
Numerical analysis of nodal sets for eigenvalues of

Aharonov-Bohm Hamiltonians on the square

and application to minimal partitions
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Abstract

This paper is devoted to present numerical simulations and interpret theoretically
the results for determining the minimal k-partitions of a domain Ω as considered in [14].
More precisely using the double covering approach introduced by B. Helffer, M. and T.
Hoffmann-Ostenhof, M. Owen and further developed for questions of isospectrality by
the authors in collaboration with T. Hoffmann-Ostenhof and S. Terracini in [14, 4], we
analyze the variation of the eigenvalues of the one pole Aharonov-Bohm Hamiltonian
on the square and the nodal picture of the associated eigenfunctions as a function
of the pole. This leads us to discover new candidates for minimal k-partitions of
the square with a specific topological type and without any symmetric assumption,
contrary to our previous works [5, 4]. This illustrates also recent results of B. Noris
and S. Terracini, see [20, 21]. This finally supports or disproves conjectures for the
minimal 3 and 5-partitions on the square.

1 Introduction

1.1 Minimal partitions

For a given partition D of an open set Ω by k disjoint open subsets Di, we consider

Λ(D) = max
i=1,...,k

λ(Di) , (1.1)

where λ(Di) is the groundstate energy of the Dirichlet Laplacian on Di . We denote the
infimum of Λ over all k-partitions of Ω by

Lk(Ω) = inf
D∈Ok

Λ(D) . (1.2)

We look for minimal k-partitions, i. e. partitions D = (D1, . . . , Dk), such that

Lk(Ω) = Λ(D) .

We recall that these minimal k-partitions, whose existence was proven in [8, 10, 9], share
with nodal domains many properties of regularity, except that the number of half-lines
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meeting (with equal angle) at critical points of their boundary set can be odd [14]. Here
by critical points we mean points which are at the intersection of at least three distincts
∂Di’s. Moreover, it was shown in [14] that, if all these numbers are even, then the k-
minimal partition consists indeed of the k-nodal domains of some eigenfunction of the
Dirichlet Laplacian in Ω.

In [5], we have combined results of [14] and [15] with efficient numerical computations
to exhibit some candidates to be minimal 3-partitions for the square, the disk, . . . . This
approach was based on the assumption that the minimal 3-partition should inherit from
one of the symmetries of the domain. This permits a reduction to a more standard
spectral analysis and consequently can only give symmetric candidates. Using two different
symmetries of the square, we get the surprise of finding two candidates D1 and D2 with
Λ(D1) = Λ(D2) (' 66.581) and give numerical evidence that the unique critical point
for these partitions is at the center of the square. These candidates are represented in
Figure 1(a). This leads naturally to questions of isospectrality which were solved using the

(a) Candidates with different symmetries. (b) Asymmetric candidate.

Figure 1: Candidates for the minimal 3-partition of the square.

Aharonov-Bohm Hamiltonian with a singularity at the center of the square, see [4]. This
kind of arguments also appears in a similar context in [18] and [17]. Using this operator
could provide new asymmetric candidates for the 3-minimal partition (see Figure 1(b))
and it is one of the aims of this paper to exhibit them.

1.2 Aharonov-Bohm Hamiltonian

Let us recall some definitions and results about the Aharonov-Bohm Hamiltonian (for
short ABX-Hamiltonian) with a singularity at X introduced in [4, 12] and motivated by
the work of Berger-Rubinstein [2]. We denote by X = (x0, y0) the coordinates of the pole
and consider the magnetic potential with renormalized flux Φ

2π = 1
2 at X:

AX(x, y) = (AX1 (x, y), AX2 (x, y)) =
1
2

(
−y − y0

r2
,
x− x0

r2

)
. (1.3)

We know that the magnetic field vanishes identically in Ω̇X . The ABX-Hamiltonian is
defined by considering the Friedrichs extension starting from C∞0 (Ω̇X) and the associated
differential operator is

−∆AX := (Dx −AX1 )2 + (Dy −AX2 )2 with Dx = −i∂x and Dy = −i∂y. (1.4)

Let KX be the antilinear operator

KX = eiθX Γ ,
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with (x − x0) + i(y − y0) =
√
|x− x0|2 + |y − y0|2 eiθX , and Γ the complex conjugation

operator Γu = ū. We say that a function u is KX -real, if it satisfies KXu = u. Then
the operator −∆AX is preserving the KX -real functions and we can consider a basis of
KX -real eigenfunctions. Hence we only analyze the restriction of the ABX-Hamiltonian
to the KX -real space L2

KX
where

L2
KX

(Ω̇X) = {u ∈ L2(Ω̇X) , KX u = u } .

It was shown that the nodal set of such a KX -real eigenfunction has the same structure as
the nodal set of an eigenfunction of the Laplacian except that an odd number of half-lines
should meet at X. When no ambiguity exists, we omit sometimes the reference to X and
write more simply θ, K, L2

K , −∆A.

1.3 Main goals

Although we will come back to many of these points in the next sections let us comment
on some of the difficulties we met in this analysis.

As mentioned previously, we have proposed in [5] some symmetric candidates for the
minimal 3-partition. If we do not assume a priori symmetries for a minimal 3-partition, a
first method, inspired by [7], is to test the following iterative method (see [6]) :
Initialization. Let D0 = (D0

1, D
0
2, D

0
3) be a 3-partition of Ω.

Iteration. For n ≥ 1, we define the partition Dn = (Dn
1 , D

n
2 , D

n
3 ) by

• Dn
1 = Dn−1

3 ,

• (Dn
2 , D

n
3 ) is the nodal partition associated to the second eigenvector of the Dirichlet

Laplacian on Int(Ω \Dn
1 ).

If the algorithm converges to the partition D = (D1, D2, D3), then Λ(D) = λ1(D1) =
λ1(D2) = λ1(D3). The results obtained in [6] are at the moment puzzling. Depending on
the initial data, on the accuracy and on the form of the domain, all possible situations
occur: convergence to the candidate, no convergence, convergence to a non-minimal 3-
partition. The case of the equilateral triangle is very strange, the authors get indeed for
one of the model a convergence to a three-partition whose energy is clearly above the
expected energy, whose singular point is at the center of the symmetry and which is NOT
an eigenvalue of the Aharonov-Bohm Hamiltonian. Another method followed by [11] looks
also interesting but the paper does not give enough details for permitting an analysis of
its efficiency.

In any case, admitting that there exists a perfect good iterative numerical method,
it remains interesting on the mathematical level to see that the obtained candidate for
a minimal partition is (or is not) a nodal partition for some Hamiltonian. We will come
back to this question in the conclusion.

