
VECTOR FIELDS ON SPHERES

JAY SHAH

Abstract. This paper presents a solution to the problem of finding the max-
imum number of linearly independent vector fields that can be placed on a

sphere. To produce the correct upper bound, we make use of K-theory. After

briefly recapitulating the basics of K-theory, we introduce Adams operations
and compute the K-theory of the complex and real projective spaces. We then

define the characteristic class ρk and develop some of its properties. Next, we
recast the question of the upper bound into a question about fiber homotopy

equivalent bundles over RPn, whose resolution reduces to a calculation in K-

theory. Finally, we give the purely algebraic proof that this upper bound is
realized.
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1. Introduction

Let Sn be the n-dimensional sphere. A vector field v on Sn is a continuous
assignment x 7→ v(x) of a tangent vector v(x) at x for every point x ∈ Sn. It is
a consequence of the degree of a map between spheres being a homotopy invariant
that a non-zero vector field on Sn exists if and only if n is odd (one uses the vector
field to construct a homotopy between the identity and the antipodal map). This
paper will be concerned with a far-reaching generalization of that result, namely,
what is the maximum number of linearly independent vector fields one can put on
a sphere?

To approach this problem, we will make use of a generalized cohomology the-
ory called topological K-theory. Let X be a compact topological space and let
VectΛ(X) be the set of isomorphism classes of real or complex vector bundles over
X, Λ = R or C. VectΛ(X) can be granted the structure of a commutative ring
without negatives under direct sum and tensor product. Adjoining formal additive
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inverses via the Grothendieck group construction forms the ring KΛ(X). KΛ is a
contravariant functor from the category of compact spaces to the category of rings,
with maps f : X → Y giving homomorphisms f∗ : KΛ(Y ) → KΛ(X) via pull-
back of bundles. Since our spaces are compact, homotopic maps induce isomorphic
pullbacks of bundles1 and KΛ descends to a functor on the homotopy category of
compact spaces.

Now suppose that our spaces are based and let K̃Λ(X) = ker(KΛ(X)→ KΛ(∗))
and K̃−nΛ = K̃Λ(ΣnX) for n > 0, where Σn denotes n-fold reduced suspension.

The Bott periodicity theorem allows us to extend K̃n
Λ to all n by defining K̃n

Λ(X) =

K̃n′

Λ (X), n ≡ n′ mod d and −d < n′ ≤ 0, where d = 2 if Λ = C and d = 8 if Λ = R.

One can check that the K̃n
Λ so defined satisfy the Eilenberg-Steenrod axioms and

so give a reduced cohomology theory.

Remark 1.1. In fact, the K̃n
Λ constitute a sequence of represented functors. Suppose

Λ = C. Complex n-plane bundles are classified by the space BU (n), in the sense
that every complex n-plane bundle E over X may be realized as the pullback of a
map f : X → BU (n). We have inclusions in : BU (n)→ BU (n+1) for all n, and we
may define BU = colimn→∞BU (n). If X is compact and nondegenerately based,

then K̃C(X) = [X,BU × Z], where the brackets denote based homotopy classes of

maps. By definition, K̃−nC (X) = [X,Ωn(BU × Z)] for n > 0, and Bott periodicity
is the statement that there is a homotopy equivalence BU ×Z ' Ω2(BU ×Z). We

may then use the represented definition to extend the functors K̃n
C(X) to all spaces

of the homotopy type of CW-complexes. Details may be found in May [9, Ch. 24].
The story is similar for Λ = R, with the classifying space BO in place of BU .

Following Karoubi [8], we proceed with the derivation of the upper bound on the
number of linearly independent vector fields that can be placed on a sphere. All
base spaces will be assumed to be compact and connected.

2. Adams operations

A cohomology operation in K-theory is a natural transformation from KΛ to
itself. The following theorem asserts the existence of certain operations ψkΛ, termed
Adams operations.

Theorem 2.1. There exist natural ring homomorphisms ψkΛ : KΛ(X) −→ KΛ(X),
defined for all integers k, which satisfy the following properties:

• ψ1
Λ and ψ−1

R are the identity. ψ−1
C is complex conjugation. ψ0

Λ assigns to a
bundle over X the trivial bundle with fibers of the same dimension.

