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Abstract

The spectral analysis of Aharonov–Bohm Hamiltonians with flux 1
2 leads

surprisingly to a new insight on some questions of isospectrality appearing
for example in Jakobson et al (2006 J. Comput. Appl. Math. 194 141–55) and
Levitin et al (J. Phys. A: Math. Gen. 39 2073–82) and of minimal partitions
(Helffer et al 2009 Ann. Inst. H. Poincaré Anal. Non Linéaire 26 101–38). We
will illustrate this point of view by discussing the question of spectral minimal
3-partitions for the rectangle
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. We will

describe a possible mechanism of transition for increasing a
b

between these
nodal minimal 3-partitions and non-nodal minimal 3-partitions at the value√

3
8 and discuss the existence of symmetric candidates for giving minimal 3-

partitions when
√

3
8 < a

b
� 1. Numerical analysis leads very naturally to nice

questions of isospectrality which are solved by the introduction of Aharonov–
Bohm Hamiltonians or by going on the double covering of the punctured
rectangle.
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1. Introduction

In continuation of [19], we have analyzed in [20] the question of minimal 3-partitions for
the disc and introduced new tools for this partially successful analysis. In the same spirit,
we discuss here the similar question for the rectangle Ra,b := ]− a

2 , a
2

[ × ]− b
2 , b

2

[
, with

0 < a � b. For a given partition5 D of an open set � by k open subsets Di , we can consider

�(D) = max
i=1,...,k

λ(Di), (1.1)

where λ(Di) is the ground-state energy of the Dirichlet Laplacian on Di . We denote the
infimum on every k-partitions of � by

Lk(�) = inf
D∈Ok

�(D). (1.2)

We look for minimal k-partitions, that are partitions such that Lk(�) = �(D).
It has been observed in [19] that, when 0 < a

b
<

√
3
8 the minimal 3-partition is given
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In the case when
√

3
8 < a

b
� 1, we can show as for the disc, see [8], that L3(Ra,b)

is not an eigenvalue. Indeed, the second and third eigenvalues λ2(Ra,b) and λ3(Ra,b)

correspond to eigenfunctions with two nodal domains and the fourth one satisfies λ2(Ra,b) �
λ3(Ra,b) < λ4(Ra,b). By theorem 2.3 below, see [19] for the proof, L3(Ra,b) cannot be an
eigenvalue and hence the associated minimal partition cannot be nodal.

We will describe in section 4 a possible mechanism of transition for increasing a
b

between these nodal minimal 3-partitions and non-nodal minimal 3-partitions at the value√
3
8 and discuss the existence of symmetric candidates for giving minimal 3-partitions

when
√

3
8 < a

b
� 1 in sections 6 and 7.

We can exhibit numerically some candidates for the minimal 3-partition using symmetry.
Assuming that there is a minimal partition which is symmetric with respect to the axis
{y = 0}, and intersecting the partition with the half-square

]− 1
2 , 1

2

[× ]
0, 1

2

[
, one is reduced to

analyzing a family of Dirichlet–Neumann problems. Numerical computations6 performed by
V Bonnaillie-Noël and G Vial (in January 2006) lead to a natural candidate D for a symmetric
minimal partition (see figure 1(a)). We observe numerically that the three lines of N(D) (i.e.,
the interior boundary of the subdomains Di of the partition, see definition (2.4)) meet at the
center (0, 0) of the square. As expected by the theory they meet at this critical point with equal
angle 2π

3 and meet the boundary orthogonally. This choice of symmetry is not unique. By
exploring numerically the possibility of a minimal partition with another symmetry (diagonal),
we get the surprise of finding another candidate Dnew with �(Dnew) = �(D) (see figure 1(b)).

This leads very naturally to nice questions of isospectrality which are solved using
Aharonov–Bohm Hamiltonians or by going on the double covering of the punctured rectangle.
Sections 5 and 6 concern these questions.

This paper is organized as follows:
In section 2, we recall some notation and properties concerning the nodal partitions.
In section 3, we start with the analysis of the rectangle based on the results of [19] and

enumerate in particular all the possible Courant-sharp situations. There appears the limiting
case a

b
=

√
3
8 detailed in section 4 in which a mechanism is proposed which explains the

transition between the nodal 3-partition and the non-nodal one.

5 See the next section for precise definitions.
6 See http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions/.
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(a) First candidate D (b) Second candidate Dnew

Figure 1. Candidates for the minimal 3-partition of the square.

Motivated by the numerical simulations for the square we find two candidates for the
minimal 3-partition with the same energy. We analyze in section 5 the Aharonov–Bohm
Hamiltonian and give some isospectral properties for rectangles. This theory is applied in
section 6 to explain numerical simulations for the minimal 3-partitions on the square. The paper
ends in section 7 with some heuristics on the deformation of symmetric minimal partitions
corroborated with numerical simulations for rectangles

]− επ
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2

[ × ]−π
2 , π

2

[
from ε =

√
3
8

to ε = 1.
Some of the results have been announced in [17].

2. Definitions, notation and previous results

As in [19] (see also [20]), we consider the Dirichlet Laplacian on a bounded domain � ⊂ R
2,

which is piecewise C∞. We denote, for any open domain D, the lowest eigenvalue of the
Dirichlet realization H(D) of −� in D by λ(D). For any function u ∈ C0

0(�), we introduce

N(u) = {x ∈ � | u(x) = 0} (2.1)

and call the components of �\N(u) the nodal domains of u. The number of nodal domains
of such a function is denoted by μ(u).