When working on this problem, we realize that we get as a by-product a nice illustration
of the general question of analyzing the deformations of the nodal sets and the transition
between different nodal structures when varying a parameter. There are actually very
few theoretical papers on this question and we also explain the role of the symmetries for
solving some questions of avoided crossings or effective crossings, see Section 5.3. This
question is very difficult to solve numerically.

We will push a numerical analysis associated with the ABX-Hamiltonians with several
goals:
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• Illustrate the fact that the two symmetric candidates (see Figure 1(a)) for minimal
3-partitions on the square belong actually to a continuous family of non necessarily
symmetric candidates (see Figure 1(b) and Figure 8).

• Check, by moving the pole X of the ABX-Hamiltonian, the conjecture that the
singular point of the minimal 3-partition of the square is at the center.

• Understand and illustrate the mechanism of deformation of the nodal set, and hence
extend or guess, in connection with recent papers of B. Noris and S. Terracini [20, 21],
some of the properties described in Berger-Rubinstein [2] and Helffer–M.-and-T.
Hoffmann-Ostenhof–Owen [12] for the ground state energy (see also [1]).

Finally, let us mention that an extended version of this paper, with more computations,
is available in [3]. We have chosen here to focus on the most interesting phenomena.

1.4 Organization of the paper

In Section 2, we explain how we implement the computations on the double covering of the
punctured square. In Section 3, we apply Courant’s theorem for comparing the eigenvalues
of the Dirichlet Laplacian on the square to the Aharonov-Bohm eigenvalues associated to
this puncturing. Section 4 analyzes the dependence of the eigenfunctions of the Dirichlet
Laplacian on the double covering with respect to the puncturing point. Section 5 is more
specifically devoted to the analysis of the behavior of the nodal sets and eigenvalues when
the poles belong respectively to the perpendicular bisector y = 1

2 , the diagonal y = x,
which correspond to cases when some symmetry of the square is respected in the punc-
turing. We treat also the case of the axis y = 1

4 + x
2 as an example of a generic situation.

Section 6 describes the possible applications of our analysis of nodal sets to the research
of minimal partitions with a given topological type. We conclude by the presentation of a
conjecture motivated by our computations.

Acknowledgements.
The authors would like to thank Thomas Hoffmann-Ostenhof, Luc Hillairet and Susanna
Terracini for useful discussions around this topics. We have been in particular stimulated
by successive versions of [20]. Discussions about numerics with François Alouges and
Grégory Vial were also very fruitful. G. Vial helps us moreover by realizing numerous
meshes for the computations and also for the detection of the nodal lines.
This paper has been partially written during the stay of the authors at the Erwin Schrödin-
ger Institute from May to July 2009 and the authors are grateful for the very good working
conditions and also for the fruitful discussions with other participants of the workshop on
Topics in Spectral Theory.

2 Numerical implementation

The ABX-Hamiltonian has a singularity at the poleX and the eigenfunctions are complex-
valued. For these reasons, we prefer to deal with the Dirichlet Laplacian on the double-
covering Ω̇RX whose eigenfunctions are real-valued. Some of these eigenfunctions, which
will be described below, are directly related with the KX -real eigenfunctions of the ABX-
Hamiltonian, as mentioned in [4, Section 6.3]. For the construction of the double covering,
we choose a simple line γX joining the pole to the boundary such that Ω \ γX is simply
connected. This path permits to go from one sheet to the other one.
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The numerical results were realized by using the Finite Element Library Mélina (see
[19]). The method is completely standard but the new idea is to work on the double
covering of a pointed domain. The computations consist only of the determination of the
eigenfunctions of a Dirichlet Laplacian on a double covering domain. Nevertheless, since
we are interested in the nodal lines of these eigenfunctions, computations have to be quite
accurate and we choose the package Mélina permitting the implementation of high order
elements.

The main point of the numerical part consists in meshing the double covering Ω̇RX of
the punctured domain Ω \ {X}. To do this, we use the two-dimensional mesh generator
Triangle (see [22]). Let us explain in more details how we proceed.
Let Ω be the square [0 , 1] × [0 , 1] and X be a point in [0 , 1

2 ] × [0 , 1
2 ]. We start with

meshing the domain Ω so that (see Fig. 2):

• the segment joining (0, 0) to the pole X, in red in Figure 2, does not go through any
element of the mesh,

• the segment [(0, 0);X] is the union of edges of an even number of triangles,

• the pole X is the vertex of some triangles.

Figure 2: Mesh of the double covering Ω̇RX .

This first mesh is essentially done for the first sheet and we repeat this mesh for the second
sheet. To obtain a mesh of the double covering Ω̇RX , we choose as a cutting line the segment
γX = [(0, 0);X] and we have to exchange the vertex along the segment [(0, 0);X] between
the first and second sheet. Then we remove the point X of the second sheet by equaling
it to the vertex X of the first sheet. For the numerics, X will be chosen on the lattice
P = {( i

100 ,
j

100), 1 ≤ i, j ≤ 50}.
Theoretically, the eigenvalues and eigenfunctions depend only on the pole and are

independent of the cut chosen for our construction. The introduction of the segment
[(0, 0);X] is only a technical point and we have verified that the numerical computations of
the eigenfunctions and eigenvalues are (with a rather good accuracy ∼ 10−3) independent
of the choice of the line joining the pole to the boundary, that is the line between the first
and second sheet. Many computations corresponding to two different choices of cutting
lines are available on the web page (see [6]):
http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions/covering.php

The computed eigenvalues are given all along this paper with an approximation at 5 · 10−4.
In the following, we use a P6 approximation with at least 6000 elements. To detect

the nodal lines, we use a program realized by G. Vial. The idea is that it is very easy to
compute the zero set of linear functions. In our case, we deal with a function which is
piecewise Pk and given by a finite element method. We know the values of this function
at some points. As soon as we have these values, we can replace this function by a
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new function which is piecewise linear. For this, we introduce some new points by an
interpolation method. Then we detect the zero set of this new function.

3 A few theoretical comparison theorems

3.1 Notation

We denote by Ω the square [0 , 1]× [0 , 1] and by C = (1
2 ,

1
2) the center of the square. We

compute the eigenfunctions of the Laplacian on the double covering Ω̇RX of Ω̇X = Ω \ {X}.
By a symmetry argument, it is enough to consider X = (x0, y0) in the quarter square
[0 , 1

2 ]× [0 , 1
2 ].

