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Abstract. In this paper we compare the candidates to be spectral minimal partitions for
two criteria: the maximum and the average of the first eigenvalue on each subdomains of
the partition. We analyze in detail the square, the disk and the equilateral triangle. Using
numerical simulations, we propose candidates for the max, prove that most of them can
not be optimal for the sum and then exhibit better candidates for the sum.
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§1. Introduction

A great interest was shown lately towards problems concerning optimal partitions related to
some spectral quantities (see [8, 7, 9, 13]). Among them, we distinguish two problems which
interest us. Let Ω be a bounded and connected domain and Pk(Ω) the set of partitions of
Ω in k disjoint and open subdomains Di. We look for partitions D = (Di)1≤i≤k of Ω which
minimize

Problem 1. the largest first eigenvalue of the Dirichlet Laplace operator in Di:

Lk(Ω) = min
{
max
1≤i≤k

λ1(Di), (Di)1≤i≤k ∈ Pk(Ω)
}
. (1)

Problem 2. the sum of the first eigenvalues of the Dirichlet Laplace operator in Di:

Lk,1(Ω) = min

1
k

∑
1≤i≤k

λ1(Di), (Di)1≤i≤k ∈ Pk(Ω)

 . (2)

For simplicity we refer to these two problems in the sequel as minimizing the sum or
the max. Theoretical results concerning the existence and regularity of the optimal partitions
regarding these problems can be found in [8, 9, 13] (and references therein). Despite the
increasing interest in these problems there are just a few cases where optimal partitions are
known explicitly, and exclusively in the case of the max.

Structure of the paper In the following section, we apply known results to obtain estimates
of the energy of optimal partitions in the case of a disk, a square or an equilateral triangle
and recall informations about the structure of an optimal partitions. Then, we focus on the
minimization problem for the max: we give explicit results for k = 2, 4 and in other cases, we
present the best candidates we obtained by using several numerical methods. In Section 4,
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we recall and apply a criterion which shows when a partition optimal for the max cannot be
optimal for the sum. In cases where the previous criterion shows that candidates for the max
are not optimal for the sum, we propose better candidates in Section 5. These candidates are
either obtained with iterative methods already used in [6, 3] or are constructed explicitly.

§2. Applications of known results

2.1. Estimates of the energies
By monotonocity of the p-norm, we easily compare the two optimal energies:

1
k
Lk(Ω) ≤ Lk,1(Ω) ≤ Lk(Ω). (3)

More quantitative bounds can be obtained with the eigenmodes of the Dirichlet-Laplacian
on Ω. For k ≥ 1, we denote by λk(Ω) the k-th eigenvalue of the Dirichlet-Laplacian on
Ω (arranged in increasing order and repeated with multiplicity) and by Lk(Ω) the smallest
eigenvalue (if any) for which there exists an eigenfunction with k nodal domains (i.e. the
components of the nonzero set of the eigenfunction). In that case, the eigenfunction gives
us a k-partition such that the first eigenvalue of the Dirichlet-Laplacian on each subdomain
equals Lk(Ω). We set Lk(Ω) = +∞ if there is no eigenfunction with k nodal domains. It is
standard to prove (see [13] for example):

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω), (4)

1
k

k∑
i=1

λi(Ω) ≤ Lk,1(Ω) ≤ Lk(Ω). (5)

Let us consider k = 1, 2. Since the first eigenvalue of the Dirichlet-Laplacian is simple and Ω

is connected, then necessarily any eigenfunction associated with λk(Ω) has one or two nodal
sets whether k = 1 or 2. Consequently Lk(Ω) = λk(Ω) for k = 1, 2 and

Lk(Ω) = λk(Ω) = Lk(Ω), when k = 1, 2. (6)

Furthermore, any nodal partition associated with λk(Ω) is optimal for the max when k = 1, 2.
We say that an eigenfunction associated with λ is Courant-sharp if it has k nodal domains
with k = min{ j, λ j(Ω) = λ}.

