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Summary The ground state for the Neumann realization of the
Schrödinger operator for constant and sufficiently large magnetic field
presents a localization in the boundary of the domain and particularly
in the corners where the angle is minimum. As the solution decreases
exponentially fast away of the corner, it is rather difficult to catch it
numerically. A natural idea is to try using a mesh refinement method
coupled to a posteriori error estimates. The purpose of this paper is
to provide such an estimator adapted to the problem.
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1 Introduction

A lot of papers have already been devoted to the Schrödinger opera-
tor with magnetic field among which we can quote those of Bernoff-
Sternberg [7], Lu-Pan [21], Helffer-Morame [16] in the case of regular
domains. Our goal is to establish similar results in a domain with
edges. Physicists such as Brosens, Devreese, Fomin, Moshchalkov,
Schweigert and Peeters and mathematicians like Jadallah and Pan
contributed to the study of this problem in recent literature [13,19,
24,26]. A more general theoretical study can be found in [8,9,11]
where we prove the exponential decay of the ground state outside
corners with smallest angle for a constant and large magnetic field,
we analyze the behavior according to the smallest angle and we give
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an asymptotics of the eigenvalue for angle tending to 0.
In order to have a deeper understanding of the behavior of the first
eigenpair according to the geometry of the domain, we employ numer-
ical tools based on finite elements method. Since the first eigenvector
decreases exponentially fast away of the smallest corner and is local-
ized in a small neighborhood of the boundary, a numerical study is
quite difficult and the problem badly conditioned. So it is necessary
to find a criterion which determines, using only computed numeri-
cal solution and data of the problem, the spatial form of the error
between numerical and exact solution. The fundamental tool is the
a posteriori error estimator which allows to be more specific about
local error and permit to adopt adaptive mesh-refinement techniques.

A posteriori error estimators have been studied in several domains.
Maday, Patera and Peraire [23] propose a general formulation for
a posteriori bounds for the eigenvalue problem but they consider
uniform meshes. Their techniques are inefficient to use adaptative
mesh refinement because they do not compute local error. For the
Schrödinger operator with magnetic field, [11] proves that the first
eigenvectors are localized in the boundary ; therefore adaptative mesh
refinement techniques seem to be appropriate to gain computation
time and for this, we need local error estimates. In this spirit, we
can quote works of Babus̆ka [2,4], Bernardi-Métivet [5], Bernardi-
Métivet-Verfürth [6], Larson [20] who proposes a posteriori error esti-
mates for the Laplacian operator with Dirichlet boundary conditions
which can be extended to operators such

∑d
i,j=1 ∂xj (aij(x)∂xi)+b(x)

with Robin boundary conditions, Maday-Turinici [22] who work more
specifically about the nuclear hamiltonian. Some of these articles are
based on the work of Verfürth [27] who tries to make a more sys-
tematic analysis of any problem. He begins with the Poisson equa-
tion with mixed boundary conditions and pursues with the nonlinear
equation F (u) = 0. This permits to determine a posteriori error es-
timates for quasi-linear equations of second order or some eigenvalue
problems for operators like −∇ · (A∇) + d (cf Proposition 3.10 and
Proposition 3.17 in [27]). We pursue in this way for another frame-
work of operators and propose in this paper a posteriori error es-
timates in the case of the Neumann realization of the Schrödinger
operator with constant magnetic field based also on the Verfürth
techniques [27]. These estimates are able to give global and local in-
formation on the error of the numerical solution and so are efficient
for using adaptative mesh refinement. We notice also that we obtain
better estimates than Verfürth since the gap for the eigenvalue is of
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the order of the square of the estimate for the eigenvector, and so
keep the same order of convergence as for a priori estimates (cf [3]).
Heuveline-Rannacher [17] also deal with a posteriori error estimates
for a convection-diffusion problem with a Galerkin finite element ap-
proximation of the problem. These estimates are based on the dual
eigenvalue problem. We propose an easier formulation of a posteriori
error estimates without using the dual problem.

This paper consists of two major parts. In Section 4, we adapt
techniques of Verfürth. In order to do that, we use a functional F
whose definition and study are developed in Section 3.2. To deal with
this functional, we need an estimate of the gap between the numerical
solution and the exact solution. This point is analyzed in Section 3
where Theorem 3.1 recalls classical a priori error estimates for the
eigenvalue problem. Proofs of this result can be found in [3,11]. Let
us begin with some notations in Section 2.

2 Notation and results

2.1 Physical problem

Let Ω be a bounded, open and polygonal set in R2. We denote by Γ
the boundary of Ω and ν the unit outer normal where it is well de-
fined. We consider the magnetic potential A with a constant magnetic
field B defined by

A =
B

2
(x2,−x1). (2.1)

We are interested in the Neumann realization of −(∇ − iA)2 from
C∞

0 (Ω), which is the restriction to Ω of the functions in C∞(R2)
with a compact support. We define the sesquilinear form a in the
form domain

Y : = H1
A(Ω) = {u ∈ L2(Ω)|∇Au ∈ L2(Ω)} with ∇A: = ∇− iA,

(2.2)
by

a(u, v) =
∫

Ω
∇Au · ∇Av dx, ∀u, v ∈ H1

A(Ω). (2.3)

The sesquilinear form a is semi bounded from below and so a admits
a unique self-adjoint extension −∆A: = −∇2

A defined on the domain

DN (−∆A):=
{
u ∈ H1

A(Ω)| ∇2
Au ∈ L2(Ω), ν · ∇Au|∂Ω∗ = 0

}
,
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where ∂Ω∗ denotes points of the boundary of Ω where the unit out-
ward normal is well defined. Furthermore, due to integration by parts,
the following relation holds

∀u ∈ DN (−∆A), ∀v ∈ Y, 〈−∆Au, v〉L2(Ω) = a(u, v). (2.4)

For every open set ω of Ω, we denote by γ the boundary of ω, L2(ω),
H1
A(ω) and H2

A(ω) the Sobolev spaces with the norms

||φ||L2(ω) =
{∫

ω
|φ|2 dx

}1/2

, (2.5)

||φ||H1
A(ω) =

{∫
ω
(|φ|2 + |∇Aφ|2) dx

}1/2

, (2.6)

||φ||H2
A(ω) =

{∫
ω
(|φ|2 + |∇Aφ|2 + |∇2

Aφ|2) dx

}1/2

. (2.7)

Remark 2.1 As Ω is bounded, the norms || ||H1(ω) and || ||H1
A(ω) are

equivalent, like the norms || ||H2(ω) and || ||H2
A(ω).