There are two ways of labelling the eigenvalues.
We can label it in the standard way and then denote by λk(Ω̇RX) the k-th eigenvalue of the
Dirichlet Laplacian on Ω̇RX .
We can also take account of the symmetry relative to the deck map DRX associating with
a given point in the covering the distinct point with same projection by the covering map
πRX of Ω̇RX onto Ω̇X . This splits the spectrum into two independent spectra relative to two
orthogonal spaces in L2(Ω̇RX).
The eigenvalues correspond

• either to eigenfunctions lifted from the eigenfunctions (of the Dirichlet Laplacian)1

on the square by the covering map (sometimes called DRX -symmetric because they
are symmetric with respect to the deck map),

• or to eigenfunctions which are DRX -antisymmetric with respect to the deck map. We
also call them ABX-eigenvalues because they can be seen as eigenvalues of an AB-
Hamiltonian with a pole X creating a renormalized flux equal to 1

2 . We shortly write
ABX-Hamiltonian if we want to make explicit the reference to the pole. We denote
by λABX

j = λAB
j (Ω̇X) the j-th eigenvalue of the AB-Hamiltonian with pole at X.

In consequence, for any poleX and any integer k, the eigenvalue λk(Ω̇RX) of the Dirichlet
Laplacian on the double covering is either an eigenvalue λj(Ω) of the square, either an
eigenvalue λABX

j of the AB-Hamiltonian on Ω̇X with pole at X.

3.2 Eigenvalues of the square

The eigenvalues of the square are well known and given by the double sequence π2(m2+n2)
with m ∈ N \ {0}, n ∈ N \ {0}, with corresponding basis of eigenfunctions given by

Ω 3 (x, y) 7→ φmn(x, y) := sin(mπx) sin(nπy) .

Labelling the eigenvalues in increasing order leads to the sequence denoted by λk(Ω) , k ∈
N∗. Table 1 gives the first eight eigenvalues and the nodal set of the associated eigenfunc-
tions belonging to the above basis. The second, fifth and seventh eigenvalues are double
and consequently, it is also natural to look at the nodal sets of linear combinations in order
to determine all the possible nodal configurations associated with this eigenvalue.

We notice that the DRX -symmetric spectrum of the Dirichlet Laplacian on the double
covering Ω̇RX is the spectrum of the square and is independent of the pole. This is a
consequence of the fact that the spectra of the Dirichlet Laplacian in Ω and Ω̇X are the

1We sometimes speak more shortly of spectrum of the square.
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Eigenvalues of the square (m,n)-labelling Nodal sets for φmn

λ1(Ω) = 2π2 ' 19.739 (1, 1)

λ2(Ω) = λ3(Ω) = 5π2 ' 49.348 (2, 1) , (1, 2)

λ4(Ω) = 8π2 ' 78.957 (2, 2)

λ5(Ω) = λ6(Ω) = 10π2 ' 98.696 (3, 1) , (1, 3)

λ7(Ω) = λ8(Ω) = 13π2 ' 128.305 (3, 2) , (2, 3)

Table 1: First eight eigenvalues of the Dirichlet Laplacian on Ω and nodal sets for the
associated basis φmn.

same, the puncturing point being of capacity 0. So it is more the ABX-spectrum which
is of interest because depending on the position of the pole. Nevertheless, the standard
labelling of all the eigenvalues on Ω̇RX can play a role when applying Courant’s theorem.
Of course we have λ1(Ω̇RX) = λ1(Ω).

3.3 Theoretical estimates of the eigenvalues

This subsection is concerned with the comparison between the spectrum on the square, the
spectrum on the double covering Ω̇RX and the ABX-spectrum. We propose some equalities
and upper bounds between the eigenvalues essentially based on the minimax principle and
on the Courant’s nodal theorem which is recalled now.

Theorem 3.1
Let k ≥ 1, λk(D) be the k-th eigenvalue for the Dirichlet Laplacian on D. Then any
associated eigenfunction has at most k nodal domains.

We would also apply this theorem for the KX -real eigenfunctions of the ABX-Hamiltonian
on Ω̇X . Equivalently, this corresponds to a Courant nodal theorem for the DRX -antisymme-
tric eigenfunctions on Ω̇RX , already discussed in [4]. Combination of the Courant nodal
theorem and Max-Min principle for the ABX-Hamiltonian leads to the following propo-
sition.

Proposition 3.2
Let X ∈ [0, 1

2 ]× [0, 1
2 ], then

λ1(Ω) = λ1(Ω̇RX) , λABX
1 = λ2(Ω̇RX) , λABX

2 = λ3(Ω̇RX) , (3.1)

and for k = 2, 4, 5, 7, 9, 11, there exists an integer `k such that

λABX
2 < λ2(Ω) = λ`2(Ω̇RX) with `2 ≥ 4 (with multiplicity at least 2) , (3.2)
λABX

3 ≤ λ4(Ω) = λ`4(Ω̇RX) with `4 ≥ 7 , (3.3)
λ5(Ω) = λ`5(Ω̇RX) with `5 ≥ 8, (3.4)

λABX
5 ≤ λ7(Ω) = λ`7(Ω̇RX) with `7 ≥ 12 , (3.5)

λ9(Ω) = λ`9(Ω̇RX) with `9 ≥ 14 , (3.6)
λABX

8 ≤ λ11(Ω) = λ`11(Ω̇RX) with `11 ≥ 19 . (3.7)

If X belongs to the perpendicular bisectors of the square, we have more accurately:

`4 = `4(X) ≥ 8 , (3.8)
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λABX
6 ≤ λ7(Ω) . (3.9)

Remark 3.3
The multiplicity of λ`(Ω) as eigenvalue of the Dirichlet Laplacian on Ω̇RX is of course
larger or equal to its multiplicity on Ω. This could permit to improve some inequalities
above when we can find for a given pole an eigenfunction u of the Dirichlet Laplacian on
Ω vanishing at the pole. The number of nodal domains of the lifted symmetric function on
the covering is then 2µ(u) instead of 2µ(u)−1 where µ(u) is the number of nodal domains
of u. To find this eigenfunction could be easier when the eigenspace is of higher dimension.
This appears for example for λ2(Ω).