In this paper, we focus on three geometries: a square � of sidelength 1, a disk # of radius
1 and an equilateral triangle 4 of sidelength 1. The eigenvalues are explicit and given in
Table 1 where jm,n is the n-th positive zero of the Bessel function of the first kind Jm and
λk(Ω) is the k-th element of the set {λm,n(Ω)}. In Table 2, we explicit the lower and upper
bounds in (4)–(5).
Remark 1. Looking at Table 3, we observe that the lower and upper bounds (4) for the max
are equal when k = 1, 2, 4. Thus, in that case, the optimal energy for the max is λk(Ω) and
any associated nodal partition is optimal. We can wonder if it can happen for larger k. We
will come back to this question in the following section.
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Ω λm,n(Ω) m, n

� π2(m2 + n2) m, n ≥ 1
4 16

9 π
2(m2 + mn + n2) m, n ≥ 1

# j2m,n m ≥ 0, n ≥ 1 (multiplicity 2 for m ≥ 1)

Table 1: Eigenvalues for the Dirichlet-Laplacian on Ω = �, 4, #.

Square Disk Equilateral triangle

k 1
k

k∑
i=1

λi λk Lk
1
k

k∑
i=1

λi λk Lk
1
k

k∑
i=1

λi λk Lk

1 19.74 19.74 19.74 5.78 5.78 5.78 52.64 52.64 52.64
2 34.54 49.35 49.35 10.23 14.68 14.68 87.73 122.82 122.82
3 39.48 49.35 98.70 11.72 14.68 74.89 99.43 122.82 228.10
4 49.35 78.96 78.96 15.38 26.37 26.37 127.21 210.55 210.55
5 59.22 98.70 256.61 17.58 26.37 222.93 147.39 228.10 368.46
6 65.80 98.70 246.74 19.73 30.47 40.71 160.84 228.10 543.92
7 74.73 128.30 493.48 22.72 40.71 449.93 185.49 333.37 684.29
8 81.42 128.30 197.39 24.97 40.71 57.58 203.97 333.37 491.29
9 91.02 167.78 177.65 27.67 49.22 755.89 222.25 368.46 473.74

10 98.70 167.78 286.22 29.82 49.22 76.94 236.87 368.46 1000.12

Table 2: Bounds (4)–(5) when Ω = �, # and 4.

In the case of the disk, for an odd index k, the upper bound Lk given in Table 2 corresponds
to the k-th simple eigenvalue on the disk whose associated nodal partition has k concentric
annuli. This eigenvalue grows rapidly with k. In these cases, we may observe that considering
partitions in k equal sectors gives a better upper bound. If we denote by Σα the angular sector
of opening α (see [5] for analysis on angular sectors), this new upper bound writes

Lk(Ω) ≤ λ1

(
Σ 2π

k

)
= j2k

2 ,1
.

This heavily improved upper bound is estimated in Table 3. We can notice that if we replace

k 3 5 7 9
λ1

(
Σ 2π

k

)
20.19 33.22 48.83 66.95

Table 3: Energy of the partitions with k angular sectors.

Lk(#) in Table 3 by these values, we have monotonicity with respect to k for the upper bound
which is more consistent with the monotonicity of Lk(#) and Lk,1(#).

Bounds (4)–(5) provide a quantative information about the energy of the optimal partition
but no information about the structure of the minimal partition. Let us know discuss this point.
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2.2. About the minimal partitions
As we have mentioned previously, several works are dealing with the existence of optimal
partitions (see [8, 9, 13]. . . ). These results also give information about their regularity.

Theorem 1. For any k ≥ 1, there exists a regular optimal k-partition for any of the two
optimization problems. Furthermore any optimal partition for the max is an equipartition,
i.e. the first eigenvalues on each subdomain are equal.

Let us recall that a k-partition D is called regular if its boundary, N(D) = ∪1≤i≤k∂Di, is
locally a regular curve, except at a finite number of singular points, where a finite number of
half-curves meet with equal angles. We say thatD satisfies the equal angle meeting property.

§3. Candidates for the max

3.1. Explicit solutions
The following result, established in [13] gives information about the equality case in (4) and
permits to solve, in some cases, the optimization problem for the max. In that cases, the
minimal partitions are nodal.

Theorem 2. The nodal partition of a Courant-sharp eigenfunction is optimal for the max.
Conversely, if a minimal partition for the max is nodal, the associated eigenfunction is
Courant-sharp.