We now recall the main definitions and results concerning spectral minimal partitions and
refer to [19] for proofs and details. For k � 1 (k ∈ N), we call a k-partition of � a family
D = {Di}ki=1 of pairwise disjoint open domains in �. Such a partition is called strong if

Int
(∪k

i=1Di

)∖
∂� = �. (2.2)

We denote by Ok the set of such partitions. Notations (1.1) and (1.2) are now precisely
defined. D is called a (spectral)7 minimal k-partition if Lk(�) = �(D) and a nodal minimal
k-partition if D consists of the nodal domains of an eigenfunction of H(�).

To each strong partition D we associate a graph G(D) in the following way:
We say Di,Dj ∈ D are neighbors, and we denote this by Di ∼ Dj , if

Int(Di ∪ Dj)\∂� is connected. (2.3)

We associate with each Di ∈ D a vertex vi and for each pair Di ∼ Dj an edge ei,j . This
defines a planar graph G(D). We say that the partition is admissible if the corresponding
graph is bipartite. We recall that a nodal partition is always admissible.

Attached to a partition D, we can associate a closed set N ∈ � defined by

N(D) =
⋃

i

(∂Di ∩ �). (2.4)

7 We will omit the word spectral.
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This leads us to introduce the set M(�) of regular closed sets N.

Definition 2.1. A closed set N ⊂ � belongs to M(�) if N satisfies the following:

(i) There are finitely many distinct xi ∈ � ∩ N and associated positive integers ν(xi) � 3
such that, in a sufficiently small neighborhood of each xi, N is the union of ν(xi) smooth
arcs (non-self-crossing) with one end at xi and such that in the complement of these points
in �,N is locally diffeomorphic to a regular curve. The set of these critical points of N
is denoted by X(N).

(ii) ∂�∩N consists of a finite set of points zi such that at each zi, ρ(zi) arcs hit the boundary
with ρ(zi) � 1. We denote the set of critical points of N ∩ ∂� by Y (N).

(iii) N has the equal angle meeting property, i.e. the arcs defining N\(X(N) ∪ Y (N)) meet
with equal angles at each xi ∈ X(N) and also with equal angles at the zi ∈ Y (N). For
the boundary points zi we mean that the two arcs in the boundary are included.

Hence the regular sets share with nodal sets all their standard properties except at isolated
critical points where they have only8 the equal angle meeting property.

A partition D is called regular if the corresponding N(D) is regular. Let us now recall the
main theorems.

Theorem 2.2. For any k there exists a minimal regular strong k-partition and any minimal
k-partition admits a representative which is regular and strong.

The existence of a minimal regular strong partition has been shown9 by Conti–Terracini–
Verzini in [13–15], while the second part of the theorem has been shown in [19].

In the following, we always consider the regular representative without mentioning it
explicitly. We have now the following converse theorem (see [19]).

Theorem 2.3. Assume that there is a minimal admissible k-partition. Then this partition is
associated with the nodal set of an eigenfunction corresponding to Lk(�).

This result was completed in [19] in relation with the Courant-sharp property. We recall that
if u is an eigenfunction of the Dirichlet Laplacian in � attached to the kth eigenvalue λk , then
Courant’s theorem says that the number of nodal domains μ(u) satisfies μ(u) � k. Pleijel’s
theorem says that, when the dimension is � 2, then the previous inequality is strict for k large.

As in [2], we say that u is Courant sharp if μ(u) = k. For any integer k � 1, we denote
by Lk(�) the smallest eigenvalue for which the eigenspace contains an eigenfunction with k
nodal domains. In general we have

λk(�) � Lk(�) � Lk(�). (2.5)

The next result of [19] gives the full picture of the equality cases:

Theorem 2.4. If Lk(�) = Lk(�) or λk(�) = Lk(�), then

λk(�) = Lk(�) = Lk(�).

In addition, any minimal (regular) k-partition is a nodal partition corresponding to an
eigenfunction associated with λk(�).

As a consequence of Euler’s formula, we have described in [20] the possible topological
types of a non-admissible minimal 3-partition of a connected regular open set.

8 We do no longer assume that the number of lines arriving at a critical point is even.
9 See also [17] and [12].
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(a) (b) (c)

Figure 2. The three configurations (a), (b) and (c), with an additional symmetry with respect to
the x-axis.

Proposition 2.5. Let � be simply connected and let us consider a minimal 3-partition
D = (D1,D2,D3) of � associated with L3(�). Let us suppose that

λ3(�) < L3(�). (2.6)

For N = N(D), we denote by ν(xi) and ρ(zi) the number of arcs associated with xi ∈ X(N),
respectively zi ∈ Y (N). Then there are three possibilities (see figure 2):

(a) X(N) consists of one point x with ν(x) = 3 and Y (N) consists of either three distinct
y1, y2, y3 points with ρ(y1) = ρ(y2) = ρ(y3) = 1, two distinct points y1, y2 with
ρ(y1) = 2, ρ(y2) = 1 or one point y with ρ(y) = 3.

(b) X(N) consists of two distinct points x1, x2 with ν(x1) = ν(x2) = 3. Y (N) consists either
of two points y1, y2 such that ρ(y1) + ρ(y2) = 2 or of one point y with ρ(y) = 2.

(c) X(N) consists again of two distinct points x1, x2 with ν(x1) = ν(x2) = 3, but Y (N) = ∅.

3. A first analysis of the rectangle

This part is taken from [19]. Note that when � is a rectangle Ra,b := ]− a
2 , a

2

[ × ]− b
2 , b

2

[
, the

spectrum of H(Ra,b) and the properties of the eigenfunctions are analyzed as toy models in
[24, section 4]. The spectrum is given by

λm,n := π2

(
m2

a2
+

n2

b2

)
with (m, n) ∈ (N∗)2.