Our goal is to determine the ground state for the operator −∆A.
Before being more specific about the first eigenvalue, we give the weak
formulation to the eigenvalue problem, denoting by X: = R× Y :

Find (λ, u) ∈ X s.t. ∀(µ, v) ∈ X,


∫

Ω
∇Au · ∇Av = λ

∫
Ω

uv,∫
Ω
|u|2 = 1.

(2.8)

We denote by (λk, uk)k the solution of (2.8) with

0 < λ1 ≤ λ2 ≤ . . . λk.

We omit the index 1 when there is no confusion. The min-max prin-
ciple gives the expression of λ1 by

λ1 = inf
v∈H1

A(Ω),v 6=0

||∇Av||2L2(Ω)

||v||2
L2(Ω)

. (2.9)

Due to spectral theory, we know that if (λ, u) is solution of (2.8),
then u ∈ DN (−∆A) and u ∈ H2(Ω) as soon as Ω is bounded.

Remark 2.2 It is proved in [11] that the bottom of the spectrum of
−∆A is simple if Ω has only one corner with a smallest angle α with
α small enough. We think that λ1 stays simple as soon as α is acute
but it is not proved for the time being. From now, we assume that
the smallest eigenvalue λ1 is simple.
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We can not determine an exact solution of (2.8), so we look for a
numerical solution and want to determine the gap between the exact
solution and the approximate solution given by the finite elements
method. We use the same notations as Verfürth [27], p. 7-8. Let Th,
h > 0 be a family of triangulations of Ω satisfying the conditions :

1. Any two triangles in Th share at most a common complete edge
or a common vertex.

2. The minimal angle of all triangles in the whole family Th is bounded
from below by a strictly positive constant.

Let Yh: = Pk(Th) be the space of all continuous piecewise polynomial
function of degree k. We denote by Xh: = R × Yh and consider the
following eigenvalue problem

Find (λh, uh) ∈ Xh s.t.

∀(µh, vh) ∈ Xh,


∫

Ω
∇Auh · ∇Avh = λh

∫
Ω

uhvh,∫
Ω
|uh|2 = 1,

(2.10)

We denote by (λk,h, uk,h)k the solution of (2.10) with

0 < λ1,h ≤ λ2,h ≤ . . . λk,h.

We omit the index 1 when there is no confusion. The min-max prin-
ciple allows to write the approximate bottom of the spectrum by

λ1,h = inf
vh∈Pk(Th),vh 6=0

||∇Avh||2L2(Ω)

||vh||2L2(Ω)

. (2.11)

For (λk, uk) and (λk,h, uk,h) respectively solution of (2.8) and (2.10),
we want to estimate the gap |λk − λk,h| and ||uk − uk,h||L2(Ω).

2.2 Notation

For any element T of the triangulation Th, we denote by E(T ) and
N (T ) the set of its edges and vertices respectively and we define

Eh: =
⋃

T∈Th

E(T ) and Nh: =
⋃

T∈Th

N (T ).

For T ∈ Th and E ∈ Eh, we define ρT , hT and hE their radius of
inscribed circle, diameter and length, respectively. We assume hT ,
hE < h. We remark that if the triangulation satisfies the condition
2, then the ratio hT

hE
and hT

hT ′
are bounded from below independently
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of h for every T, T ′ ∈ Th such that N (T )∩N (T ′) 6= ∅, and for every
E ∈ E(T ). We split Eh and Nh as follow :

Eh = Eh,Ω ∪ Eh,Γ and Nh = Nh,Ω ∪Nh,Γ ,

with :

Eh,Ω: = {E ∈ Eh|E ⊂ Ω}, Eh,Γ : = {E ∈ Eh|E ⊂ Γ},

Nh,Ω: = {x ∈ Nh|x ∈ Ω}, Nh,Γ : = {x ∈ Nh|x ∈ Γ}.
For any E ∈ Eh, we denote byN (E) the set of its vertices. For T ∈ Th,
E ∈ Eh and x ∈ Nh, we define :
ωT : =

⋃
E(T )∩E(T ′) 6=∅

T ′ : elements with common edges with T ,

ωE : =
⋃

E∈E(T ′)

T ′ : elements which admit E as edge,

ω̃T : =
⋃

N (T )∩N (T ′) 6=∅

T ′ : elements with a common vertex with T ,

ω̃E : =
⋃

N (E)∩N (T ′) 6=∅

T ′ : elements with a common vertex with E.

For any edge E ∈ Eh, we associate a unit vector nE (equal to ν if
E ⊂ Γ ). For any E ∈ Eh,Ω and φ ∈ L2(ωE) such that φ|T ′ is contin-
uous on T ′ for any T ′ ⊂ ωE , we denote by [φ]E the jump of φ across
E in the direction nE .

We now recall a property of the interpolation operator of Clément
or Scott-Zhang, denoted by Ih and developed in [15,12,25]. This in-
terpolation Ih sends H1(Ω) onto Pk(Th).

Lemma 2.1 There exists a constant c which depends on the regu-
larity parameter of the triangulation, such that for any u ∈ H1(Ω),
T ∈ Th and E ∈ Eh :

||u− Ihu||L2(T ) ≤ chT ||u||H1(ω̃T ), (2.12)

||u− Ihu||L2(E) ≤ ch
1/2
E ||u||H1(ω̃E). (2.13)

2.3 Main result

For any (λ, u), (µ, v) ∈ X, we define

||(λ, u)||X : =
{
|λ|2 + ||u||2H1

A(Ω)

}1/2
, (2.14)

〈F (λ, u), (µ, v)〉 : =
∫

Ω

(
∇Au · ∇Av − λuv

)
dx + µ

(∫
Ω
|u|2dx− 1

)
.

