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Two different models are compared for the simulation of th@dverse electronic transport through an het-
erostructure: a self-consistent Schrodinger-Poisson model with a nura#yi heavy treatment of resonant
states and a reduced model derived from an accurate asyenmbotinear analysis. After checking the agree-
ment at the qualitative and quantitative level on quite wallerstood bifurcation diagrams, the reduced model
is used to tune double well configurations for which nonlihemteracting resonant states actually occur in the
complete self-consistent model.
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I. INTRODUCTION ple, the nonlinear effect outside the barriers were notrtake
into account although they are known to produce sometimes
non negligible effects, see for examplel[16]). Furtherntbee

The modelling of the electronic transport in quantum elecyapidity of the computations and the exhaustive descripfo
tronic devices is well described within a Landauer-Bi#étik nonlinear solutions with the finite dimensional reduced stod
approach (seell[{J[Z][d][4][5l[6}{7]). A well-known diffi- made possible the exploration of some exotic nonlinear-solu

culty for the numerical simulations comes from quantum restions with nonlinearly interacting resonant states. Thppse
onances because they produce very stiff variations of thgf the present article is twofold

spectral quantities with respect to the energy variablés th
increases dramatically the numerical complexity or rezgiir 1. Check by taking exactly the same data for both models
some specific treatment. This point becomes an issue when  that the reduced model and the complete Schrodinger-

the numerical simulation is motivated by a self-consistent Poisson model agree very well at the qualitative and
nonlinear problem which takes into account in a mean field guantitative level.

approach the electronic repulsion (s€e[8][9][10]). Such a _ _ _ _
nonlinear system is often referred to as a Schrodingess@ai - Check that the exotic nonlinear solutions found in
system. Meanwhile in the one-dimensional setting the scat-  the double well problem make sense within the
tering states are simply described in the active region by us Schrodinger-Poisson problem and lead to interesting
ing energy-dependent transparent boundary conditiortaéor physical phenomena like a damped beating effect sta-
Schrodinger equation. After an accurate asymptotic aily ble for an extended range of applied bias.

of the nonlinear spectral problem presented i [L1JA213 Although a rescaling leading to dimensionless quantitles a

an asymptotic reduced model has been derived by consideri . A e, )
the regime of a finite number of resonant states produced t?&n’}’; ga?xgsr:gsg i%i?wllzoagigjrgc; ﬁ;fg(ﬂewces (sed [15])

guantum wells in a semiclassical island. The reduced mode
summarizes how a finite number of resonant states as well
as the phase-space geometry of the tunnel effect governs the
nonlinearity and may produce several nonlinear solutitkes |

in [14]. After introducing carefully the scaling and cheogi . .
the relevancy of the approximations, realistic cases aind  !nitial writing. _ _ _
the one studied il [10] for GaAs devices ahd [9] for Si-BiO Thg massn that we use is _the effective electronic mass-
devices have been numerically testedid [15]. The agreemefie In the transverse directian= x;. The quantum hamilto-
with the simulations of [10]9] were satisfactory althoutje ~ nian for a single electron has the form

configurations in[[15] were not exactly the same (for exam- W2 2

—%W'i‘ﬂ()_()a Y =8+Yys+VnL 1)

Il. THE MODEL
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into account outside the heterostructure (quasineutpbap
imation). The total potential denoted by also includes the
piecewise affine functios referring to the bias voltageB,

B(X)=-B b—l[ab]( )+ L, ey (X) | -

It is also made of the second teriy which describes the
barriers and the wells,

Vo(X) = Voligp(X) + V_V (%),

TMZ

with the constan¥, > 0 and the compactly supported poten-

tialsW; € L*(R), -V, <W; <0, fixed. The external poten-

with a similar formulation fok < 0 (exchange <aandx > b,
replacek by a well chosen square root kf — B, see [15] for
details). The electronic densityis given by

= [ g koS

0
* [mg(l—(z —-B)ly (kX (4)

Finally the nonlinear potentidly, solves the Poisson equa-

tion

=

)
=Vni(b)=0.

tial 3 + Vo is represented i |n Figufé 1. The beam of electrons

1L \

FIG. 1: Linear potential in the heterostructure.

injected from both sides is described by a functionf the
momentum variabl& = 0 B

f) =9, ()L K+g K (2)

Up to the reference energy (0 e1B), the injection profile is
the same for both sides

Q+(E) :go(E) 9,(E) = go(E+ B) )

whereqp is the Fermi-Dirac distribution function integrated
along the two directiongx;, X»)
). @

g, (K?) = Y Ml In (1+ exp(EF
n? 2/3 _1/3
> (3rnp)?/3 (mympmg) /3.