These eigenvalues are simple if a2/b2 is irrational. Except for specific remarks concerning
the square or the case when a2/b2 = 3/8, we assume

a2/b2 is irrational. (3.1)

So we can associate with each eigenvalue λm,n, up to a non-zero multiplicative constant, a
unique eigenfunction um,n such that μ(um,n) = mn. Given k ∈ N

∗, the lowest eigenvalue
corresponding to k nodal domains is given, at least under assumption (3.1), by

Lk(Ra,b) = π2 inf
mn=k

(
m2

a2
+

n2

b2

)
. (3.2)

In the case when a2/b2 is rational we could have problems in the case of multiplicities. We have
then to analyze a continuous family of nodal sets of eigenfunctions living in an eigenspace of
dimension >1. We will see in section 4 that it is just for these values that new nodal partitions
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may appear, which could be, by deformation, the starting point of non-admissible minimal
partitions.

We now recall all the possible Courant-sharp situations10 described in [19]:

(i) m = 3, n = 2 and 3
5 � a2

b2 � 5
8 .

(ii) m = 2, n = 2 and 3
5 � a2

b2 � 1.

(iii) m = 1, n > 1 and a2

b2 � 3
n2−1 .

If we now focus on the case k = 3, we get that λ3(Ra,b) is Courant sharp iff a2/b2 � 3/8.
Hence, the limiting situation is

a2

b2
= 3

8
.

This corresponds to a double eigenvalue and to the pairs (m, n) = (1, 3) and (m, n) = (2, 1).

4. Transition from Courant-sharp to a non-nodal minimal partition

We start from a rectangle with a = πε and b = π and would like to analyze L3(ε) :=
L3(Rπε,π ). The critical situation corresponds to

ε =
√

3/8. (4.1)

So the first result (deduced from [19]) which was recalled in the previous section writes:

Proposition 4.1.

(i) If ε �
√

3
8 , then L3(ε) = 9 + 1/ε2 and L3(ε) is an eigenvalue.

(ii) If
√

3/8 < ε � 1, then L3(ε) < 9 + 1/ε2.

We would like to understand how the transition occurs at ε = √
3/8. We make the assumption

that in the deformation the minimal partition remains symmetric with respect to y = 0. This is
indeed the case for ε <

√
3/8, because the eigenfunction corresponding to λ1,3 is cos x

ε
cos 3y

and the corresponding nodal lines are composed of two horizontal lines y = −π/6 and
y = π/6. This is also the case for ε = √

3/8 because all the eigenfunctions have this
symmetry and any minimal partition is nodal.

Numerical computations for the rectangles (the case of the square which inherits more
symmetries will be analyzed separately) push us to first conjecture that the nodal lines N(D)

for the minimal 3-partition D are, for ε ∈ ]
√

3/8, 1[, the union of a segment [−π/2, x0(ε)]
(on the line y = 0) and of two symmetric arcs connecting the point (x0(ε), 0) to the boundary
of the rectangle (up and down).

The second conjecture is that x0(ε) is increasing monotonically from −π/2 to 0 for
ε ∈ ]

√
3/8, 1[ and that limε→1 x0(ε) = 0. This has been partially verified (assuming that the

reflexion symmetry and that the minimal 3-partition are of type (a)) numerically.
The third conjecture is that the minimal 3-partition will ‘tend’ as ε tends to

√
3/8 from

above to a nodal partition, losing there its non-bipartite character.
The point here is that, when ε = √

3/8, we have an eigenvalue of multiplicity 2 giving
the possibility of constructing a continuous family of nodal minimal 3-partitions. For this, we
consider the family

ϕα,β(x, y) = α cos
x

ε
cos 3y + β sin

2x

ε
cos y,

10 We do not know whether for certain a2/b2 rational additional Courant-sharp eigenvalues could show up.
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(a) α = 1, β = 0 (b) α = 5, β = 1 (c) α = 2, β = 1 (d) α = 1, β = 2 (e) α = 0, β = 1

Figure 3. Nodal sets of ϕα,β(x, y) = α cos x
ε

cos 3y + β sin 2x
ε

cos y.

with α2 + β2 �= 0, and analyze its zero set. Of course, for t �= 0, ϕα,β and ϕtα,tβ have the same
zero set.

We first show that the zero set of ϕα,β has no critical point inside the rectangle for the
critical value of ε. Using the factorization of ϕα,β in the form

ϕα,β(x, y) = cos y cos
x

ε

(
α(1 − 4 sin2 y) + 2β sin

x

ε

)
,

we observe that ϕα,β = 0 is equivalent inside the rectangle to ψα,β = 0 with

ψα,β(x, y) := α(1 − 4 sin2 y) + 2β sin
x

ε
. (4.2)

Hence we now look at the (closure of the) zero set of ψα,β in the rectangle and particularly to
the critical points inside and at the boundary. If we look at the zeros of ∂xψα,β , we obtain

β cos
x

ε
= 0.

This implies β = 0 and we get that ϕα,0(x, y) = α cos 3y cos x
ε
. Hence we get that, for any

(α, β) �= (0, 0), there is no critical point inside this rectangle.
It remains to look at what is going on at the boundary and to determine the singular points

where two lines touch. An analysis of the function (x, y) → α(1 − 4 sin2 y) + 2β sin x
ε

at the
boundary shows that critical points at the boundary can only occur for y = 0 and α ± 2β = 0.

Hence we have obtained that the only nodal sets having critical sets are (up to a
multiplicative constant) the nodal domains of the eigenfunctions ϕ2,1 and ϕ2,−1.

Figure 3 gives the nodal set of the functions ϕα,β for several values of (α, β).

5. Aharonov–Bohm Hamiltonian and isospectrality

As explained in the introduction, this new analysis is motivated by numerical computations
showing that pushing the same idea as in [8] but using the symmetry with respect to the
diagonal, one gets the same eigenvalue and again a 3-partition with unique singular point at
the center. This will be further explained in more detail in subsection 6.1.