• If ξ is a line bundle, then ψkΛ(ξ) = ξk.
• ψkΛψlΛ = ψklΛ .
• ψpΛ(x) = xp mod p for any prime p.

• If x ∈ K̃Λ(S2n), then ψkΛ(x) = knx.

1To capture this property, it suffices to consider paracompact spaces.



VECTOR FIELDS ON SPHERES 3

• Let β denote the periodicity isomorphism in K-theory. The following two
diagrams commute.

K̃C(X)
β //

ψk
C

��

K̃C(Σ2X)

ψk
C

��

K̃R(X)
β //

ψk
R

��

K̃R(Σ8X)

ψk
R

��
K̃C(X)

kβ
// K̃C(Σ2X) K̃R(X)

k4β

// K̃R(Σ8X)

• Let ch : KC(X)→ Heven(X;Q) be the Chern character and define ψkH(x) =
krx for x ∈ H2r(X;Z). The following diagram commutes.

KC(X)
ch //

ψk
C

��

Heven(X;Q)

ψk
H

��
KC(X)

ch
// Heven(X;Q)

• Let c : KR(X) → KC(X) be given by complexification of bundles. The
following diagram commutes.

KR(X)
c //

ψk
R

��

KC(X)

ψk
C

��
KR(X)

c
// KC(X)

The Adams operations derive from the exterior power operations λk, which we
now construct. We must extend the usual exterior power construction on bundles
to virtual bundles. For any bundle ξ over X let

λ(ξ) = 1 + λ(ξ)t+ λ2(ξ)t2 + ...+ λk(ξ)tk + ... ∈ KΛ(X)[[t]]×.

By the formula λk(ξ ⊕ η) =
⊕

i+j=k λ
i(ξ) ⊗ λj(η), we have λ(ξ ⊕ η) = λ(ξ)λ(η).

Hence λ extends to a homomorphism λ : KΛ(X) → KΛ(X)[[t]]×. For x ∈ KΛ(X)
define λk(x) to be the kth coefficient in λ(x).

Let σi be the ith symmetric polynomial and let πk = xk1 + ... + xkn be the kth
power sum. By the theory of symmetric polynomials, there exists a polynomial Qk,
independent of n for n ≥ k, such that

πk = Qk(σ1, ..., σk).

Now define ψkΛ(x) = Qk(λ1(x), ..., λk(x)) for k > 0. Theorem 2.1 mandates the

definition of ψ0
Λ and ψ−1

Λ , and by the relation ψ−kΛ = ψ−1
Λ ψkΛ we define Adams

operations for all integers k. The proof of Theorem 2.1 can be found in numerous
sources, such as Adams [1].

3. K-theory of complex and real projective spaces

In this section we compute the complex K-theory of the complex and real pro-
jective spaces and the real K-theory of the real projective spaces. In the course
of the computation we will make use of the Atiyah-Hirzebruch spectral sequence,
whose definition and properties are given below.
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Theorem 3.1. Let X be a finite CW-complex and let Xp be its p-skeleton. Let
Kn

Λ(X) be filtered by the groups Kn
Λ,p(X) = ker(Kn

Λ(X) → Kn
Λ(Xp−1)). There

exists a multiplicative spectral sequence arising from this filtration that converges to
KΛ(X), such that

• Ep,q1 (X) ∼= Cp(X,Kq
Λ(∗));

• Ep,q2 (X) ∼= Hp(X,Kq
Λ(∗));

• Ep,q∞ (X) ∼= GpK
p+q
Λ (X) = Kp+q

Λ,p (X)/Kp+q
Λ,p+1(X).

Here ∗ denotes a point. The differential dr : Ep,qr → Ep+r,q−r+1
r shifts degree by

(r,−r+1). The multiplication on the E2 page is given by the cup product in ordinary
cohomology.

For a proof of most of this theorem, see Atiyah and Hirzebruch [5]. There the
identification of the multiplication on the E2 page is only asserted; a proof of this
assertion may be found in Dugger [7].

