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ON LUROTH’S PROBLEM
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I. R. SHAFAREVICH

ABSTRACT. In this paper the author presents a new way of viewing the example
of a nonrational field of invariants of a finite group of linear transformations
first constructed by D. Saltman. The proof is based on D. K. Faddeev’s theory
of simple algebras over a field of algebraic functions of one variable with an
algebraically nonclosed field of constants.

Bibliography: 11 titles.

Liiroth’s problem, as is well known, is the following one: Is a subfield L of a
rational function field, &(x,, ..., x,) D L D k, itself isomorphic to a rational
function field over k? When n = | the answer is affirmative, without any
restrictions, and the proof is completely elementary (see, e.g., [2], §73). When
n = 2 this assertion is false if the field %k is not algebraically closed. For exam-
ple, if & = R, the field of rational functions on the surface 24 y2 =x’—xis
isomorphic to a subfield of a rational function field, but is itself not isomorphic
to a rational function field, since the surface consists of two connected com-
ponents. Even for an algebraically closed field of finite characteristic, Liiroth’s
problem has a negative answer if it is not assumed in addition that the extension
k(x,,....x,)/L is separable.

If, however, the field k is algebraicaily closed and has characteristic 0, or in
the case of a finite characteristic the extension k(x,, ..., x,)/L is separable,
then Liiroth’s problem has an affirmative solution. This is a subtle result in
the theory of algebraic surfaces, proved in the case & = C by G. Castelnuovo.
For n > 2 Liroth’s problem iung remained an unsolved problem of algebraic
geometry. It was settled in 1971 independently in three papers: Iskovskikh
and Manin [4], Clemens and Griffiths [8], and Artin and Mumford [7]. They
showed that when 7 = 3 (and even when k = C) Liiroth’s problem has a
negative answer. All three papers use different, but very subtle, methods to
prove the nonrationality of the fields they construct.

A completely new light was shed on Luroth’s problem by a recent paper
of Saltman [11]. He showed that Liiroth’s problem has a negative solution
even in the following concrete situation. Suppose G is a finite group of linear
transformations of a vector space V' over an algebraically closed field &, (V)
is the field of rational functions of the coordinates in V', and k(V)G is the
field of invariants of . Obviously k(V)G C k(V}, hence k(V)G is a subfield
of a rational function field, but k(V)G need not be isomorphic to a rational
function field. The proof is based on ideas simpler by far than those used earlier
in [4], [7], [8] in answering Liiroth’s problem negatively.
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Then Bogomolov [1] observed that Saltman’s proof could be further sim-
plified: some parts of [11] were not at all needed for the solution of Liiroth’s
problem, e.g. the theory of “universal” central simple Amitsur algebras. The
present note is, properly speaking, a commentary on Bogomolov’s work, and its
aim is to point out the essentially algebraic nature of the whole argument, It
will become obvious that a main role is played by Faddeev’s theory of simple
algebras over algebraic function fields with an algebraically nonclosed field of
constants (see [5]). Indeed, except for the element of Galois theory and theory
of groups and cohomology of groups, Faddeev’s theory is the only tool used and
is that on which the whole argument is based. The proof could have been com-
pletely found upon the publication of Faddeev’s work, i.¢. any time during the
20 years until counterexamples to Liiroth’s problem were actually constructed.
We will begin by recalling the relevant results of Faddeev’s theory.

Let us fix some algebraically closed field k& of characteristic 0. All fields
considered will contain this field. If L/K is a Galois extension, then the coho-
mology group of its Galois group with coefficients in a module 4 will be denoted
by HP(L/K, A), and if L is the algebraic closure X of K, the cohomology
group will be denoted by H* (K, A4).

1°. The Brauer group of a local field. Suppose K is a complete, discretely
valuated field with residue field ¥« > & (from which it follows that x has
characteristic 0). If v:K” — Z is the valuation and t € K with v(¢t) =1, then
K is isomorphic to the field x{r} of formal Laurent series with coefficients in
# . The we can state the following results (see [5]).

A. If the field x is algebraically closed, then HZ(K ,K')=0 (K denotes
the algebraic closure of K). It follows in the general case that H 2(K , F‘) =
HY (Q/K,Q"), where Q = x{t} and ¥ is the algebraic closure of x¥. In
particular, any element of H 2(K , X") can be identified with an element ¢ €
HZ(K'/K, K™}, where K'/K is an unramified extension, K' = k' {t}, ¥ a
finite Galois extension of «.

B. For an unramified extension K'/K we have the decomposition K™ =
I'x x"" x U, , where again K’ =«'{t}, T is the infinite cyclic group generated
by t,and U, = {a € K™, v(a) =0, a = 1(1)}. Also H(K'/K,U,) =0,
p > 0, so that when p > 0 we have

HY(K K, K"y =HK|K, Do H & |k, ™). (1)

DEFINITION 1. A cohomology class ¢ € H*(K'/K , K'*) is called a constant
if its component corresponding to the first summand in the decomposition (1)
is equal to 0. A cohomology class ¢ € HZ(K ,K) is called a constant if it
can be identified with 4 constant class of the group HZ(K /K, K"} under the
homomorphism HYK' /K, K™) - H*K,K") for some unramified extension
K /K.