Remark 5.1. Note that theorem 2.4 implies that for ε = √
3/8, all the minimal 3-partitions

are nodal. Hence we have effectively described all the minimal 3-partitions.

5.1. Basic material

This material appears already in [18] and is motivated by the work of Berger–Rubinstein
[7]. If � is an open set such that 0 ∈ �, a possibility is to consider the Aharonov–Bohm

7
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Laplacian in the punctured �̇ = �\{0}, with the singularity of the potential at the center and
the normalized flux � = 1/2. The magnetic potential with flux � takes the form

A(x, y) = (A1(x, y), A2(x, y)) = �

(
− y

r2
,

x

r2

)
. (5.1)

We know that the magnetic field vanishes identically in �̇ and, in any cut domain (such that it
becomes simply connected), one has

A1 dx + A2 dy = � dθ, (5.2)

where

z = x + iy = r eiθ . (5.3)

So the Aharonov–Bohm operator in any open set �̇ ⊂ R
2\{0} will always be defined by

considering the Friedrichs extension starting from C∞
0 (�̇) and the associated differential

operator is

−�A := (Dx − A1)
2 + (Dy − A2)

2. (5.4)

From now on, we will assume that

� = 1
2 . (5.5)

In polar coordinates (which of course are not very well adapted to the square but permit a good
analysis at the origin), the Aharonov–Bohm Laplacian reads

−�A =
(

Dx +
1

2

sin θ

r

)2

+

(
Dy − 1

2

cos θ

r

)2

, (5.6)

or

−�A = − ∂2

∂r2
− 1

r

∂

∂r
+

1

r2

(
i∂θ +

1

2

)2

. (5.7)

This operator preserves ‘real’ functions in some modified sense. Following [18], we will say
that a function u is K-real, if it satisfies

Ku = u, (5.8)

where K is an antilinear operator in the form

K = eiθ�, (5.9)

and where � is the complex conjugation

�u = ū. (5.10)

The fact that −�A preserves K-real eigenfunctions is an immediate consequence of

K ◦ (−�A) = (−�A) ◦ K. (5.11)

Remark 5.2. Note that our choice of K is not unique. Kα = eiαK is also antilinear, satisfies
(5.11) and

K2
α = Id.

As observed in [18], it is easy to find a basis of K-real eigenfunctions. These eigenfunctions
(which can be identified with real antisymmetric eigenfunctions of the Laplacian on a suitable
double covering �̇R of �̇) have a nice nodal structure (which is locally in the covering the
same as the nodal set of real eigenfunctions of the Laplacian), with the specific property that
the number of lines in �̇ ending at the origin is odd. More generally a path of index 1 around
the origin should always meets an odd number of nodal lines.

8
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5.2. Symmetries of the rectangle

We consider now a domain �̇ which has the symmetries of a rectangle. More precisely, if we
denote by σ1 and σ2 the symmetries respectively defined by

σ1(x, y) = (−x, y), σ2(x, y) = (x,−y), (5.12)

we assume that

σ1�̇ = �̇, σ2�̇ = �̇. (5.13)

For simplicity, we assume that � is convex and write

� ∩ {y = 0} =
]
−a

2
,
a

2

[
× {0},

and

� ∩ {x = 0} = {0} ×
]
−b

2
,
b

2

[
.

If �1 is the natural action on L2(�̇) associated with σ1

�1u(x, y) = u(−x, y), (5.14)

we observe that the Aharonov–Bohm operator does not commute with �1 but with the antilinear
operator

�c
1 := i��1. (5.15)

So if u is an eigenfunction, �c
1u is an eigenfunction.

Moreover, and this explains the choice of ‘i’ before ��1, since K and �c
1 commute,

K ◦ �c
1 = �c

1 ◦ K, (5.16)

�c
1u is also a K-real eigenfunction if u is a K-real eigenfunction. One can do the same thing

with �2, associated with σ2,

�2u(x, y) = u(x,−y). (5.17)

This leads this time to

�c
2 = ��2. (5.18)

Similarly, we have

K ◦ �c
2 = �c

2 ◦ K, (5.19)

hence if u is a K-real function, �c
2u is also a K-real eigenfunction.

We now show the following proposition.

Proposition 5.3. If �̇ has the symmetries of the rectangle (5.12), then the multiplicity of the
ground-state energy of −�A is 2.

Actually the multiplicity of any eigenvalue of −�A is even.

Proof. As observed in [18], we can reduce the analysis of the Aharonov–Bohm Hamiltonian
to the K-real space L2

K where

L2
K(�̇) = {u ∈ L2(�̇),Ku = u}.

The scalar product on L2
K , making of L2

K a real Hilbert space, is obtained by restricting the
scalar product on L2(�̇) to L2

K and it is immediate to verify that 〈u, v〉 is indeed real for u and
v in L2

K .

9
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Observing now that

�c
1 ◦ �c

1 = I, (5.20)

we obtain by writing

u = 1
2

(
I + �c

1

)
u + 1

2

(
I − �c

1

)
u,

an orthogonal decomposition of L2
K into

L2
K = L2

K,�1
⊕ L2

K,a�1
, (5.21)

where

L2
K,�1

= {
u ∈ L2

K,�c
1u = u

}
,

and

L2
K,a�1

= {
u ∈ L2

K,�c
1u = −u

}
.

We have just to show that the restriction �1 of 1
2

(
I + �c

1

)
to L2

K

�1 := 1
2

(
I + �c

1

)
/L2

K

, (5.22)

is a projector. It is indeed clear that �1 is (R-)linear and that �2
1 = �1. It remains to verify

that �∗
1 = �1. But we have, for u, v in L2

K ,〈
�c

1u, v
〉 = i〈�v,�1u〉 = i〈��1v, u〉 = 〈

�c
1v, u

〉 = 〈
u,�c

1v
〉
.