By Bott periodicity, the groups Kq
Λ(∗) are periodic with period 2 for Λ = C and

8 for Λ = R, and they are given as follows.

q 0 1 2 3 4 5 6 7

K−qC (∗) Z 0 Z 0 Z 0 Z 0

K−qR (∗) Z Z/2Z Z/2Z 0 Z 0 0 0

With these preliminaries in hand, we proceed to compute. Let η be the canon-
ical complex line bundle over CPn−1 and ξ be the canonical real line bundle over
RP 2n−1.

Theorem 3.2. KC(CPn−1) = Z[t]/tn, where the generator t is given by η−1. The
operation ψkC is given by ψkC((η − 1)s) = (ηk − 1)s.

Proof. It is a theorem (Atiyah [3], Proposition 2.7.1, p. 102) that for any decom-
posable vector bundle E = ΣLi over X (the Li being line bundles), KC(P (E))
is generated as a KC(X)-algebra by the tautological line bundle H subject to the
single relation ∏

(H − Li) = 0.

Apply this theorem to the case X a point, E = Cn to obtain the indicated descrip-
tion of KC(CPn−1). By Theorem 2.1, the operation ψkC is a ring homomorphism and
is the kth power map on line bundles. The given formula follows immediately. �

Let π : RP 2n−1 → CPn−1 be the standard projection given by sending a real
line to the complex line on which it lies. The next lemma relates η to ξ in terms of
π∗ and the complexification homomorphism c.

Lemma 3.3. cξ = π∗η, and this common element is non-trivial if n > 1.

Proof. The case n = 1 being trivial, suppose n > 1. Complex line bundles are
classified by their first Chern class c1, and H2(RP 2n−1;Z) = Z/2Z. It is a fact that
π∗ on cohomology is nonzero in degree two, so c1π

∗η = π∗c1η 6= 0. It therefore
suffices to show that the bundle cξ is non-trivial. Letting r : KC(X)→ KR(X) be
the map defined by forgetting the complex structure, we have rc = 2. rcξ = ξ⊕ξ has
non-trivial Stiefel-Whitney classes and so is non-trivial, hence cξ is non-trivial. �
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Let ν = c(ξ − 1) = π∗(η − 1) ∈ KC(RP 2n−1) and let ν = i∗ν ∈ KC(RP 2n−2),
i : RP 2n−2 → RP 2n−1 the inclusion.

Theorem 3.4. Let f be the integer part of 1
2n. Then K̃C(RPn) = Z/2fZ and is

generated by ν subject to the two relations

ν2 = −2ν, νf+1 = 0.

The operation ψkC is given by ψkC(νs) =

{
0 k even

νs k odd
.

Proof. The case n = 1 being trivial, suppose n > 1. To prove that the two relations
hold, by naturality it suffices to consider n odd. The relation ν2 = −2ν is equivalent
to (1 + ν)2 = (cξ)2 = 1, so it suffices to prove that ξ2 = 1. But real line bundles
are classified by their first Stiefel-Whitney class and H1(RPn;Z/2Z) = Z/2Z, so
either ξ2 = 1 or ξ2 = ξ. Since all line bundles are invertible, the second possibility
would imply that ξ = 1, a contradiction.

The relation νf+1 = 0 follows from the relation (η − 1)f+1 = 0 in CP f and
naturality. Note as well that by Lemma 3.2, ν 6= 0 for the odd case, and since
c1i
∗π∗(η) is non-zero, ν 6= 0 for the even case as well.

The spectral sequence in complex K-theory for X = RPn, n even has Ep,q2 term
Hp(X;Kq

C(∗)) equal to Z/2Z for q and p even such that 0 < p ≤ n, equal to Z for
q even and p = 0, and equal to 0 otherwise, while for n odd the spectral sequence
has in addition non-zero Ep,q2 terms equal to Z for q even and p = n. As for any
space, the non-zero terms on the p = 0 column are permanent cycles2, as may be
shown by considering the map of spectral sequences induced by inclusion of the
basepoint. For the other terms, the possible p = n column of Z’s are cycles on
every page, and any map from Z/2Z to Z is trivial, hence those possible Z terms
are also permanent cycles. Thus any Z/2Z term can only map non-trivially to
another Z/2Z. But the differentials on each page of the spectral sequence shift the
parity of the total degree of the Er term, hence the spectral sequence is trivial and
the associated graded algebra Ep,−p∞ (X) ∼= GpKC(X) is given by the f copies of
Z/2Z on the E2 page. By the commutative diagram