(2.15)
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Our goal is to find (λ, u) ∈ X and (λh, uh) ∈ Xh with the smallest λ
and λh such that :

∀(µ, v) ∈ X, 〈F (λ, u), (µ, v)〉 = 0, (2.16)
∀(µh, vh) ∈ Xh, 〈F (λh, uh), (µh, vh)〉 = 0. (2.17)

We introduce the a posteriori error indicator

η2
T : = h2

T

∫
T

∣∣−∇2
Auh − λhuh

∣∣2 +
∑

E∈E(T )∩Eh,Ω

hE

∫
E
|[nE · ∇Auh]E |2 .

(2.18)
As we see in the following theorem, the estimator ηT has a funda-
mental role to see if we are close to the exact solution or not and to
increase accuracy of the numerical solution :

Theorem 2.1 Let (λ, u) ∈ X be a solution for the problem (2.16) and
(λh, uh) ∈ Xh be a solution for the problem (2.17) such that λ and λh

are the smallest eigenvalues of the continuous and discrete operators.
Then, there exist h0 > 0 and constants c1, c2 which depend only on
the regularity parameter of the triangulation such that for all h ≤ h0 :

c1

∑
T∈Th

η2
T ≤ |λ− λh| ≤ c2

∑
T∈Th

η2
T , (2.19)

c1

∑
T∈Th

η2
T ≤ ||u− uh||2H1

A(Ω) ≤ c2

∑
T∈Th

η2
T . (2.20)

Remark 2.3 Theorem 2.1 holds also for any simple eigenvalue λk :
there exists R > 0 such that if (λk,h, uk,h) is a solution of (2.17) with
||(λk − λk,h, uk − uk,h)||X ≤ R, then (2.19) and (2.20) hold.
Estimates (2.19) and (2.20) are better than those of Verfürth where
the gap for the eigenvalue and the eigenvector have the same order.

2.4 Scheme of the proof of Theorem 2.1

We want to use the same scheme as Verfürth [27], p. 81-84 for the
eigenvalue problem for the operator −∇ · (A∇) + d with a Dirichlet
boundary condition. The fundamental point is to study the functional
F and particularly, we have to find a neighborhood of (λ, u) ∈ X on
which the differential of F denoted DF is invertible. We will use
DF to estimate the gap between F (λ, u) and F (λh, uh) and for this,
we first recall an a priori estimate in Section 3 of ||u − uh||. This is
the great difference between our problem and examples presented by
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Verfürth because our problem is not linear and we can’t use classi-
cal argument like Cea’s Lemma. Therefore, we propose a priori error
estimate appropriate for −∆A. The study of the functional F is pre-
sented in Section 3.2 and will be used to follow the same techniques
as Verfürth in Section 4 to give an a posteriori error estimate.

3 A priori estimates and applications to the study of F

3.1 A priori estimates

We just recall a priori error estimates proposed by [3]. We notice
that in our case, we obtain easily these estimates (cf [11]) by the
self-adjointness of the operator. Indeed, the Neumann realization of
the Schrödinger operator −∆A with constant magnetic field is self-
adjoint with compact resolvent and so we can decompose each func-
tion of DN (−∆A) in an orthogonal basis of eigenvectors to obtain the
following theorem.

Theorem 3.1 There exists a constant C > 0 such that for solutions
(λk, uk) and (λk,h, uk,h) of the continuous problem (2.16) and the dis-
crete problem (2.17) respectively, with λk simple, the following upper
bounds hold :

||uk − uk,h||H1
A(Ω) ≤ Ch,

|λk − λk,h| ≤ Ch2.

3.2 Study of the functional F

Let us give some properties of the functional F :

Lemma 3.1 Let (λ, u) ∈ X be the solution of problem (2.16), then
the differential DF (λ, u) is an isomorphism from X onto X∗.

Proof We begin with the calculus of the differential DF at the point
(λ, u). Let (µ, v) ∈ X and (ν, w) ∈ X, then :

〈DF (λ, u)(µ, v), (ν, w)〉 =
∫

Ω
∇Av ·∇Aw−(λv+µu)w+2νuv. (3.1)

To justify the fact that DF (λ, u) is an isomorphism from X onto X∗,
we will use the following theorem given in [12] p. 131 :

Theorem 3.2 Let U , V be two Hilbert spaces, then the application
L:U → V ′ is an isomorphism if and only if the associated sesquilinear
form a:U × V → R satisfies the three following conditions :



A posteriori error estimator for the Schrödinger operator 9

1. Continuity : there exists a constant C such that :

∀(u, v) ∈ U × V, |a(u, v)| ≤ C||u||U ||v||V .

2. Inf-Sup condition : there exists a constant γ > 0 such that :

inf
u∈U

sup
v∈V

|a(u, v)|
||u||U ||v||V

≥ γ.

3. For all v ∈ V , v 6= 0, there exists u ∈ U such that a(u, v) 6= 0.

Let us apply this theorem by choosing U = V = X and a = DF (λ, u).
We have to verify each condition of Theorem 3.2 :
1. Continuity : we consider (µ, v), (ν, w) ∈ X and estimate :

| 〈DF (λ, u)(µ, v), (ν, w)〉 | ≤ ||∇Av||L2(Ω)||∇Aw||L2(Ω) + 2|ν|||v||L2(Ω)

+(λ||v||L2(Ω) + |µ|)||w||L2(Ω)

≤ (4 + λ)||(µ, v)||X ||(ν, w)||X .

The condition 1. holds.
2. Let us verify the Inf-Sup condition. We want to prove that there
exists a strictly positive constant γ such that for all (µ, v) ∈ X, there
is (ν, w) ∈ X with | 〈DF (λ, u)(µ, v), (ν, w)〉 | bounded from below by
γ||(µ, v)||X ||(ν, w)||X . In order to show this, we establish the lower
bound for some (ν, w) ∈ X, dependent on (µ, v) and so deduce a
lower bound by taking the upper limit. We decompose v and w like

v = αu + ṽ and w = βu + w̃ with
∫

Ω
uṽdx = 0,

∫
Ω

uw̃dx = 0.

Since (λ, u) is solution of the problem (2.16), we deduce that∫
Ω
∇Au · ∇Aṽ dx = 0 and

∫
Ω
∇Au · ∇Aw̃ dx = 0.

The norms in X of (µ, v) and (ν, w) write :

||(µ, v)||2X = ||∇Aṽ||2L2(Ω) + ||ṽ||2L2(Ω) + (λ + 1)α2 + µ2,

||(ν, w)||2X = ||∇Aw̃||2L2(Ω) + ||w̃||2L2(Ω) + (λ + 1)β2 + ν2.

