Examen de Courbes Algébriques – 8 janvier 2018

Durée de l'épreuve : 4h (notes de cours admises).

Dans tous les exercices, on note k un corps algébriquement clos de caractéristique 0.

Exercice 1. Soient x_1, \ldots, x_n des coordonnées sur l'espace affine $\mathbb{A}^n(k)$.

- 1. Montrer que tout idéal premier $I \subset k[x_1, \ldots, x_n]$ est radical.
- 2. Donner un exemple d'idéal $J \subset k[x_1]$ qui est radical mais pas premier.
- 3. Quel est l'idéal I(W) de l'ensemble algébrique $W = \{x_1^2 = x_1x_2 = 0\} \subset \mathbb{A}^2(k)$?
- 4. L'ensemble algébrique $\mathbb{A}^2(k)$ est-il irréductible ?
- 5. Montrer que l'ensemble algébrique $X=\{x_1x_3-x_2^2=0\}\subset \mathbb{A}^3(k)$ est irréductible.
- 6. Montrer que l'ensemble algébrique $Y=\{x_1x_3-x_2^2=x_2x_4-x_3^2=0\}\subset \mathbb{A}^4(k)$ n'est pas irréductible.
- 7. Quel est le corps de fonctions de la variété quasi-projective $Z = \mathbb{A}^3(k) \setminus \{(0,0,0)\}$? Quel est son anneau de fonctions régulières?
- 8. L'application rationnelle $\phi: \mathbb{A}^2(k) \dashrightarrow \mathbb{A}^2(k)$ définie par $\phi(x,y) = (x,y/x)$ est-elle dominante? Est-elle un morphisme?

Exercice 2. On note (x, y) les coordonnées du plan affine $\mathbb{A}^2(k)$ et [X : Y : Z] les coordonnées homogènes du plan projectif $\mathbb{P}^2(k)$.

1. Considérons les courbes affines planes :

$$C_1 = \{x^2 + y^2 = 1\} \subset \mathbb{A}^2(k),$$

$$C_2 = \{x^2 + y^2 = 2\} \subset \mathbb{A}^2(k).$$

- (a) Trouver des équations des clôtures projectives de C_1 et C_2 dans $\mathbb{P}^2(k)$, et calculer leurs points d'intersection dans $\mathbb{P}^2(k)$.
- (b) Calculer les multiplicités de ces points d'intersection.
- (c) Vérifier que le théorème de Bézout est satisfait.
- 2. Considérons les courbes projectives planes :

$$D_1 = \{X^7 + Y^7 + Z^7 = 0\} \subset \mathbb{P}^2(k),$$

$$D_2 = \{XZ^3 + YX^3 + ZY^3 = 0\} \subset \mathbb{P}^2(k).$$

- (a) Montrer que D_1 et D_2 sont régulières. Quel est leur genre ?
- (b) Montrer que la formule $f([X:Y:Z]) = [X^3Z:Y^3X:Z^3Y]$ définit un morphisme $f:D_1 \to D_2$.
- (c) Quel est le degré de f?
- (d) Combien f a-t-il de points de ramification?

Exercice 3. Soient (x,y) des coordonnées sur $\mathbb{A}^2(k)$.

- 1. Soit C une courbe projective régulière sur k. Montrer que C est de genre 1 si et seulement s'il existe une forme différentielle $\omega \in \Omega_{k(C)/k}$ sans zéros ni pôles sur C.
- 2. Soit C la clôture de $\{y^2 = x^3 + x\} \subset \mathbb{A}^2(k)$ dans $\mathbb{P}^2(k)$, et soit $\omega = \frac{dx}{y} \in \Omega_{k(C)/k}$.
 - (a) Montrer que C est une courbe projective régulière de genre 1.
 - (b) Montrer que ω n'a pas de pôles sur C.
 - (c) Montrer que ω n'a pas de zéros sur C.

Exercice 4. Soit C une courbe projective régulière sur k.

- 1. Soit $P \in C$. Montrer qu'il existe une fonction rationnelle non constante sur C qui n'a pas de pôles sur $C \setminus \{P\}$.
- 2. En déduire que $C \setminus \{P\}$ est une courbe affine.
- 3. Soit $r \geq 1$. Soient $P_1, \ldots, P_r \in C$ des points distincts. Montrer qu'il existe une fonction rationnelle non constante sur C qui n'a pas de pôles sur $C \setminus \{P_1\}$, et qui ne s'annule pas en P_2, \ldots, P_r .
- 4. En déduire que toute courbe régulière sur k qui n'est pas projective est affine.

Exercice 5. Soit C une courbe projective régulière sur k. On étudie dans cet exercice les automorphismes de C, c'est-à-dire les isomorphismes $f: C \to C$.

- 1. Montrer qu'un morphisme $f:C\to C$ est un automorphisme si et seulement si il est de degré 1.
- 2. On suppose dans ce numéro que $C = \mathbb{P}^1(k)$, et on note [X:Y] des coordonnées homogènes de $\mathbb{P}^1(k)$.
 - (a) Montrer que $\mathbb{P}^1(k)$ a une infinité d'automorphismes.
 - (b) À quelle condition sur les scalaires $\alpha, \beta, \gamma, \delta \in k$, la formule $f([X:Y]) = [\alpha X + \beta Y : \gamma X + \delta Y]$ définit-elle un automorphsime de $\mathbb{P}^1(k)$?
 - (c) Montrer que tout automorphisme de $\mathbb{P}^1(k)$ est de cette forme.
 - (d) Montrer qu'un automorphisme de $\mathbb{P}^1(k)$ fixant trois points distincts est l'identité.
- 3. On suppose dans ce numéro que C est de genre 1.
 - (a) Soient $P_1, P_2 \in C$ deux points distincts. En considérant le diviseur $D = [P_1] + [P_2]$, montrer qu'il existe un morphisme $g: C \to \mathbb{P}^1(k)$ de degré 2 tel que $g(P_1) = g(P_2)$.
 - (b) Montrer qu'il existe exactement un isomorphisme $f: C \to C$ distinct de l'identité tel que $g \circ f = g$.
 - (c) Montrer que $g(P_1) = P_2$ (on pourra utiliser une équation hyperelliptique de C).
 - (d) En déduire que C a une infinité d'automorphismes.
- 4. On suppose dans ce numéro que C est de genre 2. On rappelle que C est hyperelliptique et on fixe un morphisme $g:C\to\mathbb{P}^1(k)$ de degré 2. Soit $Q\in\mathbb{P}^1(k)$, et $P_1,P_2\in C$ les deux antécédents (non nécessairement distincts) de Q par g.
 - (a) Soit $D = [P_1] + [P_2]$. Montrer qu'il existe $a, b \in L(D)$ tels que g soit induit par $a/b \in k(C)$.
 - (b) Montrer que l(D) = 2.
 - (c) Soit $g': C \to \mathbb{P}^1(k)$ un autre morphisme de degré 2, soient $P'_1, P'_2 \in C$ les deux antécédents (non nécessairement distincts) de Q par g', et soit $D' = [P'_1] + [P'_2]$. Montrer que l(D + D') = 3.
 - (d) En considérant l'application $L(D') \oplus L(D') \to L(D+D')$ définie par $(c,d) \mapsto ac-bd$, montrer qu'il existe un isomorphisme $h : \mathbb{P}^1(k) \to \mathbb{P}^1(k)$ tel que $g' = h \circ g$. On pourra utiliser 2.(b).
 - (e) En utilisant la question 2.(d), montrer que C a un nombre fini d'automorphismes.