RP 3 π //

i

��

CP 1

i

��
RP 2n−1

π
// CPn

the element ν generates the E2,−2
2 term, hence its powers νi generate the successive

E2i,−2i
2 terms since the multiplication on the E2 page is given by cup product. Then

the group extensions are all of the form

0→ Z/2jZ→ Z/2j+1Z→ Z/2Z→ 0

as may be shown by use of the relation νi+1 = −2νi and induction. This completes
the description of K̃C(RPn). It remains to calculate the Adams operations on

2A permanent cycle is a class that is both a cycle and not a boundary on every page of the
spectral sequence.
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K̃C(RPn). We showed above that (π∗η)2 = 1. Since ν = π∗η − 1, this implies that

ψkC(νs) =

{
0 k even

νs k odd
. �

Theorem 3.5. Let f be the number of integers i such that 0 < i ≤ n and i ≡ 0, 1,
2 or 4 mod 8. Then K̃R(RPn) = Z/2fZ and is generated by λ = ξ − 1 subject to
the two relations

λ2 = −2λ, λf+1 = 0.

The operation ψkR is given by ψkR(λs) =

{
0 k even

λs k odd
.

Proof. We first examine the spectral sequence in real K-theory for X = RPn. The
group H̃p(X;Z/2Z) is Z/2Z for 0 < p ≤ n and 0 otherwise, while H̃p(X;Z) is Z/2Z
for p even, 0 < p ≤ n and 0 otherwise with the exception of H̃n(X;Z) = Z if n is
odd. Real Bott periodicity goes ‘Z/2Z, Z/2Z, 0, Z, 0, 0, 0, Z’ starting at q = −1
for Kq

R(∗) and going downwards. Thus, on the E2 page the non-zero terms of total
degree 0 apart from the term at (0, 0) consist of f copies of Z/2Z. It follows that

there are at most 2f elements in the group K̃R(RPn).

Now consider the complexification homomorphism c : K̃R(RPn) → K̃C(RPn).

Since K̃C(RPn) is generated by ν and ν = cλ, c is an epimorphism for all n. Addi-

tionally for n ≡ 6, 7, or 8 mod 8, by Theorem 3.4 K̃C(RPn) contains 2f elements, so
c is an isomorphism. In detail, if n−8t = 6 or 7, then f = 4t+3 and

⌊
1
2n
⌋

= 4t+3; if

n = 8t, then f = 4t and
⌊

1
2n
⌋

= 4t. Thus, all the non-zero E2 terms of total degree
0 persist to the E∞ page in those cases. However, the inclusion i : RPn → RPm
induces a map of spectral sequences for all n ≤ m, so in fact the same conclusion
holds for all n. Thus K̃R(RPn) = Z/2fZ is cyclic of order 2f with generator λ.
We showed the relation λ2 = −2λ in the proof of Theorem 3.4, and the relation
λf+1 = 0 follows from the fact that 2fλ = 0.

The calculation of the Adams operations is the same as in the proof of Theorem
3.4. �

4. The characteristic class ρk

In order to define the characteristic class ρk, we first recall the Thom isomor-
phism theorem in K-theory (an illuminating treatment is given in Atiyah, Bott,
and Shapiro [4]). Given a vector bundle E over X, define the Thom complex T (E)
of E by taking the one-point compactification of each fiber Ex and then identify-
ing together all the points at infinity. Equivalently, we may choose a metric on
E and form the unit disc bundle D(E) and the unit sphere bundle S(E); then

T (E) = D(E)/S(E). K̃Λ(T (E)) = KΛ(D(E), S(E)) is a KΛ(X)-algebra by way of
the projection π : D(E)→ X and multiplication KΛ(D(E))⊗KΛ(D(E), S(E))→
KΛ(D(E), S(E)). In complex K-theory, there exists a natural isomorphism φ :