Proof : Let us first prove (3.2). We first observe that, for any X ∈ [0 , 1
2 ]×[0 , 1

2 ], there
exists an eigenfunction uX of the Dirichlet Laplacian associated with λ2(Ω) and uX(X) =
0. We have just to look for uX of the form uX = αφ1,2+βφ2,1 with (α, β) 6= (0, 0) satisfying
αφ1,2(X) + βφ2,1(X) = 0 . By lifting on Ω̇RX , this gives a DRX -symmetric eigenfunction
uX ◦ πRX for the Dirichlet Laplacian on Ω̇RX with four nodal domains and associated with
λ2(Ω). Hence by Courant’s theorem, λ2(Ω) = λ`2(Ω̇RX) with `2 ≥ 4. To establish the first
inequality in (3.2), we consider the functions max(uX , 0) and max(−uX , 0), which span a
two-dimensional space in the form domain of the ABX-Hamiltonian for which the energy
is less than λ2(Ω). We can conclude by the minimax principle. It is easy to see that the
inequality is strict. Hence at this stage we also get (3.2).
Let us now prove (3.3). Using the three functions obtained by restriction to one nodal
domain of the function φ2,2 (then extended by 0) which does not contain X, we obtain a 3-
dimensional space of functions in the form domain of the ABX-Hamiltonian for which the
energy is less than λ4(Ω) (or a 4-dimension space ifX is on the perpendicular bisector to the
side of the square because we can in this case get a 4-dimensional space, see Remark 3.3).
We then conclude by the minimax principle. The relation with λ`4(Ω̇RX) is an application
of the Courant’s nodal theorem using the function φ2,2 ◦ πRX .
Relation (3.4) is a consequence of (3.3).
For (3.5), we can this time use the function φ3,2 which has at least 5 nodal domains not
containing X. For X on the perpendicular bisector, we get (3.9).
The function φ4,1 has at least 3 nodal domains not containing X. Using (3.5) and the
multiplicity of λ9(Ω), we obtain (3.6).
Using the function φ3,3 which has at least 8 nodal domains not containing X, we deduce
(3.7).
The lower bound for `7, `9 and `11 results immediately of the upper bounds of λABX

5 by
λ7(Ω) (hence by λ9(Ω)) and of λABX

8 by λ11(Ω) established in (3.5) and (3.7). 2

Lemma 3.4
The nodal set of the second KX-real eigenfunction uABX

2 consists of one line joining the
pole X to the boundary.

Proof :
We know from [12] that a piecewise regular line in the nodal set should join the pole X to
the boundary. Another piece in the nodal set should necessary create an additional nodal
domain which will lead to λ2 ≤ λABX

2 in contradiction to (3.2). 2

The inequality λABX
1 ≥ λ1(Ω) is of course a particular case of the diamagnetic inequal-

ity. We will observe on the pictures that the situation is much more complicate for the
excited states. Except in the case of additional symmetries where some monotonicity will
be proven, we have no theoretical results.
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Remark 3.5
We will see in Figures 11, 12 and 16, that the upper bounds (3.2), (3.3) and (3.5) in
Proposition 3.2 for the ABX-eigenvalues are optimal in the sense that we can find a pole
such that the upper bound is false with a smaller eigenvalue of the square.

4 Behavior of the eigenvalues on the double covering of the
punctured square, when moving the pole

In this section, we start to discuss the influence of the location of the puncturing point X
(or pole) on the topological structure of the nodal set of the first eigenfunctions.

4.1 Behavior when the pole tends to the boundary

It has been announced by B. Noris and S. Terracini [20, 21] that the k-th ABX-eigenvalue
of the punctured square tends to the k-th eigenvalue of the Dirichlet Laplacian on the
square as the pole tends to the boundary (see also [16] for connected results). They also
establish in [20] the continuity with respect to a pole and prove that X 7→ λABX

k is of
class C1 if λABX

k is simple. Because after a translation by X, we get a fixed operator with
moving regular boundary and fixed pole at (0, 0), the regularity is actually easy. These
results are illustrated in Figures 3–7 which represent the eigenvalues λk(Ω̇RX), k = 2, 3, 6, 7,
according to the location of the pole X ∈ P and Table 2 which gives the first 12 eigenvalues
of the Dirichlet Laplacian on Ω̇RX for three points X: one near the boundary denoted by
A, one at the center denoted by C and one other denoted by B.

n λn(Ω̇RA ) λn(Ω̇RB ) λn(Ω̇RC )
1 19.739 19.739 19.739
2 19.739 20.269 33.528
3 49.348 49.325 33.534
4 49.348 49.348 49.348
5 49.348 49.348 49.348
6 49.348 51.480 66.581
7 78.957 78.957 66.581
8 78.957 79.536 78.957
9 98.696 98.658 98.696
10 98.696 98.696 98.696
11 98.696 98.696 111.910
12 98.696 102.647 111.910

A

B

C

Table 2: First 12 eigenvalues of the Dirichlet Laplacian on Ω̇RA , Ω̇RB and Ω̇RC , with
A = ( 1

100 ,
1

100), B = ( 1
10 ,

2
5), C = (1

2 ,
1
2).

4.2 Eigenvalues 2 to 5

We observe numerically, see Figure 3, that for X ∈ P, the function X 7→ λ2(Ω̇RX) has a
global maximum, denoted by λmax2 for X = C and is minimal when X belongs to the
boundary x = 0 or y = 0. This minimum equals λ2(Ω). Moreover we do not observe
other critical points in P. Looking at Figure 4, we observe numerically that the function
X 7→ λ3(Ω̇RX) behaves conversely: it has a global minimum, denoted by λmin3 , for X = C
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and the maximum is reached at the boundary x = 0 or y = 0 and equals λ3(Ω). We have
monotonicity along lines joining a point of the boundary to the center C. Furthermore,
we notice that λmax2 = λmin3 .
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Figure 3: X 7→ λ2(Ω̇RX) for X ∈ P.
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Figure 4: X 7→ λ3(Ω̇RX) for X ∈ P.

Figure 5 gives the eigenvalues and the nodal lines of the eigenfunctions associated with
the second and third eigenvalues of the Dirichlet Laplacian on Ω̇RX on the first and second
lines respectively. The j-th column corresponds to the domain Ω̇RXj

with Xj = (1
5 ,

j
10),

j = 1, . . . , 5. These figures are illustration of the theory of Berger–Rubinstein [2] and
Helffer–Hoffmann-Ostenhof–Hoffmann-Ostenhof–Owen [12] (see also [1]). For the ground
state energy, we recover the theorem of these authors that the nodal set is composed of
a line joining the pole to the boundary. We observe that the nodal line in the first case
is choosing a kind of minimal distance between the pole and the boundary whereas the
nodal line in the second case seems to choose a kind of maximal distance. We do not have
a rigorous explanation for this property except that it should be related to the theorem
proved in [2, 12] that λABX

1 is the infimum over the Dirichlet eigenvalue of the Laplacian
in Ω \ γ where γ is a regular path joining the pole X to the boundary.

