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Talk Abstract

The considered Schrodinger operator has a quadratic
potential which is degenerate in the sense that it reaches
its minimum all along a line which makes the angle 6
with the boundary of the half-plane where the problem is
set. We exhibit localization properties for the eigenfunc-
tions associated with its lowest eigenvalues below its es-
sential spectrum. We investigate the densification and the
asymptotics of the eigenvalues below the essential spec-
trum in the limit § — 0.

1 Introduction
This note is devoted to the investigation of the ground
states of the Schrodinger operator

Lo=—Ngs+ (tcosh — ssinh)? (1)

defined for (s, t) in the half-space ) = Ry x R,". More
precisely, Ly denotes the self-adjoint Neumann realiza-
tion on 2. The parameter 6 € [0, 7] is the angle between
the boundary of {2 and the line ¢ cos@ = ssinf which
is the set where the potential (t cos@ — ssin #)? reaches
its minimum. Thus the potential is quadratic and degen-
erate. When 6 = 0, 5 or 7, it is easy to see by an even
reflection through the boundary ¢ = 0 that the spectrum
sp(Ly) of Ly coincides with the spectrum of the operator
A=-A, . + y? on the whole space R?. Since A is the
sum of the harmonic oscillator on R and of —92, we find

For 0 € {0, 5,7},

sp(Lo) = [1,4+00). ()

In these cases, sp(Lg) coincides with the essential spec-
trum sp..(Lg). In fact sp.. (L) does not depend on 6,
[5]:

For 0 € [0, 7], SpPess(Lo) = [1,400). 3)

For any positive integer n we define o,,(6) as the n-th
Rayleigh quotient associated with Ly. Then if 0, (0) is
strictly less than 1, it is an eigenvalue, and, conversely,
the n-th eigenvalue of Ly ordered in increasing order and
counted with multiplicity, is 0, (). It is proved in [5]
that for any n the function (0, 5] > 6 — 0,(0) is non
decreasing. Concerning the ground state, it is proved in
[6, Lemma 3.6] that (0, 5) > 6 ~ o01(0) is increasing,
01(0) < 1 and corresponds to a simple eigenvalue.

2 Lower and upper bounds for eigenvalues

The operator Ly is the sum of the two operators .4 and

.Ati

As = —0? + (sin0)*(t cos § — ssin 6)? A
Ay = —0% + (cos 0)*(t cos § — ssin 6)2. ©
The change of variables £ = ¢cosf shows that A; is
isospectral with the operator (cos 0)? Hgin ¢ (%; 0;) where
H¢(2;0;) := —0% + (2 — ¢)? denotes the de Gennes op-
erator of order k¥ = 1 defined on the half-line R} with
Neumann condition on z = 0. The first eigenvalue 1(()
of H¢ is a smooth function of ¢ which has a unique min-
imum denoted ©, non degenerate, attained for the value
¢ = (o = /Oy, see [3, Theorem 4.3]. A 9-digit nu-
merical approximation of ©g is 0.590106125 [1]. A con-
sequence of the above decomposition of Ly is the lower
bound for its first eigenvalue, [4, Lemma 6.2.2]
o1(0) > (cos0)*0¢ + (sin)?, ®)
Let v¢, be an eigenvector associated with the first eigen-
value O of the operator H,, and let 1); be the j-th Her-
mite function with the “physicists” convention (j > 0).
Let us use the following rescaling and translation:

y = sVsinf — %

and z =tVcosH. (6)
Vtan@
Considering the orthogonal functions (s,t)

Y;(y)ve,(2) in the Rayleigh quotients of Ly, we
prove [2, §3] the following generalization to n > 1 of [4,
Lemma 6.2.2]

on(0) < Bgcosh+ (2n — 1)sinb,
n>1,

Therefore, the number of eigenvalues tends to infinity as
the angle 6 tends to 0. We also have a densification of the
spectrum in the following sense: For all Ay € (O, 1) and
for all € > 0, there exists 0y > 0 small enough so that for
all @ € (0, 6] the distance of \g to sp(Ly) is less than €.
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3 Exponential decay of eigenvectors

Numerical simulation of the ground state for differ-
ent values of # by the finite element method using [7]
are shown in Figure 1. The computational domain is
[—5, 15] x [0, 75] for the first 4 values of § and [—15, 25] x

[0, 15] for the last 3 ones.

II
—

Figure 1: First eigenvector of £y for § = Jm/2 with
¥ =10.9,0.85,0.8,0.7, 0.5, 0.2, and 0.05, and computed
eigenvalues 1.0001, 0.9998, 0.9991, 0.9945, 0.9611,
0.7950, and 0.6481, respectively.