—B)1r_ (k).

and

ﬁ2k2

with the Fermi level
Er =

The introduction of a non isotropic effective electronicana
(my, mp, mg) with this simplified relation between donor den-

The average current density (independenx @f the steady
state) is computed accordmg to the steady state formula

eh

Wh (k s\dy—=
1= b a / OO (kW8 (k)

with f defined in[(R).

(6)

Rescaling.

For a more flexible numerical treatment which can be adapted
to several kinds of semiconductors, and also in order toycarr
out the asymptotic analysis which has led to the reduced
model, the Schrodinger-Poisson system is better writtiéim w
dimensionless quantities and unknowns. The rescaled posi-
tion variablex = (x—a)/L, L = b— a, now lies in[0,1] and

the rescaled energies are giventby- E/Eg,V =V /Eg. The
nonlinear system with unknoW{], can be written

sity np andEr allows to adapt this model and the numerical The parameters equal

simulations to Si-Si@heterostructures like ifhl[9].
The out-of-equilibrium regime for Schrodinger-Poissgs-s

tem requires the introduction of the generalized eigenfunc

tions in order to describe the steady state density. Thannco
ing generalized eigenfunctiogs (k,x) are defined fok > 0

by

_%c?_;zE (kx)+ 7P (kx) =5+ (kx) forxeR,
Y (kx)=*+RKe "™ forx<a,
Y (kx)=T(keVEBX forx>b,

M2 (k%) + 1P (k%) = k2" (K, ),

+ transparent boundary conditionsat 0 or 1,
V(X) = B(X) + V(X) +V£L(X)
V5/(x) = Volig (X zvvJ ()
go(kK?) =B~ 1|n(1+eXP(B(1 k2)>) @)
9+(E)=go(E) and g (E)=go(E+B),

/ 0 ()" (k)2
* / oK B kxS,

kh h Er aL

2mE Lv2mE:’ P ket 0 Vg
4Tth2e

where the Bohr radius is defined as usag= Nt

Ill. THEORY AND APPLICATIONS

The reduced model is obtained after taking the limit
h — 0 in the system[7). This analysis has been carried out



completely in the series of articleés [12][18][11]. In theden

e tE=0whenE <0,

the reduced model consists in solving some simple collectio

of finite dimensional (the dimension equals the nunibexf

wells) nonlinear systems with constraints. In order to evrit
them, some notations are necessary. We simply give a brief
review of the theoretical results and their application.eTh

adaptation of this system in realistic situations when 0 is
0.1 or 0.3 has been explained with details inl[15].

Notations.

e Foragiven limitV = limp_oVJ , the potentiat; is the
corresponding filled (i.e. where the well§ have been
removed) potential

V() = B (X) + VoLigg (X) + V(X).

e Foranyj=1... N, (_alj()lgkng<+°° denotes the finite

collection of negative eigenvalues for the Schrodinge

operatorH; := —d?/dx? + W;(x), labelled in the in-
creasing order. The set of energiesis defined by

fj:{‘IN/(CJ)—Slj(,lgkng}. (8)

e The set of resonant energies is defined as Un-\‘:]_‘Zj .
e ForanyE € R, we set

B ={je{l...,N} st Ecgz}.

Whenj € JE, the wellc;j is called resonant at the energy

E.

e Finally, we set

cf :=mincj, cf:=maxc,
jeJE jedE
and simply
cE when cf =cF.

e and forE > 0,

{65>0:»t5:1,VjeJE, (10)

6rE>0:>t!5:0, vj € JE.