This theorem means that if we have one equality in (4), then we have equality everywhere
and any optimal partition is nodal.

As observed in (6), we know that the optimal k-partition for the max is given by the k-th
eigenfunction when k = 1, 2. Remark 1 notices that it is still the case for k = 4 for the three
considered geometries. The following result established in [13, 1, 2] show that for other k,
the situation is very different.

Proposition 3. If Ω is a disk #, a square � or an equilateral triangle 4, then

λk(Ω) = Lk(Ω) = Lk(Ω) if and only if k = 1, 2, 4.

Thus the minimal k-partition for the max is nodal if and only if k = 1, 2, 4.

Figure 1 gives examples of optimal k-partitions for the max. Note that since λ2(Ω) is
double, the minimal 2-partition is not unique whereas for k = 4 we do have uniqueness.

(a) k = 2 (b) k = 4

Figure 1: Optimal k-partitions for the max, k = 2, 4.
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3.2. Candidates obtained by numerical simulations

In cases when explicit solutions are not known, some numerical algorithms are available in
order to compute minimal partitions for the max. There are two types of methods that have
been used in the literature.

• The first option is to look for partitions which are nodal for a mixed Dirichlet-Neumann
problem on Ω (see for example [4]). In this case we are certain to have an equipartition.
On the other hand, we force a priori the structure of the partition.

• Another option is to use an iterative approach based on an adaptation of the algorithm
introduced in [6]. In [3], the authors presented an algorithm allowing the minimization
of a p-norm of eigenvalues, which approaches the optimization problem for the max as
p is large. Another variant of the algorithm was presented, which penalizes the differ-
ence between eigenvalues on different cells of the partition. These iterative algorithms
have the advantage that there is no constraint on the structure of the partition. On the
other hand a relaxation method is used in order to compute the eigenvalues, which
makes the method less precise.

In [3] the authors studied the square, the disk and the equilateral triangle. They used
initially the iterative methods to detect the structure of the partition. Secondly, when some
parts of the boundaries of the cells of the partitions were segments or easily parametrizable
curves, the mixed Dirichlet-Neumann approach was used. Not surprisingly, the Dirichlet-
Neumann method yields best results, i.e. the smallest maximal eigenvalue, when it can be
used. We recall below the best partitions obtained with the two above methods when k =

3, 5, 6, 7, 8, 9, 10. The smallest energies obtained numerically are summed up in Table 4 and
the associated partitions are represented in Figures 2, 3 and 4. In these figures, the partitions
with green lines are obtained with the Dirichlet-Neumann approach whereas the others are
the results of the iterative method with penalization.

k 3 5 6 7 8 9 10
4 142.88 251.99 275.97 345.91 389.31 428.75 451.73
# 20.19 33.21 39.02 44.03 50.46 58.25 67.19
� 66.58 104.29 127.11 146.88 161.28 178.08 204.54

Table 4: Numerical estimates for Lk(Ω), Ω = 4,�,#.

k = 3 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Figure 2: Candidates to be minimal k-partition of the equilateral triangle for the max.
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k = 3 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Figure 3: Candidates to be minimal k-partition of the square for the max.

k = 3 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Figure 4: Candidates to be minimal k-partitions of the disk for the max.

§4. Optimal partitions for the max as candidates for the sum

The aim of this section is to analyze if the optimal partitions obtained numerically for the
max can be optimal for the sum. Let us recall a criterion established in [12] which prevents a
partition optimal for the max to be optimal for the sum.
Proposition 4. Let D = (D1,D2) be a minimal 2-partition for the max and ϕ2 be a second
eigenfunction of the Dirichlet-Laplacian on Ω having D1 and D2 as nodal domains.

Suppose that
∫

D1

|ϕ2|
2 ,

∫
D2

|ϕ2|
2, then L2,1(Ω) < L2(Ω). (7)

Since any minimal 2-partition for the max is nodal, the previous criteria can be gener-
alized by considering two neighbors D1,D2 of an optimal partition for the max. Note that
this criterion gives no information if we apply it to an optimal partition for the max which
is composed of congruent domains. It seems to be the case when k = 2, 4 for the square,
k = 2, 3, 4, 5 for the disk and k = 3, 4 for the equilateral triangle (see Figures 1–4).