We also recover the two last equations in (3.1).
Using (3.2), we have proved that λ2(Ω) ≥ λ5(Ω̇RX). We observe numerically (see also

ahead Figures 11 and 12 for poles along a symmetry axis and Figure 16) that, for any
X ∈ P, we have

λ4(Ω̇RX) = λ5(Ω̇RX) = λ2(Ω) . (4.1)
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X = (1

5 ,
j
10), 1 ≤ j ≤ 5 .

4.3 Eigenvalues 6 and 7
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Figure 6: λ6(Ω̇RX), in function of the pole X ∈ P.
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Figure 7: λ7(Ω̇RX), in function of the pole X ∈ P.

Numerics shows that the 6-th eigenvalue λ6(Ω̇RX) is minimal at the boundary and has
a unique maximum λmax6 ' 66.581 reached for the pole at the center. We do not observe
other critical points. The 7-th eigenvalue λ7(Ω̇RX) is minimal when the pole is at the center
and its minimum λmin7 is equal to λmax6 . When the pole is at the center, the zero set of the
6-th eigenfunction provides, by projection, a candidate for a 3-partition and λmax6 is the
conjectured value for L3(Ω). We observe that the 7-th eigenvalue becomes constant equal

11



to λmax7 = λ4(Ω) = 8π2 as a function of the pole when the pole is close to the boundary.
This corresponds to a crossing when X approaches the boundary between the spectrum
of the square (i.e. the DRX -symmetric spectrum on the covering) and the X-dependent
ABX-spectrum (i.e. the DRX -antisymmetric spectrum on the covering Ω̇RX).
Applying relation (3.3), we have proved theoretically that λ4(Ω) ≥ λ7(Ω̇RX). We observe
numerically that this relation is optimal in the sense that we have equality for X close to
the boundary.

Considering the linear combination of the eigenfunctions u6 and u7 associated respec-
tively with λ6(Ω̇RC ) and λ7(Ω̇RC ), with C = (1

2 ,
1
2), we can construct a family of 3-partitions

with the same energy. Figure 8 gives the projection by πRC of the nodal set for the functions
tu6 + (1− t)u7 with t = k/8, k = 0, . . . , 8.

Figure 8: Continuous family of 3-partitions with the same energy.

It is interesting to discuss if we can prove the numerically observed inequality

λABX
3 ≥ λ2(Ω) . (4.2)

This is directly related to the conjecture proposed by S. Terracini2:

Conjecture 4.1
Except at the center X = C = (1

2 ,
1
2), λABX

3 is simple and the corresponding nodal set of
the KX-real eigenfunction is the union of a line joining the pole to the boundary and of
another line joining two points of the boundary.

We note indeed that if the conjecture is true, we will get (4.2) by the minimax principle.

4.4 Eigenvalues 8 to 10

Figures 9–10 represent the numerical computations of λ8(Ω̇RX) and λ9(Ω̇RX) for X ∈ P. We
observe numerically that the function X 7→ λ8(Ω̇RX) has a unique maximum denoted by
λmax8 at a point C1 on the diagonal and X 7→ λ9(Ω̇RX) reaches its unique minimum, λmin9 ,
at this point. We can recover this behavior on Figure 11 where are drawn the eigenvalues
for poles on the diagonal. Numerically, λmax8 = λmin9 and we come back to this equality
in Subsection 5 where we look at the nodal lines of the eigenfunctions associated with
λ8(Ω̇RX) and λ9(Ω̇RX) and predict the existence of the point C1, see Figure 14(a).

According to (3.8), we have proved that λ8(Ω̇RX) ≤ λ7(Ω). This theoretical upper bound
is rough and the numerics suggests that we have in fact the better bound λ8(Ω̇RX) ≤ λ5(Ω).
Moreover C1 is singular for the maps X 7→ λ8(Ω̇RX) and λ9(Ω̇RX).

We observe numerically that, for any X ∈ P, we have

λ10(Ω̇RX) = λ5(Ω). (4.3)

What we have proven in (3.4) is weaker.
2Personal communication
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Figure 9: X 7→ λ8(Ω̇RX) for X ∈ P.
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Figure 10: X 7→ λ9(Ω̇RX) for X ∈ P.

5 Moving the pole along symmetry axis

5.1 Analysis of the symmetries

Let us begin with some considerations about the ABX-Hamiltonian on the X-punctured
square, using the symmetry along the perpendicular bisector y = 1

2 or the diagonal y = x.
We refer to [4] for more details. The square is invariant under the symmetries

σ1(x, y) = (x, 1− y) and σ2(x, y) = (y, x).

We consider the antilinear operators

Σc
j = ΓΣj , j = 1, 2 ,

where Γ is the complex conjugation (Γu = u) and Σj is associated with σj by the relation
Σ1u(x, y) = u(x, 1− y) and Σ2u(x, y) = u(y, x).
We use the symmetry of the X-punctured square to give an orthogonal decomposition of
L2
K = L2

KX
:

L2
K = L2

K,Σj
⊕ L2

K,aΣj
, (5.1)

where

L2
K,Σj

= {u ∈ L2
K , Σc

ju = u }, and L2
K,aΣj

= {u ∈ L2
K , Σc

ju = −u }. (5.2)

As established in [4, Lemma 5.6], we can prove that:
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if X = (x0,
1
2):

• if u ∈ C∞(Ω̇X) ∩ L2
K,Σ1

, then its nodal set contains [0, x0]× {1
2},

• if u ∈ C∞(Ω̇X) ∩ L2
K,aΣ1

, then its nodal set contains [x0, 1]× {1
2},

if X = (x0, x0):

• if u ∈ C∞(Ω̇X) ∩ L2
K,Σ2

, then the nodal set of u contains {(x, x), 0 < x < x0} ,

• if u ∈ C∞(Ω̇X)∩L2
K,aΣ2

, then the nodal set of u contains {(x, x), x0 < x < 1} .

Dealing with a mixed Dirichlet-Neumann condition on the half-domain, we deduce that
the eigenvalues for which the eigenfunctions are symmetric are increasing with respect to
x0 , whereas the eigenvalues for which the eigenfunctions are antisymmetric are decreasing
with respect to x0.