The above systenf](9) is actually a finite dimensional system
since the charges are asymptotically concentrated lika-del
functions and the potentisd is a piecewise affine function.
This asymptotic system restates the paradigm about resonan
heterostructures which says that the nonlinear effects are
governed by a finite number of resonant states. The quantum
mechanics is contained in the finite set of resonant energies
and also in the coefficientg which encodes the comparison
of the tunnel effects between the left- and right-hand sides
Consider the single well case for example: the coefficient
t1 vanishes when the tunnel effect at the resonant energie
is easier on the left-hand side than on the right-hand side,
equals 1 in the opposite case, and can take an arbitrary value
when the two tunnel effects have a comparable intensity. The
general rule[(JI0) given above is just an example of a possible
comparison. Things can be specified and are a bit more com-
plicated when the interaction of resonances is made pessibl
in the multiple well problem. On the basis of the theoretical
analysis carried out il [L41[13], a complete classificatias
been proposed if_[1L5] for the double well problem. Finally
note that the coefficients and the valugg; —g-)(0) can

be viewed as Lagrange parameters which takes arbitrary
value when some constraint about the Agmon distances
or the energies is saturated. Hence the finite dimensional
problem can be easily solved numerically in order to get
all the possible asymptotic solutions to the nonlinear feob

Adaptation.

The theoretical asymptotic analysis suggests that in thi li

h — 0 the quantum wells and the charges are concentrated at
some pointg;, i = 1,...,N. In realistic cases, the rescaling

given by

y
dag(X.y; @) = ‘/ v max{d(t),0} dt] .
X
For a resonant enerdgy < £, we set
8F :=dag(cE,1;7 —E) — dag(0,cE; v —E),
8F = dag(0,c5; ¥ — E) — dag(cF, 1,7 —E).
Asymptotic system.

The reduced model written for all the possible limitef ],
ash — 0 is written as a simple Poisson equation

=3 3 (tF (9+(E) —9-(E)) +9-(E)) &,
jed
= O’

EEE j

V(0) = V(1)

with the convention thatg, — g_)(0) can be any value in
[0,(g+ —g-)(0")] and where the coefficienl§ belong to
[0,1] and satisfy:

small but not very small. The asymptotic picture has to be
adapted in order to make the most suitable approximation for
the different quantities: Concentrated charges is a redden
approximation when the nonlinearity is not very strong &nd i
¢ is well chosen, but the comparison of the tunnel effect has
to be done with the exact sizes of the potential barriers:

e The resonances have imaginary parts (or resonances
width) of order e/" and give rise to very stiff varia-
tions of spectral quantities even whien- 0 is not very
small. This part of the asymptotic model (i.e. the sum
over the seflF) is kept.

e When the nonlinearity is not very strong in comparison
with the potential barrier (that i = Vy/Er > 1), a
good average position of the charge can be determined
via an interpolation method based on the Feynmann-
Hellman relation.

e The evaluation of the tunnel effects in the phase-
space involves the comparison of quantities looking like
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e A(/h and e#2(N/h |n order to make an accurate of Schrodinger equations and the accuracy of the density
comparison of two such quantities, the factdagh) are improved by refining the mesh of integration around
andAy(h) have to be computed accurately. In this casethe resonant energies. The convergence of the algorithm
the exact geometry of the potential barriers is taken intadepends strongly on the initial guess, especially whenraéve
account, that is they are computed with the exact nunonlinear solutions are possible. In particular, the hesis
merical value oh. phenomenon can be observed numerically. Solving the

system by increasing and then decreasing the applied
Details of these modifications of the asymptotic model haVEb)i/as dog) ngt provide t%\e same branch of sgolution pa%ter

been explained with details ii_[15] while checking at EVElYinitializing the Gummel algorithm within a continuation

step the relevancy of the approximations. method. Except with the extreme valuesByfthe numerical
solution after convergence for the previous value of the bia
is used as an initial guess for the Gummel algorithm. For
the extreme values @&, the nonlinear potential is initialized