We compute the form 〈DF (λ, u)(µ, v), (ν, w)〉 :

〈DF (λ, u)(µ, v), (ν, w)〉

= α

∫
Ω
∇Au · ∇Aw − λuw +

∫
Ω
∇Aṽ · ∇Aw − (λṽ + µu)w + 2να

= 2να− µβ +
∫

Ω
β(∇Aṽ · ∇Au− λṽu) +∇Aṽ · ∇Aw̃ − (λṽ + µu)w̃

= 2να− µβ +
∫

Ω
∇Aṽ · ∇Aw̃ − λṽw̃.
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We choose (ν, w) ∈ X such that w̃ = ṽ, β = −µ and ν = α then

〈DF (λ, u)(µ, v), (ν, w)〉 = ||∇Aṽ||2L2(Ω)−λ||ṽ||2L2(Ω)+µ2+2α2. (3.2)

We bound from below ||∇Aṽ||2L2(Ω)−λ||ṽ||2L2(Ω) according to ||ṽ||2
H1
A(Ω)

.
We know that λ is the first eigenvalue of −∆A, then the second eigen-
value λ2 is given by the min-max principle :

λ2 = inf
φ∈H1

A(Ω)∩<u>⊥,φ6=0

||∇Aφ||2L2(Ω)

||φ||2
L2(Ω)

. (3.3)

As we have decomposed w so that w̃⊥u,

||∇Aṽ||2L2(Ω) ≥ λ2||ṽ||2L2(Ω). (3.4)

Let δ ∈]0, 1[ be determined later. Relation (3.4) leads to the lower
bound

||∇Aṽ||2L2 −λ||ṽ||2L2 ≥ δ||∇Aṽ||2L2(Ω) +((1−δ)λ2−λ)||ṽ||2L2(Ω). (3.5)

We choose δ such that δ = (1 − δ)λ2 − λ, then δ =
λ2 − λ

λ2 + 1
> 0. We

plug equality (3.2) into (3.5) :

〈DF (λ, u)(µ, v), (ν, w)〉 ≥ λ2 − λ

λ2 + 1
||ṽ||2H1

A(Ω) + µ2 + 2α2. (3.6)

We have now to compare λ2−λ
λ2+1 ||ṽ||

2
H1
A(Ω)

+µ2 +2α2 with the product
of norms of (µ, v) and (ν, w). With the previous choice on (ν, w),

||(ν, w)||2X = ||ṽ||2H1
A(Ω) + (λ + 1)µ2 + α2.

This implies ||(ν, w)||X ||(µ, v)||X ≤ ||ṽ||2
H1
A(Ω)

+ (λ + 1)(µ2 + α2). We

take γ = inf
(

λ2 − λ

λ2 + 1
,

1
λ + 1

)
, then :

λ2 − λ

λ2 + 1
||ṽ||2H1

A(Ω) + µ2 + 2α2 ≥ γ
(
||ṽ||2H1

A(Ω) + (µ2 + α2)(λ + 1)
)

≥ γ||(µ, v)||X ||(ν, w)||X .

We so have proved that for all (µ, v) ∈ X :

sup
(ν1,w1)∈X

| 〈DF (λ, u)(µ, v), (ν1, w1)〉 |
||(ν1, w1)||X

≥ | 〈DF (λ, u)(µ, v), (ν, w)〉 |
||(ν, w)||X

≥ γ||(µ, v)||X ,
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and the Inf-Sup condition holds.
3. Let us justify the last condition. Let (ν, w) ∈ X, we decompose w
in the form w = βu + w̃ such that w̃⊥u and we consider :

(µ, v) = (−β, νu + w̃) ∈ X.

As we have seen in the justification of the Inf-Sup condition, we have :

| 〈DF (λ, u)(µ, v), (ν, w)〉 |
||(ν, w)||X ||(µ, v)||X

≥ γ > 0,

so the third condition holds.
We get that DF (λ, u) is an isomorphism from X onto X∗ and the
proof of Lemma 3.1 is achieved.

Remark 3.1 Let us notice that we can prove by this way that the
differential DF (λk, uk) is an isomorphism from X onto X∗ for any
(λk, uk) solution of (2.8) such that λk is a simple eigenvalue.
This result was proved by Verfürth for the operator −∇ · (A∇) + d
with a Dirichlet or Neumann condition. We extend this result for the
Schrödinger operator with magnetic field.

Corollary 3.1 Let (λ, u) ∈ X be the solution of problem (2.16) with
the smallest λ, so there exist R > 0 and constants c1, c2 > 0 such
that for any (µ, v) ∈ BX((λ, u), R), the following bound holds :

c1||F (µ, v)||X∗ ≤ ||(λ, u)− (µ, v)||X ≤ c2||F (µ, v)||X∗ .

Proof First, we show that DF is Lipschitz-continuous in (λ, u). Let
(λ̃, ũ), (µ, v), (ν, w) ∈ X. We denote

(∆λ,∆u) = (λ̃− λ, ũ− u),

then : ∣∣∣〈DF (λ, u)(µ, v)−DF (λ̃, ũ)(µ, v), (ν, w)
〉∣∣∣

=
∣∣∣∣∫

Ω
(λ̃− λ)vw + µ(ũ− u)w + 2ν(u− ũ)v

∣∣∣∣
≤ 4||(∆λ,∆u)||X ||(µ, v)||X ||(ν, w)||X .

Therefore, for any (λ̃, ũ) ∈ X,

||DF (λ, u)−DF (λ̃, ũ)||L(X,X∗)

||(λ, u)− (λ̃, ũ)||X
≤ 4. (3.7)
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We have already seen that DF (λ, u) is an isomorphism, so we can
express (λ̃, ũ) with (λ, u) by :

(∆λ,∆u) = (λ̃, ũ)− (λ, u) = (DF (λ, u))−1

(
F (λ̃, ũ)

+
∫ 1

0
(DF (λ, u)−DF ((λ, u) + t(∆λ,∆u))) (∆λ,∆u) dt

)
.