Moreover the decomposition (5.21) is respected by −�A.
Similarly, one can define the projector �2 by restriction of �c

2 to L2
K .

The second statement of Proposition 5.3 will be a consequence of the following
lemma �

Lemma 5.4. Let

�c
3 = �c

1�
c
2, (5.23)

then �c
3 commutes with −�A and �3 := (

�c
3

)
/L2

K

is a unitary operator from L2
K,�1

onto

L2
K,a�1

.

Proof. We note that

�c
3 = i�3, (5.24)

where �3 is associated with

σ3(x, y) = (−x,−y). (5.25)

The lemma follows then from the property that if u is a solution of Ku = u and �c
1u = u,

then

�c
1�

c
3u = �c

1�
c
1�

c
2u = −�c

1�
c
2�

c
1u = −�c

3u,

where we have used the anticommutation of �c
1 and �c

2:

�c
1�

c
2 = −�c

2�
c
1. (5.26)

�

It remains to show that the first eigenvalue has multiplicity 2. We already know that it has an
even multiplicity. It is enough to prove that the multiplicity is at most 2. Here we can use the
results of [18]. Actually those results have to be extended slightly11 since they are obtained

11 The paper of Alziary–Fleckinger–Takac [1] deals with this case.
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assuming that the domain is homeomorphic to an annulus (so we are in a limiting case). It has
been shown in [18] that the nodal set of a K-real ground-state is a line joining the center to the
outer boundary. If the multiplicity of the ground-state eigenvalue is strictly greater than 2 we
can, as in [18], construct by linear combination of eigenfunctions a ground-state for which the
zero set hits the outer boundary at two distinct points, hence a contradiction.

We observe that the proof of the proposition gives more explicitly the decomposition of
−�A on L2

K into the direct orthogonal sum of two unitary equivalent Hamiltonians. What
we have done with �c

1 can similarly be done with �c
2. This gives immediately the following

proposition.

Proposition 5.5. The four following operators −�A,�1 ,−�A,a�1 ,−�A,�2 and −�A,a�2

respectively defined by the restriction of −�A to L2
K,�1

, L2
K,a�1

, L2
K,�2

and L2
K,a�2

are
isospectral to −�A. Moreover λ is an eigenvalue of any of the first four operators with
multiplicity k(λ) if and only if λ is an eigenvalue of multiplicity 2k(λ) of −�A.

Now we would like to analyze the nodal patterns of eigenfunctions in the various symmetry
spaces.

Lemma 5.6. If u ∈ C∞(�̇) ∩ L2
K,�2

then its nodal set contains
[− a

2 , 0
] × {0}. Moreover, in

�̇\{]− a
2 , 0] × {0}},

v = e−i θ
2 u (with θ ∈ (−π, π))

satisfies

�v = v and �2v = v.

Proof. Noting that Ku = u and �c
2u = u for y = 0 and x < 0 we immediately obtain that

u(x, 0) = u(x, 0) = −u(x, 0). Hence u(x, 0) = 0 for x < 0.
An immediate computation gives

�v = ei θ
2 �u = e−i θ

2 Ku = e−i θ
2 u = v,

and

�2v = ei θ
2 �2u = ei θ

2 �u = v. �

We would like to compare some Dirichlet–Neumann problems on half-domains. We call
upper-half-� the set

�uh = � ∩ {y > 0}, (5.27)

and introduce similarly the lower-half, left-half and right-half domains defined by

�lh = � ∩ {y < 0}, �leh = � ∩ {x < 0}, �rih = � ∩ {x > 0}. (5.28)

The previous lemma leads to the following proposition.

Proposition 5.7. If u is a K-real �c
2 invariant eigenfunction of −�A, then the restriction to �uh

of e−i θ
2 u (with θ ∈ (−π, +π)) is a real eigenfunction of the realization of the Laplacian in �uh,

with the following Dirichlet–Neumann condition at ∂�uh: Dirichlet except on
]
0, a

2

] × {0}
where we put Neumann.

In particular, if λ is an eigenvalue of −�A, then λ is an eigenvalue of the Laplacian in
�uh with this Dirichlet–Neumann condition.

11
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Dirichlet Neumann

Ωlh

Ωuh

•

Dirichlet

Neumann

ΩrihΩleh •

Figure 4. Domains �uh, �lh,�leh, �rih.

Conversely, if we consider an eigenfunction u of the Laplacian in �uh with this Dirichlet–
Neumann condition and extend it into a �2-symmetric function uext in �

∖{]− a
2 , 0

] × {0}},
then

v = ei θ
2 uext (5.29)

is a K-real eigenfunction of the Aharonov–Bohm Laplacian. More precisely, the function v

is first defined by formula (5.29) for θ ∈ ]−π, π [ and then extended as a L2 function on �̇.
Due to the properties of u, one can verify that v is in the form domain of the Aharonov–Bohm
operator. Starting from a ground-state of the DN -problem in �uh, we get a K-real eigenstate
in L2

K,�2
of the Aharonov–Bohm operator.

Similarly, we have the following proposition.

Proposition 5.8. If u is a K-real �c
1 antisymmetric eigenfunction of −�A, then the restriction

to �rih of e−i θ
2 u (with θ ∈ ]− 3π

2 , π
2 [) is a real eigenfunction of the realization of the Laplacian

in �rih, with the following Dirichlet–Neumann condition at ∂�rih: Dirichlet except on
{0}×]− b

2 , 0[ where we put Neumann.
In particular, if λ is an eigenvalue of −�A, then λ is an eigenvalue of the Laplacian in

�rih with this Dirichlet–Neumann condition.

