha t  
2'X = 0. 

Let us now consider the  exact sequence 

The kernel of i* has 2' elements, where f = ~ ( n ,  0) - ~ ( m ,  0) = p(%, m). 
If m $ -1 mod 4 then I?,(RP~RP~) has a t  most 2' elements. I t  is now 
clear tha t  E R ( ~ ~ l l . / ~ ~ m )  maps isomorphically onto the subgroup of ER(RPS) 
generated by k2gX = tXO+l ,  where g = ~ ( m ,  0). We write X'O+" for the 
element in I?,(RP"/RP") which maps into kg+'. This completes our con- 
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sideration of the  case m -1 mod 4. 
In  the case m - - 1 mod 4, our first concern is to show that  the  follow- 

ing exact sequence splits. 

It is clear that  j is a monomorphism, since we have just shown tha t  the 
composite 

is monomorphic. 

LEMMA 7.6. The map i i s  an epimorphism. 
PROOF. Inspect the following commutative diagram, in which the  row 

and columns are exact. 
E , ( ~ p ~ t - ~ / ~ p ~ t - ~ )  = 

We have RP4t-1/RP4~-+ and RP4t/RP4t-1 = thus 
I ? , (RP~~- ' /RP~~-~  ) = 0 ,  and the maps j,, j, are epimorphic. We have also 
calculated that  I? , (RP'~/RP~~-~)  = Z2 and i, is epimorphic. Hence j,i is 
epimorphic. But j, is an epimorphism from Z to  2,; hence ~ m i  consists of 
the multiples of some odd number w, and 1m6 = 2,. But i t  is clear from 
the spectral sequence that  Ki(RP"/RP4t) contains no elements of odd 
order (except zero). Hence w = l and i is epimorphic. This completes 
the proof. 

We wish next to specify a generator X'g'. For this purpose we consider 
the map 

c:  I?,(RP"/RP"~) - I?,(RP"/RP~~-') . 
LEMMA 7.7. I f  n - 6 , 7  or 8 mod 8 then c i s  an isomorphism for t 

even, a monomorphism for t odd .  
PROOF. Inspect the following commutative diagram, in which each row 

is a split exact sequence. 
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We will establish the  nature of c,. Suppose that  t = 2u and n - 8v = 
6, 7 or 8. Then I?,(RP"/RP~~) = Z,,, where 

This group is generated by We also have I?,(RPn/RP4') = ZZf, 
generated by We have c,X'~"") = v(4u 'l) , so c, is an isomorphism if 
t is even. Next suppose that  t = 2u + 1 and n - 8v = 6 , 7  or 8. Then 
I?,(RPn/RP4') = ZZf,  where 

This group is generated by We also have I?,(RP"/RP~~) = ZZffl, 
generated by We have c , ~ " " + ~ )  = - 2 ~ ' ~ " + ~ )  , SO C, is a monomor- 
phism if t is odd. 

According to the  results of Bott (as explained during the proof of 
Corollary 5.2), the map c, is an  isomorphism for t even and a monomorphism 
for t odd. The result now follows by the  Five Lemma. 

We next explain how to choose the  generator X'Q), assuming that  
n - 6 , 7  or 8. If t = 2u we take X'4") to be the unique element in 
l ? B ( ~ ~ n / ~ ~ 4 c - 1 )  such that  CX'~") = 5'"). If t = 2u + 1 we define = 
- ry(4~t2). , then 

Since 1mcl = 2 2  in this case, ih'4"+3) is a generator, and we may take 
as our generator for the summand 2 in I?,(RP"/RP~~-'). 

So far  we have only defined X"-') for n - 6, 7 or 8 mod 8. However, by 
naturality we obtain for smaller values of n an  image element, also 
written with the same properties. This procedure is clearly self- 
consistent if we reduce n from n, to n,, where both n, and n, are congru- 
ent  to 6, 7, or 8 mod 8. 

Whether t is odd or even, one verifies that  the image of X'O) in I?,(RP") 
is vg. Therefore the  image of k'g) in &(RP") is kg. This explains the 
notation. 

We now turn to the operations Ti. Their values may be obtained by 
either of the following methods. 

( i ) The argument given in proving Theorem 7.3 goes over immediately 
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to the case A = R, using the fact that  X = 5 - 1 and 5 is a line-bundle. 
(ii) The operations in I?,(RPn/RPm) are known by Theorem 7.3. The 

map 

C: I ~ ~ ( R P ~ / R P ~ )  ---+ I?,(RP~/RP~) 

is known, and commutes with the operations. We can deduce the values 
of the operations T",n I?,(RP"/RP") if n - 6 , 7  or 8 mod 8, because c is 
then a monomorphism (this follows from Lemmas 7.5, 7.7). The results 
follow for smaller values of n by naturality. 

REMARK. I t  is also possible to compute the groups I?,(RP"/RP") directly 
from the spectral sequence of 3 6; and this was, of course, the  author's 
original approach. The group extensions are determined by computing 

K,*(RP"/RPm; 2,) = K,*((RPn/RPm) G RP" , 
and examining the universal coefficient sequence. I t  is necessary to know 
the expression of certain differentials in the spectral sequence in terms 
of Steenrod squares; i t  is easy to compute these squares in (RPn/RP") G 
R P 2 ,  using the Cartan formula. No details will be given, but the earnest 
student may reconstruct them. 