5.2 Spectral variation

Figures 11 and 12 give the eigenvalues for poles along the axis y = 1
2 and y = x respectively

and 0 < x ≤ 1
2 . Poles are denoted by X(x) = (x, 1

2) and X̌(x) = (x, x). The below
mentioned symmetry (resp. antisymmetry) is in this section with respect to Σc

j (see (5.2))
and denoted by Σj (resp. aΣj) on the figures where j = 1 when we consider poles X(x)
and j = 2 for poles X̌(x).
Let us first mention some numerical observations available for these two configurations:

(a) limx→0 λ
ABX(x)
k = λk(Ω) and limx→0 λ

ABX̌(x)
k = λk(Ω).

(b) For any integer 0 ≤ k ≤ 3, λABC
2k+1 = λABC

2k+2 .

(c) x 7→ λ1(Ω̇RX(x)) and x 7→ λ1(Ω̇R
X̌(x)

) equal λ1(Ω), in adequation with the theoretical
result (3.1).

(d) x 7→ λ2(Ω̇RX(x)) = λ
ABX(x)
1 and x 7→ λ2(Ω̇R

X̌(x)
) = λ

ABX̌(x)
1 are strictly increasing

from [0 , 1
2 ] onto [λ1(Ω) , λABC

1 ] and the eigenfunctions are symmetric. The equality
between λ2(Ω̇RX) and λABX

1 was proved in (3.1).

(e) x 7→ λ3(Ω̇RX(x)) = λ
ABX(x)
2 and x 7→ λ3(Ω̇R

X̌(x)
) = λ

ABX̌(x)
2 are strictly decreas-

ing from [0, 1
2 ] onto [λABC

2 , λ2(Ω)] and the eigenfunctions are antisymmetric. The
equality between λ3(Ω̇RX) and λABX

2 was proved in (3.1).

(f) λ4(Ω̇RX) = λ5(Ω̇RX) = λ2(Ω), for X = X(x) or X = X̌(x). This numerical observation
is more accurate than the theoretical result deduced from (3.2): λ4(Ω̇RX) ≤ λ2(Ω).
This relation seems to be an equality for any X, see Subsection 4.2.

(g) x 7→ λ6(Ω̇RX(x)) = λ
ABX(x)
3 and x 7→ λ6(Ω̇R

X̌(x)
) = λ

ABX̌(x)
3 are strictly increasing

from [0 , 1
2 ] onto [λ3(Ω) , λABC

3 ] and the eigenfunctions are symmetric.

Once the symmetry is admitted, the monotonicity results directly of a domain mono-
tonicity.

Let us now discuss properties specific to each symmetry.
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Spectral variation for poles along the axis y = 1
2 .

We observe that when X(x) = (x, 1
2), x 7→ λ

ABX(x)
k is monotonically increasing for k =

1, 3, 5, whereas it is decreasing for k = 2, 4.
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Figure 11: Moving the pole along the axis y = 1/2.

We introduce Aj = X(aj), Bj = X(bj) specific points which can be seen on Figure 11. We
observe numerically:

(h1) x 7→ λ7(Ω̇RX(x)) = λ
ABX(x)
4 is strictly decreasing from [0, 1

2 ] onto [λABC
4 , λ4(Ω)] and

the eigenfunctions are antisymmetric.

(i1) λ8(Ω̇RX(x)) = λ4(Ω). We have proved in (3.8) that λ8(Ω̇RX(x)) ≤ λ4(Ω) and we observe
that this upper bound is actually an equality. We notice that there is a gap between
λ4(Ω) and λ5(Ω) where there is no eigenvalue λk(Ω̇RX) for X on the perpendicular
bisector. This observation is no more true for poles on the diagonal (see Figure 12).

(j1) λ9(Ω̇RX(x)) = λ10(Ω̇RX(x)) = λ5(Ω).

(k1) x 7→ λ11(Ω̇RX(x)) = λ
ABX(x)
5 is strictly increasing from [0, 1

2 ] onto [λ5(Ω) , λABC
5 ] and

the eigenfunctions are symmetric. This observation shows that the theoretical upper
bound λ11(Ω̇RX) ≤ λ7(Ω) deduced from (3.5) can not be improved.

(l1) x 7→ λ12(Ω̇RX(x)) = λ
ABX(x)
6 is strictly increasing from [0 , a1] onto [λ6(Ω) , λABA1

6 ]
and the eigenfunctions are symmetric. It is strictly decreasing from [a1 ,

1
2 ] onto

[λABC
6 , λABA1

6 ] and the eigenfunctions are antisymmetric. This illustrates theoret-
ical result deduced from (3.9): λ12(Ω̇RX(x)) ≤ λ7(Ω) and shows that this result is
optimal.
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(m1) x 7→ λ13(Ω̇RX(x)) = λ
ABX(x)
7 is strictly decreasing from [0 , a1] onto [λ7(Ω) , λABA1

7 ]
and the eigenfunctions are antisymmetric. It is strictly increasing from [a1 ,

1
2 ]

onto [λABC
7 , λABA1

7 ] and the eigenfunctions are symmetric. We observe then that
λ13(Ω̇RX) can be bounded from above by λ7(Ω) whereas we have proved in (3.6) the
upper bound by λ9(Ω).

(n1) λ14(Ω̇RX(x)) equals λ8(Ω) on [0 , b1] . It equals λABX(x)
8 on [b1 , 1

2 ] and is strictly
decreasing from [b1 , 1

2 ] onto [λABC
8 , λ8(Ω)] with antisymmetric eigenfunctions.

(o1) λ15(Ω̇RX(x)) = λ8(Ω).

Spectral variation for poles along the axis y = x.
Figure 12 gives the eigenvalues for poles along the diagonal line of the square x = y with
0 < x ≤ 1/2.
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Figure 12: Moving the poles on the diagonal.

We introduce Cj = X̌(cj), Dj = X̌(dj) specific crossing points appearing on the figure.
Then, we observe:

(h2) x 7→ λ7(Ω̇R
X̌(x)

) equals λ4(Ω) on [0 , d1] and λ
ABX̌(x)
4 on [d1 ,

1
2 ] where it is strictly

decreasing onto [λABC
4 , λ4(Ω)] and the eigenfunctions are antisymmetric. This nu-

merical computations show that the theoretical estimate λ7(Ω̇RX) ≤ λ4(Ω), deduced
from (3.3) is optimal.

(i2) λ8(Ω̇R
X̌(x)

) equals λABX̌(x)
4 on [0 , d1] and λ4(Ω) on [d1 ,

1
2 ]. It is strictly increas-

ing from [0 , c1] onto [λ4(Ω) , λ4(Ω̇RC1
)] with symmetric eigenfunctions and strictly

decreasing from [c1 , d1] onto [λ4(Ω) , λ4(Ω̇RC1
)] with antisymmetric eigenfunctions.