Conversely, if we consider an eigenfunction u of the Laplacian in �rih with this Dirichlet–
Neumann condition and extend it into a �1-symmetric function uext in �

∖{{0} × ]
0, b

2

[}
,

then

v = ei θ
2 uext (5.30)

is a K-real eigenfunction of the Aharonov–Bohm Laplacian, which is antisymmetric with
respect to �c

1. More precisely, the function v is first defined by formula (5.30) for θ ∈]− 3π
2 , π

2

[
and then extended as a L2 function on �̇.

Using in addition lemma 5.4 and obvious unitary equivalences by �1 and �2, we obtain
the following result.

Proposition 5.9. The following problems have the same eigenvalues:

• The Dirichlet problem for the Aharonov–Bohm operator on �̇.
• The Dirichlet–Neumann problem for the Laplacian on �uh.
• The Dirichlet–Neumann problem for the Laplacian on �leh.
• The Dirichlet–Neumann problem for the Laplacian on �lh.
• The Dirichlet–Neumann problem for the Laplacian on �rih.

Of course this applies in particular to the case of the rectangle.
Let us go a little further by giving explicitly an intertwining unitary operator from L2

K,�1

onto L2
K,�2

proving the isospectrality. This is the object of the following lemma.

12
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Lemma 5.10. The operator

U21 := 1√
2

(
I + �c

2

)
is a unitary operator from L2

K,�1
onto L2

K,�2
. Its inverse is given by

U12 := 1√
2

(
I + �c

1

)
.

Proof. Let u ∈ L2
K,�1

, then, using (5.26),

U12U21u = 1
2

(
I + �c

1 + �c
2 + �c

1�
c
2

)
u = 1

2

(
I + �c

1 + �c
2 − �c

2�
c
1

)
u = u.

The proof that U21U12 = I on L2
K,�2

is obtained in the same way. Let us prove that the norm
is conserved. If u ∈ L2

K,�1
, then

‖U21u‖2 = ‖u‖2 + 1
2

〈
�c

2u, u
〉
+ 1

2

〈
u,�c

2u
〉
.

But if �c
1u = u, we can write〈

u,�c
2u

〉 = 〈
u,�c

2�
c
1u

〉
= i〈u,�2�1u〉
= i〈�2�1u, u〉
= −〈

�c
2u,�c

1u
〉

= −〈
�c

2u, u
〉
.

This leads to

‖U21u‖2 = ‖u‖2, ∀u ∈ L2
K,�1

. (5.31)

�

We can now explicitly write the intertwining unitary operator between the Dirichlet
Neumann problem for the Laplacian on �uh and the Dirichlet Neumann problem on �rih. This
is the composition of the extension (5.29), the unitary transformation U21, the operator �c

3,
the multiplication by e−i θ

2 and the restriction to �rih.

6. Application to minimal 3-partitions

6.1. Discussion on the square

We look at the first excited eigenvalue of the Dirichlet problem in the punctured square. The
rules of [18] give constraints about the nodal structure of the K-real eigenfunctions, which
were already used (for example in the proof of proposition 5.3). In particular we have an odd
number of lines arriving at the center. So it is clear that {0} belongs to the nodal set. If three
lines arrive at 0 and if the nodal partition is a 3-partition of type (a), this gives us a reasonable
candidate for the minimal 3-partition.

Let us explain the numerical strategy developed in [8, section 3] to exhibit a candidate for
the minimal 3-partition of the square. According to theorem 2.3, if the minimal 3-partition
of the square is admissible, it is associated with the nodal set of an eigenfunction for λ3. But
there is no such function and therefore the minimal 3-partition is non-bipartite. Then we look
for non-bipartite 3-partitions whose topologies are described in proposition 2.5 and illustrated
by figure 2. We first use the axial symmetry along the axis {y = 0}. To recover a partition
of type (a), (b) or (c), we compute the second eigenfunction and the next ones of the mixed

13
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x0 x0 x1 x0 x1

Figure 5. Mixed problems with Dirichlet–Neumann conditions.

Dirichlet–Neumann Laplacian in �lh with Dirichlet conditions except respectively on

• [x0, a/2] × {0} for type (a);
• [x0, x1] × {0} for type (b);
• [−a/2, x0] × {0} ∪ [x1, a/2] × {0} for type (c).

These boundary conditions are illustrated in figure 5. We move the points x0 and x1

along the segment [−a/2, a/2] × {0}. We expect to find an eigenfunction such that, after
symmetrization, its associated nodal sets constitute a 3-partition and the nodal lines meet at
the interior critical point with an angle of 2π/3.

We recall the guess which appears natural in view of the numerical computations. When
minimizing over Dirichlet–Neumann problems in �lh (by putting Dirichlet except Neumann
on

]
x0,

a
2

] × {0}), one observes that the minimal second eigenvalue (as a function of x0) such
that the two nodal domains give rise by symmetry to a 3-partition is obtained for x0 = 0.

Doing the same computation on the diagonal, we observe also numerically that the
minimal second eigenvalue (as a function of the point on the diagonal) such that the two nodal
domains give rise by symmetry to a three partition is obtained at the center.

Admitting these two numerical results, what we have proved for the square is that the two
minimal second eigenvalues are equal.

This could also suggest that we have a continuum of minimal 3-partitions.
This point is not completely clear but could result of the analysis of the singularity at {0}.
When minimizing over Dirichlet–Neumann–Dirichlet or Neumann–Dirichlet–Neumann

problems in �lh, the numerical computations (see [8, section 3.3]) suggest that the nodal
sets of the second eigenfunction never create a 2-partition of �lh leading by symmetry to a
3-partition of �. The corresponding eigenmodes lead to a too high energy; hence do not
qualify as possible candidates for minimal 3-partitions.