This expression gives an estimate of the gap between (λ, u) and (λ̃, ũ)
according to the triangular inequality and relation (3.7) :

||(∆λ,∆u)||X ≤ ||(DF (λ, u))−1||L(X∗,X)

×
(
||F (λ̃, ũ)||X + 4

∫ 1

0
t dt||(∆λ,∆u)||2X

)
≤ ||(DF (λ, u))−1||L(X∗,X)

×
(
||F (λ̃, ũ)||X + 2||(∆λ,∆u)||2X

)
.

We take 0 < R < R1: = 1
4||DF (λ,u)−1||L(X∗,X)

, then for all (λ̃, ũ) such

that (λ̃, ũ) ∈ BX((λ, u), R) :

||(λ̃, ũ)− (λ, u)||X ≤
||DF (λ, u)−1||L(X∗,X)||F (λ̃, ũ)||X∗

1− 2R||DF (λ, u)−1||L(X∗,X)

≤ 2||DF (λ, u)−1||L(X∗,X)||F (λ̃, ũ)||X∗ . (3.8)

We now have to prove the second inequality. Let (µ, v) ∈ X with
||(µ, v)||X = 1, then :〈

F (λ̃, ũ), (µ, v)
〉

= 〈DF (λ, u)(∆λ,∆u), (µ, v)〉+〈∫ 1

0
(DF ((λ, u) + t(∆λ,∆u))−DF (λ, u)) (∆λ,∆u)dt, (µ, v)

〉
.

We deduce an upper bound of ||F (λ̃, ũ)||X∗ :

||F (λ̃, ũ)||X∗ ≤ ||DF (λ, u)||L(X,X∗)||(∆λ,∆u)||X

+4
∫ 1

0
t dt||(∆λ,∆u)||2X

≤ ||DF (λ, u)||L(X,X∗)||(∆λ,∆u)||X + 2||(∆λ,∆u)||2X .

Taking 0 < R < R2: =
||DF (λ,u)||L(X,X∗)

2 , we see that for all (λ̃, ũ) in
BX((λ, u), R) :

||F (λ̃, ũ)||X∗ ≤ 2||DF (λ, u)||L(X,X∗)||(∆λ,∆u)||X . (3.9)
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Choosing R: = min(R1, R2), relations (3.8) and (3.9) justify Corol-

lary 3.1 with c1 =
||DF (λ,u)||−1

L(X,X∗)

2 and c2 = 2||(DF (λ, u))−1||L(X∗,X).

4 Adaptation of Verfürth’s techniques

4.1 Preliminary lemmas

We have defined the projector Ih from H1
A(Ω) onto Pk(Th) and we

consider Rh: = (0, Ih).

Lemma 4.1 Let (λh, uh) ∈ Xh be solution of (2.17) and (µ, v) ∈ X,
then :

〈F (λh, uh), (µ, v)〉 =
∑

T∈Th

(∫
T
(−∇2

A − λh)uhv

+
∑

E∈Eh,Ω∩E(T )

∫
E

[nE · ∇Auh]E v

)
. (4.1)

Proof Since (λh, uh) ∈ Xh is solution of (2.17), uh is normalized, so

〈F (λh, uh), (µ, v)〉 =
∫

Ω
∇Auh · ∇Av − λhuhv,

An integration by parts on each T ⊂ Ω gives :∫
T
∇Auh · ∇Av = −

∫
T
∇2
Auhv +

∑
E∈E(T )

∫
E

[nE · ∇Auh]E v.

Furthermore, if E ∈ Eh,Γ , then [nE · ∇Auh]E vanishes since we deal
with the Neumann realization and nE ·∇Auh|E = 0. We deduce (4.1).

Lemma 4.2 Let (λh, uh) ∈ Xh be solution of (2.17), then there exists
a constant C which depends only on the regularity parameter such
that :

||(Id−Rh)∗F (λh, uh)||X∗ ≤ C

∑
T∈Th

η2
T


1/2

. (4.2)

Proof We begin with writing the definition of the norm ||.||X∗ :

||(Id−Rh)∗F (λh, uh)||X∗ = sup
||(µ,v)||X=1

〈F (λh, uh), (µ, v − Ihv)〉 . (4.3)
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We compute the right hand side of (4.3) with Lemma 4.1

〈F (λh, uh), (µ, v − Ihv)〉 =
∑

T∈Th

[ ∫
T
(−∇2

A − λh)uh(v − Ihv) (4.4)

+
∑

E∈Eh,Ω∩E(T )

∫
E

[nE · ∇Auh]E (v − Ihv)
]
.

We estimate each term with a Cauchy-Schwarz inequality coupled
with Lemma 2.1 to obtain∣∣∣∣∫

T
(−∇2

A − λh)uh(v − Ihv)
∣∣∣∣ ≤ c1hT ||v||H1(ω̃T )||(−∇2

A − λh)uh||L2(T ),

(4.5)∣∣∣∣∫
E

[nE · ∇Auh]E (v − Ihv)
∣∣∣∣ ≤ c2h

1/2
E ||v||H1(ω̃E)||[nE · ∇Auh]E ||L2(E).

(4.6)
We report (4.6) in (4.4) and use the Hölder inequality :∑

E∈Eh,Ω∩E(T )

∫
E

[nE · ∇Auh]E (v − Ihv)

≤ C2

√√√√ ∑
E∈Eh,Ω∩E(T )

hE

∫
E
|[nE · ∇Auh]E |

2
√ ∑

E∈Eh,Ω∩E(T )

||v||2H1(ω̃E).

Since ||v||2H1(ω̃E) ≤ ||v||2H1(Ω), there exists a constant c only depending
on the regularity parameter of the triangulation such that∑

E∈Eh,Ω∩E(T )

||v||2H1(ω̃E) ≤ c||v||2H1(Ω). (4.7)

According to the inequality
√

A +
√

B ≤
√

2
√

A + B used in (4.4)
coupled with (4.5), (4.6) and (4.7), there exists C > 0 depending only
on the regularity parameter of the triangulation such that :

〈F (λh, uh), (µ, v − Ihv)〉 ≤ C||v||H1(Ω)

( ∑
T∈Th

h2
T

∫
T
|(−∇2

A − λh)uh|2

+
∑

E∈Eh,Ω∩E(T )

hE

∫
E
|[nE · ∇Auh]E |

2

) 1
2

.