KC(X)→ K̃C(T (E)) defined by x 7→ λEx, where λE ∈ KC(T (E)) is a distinguished
element, termed the Thom element. In real K-theory the same isomorphism exists,
but only for E a Spin(8n)-bundle.
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We observe that λE enjoys the following compatibility property with respect to
direct sums of bundles. Let E, E′ be vector bundles over X, X ′ respectively, and
form their external direct sum E×F over X×X ′. Then λE×F = λEλF , where this

product is from K̃(T (E)) × K̃(T (F )) to K̃(T (E × F )). By naturality, if X = X ′

then this holds for E ⊕ E′ as well.

We define ρkΛ : VectΛ(X)→ KΛ(X) by ρkΛ(E) = φ−1ψkΛ(λE), implicitly restrict-
ing the domain of definition to Spin(8n)-bundles for Λ = R. It is immediate from
the definition that ρkΛ is natural and φ−1ψkφ(x) = ψkΛ(x)ρkΛ(E). By the multiplica-
tive property of λE listed above,

(4.1) ρkΛ(E ⊕ E′) = ρkΛ(E)ρkΛ(E′).

We say that ρkΛ is exponential. We make a first step towards calculating ρkΛ with
the following proposition.

Proposition 4.2. ρkC(L) = 1 + L + ... + Lk−1 for L a line bundle. In particular,
ρkC(n) = kn.

Proof. Since the space CP∞ classifies complex line bundles, by naturality it suffices
to determine ρkC on the canonical line bundle η over CPn. We claim that the Thom
complex T (η) may be identified with CPn+1, with the KC(CPn) = Z[t]/tn+1-

module structure given by the usual multiplication in the ideal K̃C(CPn+1) = (t) ⊂
Z[t]/tn+2. Let η be explicitly given as p : E = S2n+1×U(1) C→ CPn, where S2n+1

is the complex unit sphere in Cn+1. Using homogeneous coordinates for complex
projective space and choosing [0 : . . . : 0 : 1] as the basepoint for CPn+1, we have
a homeomorphism of based spaces from T (η) = E ∪ {∞} to CPn+1 defined by
(x0, . . . , xn, λ) 7→

[
x0 : . . . : xn : λ̄

]
and∞ 7→ [0 : . . . : 0 : 1]. Note that the inclusion

of CPn into E via the zero section corresponds under this homeomorphism to the
inclusion i : CPn → CPn+1 defined by [x0 : . . . : xn] 7→ [x0 : . . . : xn : 0].

To identify the Thom multiplication, we use commutativity of the following
diagram.

K̃(CPn+)⊗ K̃(CPn+1) // K̃(CPn+ ∧ CPn+1)
∆∗ // K̃(CPn+1)

K̃(CPn+1
+ )⊗ K̃(CPn+1) //

i∗⊗id

OO

K̃(CPn+1
+ ∧ CPn+1)

(i∧id)∗

OO

d∗

66mmmmmmmmmmmmm

Here the upper row is the Thom multiplication with the Thom diagonal ∆ given
by [x0 : . . . : xn+1] 7→ [x0 : . . . : xn] ∧ [x0 : . . . : xn+1], and the map d is the usual
diagonal (all maps being based). One must only check commutativity of the right
triangle, which holds since (i ∧ id)∆ is homotopic to d via dt : [x0 : . . . : xn+1] 7→
[x0 : . . . : xn : txn+1]∧ [x0 : . . . : xn+1]. Now let η′ be the canonical line bundle over
CPn+1 and observe that i∗(η′) = η. Thus by the diagram, ∆∗(η ⊗ (η′ − 1)) =
d∗(η′ ⊗ (η′ − 1)) = η′(η′ − 1), proving the claim.

Since the Thom element must be a generator of K̃C(CPn+1), it must be equal
to ±(η′ − 1). Therefore,

ρkC(η) = φ−1ψkC(±(η′ − 1)) = (ηk − 1)/(η − 1) = 1 + η + ...+ ηk−1.

�



8 JAY SHAH

The complexification homomorphism furnishes a relation between ρkR and ρkC.