Remark 6.1. Note that we assumed that the minimal partition is symmetric with respect to an
axis of symmetry; the numerical experiments make this assumption plausible. One cannot a
priori exclude that the first excited K-real eigenfunction of the Aharonov–Bohm Hamiltonian
consists of one line joining 0 to ∂� and the another line joining in �̇ two points of ∂�.

6.2. The symmetries of the square

We now consider a convex domain which in addition to the invariance by σ1 and σ2 has an
invariance by rotation (centered at the origin) r π

2
of π

2 . We have typically in mind the case of
the square. This rotation can be quantized by

R π
2
u(·) = u

(
r− π

2
· )

, (6.1)

where rα is the rotation by α in the plane. We observe from (5.7) that this rotation commutes
with the operator:

�AR π
2

= R π
2
�A (6.2)

(and with its Dirichlet realization in �̇).

14
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Dirichlet

Neumann

Ω−−dh

Ω++dh

•
Dirichlet

Neumann

Ω−+dh

Ω+−dh

•

Figure 6. Domains �−−dh, �++dh, �−+dh, �+−dh.

More generally, we have the following lemma.

Lemma 6.2. If u is a K-real eigenfunction of the Aharonov–Bohm Hamiltonian on the square,
then u and ei π

4 R π
2
u are linearly independent K-real eigenfunctions.

Proof. Let us first verify the K-reality.
We note that

R π
2
Kv = R π

2
eiθ�v = e− iπ

2 eiθ�R π
2
v,

hence

R π
2
K = e−i π

2 KR π
2
.

This can be rewritten in the form(
ei π

4 R π
2

) ◦ K = K ◦ (
ei π

4 R π
2

)
. (6.3)

This proves the first statement.
We now show that ei π

4 R π
2
u and u are linearly independent (over R) inside the real space

L2
K. Let us look at the points of the nodal set belonging to the exterior boundary. Their

cardinality should be odd by a result of [18] on K-real eigenfunctions. If u and ei π
4 R π

2
u were

proportional, this subset is invariant by rotation of π
2 and has consequently an even cardinality.

This contradicts the previous state. �

Proposition 6.3. In the case of a convex domain having the symmetries of the square, the
Dirichlet–Neumann problem for the Laplacian on the four half-domains respectively defined
by

�−−dh = � ∩ {x + y < 0}, �++dh = � ∩ {x + y > 0},
�+−dh = � ∩ {x − y > 0}, �−+dh = � ∩ {x − y < 0}, (6.4)

are also isospectral to the problems introduced in proposition 5.5.

Proof. We explain below how to get the proposition. We start from v ∈ L2
K,�2

. Let us now
consider

w = v + ei π
4 R π

2
v.

We have already shown that w is not zero and hence is an eigenfunction. It remains to analyze
its zero set which should contain an half-diagonal.

Let us introduce

�c
4 = ei π

4 R π
2
�c

2.
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Using the property that

R π
2
�c

2 = �c
2R− π

2
,

we can verify that

�c
4w = w, Kw = w. (6.5)

For θ = − 3π
4 and x + iy = reiθ , we obtain

w ei π
4 = w, e−i 3π

4 w = w,

hence w = 0 for θ = − 3π
4 . So the restriction of w to �−+dh multiplied by a phase factor leads

to an eigenfunction of the DN-problem for the Laplacian in �−+dh.
The converse does not introduce new problems. �

6.3. The covering approach

As in [19], we can also rewrite all the proofs by lifting the problem on the double covering
�̇R, using the correspondence between L2

K and the real subspace of the functions in L2(�̇R)

such that �u = −u where � is associated with the map σ by (�u)(ω) = u(σ(ω)). We recall
with the notation of [20] that σ is defined by associating with each point ω of �̇R the other
point σ(ω) of �̇R which has the same projection on �̇. Our initial proof was actually written
in this way but we prefer to present in this paper another point of view.

In a recent paper, Jakobson, Levitin, Nadirashvili, Polterovich [22] obtain also nice
isospectrality results involving Dirichlet–Neumann problems. They actually propose three
different proofs of their isospectrality results. The second one is a double covering argument
which is quite close to what we mentioned in the previous paragraph. But there is no magnetic
version and our magnetic examples seem to be new. So it would be interesting to see whether
the magnetic approach can produce some isospectrality result which differs from the class of
results in this paper and the papers by Levitin, Parnovski and Polterovich [23] or [25].

One should also mention that for these questions of isospectrality a covering argument
was already presented in earlier works of Bérard [3–5], Bérard–Besson [6], Sunada [26].

7. Some heuristics on the deformation of symmetric minimal partitions and numerical

computations

7.1. Some heuristics

Here we discuss very heuristically in which general context the numerical computations for
the family of rectangles can be done.

One might investigate the special situation where tight upper and lower bounds to L3 are
available. We recall from (2.5) that

λk � Lk � Lk.

If we have a family of domains depending analytically on a parameter α,�(α), such that for
some k,

lim
α↓0

λk(α) = Lk(0) and λk(α) < Lk(α) for α > 0, (7.1)

then we are led to the question how a minimal k-partition of Dk(α) of �(α) behaves as α

tends to zero. In fact we might investigate more directly Dk(0). For α = 0 the only Dk(0) are
the ones which are nodal partitions associated with λk(0) = Lk(0).

We have investigated this situation for rectangles. We have seen that in this case the nodal
partition can only have critical points at the boundary.
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Figure 7. Deformation for type (a).

Figure 8. Deformation for type (b).