. ] to the null potential. Compared with this, the numerical
In [15], a rather good numerical agreement with otheresolution of the reduced model provides at once all the

simulations for Ga-As in[[10] and for Si-SiOin [d] het- possible nonlinear solutions for a given bias and all the pos

erostructures was observed. The reduced model, aftjipie hranches of the bifurcation diagram when the biagsari
adaptation, allowed to understand clearly how the numierica

data influence the bifurcation diagrams of nonlinear steady,,, pie barrier Ga-As heterostructure.

states when the applied bias varies. For example the hysterg, [Ld], Pinaud did not observe the hysteresis phenomenon be

sis phenomenon appears clearly in a double barrier StRICtUE 5 se he took a symmetric double barrier. A simple change of
(one well) when the right-hand side barrier is larger than th e gize of the barriers leads to multiple nonlinear sohito

first one and not in the opposite case. Contrary to the genergle reduced model for a fixed bias, interpreted as an hystere-

numerical tests, the case when the two barriers have the samg c4se with respect to the variation of the bias. Let udlreca
size has to be avoided since the tunnel effects on both S'd%%me physical parameters:

are comparable, with fluctuations due to the nonlinearity

IV. STEADY STATES COMPUTATIONS

and the applied bias which cannot be easily determined @&.| o mass 067 Rel. permitivity 114
priori. In the double well problem (three barriers) a poksib Temperature 308 Height of barriers ~ BeV
nonlinear interaction of two resonant states, giving rise t ponor density 1% m-3 Fermi levelEx 0.054eV

a new branch of nonlinear steady states, was detected with
the reduced model although no such case had been presented

before. The numerical computations are carried out for 200 values of

. ) . ] ~_ the applied bia8 between &V and 025eV and the small
The comparison with the numerical solution of the initial h5rameter takes here the value

Schroddinger-Poisson system has two aims: 1) Verify accu-
rately the numerical agreement between the adapted reduced h=0.22,
model and the Schrodinger-Poisson system roughly obderve
in [L5] when the modelling and the numerical data are exactlyyhen the geometry of the potential is given by
the same (for example the nonlinear effects outside the het-
erostructure are not taken into account in the presentorersi Size of barriers % 10-%. 6x10-2m
of the reduced model contrary to the resultdin [10] ahd [)); ’
Check that the bifurcation diagrams observed in the reduced
model, with a great sensitivity to numerical data, can yetad!
produced with the far from equilibrium Schrodinger-Poiss Figurel2 gives the comparison of the I-V curves.
system.

The reduced resolution is compared with the direct resolu-
tion presented in[[10]. The direct resolution, considersd a
the reference, is performed as follows. The nonlinear gyste
@) is solved by using a Gummel iteration, proposed_if [17],
which corresponds to finding the solutigfjf* of the equation

Size of well 6x 1079 m.

x 10°

5
4k
3

I (Am™)

d2

new __,,old old ne
_WVNL =" exp(VNL — VN

-
T

. . Id . Id 0.1 0.15 0.2 0.25
for a given iteratev,”. The densityn®® is computed from B (eV)

the potentialV$|® by solving a large enough number of .

Schrodinger equations, appearinglih (7), in order to make a FIG. 2: Comparison of I-V curves for the two models.
accurate numerical integration with respect to kheariable

in the computation of the particle density. The number

2
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Two methods for solving the complete Schrddinger-Poissoithat there is a non trivial interaction of resonances. Such a
system have been tested: 1) a continuation method by increasase has already been presented_ih [15] for an Si8i&-

ing or decreasing the applied bias; 2) for any fixed biasi-init erostructure, but we can keep the same material as above with
ate the Gummel algorithm by the series of all possible nenlinthe same effect. The specific data of the device are given in
ear potentials solving the reduced model. Both methods gavEablel.

the same result. It is interesting to note that the hysteresi

. 3 . i H —9 —9 —9
effect detected via the asymptotic model appears in the con- ~ Size of barriers %10 o 5x 107,610 m
tinuation method: Only one part of the I-V curve is obtained Size of wells 6 104 m.
Donor density 51074 m-

by increasing or decreasing the bias (see[Big. 3).
TABLE I: Data for the Ga-As device.