Proposition 4.3. Let E be an oriented real vector bundle of rank 4n. Then F =
E ⊕E may be thought of as both the complex bundle FC = cE and the spin bundle
FR = rcE, and we have the relation ρkC(FC) = cρkR(FR). In particular, if E is a
spin bundle of rank 8n, then ρkC(FC) = c(ρkR(E)2), and if E is the trivial bundle 4n,
then ρkR(8n) = k4n.

Proof. The proposition is a consequence of the commutativity of both the Thom
isomorphism and the Adams operations with complexification. Precisely, we have
the commutative diagram

KR(X)
φ //

c

��

K̃R(T (FR))

c

��
KC(X)

φ // K̃C(T (FC))

together with the relevant diagram for ψkΛ in Theorem 2.1. See Karoubi [8, Propo-
sition 7.27, p. 261] for the proof of the commutativity of the first diagram. �

We next wish to extend ρkΛ to an operation on all of KΛ(X) in such a way
as to preserve the exponentiation property (4.1). To accomplish this we must
invert k in the ring KΛ(X). Let Qk = Z[ 1

k ] be the subring of Q consisting of
fractions with denominator a power of k. Now specialize to Λ = C. Elements
of KC(X) may be written in the form E − n with E an actual bundle. Define
ρkC : KC(X) → KC(X) ⊗ Qk by ρkC(E − n) = ρkC(E)/kn. To see that ρkC is well-
defined, suppose E − n = F −m. Then E +m = F + n implies that

ρkC(E +m) = ρkC(E)ρkC(m) = ρkC(F )ρkC(n) = ρkC(F +m)

and since by Proposition 4.2 ρkC(n) = kn, the claim follows. For Λ = Spin(8n),
the extension of ρkΛ is a more delicate problem; the interested reader is referred to
Adams [2].

The next two propositions make some explicit calculations of ρkΛ on RPn. Recall
that in our notation ξ is the canonical line bundle over RPn.

Proposition 4.4. Let ν = cξ − 1 be the generator of K̃C(RPn) as described in
Theorem 3.4. For k odd, the operation ρkC : KC(RPn) → KC(RPn) ⊗ Qk is given

by ρkC(lν) = 1 + kl−1
2kl

ν.

Proof. In the proof of Theorem 3.4 we showed that cξ2 = 1. By Proposition 4.2,
ρkC(cξ) = 1 + cξ + ... + (cξ)k−1 = k+1

2 + k−1
2 cξ, so ρkC(ν) = 1

kρ
k
C(cξ) = 1 + k−1

2k ν.

The exponential property of ρkC along with the relation ν2 = −2ν establishes by

induction on l that ρkC(lν) = 1 + kl−1
2kl

ν. �

Proposition 4.5. For k odd, ρkR(4lξ ⊕ 4l) = k4l
(

1 + k2l−1
2k2l

λ
)

, where λ = ξ − 1.

Proof. The homomorphism KR(RPm)→ KR(RPn) induced by inclusion for n ≤ m
is surjective, so by naturality it suffices to consider n ≡ 0 mod 8. Since 2ξ ⊕ 2 is
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an oriented real bundle of rank 4, by Proposition 4.3 we have cρkR(4lξ ⊕ 4l) =
ρkC(2lcξ + 2l). Thus by Proposition 4.4,

cρkR(4lξ ⊕ 4l) = ρkC(2lν + 4l) = k4l

(
1 +

k2l − 1

2k2l
ν

)
.

In the proof of Theorem 4.4 we showed that if n ≡ 0 mod 8, then c is an isomorphism
with cλ = ν. Applying c−1, the desired formula follows. �

To conclude this section, we turn to an analysis of fiber homotopy equivalent
bundles. Two vector bundles E and E′ over a common base space X are said to
be fiber homotopy equivalent if there exists a map of bundles θ : E → E′, such
that the map θ : S(E) → S(E′) is a homotopy equivalence over X (that is, the
homotopies in question are through maps that send fibers to fibers). Necessarily
this implies that for each point p ∈ X, the map θp : S(E)p → S(E′)p is a homotopy
equivalence. Call E and E′ fiberwise homotopy equivalent if they are equivalent in
this weaker sense. It is a theorem of Dold [6] that the converse implication holds
(for X any CW-complex). We will develop the theory below for fiberwise homotopy
equivalent bundles and only use Dold’s result in section 5 to obtain agreement with
how the theorems are presented in the literature.