Let us start with a slightly more general situation and consider a family �(β) of simply
connected domains which depends analytically upon a parameter β � 0. We assume that the
spectrum and eigenfunctions corresponding to H(�(β)) have for small β � 0 the following
properties

λ1(β) < λ2(β) < λ3(β) � λ4(β) = L3(β), (7.2)

with

λ3(β) < λ4(β) for β > 0 and λ3(0) = λ4(0). (7.3)

Here as usual H(�(β)) is just −� with a Dirichlet boundary condition. We further assume
that for 0 < β < β0, μ(u3(β)) = 2, but that for β = 0 the eigenspace U3 of λ1(0) contains
an eigenfunction u ∈ U3 with μ(u) = 3. We hence have for β > 0 that λ3(β) is not Courant
sharp and therefore there is a L3(β) > λ3(β). But for β = 0 we have L3(0) = λ3(0).

According to proposition 2.5 we have for β > 0 three types of non-bipartite partitions,
(a), (b), (c). But we have observed that for L3(0), there is no D3(0) which is not bipartite.
So we would like to understand how a non-bipartite partition D3(β) can be deformed so
that it becomes bipartite. We emphasize that at the moment we have no mathematical tools
permitting us to rigorously prove the validity of these ‘deformation arguments’ but numerical
tests show that they are rather good for predicting what is observed.

(a) If the family is of type (a), what seems natural to imagine (see figure 7) is that the critical
point should move to one point of the boundary and that (at least) two lines will start
from this point and end at two other points of the boundary. These three points are not
necessarily distinct.

(b) If the family is of type (b), then the two critical points should again tend to the boundary
(see figure 8). We note indeed that in the case when z1, z2 tend to a point z ∈ �, we get
four nodal domains.

(c) In case (c), a new situation can occur when the two critical points tend to one point in �.
One could indeed imagine a deformation of type (c) minimal partitions on a 3-partition
which is diffeomorphic to the figure eight (see figure 9).

Let us recall that in the case of the rectangle we have explicitly verified that a limiting
minimal partition cannot have a critical point inside the rectangle.
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Figure 9. Deformation for type (c).

(a) t = 0 (b) t = 2 (c) t = 3.45 (d) t = 7

(e) t = 11 (f) t = 15 (g) t = 20

Figure 10. Simulations for rectangles Rπε,π with ε = (1 − t
20 )

√
3
8 + t

20 .

7.2. Numerics for a family of rectangles

We look at the case when the parameter β introduced in the heuristic subsection is the ε of
the computations and we go from ε = √

3/8 to ε = 1. We assume that all the minimal
partitions are symmetric with respect to the horizontal axis {y = 0} and of type (a). This
permits us to use the argument of reduction to an half-rectangle and to use the approach of the
Dirichlet–Neumann for each value of ε. Figures 10 present the evolution of the candidate to
be minimal 3-partition for rectangles Rπε,π with ε from

√
3/8 to 1.

As mentioned in [8], numerical simulations on the half-square with mixed condition
Dirichlet–Neumann–Dirichlet or Neumann–Dirichlet–Neumann never produce any 3-
partitions of type (b) or (c).

8. Conclusion

In this paper, we focus on minimal 3-partitions of the rectangle with side lengths a, b. When
0 < a/b <

√
3/8, the minimal 3-partition is bipartite and is given by the nodal partition of the
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third eigenfunction. It is more complicated as soon as a/b �
√

3/8. Section 4 concerns the
case a/b = √

3/8 and we describe a possible mechanism of transition from nodal to non-nodal
minimal partition (see figure 3).

In [8, 10], we exhibited two candidates to be the minimal 3-partition for the square. These
candidates for the minimal partition lead to the computations of the second eigenfunction
of a mixed Dirichlet–Neumann problem on the half-square. According to the considered
symmetry, we obtain two candidates (see figures 1(a) and 1(b)). Assuming that the critical
point of these candidates is the center of the square, we prove that these candidates yield the
same partition energy using arguments of isospectrality and linking the mixed problems with
the Aharonov–Bohm Hamiltonians on a punctured domain.

In section 7, we propose a mechanism of transition for the 3-partition of a rectangle to
that of the square. Such a question can also be asked for the transition from a thin ellipse to a
circle or from a long triangle to an equilateral triangle12. One difficulty with these geometries
is that the eigenmodes are no more explicit. We can discuss similarly the minimal partitions
on angular sectors S(α) = {r ∈ (0, 1), θ ∈ (0, α)} according to α. For α small, the minimal
3-partition is nodal and there is a critical value of α corresponding to the transition to non-nodal
3-partitions.

Using the covering approach mentioned in section 6.3, some numerical simulations have
been realized by the first two authors in [9] with two aims. The first one is to exhibit
new candidates for the square (and also for any polygons) without any symmetric argument.
The second one consists in checking that the critical point of the minimal 3-partition is the
center of the square. For this, we compute the 6th eigenfunction of the Dirichlet Laplacian
operator on the covering square and we move the interior point of the cutting. Numerical
simulations are available on the website (see [10]) http://w3.bretagne.ens-cachan.fr/math/
simulations/MinimalPartitions.

An analysis of the disc is proposed in [20] and in [21] for the sphere.
Motivated by the partitions mentioned in [16], it seems possible to construct 5-partitions

of the square using also symmetric arguments and working with a mixed Dirichlet–Neumann
problem in the eighth of the square. The arguments presented here could probably be adapted
in this case. In [11], a probabilistic approach leads to some 4- and 5-partitions and describes
possible candidates for minimal partitions.
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[8] Bonnaillie-Noël V, Helffer B and Vial G 2009 Numerical simulations for nodal domains and spectral minimal

partitions ESAIM Control Optim. Calc. Var. at press (DOI: 10.1051/cocv:2008074)
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