Since the norms H1(Ω) and H1
A(Ω) are equivalent, we deduce

〈F (λh, uh), (µ, v − Ihv)〉 ≤ C̃

∑
T∈Th

η2
T

1/2

||v||H1
A(Ω). (4.8)
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To come back to the calculation of ||(Id − Rh)∗F (λh, uh)||X∗ , we
use (4.3) and (4.8) and the fact that ||v||H1

A(Ω) ≤ ||(µ, v)||X = 1.
Therefore, we achieve the proof of Lemma 4.2.

Before the following lemma, we recall some notations and proper-
ties developed in [27]. For every T ∈ Th and E ∈ Eh,Ω, we define the
triangle-bubble function bT and the edge-bubble function bE by

bT =
{

27λT,1λT,2λT,3 on T
0 on Ω \ T,

(4.9)

where λT,1, λT,2 and λT,3 are the barycentric coordinates of T . Given
an E ∈ Eh,Ω such that ωE = T1 ∪ T2. We enumerate the vertices of
T1 and T2 in the such way the vertices of E are numbered first. We
define the edge-bubble function bE by

bE =
{

4λTi,1λTi,2 on Ti, i = 1, 2
0 on Ω \ ωE .

(4.10)

We consider the lifting prolongation operator P :L∞(E) → L∞(T )
by

Pu(x):= u(x′), ∀x ∈ T, x′ ∈ E s. t. λj(x′) = λj(x).

We denote by X̃h: = R× Ỹh with

Ỹh: = span{bT v, bEPσ| v ∈ Πk+2|T , σ ∈ Πk+1|E , T ∈ Th, E ∈ Eh,Ω}.

We use a particular case of Lemma 3.3 of [27] p. 59 and recall it now.

Lemma 4.3 (Verfürth [27], Lemma 3.3 p. 59) There exist con-
stants c1, . . . , c7 such that for any T ∈ Th, E ∈ E(T ), u ∈ Πk+2|T and
σ ∈ Πk+1|E , the following inequalities hold :

c1||u||L2(T ) ≤ sup
v∈Πk+2|T

∫
T ubT v

||v||L2(T )
≤ ||u||L2(T ), (4.11)

c2||σ||L2(E) ≤ sup
τ∈Πk+1|E

∫
E σbEτ

||τ ||L2(E)
≤ ||σ||L2(E), (4.12)

c3h
−1
T ||bT u||L2(T ) ≤ ||∇(bT u)||L2(T ) ≤ c4h

−1
T ||bT u||L2(T ), (4.13)

c5h
−1
T ||bEPσ||L2(T ) ≤ ||∇(bEPσ)||L2(T ) ≤ c6h

−1
T ||bEPσ||L2(T ),(4.14)

||bEPσ||L2(T ) ≤ c7h
1/2
T ||σ||L2(E). (4.15)
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Lemma 4.4 Let (λh, uh) ∈ Xh be a solution of (2.17), then there
exists a constant C̃ which depends on the regularity parameter such
that :

ηT ≤ C̃ sup
(0,v)∈X̃h,supp v⊂ωT

〈F (λh, uh), (0, v)〉
||(0, v)||X

. (4.16)

Proof Let us give T ∈ Th and E ∈ Eh,Ω ∩ E(T ). We recall that

η2
T = h2

T

∫
T

∣∣−∇2
Auh − λhuh

∣∣2 +
∑

E∈E(T )∩Eh,Ω

hE

∫
E
|[nE · ∇Auh]E |2 .

(4.17)
We consider ω ∈ {T, ωE , ωT } and denote :

Ỹh|ω : = {φ ∈ Ỹh| supp(φ) ⊂ ω}.

We first study || − ∇2
Auh − λhuh||L2(T ) by using Lemma 4.3 whose

relation (4.13) gives the following bound for all v ∈ Πk+2|T

c−1
4 hT ≤

||bT v||L2(T )

||∇(bT v)||L2(T )
. (4.18)

Now we use inequality (4.11) with u = −∇2
Auh − λhuh

c1||(−∇2
A−λh)uh||L2(T ) ≤ sup

v∈Πk+2|T

∫
T

(−∇2
Auh − λhuh)bT v

||v||L2(Ω)
. (4.19)

But, we know that 0 ≤ bT ≤ 1, so ||bT v||L2(Ω) ≤ ||v||L2(Ω). Then
taking account of (4.18) and (4.19), we deduce

c1hT
c4

||(−∇2
A − λh)uh||L2(T ) ≤ sup

v∈Πk+2|T

||bT v||L2(Ω)

∫
T
(−∇2

A − λh)uhbT v

||∇(bT v)||L2(T )||v||L2(Ω)

≤ sup
v∈Πk+2|T

〈F (λh, uh), (0, bT v)〉
||∇(bT v)||L2(T )

.

By construction of bT , bT v ∈ H1
0 (T ) and we apply the Poincaré in-

equality. So there exists a constant CΩ such that for any T ∈ Th and
any function v ∈ Πk+2|T , the following inequality holds by using also
the equivalence between norms H1(Ω) and H1

A(Ω) :

||∇(bT v)||L2(Ω) ≥ CΩ||bT v||H1
A(Ω).
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Furthermore, if v ∈ Πk+2|T , then bT v ∈ Ỹh|T and it follows that
c1

c4
hT ||(−∇2

A − λh)uh||L2(T ) ≤ C sup
φ∈Ỹh|T ,||φ||Y =1

〈F (λh, uh), (0, φ)〉 .

(4.20)
We now estimate the term ||[nE · ∇Auh]E ||L2(E). We look at in-

equality (4.12) with σ = [nE · ∇Auh]E . By the construction of the
prolongation operator P , for any σ ∈ Πk+1|T , the equality Pσ|E = σ
holds. Then :

sup
σ∈Πk+1|T

∫
E [nE · ∇Auh]EbEσ

||σ||L2(E)
= sup

σ∈Πk+1|T

∫
E [nE · ∇Auh]EbEPσ

||Pσ||L2(E)

≥ c2||[nE · ∇Auh]E ||L2(E). (4.21)

But, according to Lemma 4.1 with µ = 0, v = bEPσ, we obtain∫
E
[nE ·∇Auh]EbEPσ = 〈F (λh, uh), (0, bEPσ)〉+

∫
ωE

(∇2
A+λh)uhbEPσ.