The concentration and decay of the eigenvectors
strongly depend on . We have isotropic and anisotropic
Agmon type estimates [2, §2]:

Theorem 1 Let (o(6),ug) be an eigenpair of Ly with
o(0) < 1. We have the following four estimates:

Va € (0,/1—0(0)), 3ICi=Ci(a,b) >0,
|| exp (a\/ 52 + tz) UQHLz < C]_HUQHLQ (8)

VB3 € (0,1), 3Cy=Cs(B) >0,
|| exp (B(t cos § — ssin 6)?) ugl| 20y < Callugll2(q)
)

V77<17 V’YG (07 177])7 303203(7777)7

{o0) <n = lexp(rt) wallzz(e) < Callugl ey }-
(10)

3C, >0, 309 >0, VO € (07 90]7

Jexp (sv5ind - \/f;m)“@’”(m < Cullugll 2.
(1n

The isotropic estimates (8) clearly degenerates as
o(f) — 1. It is also degenerating as # — 0, because
the constant C'y (v, #) blows up. The three other estimates
are stable as § — 0: The modes uy are uniformly local-
ized in an horizontal layer above the boundary, and they
concentrate around the point (so(6),0) with so(6) such
that so(6) sin @ = (pv/'cos é. Thus so(f) — oo as § — 0,
which would contradict uniform estimates.

4 Eigenvalue asymptotics in the small angle limit
We perform the change of variables (s,t) — (y, z) de-
fined by (6). In the new variables, the operator Ly writes

- sin@@j —c0s0 9% + cosB(z — (o — yVtan 6)?
=: cos0(Ly + Oyp),

where we have set h = tan # and introduced
L= —ho2 — 02 + (2 — G — yhH)? =69, (12)

We denote by 5n(h) the n-th eigenvalue of £5,. Due to the
change of variables, we have

on(0) = cos0(Og + s, (tand)). (13)

The behavior of 0,,(#) as § — 0 is determined by s, (h)
as h — 0. Using the de Gennes operator I, we have

Ly = —ho, + H. _,vi(z0.) — 6. (14)

The Born-Oppenheimer approximation consists of re-
placing H. . 7 by its ground energy 11(Co + yv/h) and
to implement the standard harmonic approximation in the
semi-classical limit for the one-dimensional operator:

Lh.Bo = —hdj + (¢ + yvh) —

Indeed, the potential 3 — p(Co + yv/h) — O has 0 as
non-degenerate minimum in ¥y = 0 and the n-th eigen-
value of £}, po has the asymptotics h(2n—1)+/1" (o) /2
modulo h3/2 as h — 0. In fact, the Born-Oppenheimer
approximation does provide the asymptotics of s,,(h) and

on(0):
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Theorem 2 For any rank N > 1, there exist C(N) > 0
and hg > 0 such that foralln =1,... N

Vh € (07 hO]a
[ 7(2n = 1)v/1"(C0)/2 = sn(h) | < C(N) B2, (15)

Vo € (0, ho],

|00 +0(2n — 1)/1"(Co) /2 — 0, (0) | < C(N) 6%/2.
(16)

The proof, see [2, §4], incorporates a construction of
quasimodes by an expansion of £; in powers of hl/2,
These quasimodes are associated with the approximate
eigenvalues h(2n — 1)\/u"((o)/2,n =1,..., N. In the
fitted variables (y, z) introduced in (6) they take the form

" 1/4
uy(h) = wn,l([u (;O)} / y) ve,(2), m=1,2,...,
a7
where we recall that ¢; is the j-th Hermite function and
v¢, an eigenvector of the de Gennes operator associated
with the minimal eigenvalue ©g, see Section 2.

In order to check that the n-th approximate eigenvalue
is the approximation on the n-th eigenvalue, we rely on
the Born-Oppenheimer approximation. However £4, go,
seen as an operator acting on the domain of £; — i.e.
as two-dimensional operator, has eigenvalues of infinite
multiplicity, and we cannot use directly the min-max prin-
ciple to compare its spectrum with the eigenvalues of £;,.
Thus, we justify, through the Agmon estimates (10)—(11)
and a Grushin type argument, that the eigenvalues of £
are bounded from below by those of £}, o seen as one-
dimensional operator. Our proof is inspired by the proce-
dure described in [8] for degenerate potentials in R".

5 Regularity of the first eigenvalue in function of the
angle

Let us consider the question of the regularity of the
function 6 — o1(0) for § € [0, 7]. We have parity with
respect to 5: 01(5 + 0) = 01(5 — 0). We recall that we
have 01(0) = 01(5) = o1(m) = 1. From (5)-(7), we
find that oy tends to 1 when 6 tends to 5. We prove that
Opo1(0) tends to 0 as 6 tends to 5. As a consequence of
this fact and of Theorem 2, we find

Proposition 3 The function 0 +— o1(0) is C* on (0, ). It
has a C* extension 1 to the closed interval [0, 7] obtained
by setting 51(0) = &1(m) = O¢. The function o itself is
discontinuous at 0 = 0 and 6 = .

The discontinuity of o7 at § = 0 is related to the be-
havior of the ground state as § — 0 which is localized
around the point (so(¢),0) with so(f) — oo as § — 0,
with a localization length which also tends to infinity.

We conclude this note by the graph of o1(6) ob-
tained by a finite element approximation for a sampling
of 198 values of 0 (the values of ¢ are kw/200 with
k=1,...,99,101,...,199), see Figure 2.
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Figure 2: Approximation of o1 on [0, 7]

Full proofs and other numerical experimentations can
be found in [2].
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