x10
A . ] The reduced model leads to the bifurcation diagram given in
527 Figure[®, represented in terms of the two resonant energies
= e with respect to the applied bias (the highest resonant gierg
0 ‘ ‘ w w initially in the right-hand well).
0 0.05 0.1 0.15 0.2 0.25
B (eV)
x10°
OB 1
(},A4 3 N
;2— ? or ) i
= / & DW.
0 | I I I 0.05 _‘ .‘ .‘ .‘ ‘ .‘ .‘ -
o 0.05 01 B oV 0.15 0.2 0.25 0 0.02 0.04 0.06 Bo(gt\a/) 0.1 0.12 0.14 0.16
FIG. 3: Comparison of the |-V curves obtained via the cordiian FIG. 5: Bifurcation diagram of the reduced model.

method by increasing (top) or decreasing (bottom) the bias.

Two branches are possible when the resonances reach the
same value, either they cross or they remain together due to

grams is by looking at the resonant energy attached to a he nonlineqr effect for awide range of the l?ias. Actuglly we
nonlinear solution as a function of the applied bias. The firs KNOW that this picture is incorrect whért- 0 since crossings
picture of Figurd shows that the bifurcation diagrams ard!2Ve 10 be replaced by avoided crossings in 1D quantum me-
coherent although the hysteresis phenomena are slightly arfh2nical systems (although resonances can lead excelptiona
plified in the asymptotic model. The second picture of Figure® Nigher multiplicity Jordan blocks according fo[18)). ah

A shows the comparison for the biBs= 0.05eV of the real guestion is to know Wl"l'IC.h conflgu_ratlon of Figllle 6 is seldcte
nonlinear potential and the piecewise affine potential ef th PY the complete Schrodinger-Poisson system.

reduced model.

Another way to understand or compare the bifurcation dia

Ey Ey

EMwrt B ,  V atB=0.05eV
1T x10°
B
0.08 &,
15 Sl
0.06 R )
— = o S X
3 004 e o o OR*
> T 10 . o .
g 0.02 = " o
g g 3 o
w 0 » 5 "o °°~
o -
= o o+
0.02 3 .
-0.04 0
0 005 01 015 02 025 55 6 65 7 7.5 8
B(eV) position (m) 10°

FIG. 4. Comparison of the bifurcation diagram on tgsV curve
(left) of the nonlinear potential fd8 = 0.05eV (right).

FIG. 6: Two possibilities of nonlinear avoided crossings.

Double well Ga-As heterostructure.

With the same physical parameters (except the donor densifjhe computations on the full Schrodinger-Poisson system
and the geometry of the barriers) some cases have been testwtbw that both solutions coexist according to the predictio
with the reduced model with a double well (three barriers) soof the reduced model.
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Like in [d], the time dependent Schrodinger system is
solved by using a Crank-Nicholson scheme:

T 2mdy2

, + 200 (U0 k) + WK X))

i lIJn+l k.x *L|Jn kX 2 2
it Y 2 (g0 (k) + 9k X))

’>"0.15
g o1 1 where ™2 — 20" _ "2 andat is the time step, to-
gether with equatlon
1 BV = o,
] Vi) =Viit(b) =o0.

o5k - - . - - _ . J The Crank-Nicholson scheme comes with the transparent
B (eV) boundary conditions proposed hy|[19] and the initial cdpdit
WOk, x) = @(k,x), whereg(k,x) denotes the wave function at
FIG. 7: Top: Comparison of the complete bifurcation diagsaid- frequencyk corresponding to the solution & (7) for the initial
dle: Continuation according t8: 0eV — 0.16eV; Bottom: Con-  pias. The density™*(x) is computed from thep"(k, x)
tinuation both ways. using formulal). -
Several time-dependent simulations of the full Schroding
Poisson system have been carried out. Itis realized bylswitc
ing at timet = 0, the bias fronB=0eVtoB=0.08eV. The
The I-V curves are similar (see FIJ. 8). initial data are the one associated with the nonlinear gtead
state forB = 0 eV. Figurel® shows the variations with respect
to time of average density current calculated numerictly,

x10° x10°

0 0 the donor density 5 10°* m3. The average current den-
s I . sity J" at then-th time step is computed by using formula (6)
R R (such an expression makes sense within an adiabatic approxi
T ° e mation), where the stationary wave functions are replaged b
<y =y - theg‘(l_gg():
2 - 2| J
= / 009" (k X) UK, x)dx%
0 0 =~ .
0 0.05 B (oV) 0.1 0.15 0 0.05 B (oV) 0.1 0.15 m b a 21

FIG. 8: Comparison of the I-V curve given by the reduced model
(left) and by solving the complete Schrodinger-Poissosten R
(right).