[l"hus a cohomology class is a constant if it can be identified with a class
ce H(K'|K,U), where U = {a € K™, v(a) = 0} and the extension K'/K
is unramified.

C. Finally, let us recall that the Galois group of any Galois extension L/K
has a very simple structure: the group H = Gal(L/K) contains a normal in-
ertia subgroup 7, and to the subgroup I corresponds a subfield K’ that is an
unramified extension of K, and 7 is a cyclic group lying in the center of H
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(the last assertion follows from the fact that, by our assumption, x D k, where
k is an algebraically closed field, hence all roots of 1 lie in x). (One reference
for these results is [3], Chapter III, §10.)

2° . The Faddeev-Brauer group., Suppose K is any field (satisfying the usual
condition K > k). Consider all discrete valuations of the extension K/k, i.e.
epimorphisms v: K" — Z such that

via+ B) 2 min(v(a), v(8)) ifa+pB#0, via)=0 ifack.
To each valuation v corresponds a completion K, , a field of the same type
considered in §1°. There is a canonical homomorphism gay:Hz(K , f*) —
HYK,,K}).
DEeFNITION 2. The Faddeev-Brauer group of the extension K/k consists of

all elements ¢ € HZ(K , K"} for which the classes ¢, (c) are constants for all

valuations v of K/k.
We will denote this group by ®Br(K/k).

FADDEEV’s THEOREM (see [5]). If T is an independent variable, then
OBr(K(T)/k) = OBr(K/k).

3°. Construction of an obstruction. Suppose & is a finite group of linear
transformations of a vector space ¥ over the field k£, k() is the field of
rational functions of the coordinates in V', and k(V)G is the field of invari-
ants of G. Since k(V)° < k(¥), it follows that k(V)® is a subfield of a

rational function field. To show that k(V)G is not isomorphic to a rational
function field for certain groups G it suffices (in view of Faddeev’s theorem) to

show that thr(k(V)G /k) # 0. The group <I>Br(k(V)G /k) can be represented
a little more concretely. Since, again by Faddeev’s theorem, ®Br(k(V)/k) =
0, it follows that under the restriction homomorphism H?'(k(V)G, k(V)*) —
H(k(V), k(7)) the group ®Br(k(¥)%/k) goes into 0, from which it follows
that ' .

®Br(k(V)¢/k) c HA(G, k(V)").

On the other hand, the embedding k* — k(V)" defines a homomorphism
HY(G, k™) = H (G, k(")Y).
LEMMA. The homomorphism HY (G, k*) — H (G, k(V)") is an embedding.

Proor. We prove the lemma by considering the exact sequence

1= k" = k(WY — k() k" = 1. (2)
We obtain from it an exact sequence
HYG. k(W) k) = HY(G, k') — HYG, k(V)), (3)

and it suffices to show that H'(G, k(V)*/k*)=0.
Using the uniqueness of a decomposition of a polynomial into irreducible
factors, we obtain for the G-module k(V)"/k” that

k() /K =D (Pze'p)
where the outer sum extends over all G-orbits of irreducible polynomials P in
k(V)"/k* and the inner sum extends over the one orbit of P. The inner sum
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is an induced module. According to a well-known theorem of the theory of
homology of groups (this theorem was proved by Faddeev for the case we need
in [5] and in general in [6], and in most papers on the homology of groups is
called Shapiro’s lemma!), we have

(G PDzg’ P) "(H, Z) = Hom(H , 7),

where H = {g € G,g"P = aP,a € k'}. Since the group H is finite,
Hom(H, Z) = 0. This proves the lemma.

We denote by u C k™ the group of all roots of 1. Since the group k' /u is
unbounded and uniquely divisible, it follows that H 2(G, k) = HZ(G, ) is
the Schur multiplier of G.

We will look for a nonzero element of ®Br(k(V) /k as an element of
H? {G, u}. In view of the lemma, it is different from 0 in ®Br(k( ) Jk) if it
is different from 0 in H? (G, u). It remains to find a cr1ter10n for showing that
an element ¢ € H> (G, u) is contained in CDBr(A(I/ /k).