Since for every point p ∈ X T (Ep) is the suspension of S(E)p, it follows that the

map θ giving the fibrewise homotopy equivalence yields a map θ̃ : T (E) → T (E′)
whose restriction T (Ep) → T (E′p) for each p ∈ X is a homotopy equivalence, and
we have the commutative diagram

K̃R(T (E′))
θ̃∗ //

��

K̃R(T (E))

��
K̃R(T (E′p))

θ̃∗p

∼=
// K̃R(T (Ep)).

Suppose now that E and E′ are real vector bundles possessed of a spin structure
with rank divisible by 8. Then θ̃∗ : K̃R(T (E′)) → K̃R(T (E)) maps λE′ to xλE
for some x ∈ KR(X). It is the characterizing property of a Thom element λE
that λE restricts to a generator of K̃R(T (Ep)) for each point p ∈ X. Hence by
restriction to all points p ∈ X, we see that xλE may serve as a Thom element for
E. Consequently, x is invertible, and we may write x = ±(1 + y) for y ∈ K̃R(X).
We then have the following proposition relating ρkR(E) to ρkR(E′).

Proposition 4.6. Suppose E and E′ are fiberwise homotopy equivalent spin bun-
dles with rank divisible by 8. Then there exists an element y ∈ K̃R(X) such that
for each k we have the relation

ρkR(E) =
ψkR(1 + y)

1 + y
ρkR(E′).

Proof. In the setup of the preceding discussion, the proof is the computation

ρkR(E) = φ−1ψkR(λE) =
ψkR(λE)

λE
=
ψkR(x)ψkR(λ′E)

xλ′E
=
ψkR(1 + y)

1 + y
ρkR(E′).

�
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Corollary 4.7. Let E be a spin bundle of rank 8l over RPn−1, such that the
bundles 8l and E are fiberwise homotopy equivalent. Then ρkR(E) = k4l if k is odd.

Proof. For any y ∈ K̃R(RPn), by Theorem 3.5 ψkR(y) = y for k odd. Hence by
Propositions 4.6 and 4.3, ρkR(E) = ρkR(8l) = k4l. �

5. The upper bound

Let On,m denote the Stiefel variety of n-tuples of orthonormal vectors in Rm,
n ≤ m; On,m may be identified with O(m)/O(m − n). The Stiefel fibering π :
On,m → Sm−1 is defined by sending a n-tuple ω = (w1, ..., wn) to its first vector
w1. By the Gram-Schmidt orthonormalization process, the existence of n − 1 lin-
early independent vector fields on Sm−1 is equivalent to the existence of a section
s : Sm−1 → On,m.

We reduce the question of existence of a section s to a question about fiber
homotopy equivalent bundles over RPn−1 in the following way. Define a map
φ : On,m ×Rn → Rm by (ω, v)→ v1w1 + ...+ vnwn. Now suppose that a section s
exists and define a map θ : Sn−1×Sm−1 → Sn−1×Sm−1 by θ(v, b) = (v, φ(s(b), v)).
Observe that for any v ∈ Sn−1, θv : b → φ(s(b), v) is homotopic to θe1 where e1

is the first basis vector in Rn, by path-connectedness of Sn−1. But by definition
θe1 = id, hence each θv is a homotopy equivalence from Sm−1 to itself.

Under the antipodal Z/2Z action we see that θ descends to give a map θ :
RPn−1 × Sm−1 → (Sn−1 × Sm−1)/(Z/2Z). These spaces may be identified with
the sphere bundles S(m) and S(mξ) over RPn−1, respectively, and then θ is a
fiber homotopy equivalence. Moreover, by radial extension θ may be extended to
a map from the trivial bundle m to the bundle mξ. We thus have the following
proposition.

Proposition 5.1. Suppose that Sm−1 admits n − 1 linearly independent vector
fields. Then there is a map of vector bundles θ : m→ mξ over RPn−1, which is a
fiber homotopy equivalence.