We know that partitions minimal for the max are in fact equipartitions (see Theorem 1).
Yet the Dirichlet-Neumann approach produces equipartition whereas with the iterative method,
the first eigenvalues on the subdomains of the partition obtained numerically are close but not
rigorously equal. Thus we consider from now in this section the partitions obtained with the
Dirichlet-Neumann approach. In such situation, Proposition 4 can be adapted as follows.
Proposition 5. Let D = (Di)1≤i≤k be a minimal k-partition for the max. We assume that D
is the nodal partition of an eigenfunction ϕ of a mixed Dirichlet-Neumann problem. Then
this partition is not minimal for the sum if we can find two neighboring cells on which the L2

norms of the eigenfunction ϕ are different.

Proof. It is not difficult to see that the previous result is a simple consequence of Proposition
4. Indeed, if D1,D2 are two neighbors of a nodal partition associated to a mixed Dirichlet-
Neumann problem, then (D1,D2) is a minimal partition for the max on Int(D1∪D2). If this is
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not the case, thenDwould not be minimal. Furthermore, the restriction of the eigenfunction ϕ
to Int(D1∪D2) is an eigenfunction for the second eigenvalue on the same domain Int(D1∪D2).
Thus, if the L2 norms of ϕ are different on D1 and D2, we may apply Proposition 4 to conclude
that (D1,D2) is not optimal for the sum on Int(D1 ∪ D2). This immediately implies thatD is
not optimal for the sum on Ω. �

Let us recall that the mixed Dirichlet-Neumann method consists of expressing the mini-
mal partition for the max as a nodal partition corresponding to a mixed problem. When we
look for symmetric partitions, we consider a mixed Dirichlet-Neumann problem on a reduced
domain and we search the eigenfunction which realizes the minimal energy in the reduced
domain, taking care that the associated nodal partition has the desired structure. In the fol-
lowing we use the results of Proposition 5 which allows us to deduce if the partition can be a
candidate for the sum by looking at the L2 norms of the eigenfunction of the mixed problem
on the subdomains. This simplifies the computation, since we are not forced to extract each
pair of neighbor domains and compute a new second eigenfunction on these domains. Given
the eigenfunction of the mixed problem we can identify each of the subdomains by looking at
its sign of restrictions to certain rectangles: {ϕ > 0 or ϕ < 0}∩ {x ∈ [a, b]}∩ {y ∈ [c, d]}. Once
we have computed the L2 norms on subdomains corresponding to the mixed problem, we
may multiply the norms corresponding to domains cut by symmetry axes by a corresponding
factor, to find the L2 norms on the initial partition. The computation of the L2 norm is made
either in FreeFem++ [11] or in Melina [14].

Let us now examine the candidates obtained with the Dirichlet-Neumann approach: k ∈
{6, 7, 8, 9} for the disk, k ∈ {3, 5} for the square and k ∈ {5, 6, 8, 10} for the equilateral trian-
gle. These configurations correspond in Figures 2, 3 and 4 with green straight doted lines for
which the subdomains are not congruent. We present the L2 norms on each one of the subdo-
mains. The situation is clear in the case of the disk and the square where we have only two
types of domains: a single domain D1 (the interior domain in the case of the square with k = 5
or the disk) and a domain D2 repeated several times by some symmetry (the exterior domains
for the square with k = 5 or the disk). Table 5 shows that the L2 norm of the eigenfunctions
on the different subdomains are not equal. Thus, in the case of the disk and k = 5, 6, 7, 8 or
the square and k = 3, 5, if the partitions of Figures 3 and 4 are optimal for the max, they are
not optimal for the sum.

Ω Square Disk
k 3 5 6 7 8 9∫

D1
|ϕ|2 0.51 1.12 1.12 0.88 0.58 0.29∫

D2
|ϕ|2 0.75 0.72 0.78 0.85 0.92 0.96

Table 5: L2-norm on the square and the disk.