This illustrates that (3.4) is optimal.
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(j2) λ9(Ω̇R
X̌(x)

) equals λABX̌(x)
5 on [0 , d2] and λ5(Ω) on [d2 ,

1
2 ]. It is strictly decreasing

from [0 , c1] onto [λ4(Ω̇RC1
) , λ5(Ω)] with antisymmetric eigenfunctions and strictly

increasing from [c1 , d1] onto [λ4(Ω̇RC1
) , λ5(Ω)] with symmetric eigenfunctions.

(k2) λ10(Ω̇R
X̌(x)

) = λ5(Ω) .

(l2) x 7→ λ11(Ω̇R
X̌(x)

) equals λ5(Ω) on [0 , d2] and λ
ABX̌(x)
5 on [d2 ,

1
2 ] where it is strictly

increasing onto [λ5(Ω) , λABC
5 ] and the eigenfunctions are symmetric. This illustrates

the fact that relation (3.5) is optimal.

(m2) x 7→ λ12(Ω̇R
X̌(x)

) = λ
ABX̌(x)
6 is strictly increasing from [0, c2] onto [λ6(Ω) , λABC2

6 ]

and the eigenfunctions are symmetric. It is strictly decreasing from [c2 ,
1
2 ] onto

[λABC
6 , λABC2

6 ] and the eigenfunctions are antisymmetric.

(n2) x 7→ λ13(Ω̇R
X̌(x)

) = λ
ABX̌(x)
7 is strictly decreasing from [0 , c2] onto [λ7(Ω) , λABC2

7 ]

and the eigenfunctions are antisymmetric. It is strictly increasing from [c2 ,
1
2 ] onto

[λABC
7 , λABC2

7 ] and the eigenfunctions are symmetric. We then observe λ13(Ω̇R
X̌(x)

) ≤
λ7(Ω) whereas we have proved the weaker upper bound by λ9(Ω) in (3.6).

(o2) λ14(Ω̇R
X̌(x)

) equals λ7(Ω) on [0 , d3]. It equals λABX̌(x)
8 on [d3 ,

1
2 ] and is strictly

decreasing from [d3 ,
1
2 ] onto [λABC

8 , λ8(Ω)] with antisymmetric eigenfunctions.

(p2) λ15(Ω̇R
X̌(x)

) = λ8(Ω).

5.3 Exchange of symmetry and crossing points

When moving the pole on one bisector or one diagonal, and for each eigenvalue of multi-
plicity 1, the corresponding KX -real eigenfunction should be either symmetric or antisym-
metric with respect to Σc

j . Figure 11 suggests that there exist two poles A1 = (a1,
1
2) and

A2 = (a2,
1
2) on the perpendicular bisector such that λ12(Ω̇RA1

) and λ16(Ω̇RA2
) are eigen-

values of multiplicity 2. Taking the Aharonov-Bohm point of view, this corresponds to a
crossing between λ

ABX(x)
6 and λ

ABX(x)
7 for x = a1, with a1 ∈ ] 42

100 ,
43
100 [ and to a crossing

between λ
ABX(x)
8 and λ

ABX(x)
9 at x = a2, with a2 ∈ ] 28

100 ,
29
100 [. The nodal sets of the

corresponding eigenfunctions are given in Figure 13. The first line gives the eigenvalues
λABX

6 , λABX
8 and the associated nodal sets, and the second line λABX

7 , λABX
9 and the

corresponding nodal set for X along the perpendicular bisector and close to A1, A2.
Figure 12 suggests that there are 3 points, C1, C2 and C3 on the diagonal such that
λ8(Ω̇RC1

), λ12(Ω̇RC2
) and λ16(Ω̇RC3

) are eigenvalues of multiplicity 2. This corresponds to a

crossing between λ
ABX̌(x)
4 and λ

ABX̌(x)
5 at x = c1, with c1 ∈ ] 28

100 ,
29
100 [. Similarly, there is

a crossing between λABX̌(x)
6 and λABX̌(x)

7 at x = c2, with c2 ∈ ] 36
100 ,

37
100 [, and also between

λ
ABX̌(x)
8 and λ

ABX̌(x)
9 at x = c3, with c3 ∈ ] 23

100 ,
24
100 [. The nodal set of the corresponding

eigenfunctions are given in Figures 14.
Looking at Figures 13 and 14, we can verify that there exists an exchange of symmetry3

predicting the existence of the points Aj and Cj .

3Look at the horizontal or diagonal nodal line joining the pole to the boundary!
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(a) k = 6, 7 for poles X = ( i
100

, 1
2
), i = 42, 43.

149.568 149.077

150.454 151.106

(b) k = 8, 9 for poles X = ( i
100

, 1
2
), i = 28, 29.

Figure 13: Change of symmetry on the nodal sets associated with λ
ABX(x)
k .
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(a) k = 4, 5 for poles X =
( i
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, i
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), i = 28, 29.
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(b) k = 6, 7 for poles X =
( i
100

, i
100

), i = 36, 37.

149.708 151.033

154.785 151.601

(c) k = 8, 9 for poles X =
( i
100

, i
100

), i = 23, 24.

Figure 14: Nodal set for the eigenfunctions associated with λABX
k

5.4 Nodal deformation: an example

Figure 15 gives the deformation mechanism for the nodal set associated with the fifth
eigenvalue of the ABX-Hamiltonian for poles X = ( i

100 ,
1
2), 1 ≤ i ≤ 50, on the perpendic-

ular bisector of one side of the square. Between the fourth and fifth subfigures, we have a
nodal structure where there are two double points at the boundary.

98.696 98.696 100.109 109.942 111.136 111.754 111.862 111.910

Figure 15: Nodal set for the 5-th eigenfunction of the AB-Hamiltonian with poles X =
( i

100 ,
1
2), i = 1, 7, 30, 42, 43, 44, 45, 49.
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5.5 Moving the pole without respecting the symmetries of the square

Figure 16 gives the eigenvalues λk(Ω̇RX) for 1 ≤ k ≤ 12 when the pole X belongs to the line
y = 1

4 + x
2 . We choose this axis to exhibit a case without symmetry and we notice that the

AB-eigenvalues λABX
k are no longer monotone with respect to x when X = (x, 1

4 + x
2 ).