We now apply Proposition 4.5 and Corollary 4.7 to prove an upper bound for
the number of linearly independent vector fields that can be placed on a sphere.

Theorem 5.2. Let an be the order of the group K̃R(RPn−1), so that by Theorem
3.5, an = 2f where f is the number of integers i such that 0 < i < n and i ≡ 0, 1,
2 or 4 mod 8. Then Sm−1 admits n− 1 linearly independent vector fields only if m
is a multiple of an.

Proof. By Proposition 5.1 it suffices to show that m and mξ are fiber homotopy
equivalent only if m is a multiple of an. It is a fact that fiber homotopy equivalent
bundles have the same Stiefel-Whitney classes; this is immediate from the definition
of the Stiefel-Whitney classes in terms of the Thom isomorphism and the total
Steenrod squaring operation ([10]). Let x ∈ H1(RPn−1;Z/2Z) be the generator of
H∗(RPn−1;Z/2Z), so that 1 + x is the total Stiefel-Whitney class of ξ. Then we
require (1 + x)m ≡ 1 mod 2. Observe that

(1 + x)m = 1 +mx+
m(m− 1)

2
x2 + . . . .
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Thus if n = 2 then m must be a multiple of 2 = a2, and if n > 2 then m must be
a multiple of 4. Let m = 4l. By Corollary 4.7, ρkR(4lξ ⊕ 4l) = k4l for k odd. By
Proposition 4.5, this implies that

k2l 1

2
(k2l − 1)λ = 0 for all k odd.

This equation is in turn equivalent to

k2l ≡ 1 mod 2f+1 for all k odd.

The group (Z/2f+1Z)× is equal to Z/2Z×Z/2f−1Z, which has an element of order
2f−1. Hence we have 2f−1|2l, or 2f = an|4l = m, completing the proof. �

The following corollary is now immediate.

Corollary 5.3. Let us write each integer m in the form m = (2α − 1)2β, where
β = 4δ + γ with 0 ≤ γ ≤ 3. Then Sm−1 admits at most 8δ + 2γ − 1 linearly
independent vector fields.

6. Realizing the upper bound

In this brief section, we use the theory of Clifford algebras to construct n − 1
linearly independent vector fields on Sm−1, provided that m is a multiple of an
as defined in Theorem 5.2. The Clifford algebra Ck is defined to be the R-algebra
generated by 1 and e1, . . . , ek subject to the relations

e2
i = −1, eiej + ejei = 0 for i 6= j.

We have the following table identifying the Clifford algebras Ck for 0 < k ≤ 8, as
given in Atiyah, Bott, and Shapiro [4, p. 11].

k Ck
1 C
2 H
3 H⊕H
4 M2(H)
5 M4(C)
6 M8(R)
7 M8(R)⊕M8(R)
8 M16(R)

Moreover, the Clifford algebras Ck are periodic with period 8, in the sense that
Ck+8 = Ck ⊗ C8. It follows that if Ck = Mr(F), then Ck+8 = M16r(F). We now
prove the converse to Theorem 5.2.

Theorem 6.1. The sphere Sm−1 admits n− 1 linearly independent vector fields if
m is a multiple of an.

Proof. Suppose m is a multiple of an. By the definition of an, we see that Rm
may be provided with a Cn−1-module structure. This means that there exist n− 1
automorphisms e1, . . . , en−1 of Rm, such that e2

i = −1 and eiej +ejei = 0 for i 6= j.
Let e0 = I and let G be the multiplicative finite group of order 2n generated by
±ei, 0 ≤ i < n. Then we may choose a metric on Rm such that G preserves the
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metric, i.e. the ei are orthogonal transformations, so eti = −ei for 1 ≤ i < n. Now
for each vector v ∈ Sm−1, observe that for i 6= j,

〈eiv, ejv〉 = vtetiejv = −vtetjeiv = −〈ejv, eiv〉 = −〈eiv, ejv〉 ,
hence 〈eiv, ejv〉 = 0. Thus, the vectors eiv give n− 1 linearly independent vectors
tangent to v, and varying v gives the desired n − 1 linearly independent vector
fields. �
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