In the case of the equilateral triangle we may have up to 5 different domains in the par-
tition. We denote these subdomains D1,D2, ... by starting from a vertex of the triangle and
going along the sides in a clockwise rotation sense. In the following we write the values of
the L2 norms on each one of these domains for k = 2, 5, 8, 6, 10:
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· k = 2:
∫

D1
|ϕ|2 = 0.49,

∫
D2
|ϕ|2 = 0.51;

· k = 5:
∫

D1
|ϕ|2 = 0.45,

∫
D2
|ϕ|2 = 0.44,

∫
D3
|ϕ|2 = 0.34;

· k = 8:
∫

D1
|ϕ|2 = 0.31,

∫
D2
|ϕ|2 = 0.30,

∫
D3
|ϕ|2 = 0.22,

∫
D4
|ϕ|2 = 0.17,

∫
D5
|ϕ|2 = 0.23;

· k = 6:
∫

D1
|ϕ|2 = 0.500,

∫
D2
|ϕ|2 = 0.500;

· k = 10:
∫

D1
|ϕ|2 = 0.599,

∫
D2
|ϕ|2 = 0.600,

∫
D3
|ϕ|2 = 0.604.

In each of these cases k ∈ {2, 5, 8}, we find at least one pair of adjacent domains which have
different L2 norm, so these candidates are not optimal for the sum. Note that the case k = 2
has already been treated in [12]. In the cases k ∈ {6, 10} we do not find adjacent domains
with significantly different L2 norms, so the criterion does not apply. Moreover, a parametric
study was done in [3], assuming the borders of the cells are polygonal domains. This study
shows that the partitions for the sum and for the max likely coincide in these cases.

§5. Candidates for the sum

5.1. Iterative method

Let us apply the iterative method to exhibit candidates for the sum. In Figures 5, 6 and 7, we
compare these candidates for the sum (represented in blue) with the candidates for the max
(in red) obtained by the iterative method with penalization.

k = 2 k = 3 k = 4 k = 5

k = 6 k = 7 k = 8 k = 9 k = 10

Figure 5: Candidates for the max (red) and the sum (blue).

In these figures, we observe that the candidates are very close except for two cases:

· the equilateral triangle and k = 4 : in that case, the optimal partition for the max is
known and composed of four equilateral triangles. The candidate for the sum has less
symmetry and has 4 singular points on the boundary and two interior singular points.
These points collapse two by two to give 3 singular points on the boundary for the max.
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k = 2 k = 3 k = 4 k = 5

k = 6 k = 7 k = 8 k = 9 k = 10

Figure 6: Candidates for the max (red) and the sum (blue).

k = 2 k = 3 k = 4 k = 5

k = 6 k = 7 k = 8 k = 9 k = 10

Figure 7: Candidates for the max (red) and the sum (blue).

· the square for k = 7: in that case, the energies of two candidates are very close and it
is very difficult to conclude. These two candidates already appear in [10].

In Table 6, we give the energies of the optimal partition for the sum obtained by the iterative
method. We can compare these values with those of Table 4 for the max. This is completely
coherent with the previous section: when the criteria shows that the candidate to be optimal
for the max can not be optimal for the sum, we obtained new partition with lower energy and
which is not an equipartition.
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k 2 3 4 5 6 7 8 9 10
4 121.65 143.38 207.75 251.69 277.06 338.01 387.72 426.25 453.87
# 14.68 20.19 26.37 33.21 38.95 44.02 50.44 57.69 63.67
� 49.40 66.14 78.956 103.37 125.68 144.34 159.93 177.68 201.85

Table 6: Lowest energies for the sum with the iterative algorithm.

5.2. Partitions with curved polygons

In this section we use, when available, an explicit representation for the partitions in order to
exhibit candidates for the sum which are better than those for the max. We notice that for k ∈
{6, 8, 9} for the disk and k ∈ {3, 5} for the square the partition has a simple symmetric structure.
It is possible to approximate each of these partitions by assuming that the boundaries are
either segments or arcs of circles. One important aspect used in the construction is the equal
angle property which implies that all angles around a singular point are equal.