8. Proof of Theorem 1.2 

In this section we complete the proof of Theorem 1.2. Let us suppose 
given, then, a map 

f: Rpmi-p(m)/Rpm-1 - S m  

such that  the composite 

has degree 1. (Here, as in 3 1, we have m = (2a + l)Zb, b = c + 4d and 
p(m) = + +d.) 

We first remark that  if d = 0, then the Steenrod squares suffice to 
contradict the existence of f (cf. [S]) .  In what follows, then, we may 
certainly assume that  m - 0 mod 8. This ensures that  

where ?(m, n) is the function introduced in 3 7. According to Theorem 
7.4, then, we have 

here the summands are generated by XcO)  and where g = *m .  We 
know that  i * X ( g  ' l '  = 0 and i*XI0)  is a generator Y of &(S") = Z. If we 
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had a map f ,  we would have 

f *, = % ( Q )  + Nx(Q+~) 

for some integer N. From the equation 

f *v;r = v: f *Y 
we obtain (using Corollary 5.2) 

where E = 0 or 1 according as k is even or odd. That is, 

( N  - B)(km'2 - = 0 ,  

or equivalently, 

( N  - &)(km'2 - E) -- 0 mod 2b11 . 
I t  remains only to prove that  for a suitable choice of k, we have 

km12 - E 201' mod 2b+2 ; 

this will establish the required contradiction. We take k = 3. 

LEMMA 8.1. If n = (2a + 1)2f, then 3" - 1 - 2 f + 2  mod 2ff3. 
(Note that  since n = & m  or m = 2n, we have b = f + 1.) 
PROOF. We first note that  since 3' - 1 mod 8,  we have 3" = l mod 8 

and 3'" + 1 2 mod 8. We now prove by induction over f that  

3'27' - 1 E 2f+2 mod 2f i-4 (for f z l ) .  

For f = 1 the result is true, since 3' - 1 = 8. Suppose the result true for 
some value of f. Then we have 

3'21 +l f ' - 1 = (32 - 1)(32' + 1) 

= (2fi2 + ~ 2 f + . ~ ) ( 2  + ~ 2 ~ )  
= 214-3 - mod 2f l 5  . 

This completes the induction. 
We now note that ,  since 

3zf+-1 1 mod 2f + 3  , 

and 
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This establishes Lemma 8.1; the proof of Theorem 1.2 is thus com- 
pleted. 

9. Proofs of Theorem 1.1 and Corollary 1.3 

We begin with Theorem 1.1. 
Suppose, for a contradiction, tha t  there were some n for which S"-' 

admits p(%) linearly independent vector fields. Then i t  is not hard to  see 
tha t  for each integer p,  the  sphere S'"-' admits a t  least p(n) linearly 
independent vector fields; this and more is proved by James [13, Corollary 
1.41. If p is sufficiently large then the appropriate Stiefel manifold 
V,,,,,,,,, may be approximated by a truncated projective space, which in 
James's notation is called Q,,,,,,,,, [12]. From the cross-section in the 
Stiefel manifold, we deduce that  the complex Q,,,,,,,,, is reducible, a t  
least for pn 2 2(p(n) + 1) [12, Theorem 8.2, p. 1311. According to  Atiyah, 
Qpn.,(,;+, is S-dual to P ,,,, +, -,,,,,,, +,, and therefore the latter object is S-co- 
reducible (see [ l ,  p. 299 and Theorem 6.1, p. 3071). The latter object, 
however, is somewhat fictitious if p(n) + 1 - p n  is negative (which is 
generally so); one has to interpret i t  a s  P ,,,, +, -,,,.,,,,,,, +,, where r is an  
integer arising from Atiyah's work but not explicitly determined by him, 
and q is an integer sufficient to make q r  - pn positive (see [ l ,  p. 307, 
second footnote]). In our notation P ,,,, +, -,,,,,,,,,, +, becomes 

Rp9r-pn+p(n)/Rpqr-pn-l = X 
9 say 

If q is chosen large enough (the precise condition being q r  2 p n  + p(n) + 3) 
we enter the domain of stable homotopy theory, and the complex X i s  
S-CO-reducible if and only if i t  is CO-reducible. I t  remains to show how 
this contradicts Theorem 1.2. We may suppose that  p is odd, and (by 
choice of q if necessary) that  q r  is-divisible by 2n. If we set m = q r  - pn, 
we see that  m is an odd multiple of n,  so that  p(m) = p(n). We now have 

with X CO-reducible. This contradiction establishes Theorem 1.1. 
We turn now to the proof of Corollary 1.3. The affirmative part of the 

result is due to James [13, Theorem 3.1, p. 8191. Given Theorem 1.1, the 
negative result follows from the same theorem of James, provided we 
have n - 1 > 2p(n). The only possible exceptions to this are n = 1, 2, 3, 
4 , 8  and 16. In the first five cases the result is trivially true; and in the  
case n = 16, i t  follows from the work of Toda, as has been remarked by 
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James [13, p. 8191. This completes the proof. 
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