For any valuation v of the extension k(V) /k the homomorphism ¢, (see
§2°) can be interpreted on the subgroup H 2(G, k(V)") as the restriction from
the group G to the stationary subgroup of v . This subgroup is isomorphic to
the Galois group of the extension k(V),/k(V)¢, where v/ is the proIongation
of v to k(V), and the structure of such groups is well known (see §1°, C).
A cocycle ¢ € H? (G, u), of course, has values in 4 c U (cf. §1°, C), but,
in general it is defined not on the Galois group of the unramified extensmn
K'Jk( V) corresponding to the inertia subgroup 7 C H, but on the whole
Galois group H. Butifaclass ce H 2(G, 1), being bounded on the subgroup
H , is cohomologous to a cocycle constant on the cosets in H /f, or, in other
words, is contained in the i 1mage of the inflation homomorphism Ian " , then
we can apply the criterion in § 1°, B. Thus we obtain the following

PROPOSITION. A class ¢ € H® (G, u) belongs to the group ®Br(k(V)° k) if,
for any subgroup H C G and central cyclic Subgroup I of H, the restriction

P H(c) is contained in the image of the inflation Inf

9. Constructmn of an example. To construct an example of a nonrational
field k( V) it suffices to construct a finite group G and cohomology class
ce H (G, u) satisfying the conditions of the proposition. For this purpose
we consider for p > 2 a reduced free p-group G of class 2 and period p.
Its elements have the form Il.g, 'Hm(a‘ . a;) 1 k;, lij {mod p), where af =
(a;, J) 1 and the (a,, aj.) lie in the center of the group. Here (a;, a}.)

denotes the commutator of the elements a;, d;. Suppose z = IT,. J.(ai, aj)’u
is some central element. Put G = G/{z} and take as ¢ € If(G, u) the
cohomology class corresponding to the extension 1 — {z} - G = G — 1
under some isomorphism {z} ~ , C i, where H, is the group of pth roots
of 1.

We must show that, for any subgroup H < G and any central element u
of H, the restriction pg(c) of the class ¢ is a class defined on H/{u}, i.e.,

is contained in the image of the inflation Infg/ “} | Note that the class ¢ is
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even defined on /Z, where Z is the center of G, ie., ¢ is contained in
the image of InfG /2 Therefore if the central element u of H is also central
in G, then the desnod property is obviously satisfied. Suppose « ¢ Z . If the
group H/HNZ is generated by the image of «, then H is Abelian and even its
preimage H in G will be Abelian. Then the element = is in a direct summand
of G, hence pH( c)=0.

Thus there remains only the case where H/H N Z contains two independent
elements whose preimages in H commute (since one of them lies in the cen-
ter of H). But for a suitable choice of z even G/Z will not contain such
elements. Indeed, two independent elements of G whose images are inde-
pendent in G/Z(G) never commute, and their images x,y in G commute
only if (x,y) = z*. Viewing G/Z(G) = G/Z as a vector space L over the
field F,, we can identify Z(G) with AL and the element z with a bivec-

tor { € A’L . Commutation can be expressed as exterior multiplication, hence
we must choose a ¢ inexpressible in the form x A y, i.e., an indecomposable
bivector. The simplest case is # =4 and z ={(a,, @, {4y, a,) -

5°. Remarks. A. In constructing the example we chose the group G and
cohomology class c € H 2(G , 1), but never mentioned the representation ¥,
hence any faithful representation will do. This is not accidental: the group
(I)Br(k(V)G/k) does not depend on the choice of faithful representation V of
G . Indeed, for two faithful representations ¥V, ¥, of dimensions n;, n, the

fields k(V,)", k(¥,)¢ are stably isomorphic, i.e.,
T,) =k (U, ..., Uy). (4)

iy

AN

It follows from the theorem of Faddeev stated in §2° that ®Br(k(V, )G Jk) ~
DBr(k(V,) / k). The proof of {4) follows at once from the main theorem on fi-
nite groups of semilinear transformations, also known as Speiser’s theorem {see,
e.g., [10]). The action of G on ¥, &}, can be regarded as a representation of
G by semilinear transformations of If’z over the field k(V|). By Speiser’s theo-
rem, there exists a G-invariant basis, hence & (V] GBVZ)G = k(V] )G(T1 yeers Tnz) .
Interchanging ¥, and V,, we obtain (4). .

B. If the group is commutatlve then the criterion of the proposmon in §3°
can be satisfied only for the zero class This is understandable, since for a
commutative group G the field k( V) is isomorphic to a rational function
field [9] (a simple expos1t10n of Fischer’s proof was given by Lenstra [10p. It
follows that a class ¢ € H(G, i) belonging to the group ®Br(k(}") /A) must
be decomposable on any commutative subgroup H C G. On the other hand,
the argument used in considering the example in §4° shows at once that a
class ¢ € H* (G, i) decomposable on all commutative subgroups satisfies the
conditions of the proposition in § 3°. Thus the following three conditions are
equivalent: 1) a class ¢ € HZ(G, 1) belongs to the group (I)Br(k(V)G/k); 2)
this class is decomposable on any commutative subgroup H C G; 3) it satisfies
the conditions of the proposition in §3°.

C. The choice of a nonzero class ¢ € ¢Br(k(l-’)G /k) as an element of the
group HZ(G u) is also not accidental. Namely, it foliows easily from the
exact sequence (3) that the entire subgroup ®Br(k(}") /k) C HZ(G, k(YY)
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is contained in the image of H*(G, #) (see [1]). From this there follows a

beautiful characterization of tDBr(k(V)G /k) due to Bogomolov: this group is
equal to the subgroup of the Schur multiplier of & consisting of the classes
decomposable on restriction to all commutative subgroups.
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