In the case of the disk, for k ∈ {6, 8, 9} we obtained partitions which have a rotational
symmetry of angle 2π/(k − 1). Furthermore, we have a central domain which is a regular
curved polygon with k − 1 sides and k − 1 external domains, each obtained by joining the
edges of the polygons to the boundary of the disk with straight segments. This suggested us
to see what happens if we assume that the rounded polygon’s edges are arcs of circle. We
note that this is not known theoretically. Furthermore, we want that pairs of consecutive arcs
make an angle of 2π/3. The general configurations are represented in Figure 8 for k = 6 and
Figure 9 for k = 7, 8. We describe now the procedure of constructing such a rounded polygon
for k = 6. Let’s start with an angle ∠BAB′ of measure 2π/5 with AB′ = AB = `. Note that
` ∈ (0, 1) will be one of the parameters of the problem since we wish to vary these partitions
in function of the size of the inner curved polygon. We wish to construct an arc

>
BB′ which

makes equal angles of π/3 with AB and AB′ (this is so that after symmetrization we have a
pentagon with 2π/3 angles. In order to construct this arc

>
BB′ we need the position of the

center C of the corresponding circle and the radius of this circle CB = CB′ = R. Note that
∠(CB,

>
BB′) = π/2 and ∠(AB,

>
BB′) = π/3, which implies that ∠ABC = π/6. By symmetry, we

have ∠AB′C = π/6. Once we know θ = ∠BAB′ and `, it is possible to find all other elements
of the triangle ABC by using, for example, the sine theorem

AB
sin Ĉ

=
BC

sin Â
=

CA
sin B̂

⇔
`

sin( θ2 −
π
6 )

=
R

sin θ
2

=
AC

sin π
6
.

Once AC is known we can determine the position of the center C and then we can trace an
arc of a circle of radius R going from B to B′. Note that the measure of ∠BCB′ is also needed
in the implementation and is equal to θ − π/3. The situation is similar for k ∈ {8, 9} with
the difference that now C is on the other side of BB′ so that the curved polygon has inward
arcs. The case k = 8 is depicted in Figure 9 and the arguments for finding R and AC are
essentially the same. Note that once the arc

>
BB′ has been constructed, the exterior domain is

drawn by continuing segments AB, AB′ until they reach the unit circle. Thus we have a way
of constructing admissible partitions with the equal angle property which are very similar to
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Figure 8: Explicit construction of curved regular pentagon with angles equal to 2π/3.

Figure 9: Explicit construction of curved regular heptagons with angles equal to 2π/3.

the ones obtained with the iterative method. Once we fix k ∈ {6, 8, 9} we can optimize the
sum of the eigenvalues of the partition with respect to `. Let us remark that if we apply this
method for k = 7, we have necessarily a hexagon with straight lines as observed in Figure 6
and analyzed in [3].

The same method can be applied in the case of the square for k = 3, 5 (see Figure 10). For
k = 3, the equal angle property applied at a boundary singular point imposes that the center C
of the circle is along a side of the square. As can be seen in Figure 10 we denote by B the triple
point and AB is the segment along the boundary of the partition cells along the symmetry axis.
With these considerations, the equal angle property implies that ∠ABC = π/6. See Figure 10
for more details. For k = 5, we note that we have 4 axes of symmetry and the central domain
resembles a curved polygon with 4 sides. We apply the previous arguments (see Figures 8-9)
to construct a regular polygon with 4 sides and angles of measure 2π/3. Then we extend this
polygon to a partition of the square like in Figure 10. In both cases, we optimize the sum of
the eigenvalues of these partitions with respect to the length ` = AB ∈ (0, 1).

We implemented this method in FreeFem++ for the five configurations and Table 7
presents the results. We note that in every cases except for the square and k = 3, the av-
erage of the eigenvalues is smaller than the energy obtained using the iterative method (see
Table 6). However, the partitions we obtained with the two methods are close, as can be seen
in Figure 11.
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Figure 10: Explicit construction of a 3- and 5-partition of the square with curved polygons.

Disk Square
k 6 8 9 3 5
` 0.411 0.3975 0.3981 0.4781 0.5093

1
k
∑

k λ1(Di) 38.85 50.29 57.51 66.16 103.34

Table 7: Energies of the partition with constant curvatured boundaries.

Figure 11: Explicit partitions (magenta) vs partitions with iterative algorithm (blue).
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