9 Current w.r.t time
T

N

o_
o = »
}
LR 1

o i

Current density (Am™

The two model agree at the qualitative and quantitativel leve® " ! 2 Time () ° 3
althoth a Change by-@nm (a few atomic Iayers) of the last x10'® Charge densities in the first and second wells
barrier changes dramatically the bifurcation diagram @ th _"° ‘

reduced model. With its numerical efficiency, the reducec’: 4
model appears here as a good tool to detect rapidly the coi

figurations which lead to interesting nonlinear effects.

6

Density (

4 I I I I I

V. TIME DEPENDENT NONLINEAR DYNAMICS
FIG. 9: Evolution of the current and the charge densitiekénvtells.

When the barriers are well chosen, the double well problem
leads to a branch of nonlinear steady states with intergctin
resonant states. The theoretical analysis as well as the olfhe (damped) beating effect is even more obvious on the sec-
servation of the electron density for these nonlinear &mist  ond plot of Figurd®, which shows the time evolution of the
show that they are due to resonant states delocalized in botiharge concentrated in the first and second wells. The period
wells. The question is whether this can lead to some nonlineaf the oscillations and the damping time can be determined
beating effect. after applying a FFT analysis to the time dependent curves.



The damping time is determined after translating the time<ritical strength. Such a theoretical study would be valeiab
dependent curve by one peridge, the peak of the Fourier here but requires some heavy mathematical techniques.
transform is multiplied by e're/Taamp, The numerical com-

putation of the periodper Shows a good agreement with the

theoretical value fi/AE, whereAE denotes the gap (com- VI. CONCLUSION

puted numerically on the nonlinear steady state solutien) b

tween the two resonant energies, although the nonlinear ef- to comparison of the reduced model introduced in

fects should bring some correction on the time depende JEZIAZ]I[E] with the simulation of the complete

analysis. _This has_ bee_n done in Tgﬁle Il for several value chodinger-Poisson system confirms its ability to pretiet
of the doping density, without changing the other paranseter s rcation diagrams for far from equilibrium resonant 4un

The nonlinear effects increase when the donor density is INReling devices. Such a discussionfin[11] dnd [15] had ajread

creasing. explained in the single well problem which barrier configu-
— — ration could lead to hysteresis phenomena. Although arathe
Donor density 1) 2 (P9 Tper(P9  Taamp(PY  gtrong sensitivity to the geometry of the barriers, it akioes
10x 10 0.69 055 11 to design configurations for which resonant states of a @oubl
5x 1074 0.51 043 16 well system interact nonlinearly in a rather stable way. The
2x 10° 0.54 043 21 question is whether such nonlinear steady states or inahe tr
1x 107 0.5 043 26 sient regime such a nonlinear beating effect survive in amor

complete modelling taking into account the nonlinear affec
outside the barrier-well structure. In the time-dependient
ble well problem, the coupling of the oscillating dipole kit
the electromagnetic field could be of interest as well.

TABLE II: Theoretical periods and numerical values Bfer and
Taampfor several donor densities.

The frequency of the oscillations of ordeB6« 10~ 12scor-
responding to wavelengths of order #an makes the electro-
static description for such an oscillating charge relegartie Acknowledgments
nanometer scale. Note that the damping is increasing when
the nonlinear effects are stronger, in agreement with whati The authors would like to thank N. Ben Abdallah,
observed in some other models studied for exampl&_in [20]F. Mehats, O. Pinaud, P. Racec, O. Vanbésien, B. Vinter and
where the nonlinearity kills the beating effect after reaagra  U. Wulf for remarks and discussions about this work.
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