The result should be the same for any arbitrary line (except the perpendicular bisector
and the diagonal). We choose to present the simulations for this line because this line
contains enough points in P to use the previous numerical computations.
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Figure 16: Moving the pole along the axis y = 1
4 + x

2 , 0 ≤ x ≤ 1
2 .

It would be interesting to make computations for a finer grid of X = (x, 1
4 + x

2 ) for x
around 0.44 to detect possible crossings between λABX

5 , λABX
6 and λABX

7 .

6 Nodal sets and minimal partitions

The analysis of λABX
5 and λABX

6 leads us to guess numerically the existence of a double
eigenvalue when X is the center. As for the pairs λABX

3 and λABX
4 which lead us to the

family of candidates for the minimal 3-partitions of the square (see Subsection 4.3), we
are led to produce a candidate for a minimal 5-partition for the square, with the property
that it is minimal inside the class of 5-partitions which can be lifted to Ω̇RC . Although
λABC

5 = λ11(Ω̇RC ) is not Courant-sharp4 for the Dirichlet Laplacian on Ω̇RC , we observe
that it is Courant-sharp for the ABC-Hamiltonian.
This time, neither numerics nor theory is giving the existence of a continuous family of
5-partitions. Actually, one knows from elementary results on the perturbation of harmonic
polynomials of order 2 that the perpendicular crossing of two lines will generically disap-
pear by perturbation.

4The index is 11 and not 10.
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In the unit ball of the 2-dimensional eigenspace of λ11(Ω̇RC ) we only find four eigenfunc-
tions leading to four distinct configurations whose projection on one sheet has five domains.
These eigenfunctions are symmetric or antisymmetric with respect to one of the four bi-
sectors of the square (see Figure 17). The other configurations seem to have (see below)
four symmetric (for the deck map) pairs of domains. Looking at the linear combination
tu11 + (1− t)u12 of the eigenfunction associated with λ11(Ω̇RC ) and λ12(Ω̇RC ), we observe in
Figure 17 that the triple point is very unstable and only appears for t ' 96

200 and t ' 194
200

when we consider 0 ≤ t ≤ 1.

Figure 17: Nodal sets of the linear combination of u11 and u12

tu11 + (1− t)u12 with t = 1
200(0, 25, 55, 96, 125, 138, 175, 194, 200).

Of course it is interesting to compare with what can be obtained by looking at other
topological types for the minimal 5-partitions. We recall that these types can be classified
by using Euler formula (see [13] for the case of 3-partitions). Inspired by [11], we look for
a partition which has the symmetries of the square and four critical points. We get two
types of models and using the symmetries, we can reduce to a Dirichlet-Neumann problem
on a triangle corresponding to the eighth of the square (see Figure 18 where we impose
Neumann conditions on dashed lines). Moving the Neumann boundary on one side like in

Figure 18: Dirichlet-Neumann problem on the eighth of the square.

[5] leads to two candidates. Numerical computations demonstrate a lower energy in one
case which coincides with one of the pictures in [11] (see Figure 19).

λ11(Ω̇RX) = 111.910 λDN2 = 104.294 λDN2 = 131.666

Figure 19: Three candidates for the 5-partition of the square.

Remark 6.1
Note that in the case of the disk a similar analysis leads to a different answer. The
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partition of the disk by five halfrays with equal angle has a lower energy than the minimal
5-partition with four singular points (see Figure 20). We note that, on the basis of standard
computations (see for example (A1) and (A5) in [14], Appendix A) this energy corresponds
to the eleventh eigenvalue of the Dirichlet problem on the double covering on the punctured
disk (hence is not Courant-sharp) but corresponds to the fifth eigenvalue of the Aharonov-
Bohm spectrum on the punctured disk at the center. Hence it is Courant-sharp in the sense
developed in [15] (for the sphere) and it shows the minimality of this 5-partition inside the
class of the 5-partitions of the disk having a unique critical point which is, in addition, at
the center.

104.367 110.832

Figure 20: Two candidates for the 5-partition of the disk.

7 Conclusion

We have explored rather systematically how minimal partitions could be obtained by
looking at nodal domains of a problem on the double covering of a punctured square. We
have analyzed the behavior of the nodal set when moving the pole in the square. This has
permitted to confirm the status of “main” candidate for some 3-partitions in the case of the
square. This has also permitted to exhibit a natural candidate for a minimal 5-partition
which finally appears to be less favorable than another partition with four critical points.
This is a starting point for a program which can be developed in at least two directions:

• analyze other domains,

• do the same work by considering the double covering of a multi-punctured domain
and moving the poles.

This program is related to the following conjecture

Conjecture 7.1 Let Ω be a simply connected open set of R2,

Lk(Ω) = inf
`∈N

inf
X1,...,X`

LAB
k (Ω̇X1,...,X`

) .

Here, for ` distinct points X = (X1, . . . , X`) in Ω, LAB
k (ΩX1,...,X`

) is defined as follows.
First we can extend our construction of an Aharonov-Bohm Hamiltonian in the case of
a configuration with ` points (putting a (renormalized) flux 1

2 at each of these points).
We can also construct (see [12]) the antilinear operator KX and consider the KX-real
eigenfunctions. LAB

k (Ω̇X1,...,X`
) denotes the smallest eigenvalue of the AB− (X1, . . . , X`)

Hamiltonian for which there is an eigenfunction with k-nodal domains.
Let us present a few examples to illustrate the conjecture. When k = 2, there is no need
to consider punctured Ω’s. The infimum is obtained for ` = 0. When k = 3, it is possible
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to show that it is enough, to minimize over ` = 0, ` = 1 and ` = 2. In the case of the disk
and the square, it is proven that the infimum cannot be for ` = 0 and we conjecture that
the infimum is for ` = 1 and attained for the punctured domain at the center. For k = 5,
in the case of the square, it seems that the infimum is for ` = 4 and for ` = 1 in the case
of the disk.
Let us explain very briefly why this conjecture is natural. Considering a minimal k-
partition, we denote by X1, . . . , X` the critical points of the partition corresponding to
an odd number of meeting half-lines. Then we suspect that Lk(Ω) = λAB

k (Ω̇X1,...,X`
)

(Courant-sharp situation). Conversely, any family of nodal domains of an Aharonov-
Bohm operator on Ω̇X1,...,X`

corresponding to LAB
k gives a k-partition. Using the Euler

formula, see [13], we obtain easily that the maximal number of critical points with an odd
number of meeting half-lines ` is bounded from above by 2k − 3.

In other words, when the minimal partition is not nodal, we conjecture that it is
actually the projection of a nodal partition of suitable eigenfunction on the double covering
for a suitable puncturing X.
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