Then

c2||[nE · ∇Auh]E ||L2(E) ≤ (4.22)

sup
σ∈Πk+1|E

\{0}

∣∣∣〈F (λh, uh), (0, bEPσ)〉 −
∫
ωE

(−∇2
A − λh)uhbEPσ

∣∣∣
||Pσ||L2(E)

.

Relation (4.14) leads to

c−1
6 ≤ h−1

T ||bEPσ||L2(T )||∇(bEPσ)||−1
L2(T )

. (4.23)

Using now (4.15), we deduce

c−1
7 ||σ||−1

L2(E)
= c−1

7 ||Pσ||−1
L2(E)

≤ h
1/2
T ||bEPσ||−1

L2(T )
. (4.24)

We group together relations (4.23) and (4.24) to obtain :

h
1/2
E

c6c7
||σ||−1

L2(E)
≤
√

hE

hT
||∇(bEPσ)||−1

L2(T )
≤ c8||∇(bEPσ)||−1

L2(T )
,

(4.25)
where c8 depends only on the regularity parameter. We use this upper
bound to study (4.22) multiplied by c−1

6 c−1
7 h

1/2
E and consider each

term separately. We begin with the term :

sup
σ∈Πk+1|E

\{0}

h
1/2
E

c6c7

〈F (λh, uh), (0, bEPσ)〉
||σ||L2(E)

≤√
hE
hT

sup
σ∈Πk+1|E

\{0}

〈F (λh, uh), (0, bEPσ)〉
||∇(bEPσ)||L2(T )

.
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We use the Poincaré inequality on ωE since bEPσ ∈ H1
0 (ωE), so there

exists a constant c independent of E such that

sup
σ∈Πk+1|E

\{0}

〈F (λh, uh), (0, bEPσ)〉
||∇(bEPσ)||L2(T )

≤ c sup
(0,v)∈X̃h|ωE

〈F (λh, uh), (0, v)〉
||(0, v)||X

.

(4.26)

Let us look at the term h
1/2
E

c7c6
sup

σ∈Πk+1|E
\{0}

∫
ωE

(−∇2
A − λh)uhbEPσ

||σ||L2(E)
.

We know that 0 ≤ bE ≤ 1 so ||bEPσ||L2(E) ≤ ||σ||L2(E). We use also
relation (4.15) to deduce that :

||bEPσ||L2(ωE) ≤ 2c7

√
hTE

||σ||L2(E),

by defining hTE
: = sup

T∈ωE

hT . Then :

√
hE

c6c7
sup

σ∈Πk+1|E
\{0}

∫
ωE

(−∇2
A − λh)uhbEPσ

||σ||L2(E)
≤ 2

√
hEhTE

c6

× sup
σ∈Πk+1|E

\{0}

∫
ωE

(−∇2
A − λh)uhbEPσ

||bEPσ||L2(ωE)

≤ C sup
φ∈Ỹh|ωE

,||φ||Y =1

〈F (λh, uh), (0, φ)〉 . (4.27)

Putting together relations (4.26), (4.27) and (4.22), we conclude :

sup
σ∈Πk+1|E

\{0}

c2h
1/2
E

c6c7
||[nE · ∇Auh]E ||L2(E) ≤

c sup
φ∈Ỹh|ωE

,||φ||Y =1

〈F (λh, uh), (0, φ)〉 . (4.28)

We just put upper bounds (4.28), (4.20) in the expression (4.17) of
ηT , so there exists a constant C̃ which depends on the regularity
parameter such that

ηT ≤ C̃ sup
(0,v)∈X̃h,supp v⊂ωT

〈F (λh, uh), (0, v)〉
||(0, v)||X

. (4.29)

This concludes the proof of Lemma 4.4.

Lemma 4.5 Let (λh, uh) ∈ Xh be a solution of (2.17), then there
exists a constant C which depends on the regularity parameter such
that : ∑

T∈Th

η2
T

1/2

≤ C||F (λh, uh)||X̃∗
h
. (4.30)
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Proof From the definition of the norm and the assumptions on (λh, uh),
we notice that :

||F (λh, uh)||X̃∗
h

= sup
(0,v)∈X̃h

〈F (λh, uh), (0, v)〉
||(0, v)||X

.

So, for all ε > 0 and all T ∈ Th, there exists a function vT ∈ Ỹh with
support included in ωT such that :

〈F (λh, uh), (0, vT )〉 ≥ 0,

sup
f∈Ỹh,supp f⊂ωT

∣∣∣∣〈F (λh, uh), (0, f)〉
||(0, f)||X

∣∣∣∣2 ≤ ∣∣∣∣〈F (λh, uh), (0, vT )〉
||(0, vT )||X

∣∣∣∣2 + ε.

We define the function :

v: =
∑

T∈Th

vT

||(0, vT )||X
,

then v ∈ Ỹh as a linear combination of elements of Ỹh and due to
the triangular inequality, ||v||Y ≤ 1. We take again the result of
Lemma 4.4 and sum η2

T on elements of Th, then :∑
T∈Th

η2
T ≤ C̃2

∑
T∈Th

sup
(0,w)∈X̃h,supp w⊂ωT

∣∣∣∣〈F (λh, uh), (0, w)〉
||(0, w)||X

∣∣∣∣2 . (4.31)

Using the functions vT :∑
T∈Th

η2
T ≤ C̃2

∑
T∈Th

(∣∣∣∣〈F (λh, uh), (0, vT )〉
||(0, vT )||X

∣∣∣∣2 + ε

)

≤ C̃2

∑
T∈Th

〈F (λh, uh), (0, vT )〉
||(0, vT )||X

2

+ C̃2Nε

≤ C̃2| 〈F (λh, uh), (0, v)〉 |2 + C̃2Nε, (4.32)

with N an upper bound of the number of the triangulation’s elements.
Next, we take the upper limit on (0, w) in X̃h :∑

T∈Th

η2
T ≤ C̃2||F (λh, uh)||2

X̃∗
h

+ C̃2Nε. (4.33)

So, making ε going to 0 leads to :∑
T∈Th

η2
T


1/2

≤ C̃||F (λh, uh)||X̃∗
h
, (4.34)

with C̃ depending on the regularity parameter.
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4.2 Proof of Theorem 2.1

• We begin with justifying the first inequality :

|λ− λ|+ ||u− uh||H1
A(Ω) ≤ c

√∑
T∈Th

η2
T . (4.35)

Let (µ, v) ∈ X such that ||(µ, v)||X = 1, then

〈F (λh, uh), (µ, v)〉
= 〈F (λh, uh), (µ, v)−Rh(µ, v)〉+ 〈F (λh, uh), Rh(µ, v)〉 . (4.36)

We estimate the second member (4.36) according to preliminary lem-
mas. Lemma 4.2 leads to an upper bound of the first term of (4.36)

〈F (λh, uh), (µ, v)−Rh(µ, v)〉 ≤ C1

∑
T∈Th

η2
T


1/2

. (4.37)

Furthermore, as (λh, uh) is a solution of problem (2.17), then for
(µh, vh) ∈ Xh,

〈F (λh, uh), (µh, vh)〉 = 0.

