Quelques traits du métier de chercheur

Virginie BONNAILLIE - Antoine ROUSSEAU

Université Paris-Sud

Cluses, 18 Décembre 2002

Plan de l'exposé:

- 1. Que fait un enseignant-chercheur?
- 2. Pour quoi et pourquoi?
- 3. Quelques branches des maths et leurs applications.
- 4. Comment "chercher"?
- 5. Exemples de dynamique de population.
- 6. Exemple en météorologie.

1. Que fait un chercheur?

- Recherche
 - Ce n'est pas :
 - * faire du calcul,
 - * résoudre des exercices.
 - C'est:
 - * utiliser des résultats déjà connus pour établir de nouvelles théories,
 - * un travail jamais achevé.
- Enseignement (cours ou TD en fac)

2. Pour quoi et pourquoi?

- comprendre, expliquer et prévoir les phénomènes naturels,
- développer les nouvelles technologies et faire avancer les sciences,
- assurer la sécurité et la confidentialité de transferts de données.
- et bien plus encore · · ·

3. Quelques branches des maths et leurs applications

Algèbre \Rightarrow mathématiques abstraites,

Géométrie \Rightarrow astrophysique,

Arithmétique \Rightarrow codage, cryptographie,

Probabilité \Rightarrow finances, turbulence, physique quantique,

Analyse numérique \Rightarrow physique, biologie, finances,

+ ponts entre les différentes branches.

4. Comment "chercher"?

- "Laver" le problème : comprendre ce qui est important et ce qui l'est moins, ce qui est pertinent ou pas.
- Extraire un modèle simplifié mais viable en termes mathématiques :
 - assez simple pour savoir le résoudre,
 - assez complexe pour coller suffisamment avec la réalité.
- Utiliser les outils informatiques pour faire les calculs, si besoin est, ou simuler le phénomène réel et prévoir les résultats.

- Lire des articles de revues mathématiques (beaucoup) pour connaître et assimiler les résultats déjà acquis.
- Assister à des séminaires et des groupes de travail pour présenter ses questions et mettre en commun ses connaissances et ses idées.
- Essayer de résoudre son propre problème.
- Savoir faire demi-tour quand on est dans une impasse et accepter de tout recommencer après un "échec".

5. Un exemple de dynamique des populations

			-			_		-
année	1985	1986	1987	1988	1989	1990	1991	1992
population	55284	55547	55824	56118	56423	56710	56976	57240
année	1993	1994	1995	1996	1997	1998	1999	2000
population	57467	57659	57844	58026	58207	58398	58620	58892

N(i): population à l'année i.

Évolution de la population :

b: taux de natalité,

N(i+1) = N(i) + (b-d+m) * N(i) où d: taux de mortalité,

m: taux de migration.

5. Un exemple de dynamique des populations

année	1985	1986	1987	1988	1989	1990	1991	1992
population	55284	55547	55824	56118	56423	56710	56976	57240
année	1993	1994	1995	1996	1997	1998	1999	2000
population	57467	57659	57844	58026	58207	58398	58620	58892

N(i): population à l'année i.

Évolution de la population : N'(i) = (b - d + m) N(i).

où

b: taux de natalité, d: taux de mortalité, m: taux de migration.

Schéma numérique : N(i+1) = N(i) + (b-d+m) * N(i)

Un exemple de système proies-prédateurs

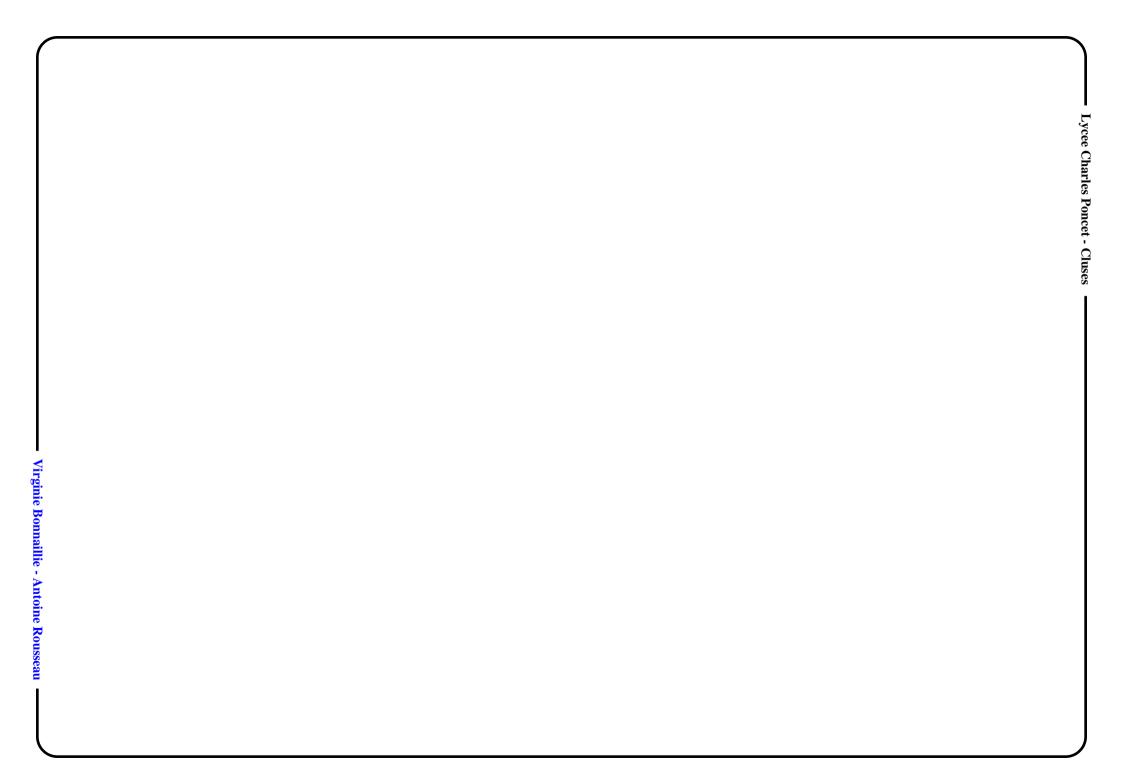
N(t) nombre de proies à l'instant t,

P(t) nombre de prédateurs à l'instant t.

$$\begin{cases} N'(t) = N(t)(a - bP(t)), \\ P'(t) = P(t)(cN(t) - d). \end{cases}$$

6. Exemple en météorologie

Les études de l'atmosphère et des océans sont très similaires. Il s'agit de fluides soumis aux équations de Navier-Stokes :


$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v + w \frac{\partial v}{\partial z} + f k \wedge v + \nabla p - \nu \Delta v = 0$$

$$\frac{\partial \theta}{\partial t} + (v \cdot \nabla)\theta + w \frac{\partial \theta}{\partial z} - K \Delta \theta = 0$$

$$\nabla v + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial v}{\partial z} = -\rho g$$

$$\rho = \rho_0 (1 - \alpha \theta)$$

Comment obtenir ces résultats?

• Discrétiser le "domaine" de travail.

• Résoudre de (très) gros systémes d'équations non linéaires.

• Pour cela on a donc besoin d'ordinateurs de plus en plus puissants...

La recherche en climatologie c'est:

• Améliorer l'observation des phénomènes.

• Faire de la prévision à court terme (analyse numérique) et à long terme (statistiques).