But, for all (µ, v) ∈ X, the operator Rh is defined so as to Rh(µ, v)
is in Xh, so particularly

∀(µ, v) ∈ X, 〈F (λh, uh), Rh(µ, v)〉 = 0. (4.38)

We report relations (4.38) and (4.37) in (4.36) and obtain an estimate
for all (µ, v) ∈ X, this leads to the upper bound

||F (λh, uh)||X∗ ≤ C1

∑
T∈Th

η2
T


1/2

. (4.39)

Let R given by Corollary 3.1. If λ and λh are the smallest eigen-
values of the continuous and discrete operators such that (λ, u) and
(λh, uh) are respectively solution of (2.16) and (2.17), then applying
Lemma 3.1, there exists a constant C such that

|λ− λh| ≤ Ch2 and ||u− uh||H1
A(Ω) ≤ Ch. (4.40)

So, if h is small enough, ||(λ, u)−(λh, uh)||X < R, then relation (4.39),
Corollary 3.1 and inequality |λ−λh|+ ||u−uh||H1

A(Ω) ≤
√

2||(λ, u)−
(λh, uh)||X lead to

|λ−λh|+||u−uh||H1
A(Ω) ≤

√
2||(λ, u)−(λh, uh)||X ≤

√
2c

∑
T∈Th

η2
T


1/2

.
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• We have now to justify the estimate

c

∑
T∈Th

η2
T


1/2

≤ |λ− λh|+ ||u− uh||H1
A(Ω). (4.41)

Lemma 4.5 shows that∑
T∈Th

η2
T


1/2

≤ c||F (λh, uh)||X̃∗
h
.

Since X̃h ⊂ X then ||F (λh, uh)||X̃∗
h
≤ ||F (λh, uh)||X∗ and so

∑
T∈Th

η2
T


1/2

≤ c||F (λh, uh)||X∗ . (4.42)

Corollary 3.1 proves that for any (µ, v) ∈ BX((λ, u), R), we have

c1||F (µ, v)||X∗ ≤ ||(λ, u)− (µ, v)||X ≤ c2||F (µ, v)||X∗ .

Then, according to Lemma 3.1, ||(λ, u) − (λh, uh)||X < R if the tri-
angulation is thin enough and this leads to (4.41).
• We now improve in (4.35) and (4.41) the estimate of |λ − λh|. We
notice, using also (2.9) and (2.11), that :∫

Ω
|∇Auh−∇Au|2 = λ−2λ Re 〈u, uh〉L2(Ω)+λh ≥ λ−λh ≥ 0. (4.43)

We deduce from (4.35) that

||u− uh||2H1
A(Ω) ≤ c̃

∑
T∈Th

η2
T . (4.44)

Using (4.43), we conclude that

|λ− λh| ≤ ||u− uh||2H1
A(Ω) ≤ c̃

∑
T∈Th

η2
T . (4.45)

Relation (4.41) leads to

c
∑

T∈Th

η2
T ≤ |λ−λh|2+||u−uh||2H1

A(Ω) ≤ ||u−uh||4H1
A(Ω)+||u−uh||2H1

A(Ω),

(4.46)
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using (4.45). We deduce that there exists a constant C depending
only on the parameter of the triangulation such that∑

T∈Th

η2
T ≤ C||u− uh||2H1

A(Ω). (4.47)

Coming back to (4.46) with relation (4.44), we conclude that

C̃
∑

T∈Th

η2
T ≤ |λ− λh|, (4.48)

as soon as
∑

T∈Th
η2

T is small enough to have a positive constant C̃.

5 Conclusion

We construct an a posteriori error estimate as in Theorem 2.1. This
theorem is appropriate to improve numerical computations by using
adaptative mesh-refinement techniques. To illustrate this, we con-
sider for Ω an angular sector cutting smoothly by a piece of circle.
We want to determine the first eigenpair (λ, u) of −(∇ − iA)2 on
Ω with the magnetic field B = curlA constant equal to 30 Teslas.
We compute a first numerical eigenpair (λh, uh = ρheiθh) for this
operator by a finite elements method and the local error ηT on each
element T of the triangulation Th of Ω. As soon as ηT is too large
for some T ∈ Th, we refine this element T and compute a new so-
lution on the new adaptative refined mesh till the indicator of the
error

∑
T∈Th

η2
T is small enough. Figures 5.1 give the mesh obtained

by using the a posteriori error estimator developed here, jointly with
a mesh refinement technique. The right figure is a zoom of the left

Fig. 5.1. Mesh obtained by this adaptative refinement method

Fig. 5.2. Modulus ρh of the first eigenfunction for −∆A

figure near the corner. Figure 5.2 gives the numerical modulus ρh of
the first eigenvector computed on the refined mesh. These figures are
taken from [1,10] where a more systematic study of the dependence
of λ1 to the angle of the corner is provided numerically. These nu-
merical results developed in [8,10,11] are useful to determine where
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the superconductivity appears. The a posteriori error estimate we
obtain is a prolongation of results by Larson [20], Bernardi-Métivet
[5], Bernardi-Métivet-Verfürth [6], Maday-Turinici [22] or Verfürth
[27] for another framework of operator with the Schrödinger operator
with magnetic field and a Neumann magnetic boundary condition.
We propose for this operator a better estimate than Verfürth [27] for
−∇· (A∇)+d and the a posteriori error estimate in Theorem 2.1 has
the same order of convergence than for the a priori error estimate
proposed by Babuška-Osborn [3] and recalled in Theorem 3.1.
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