
Geometry and gradient flow structure of the
arctangential heat flow

Yann Brenier,
CNRS, DMA/ENS, 45 rue d’Ulm, FR-75005 Paris,

in association with the CNRS-INRIA team "MOKAPLAN".

Gradient flows: challenges and new directions,
ICMS, 10 to 14 September 2018, Edinburgh.

Yann Brenier (CNRS, DMA-ENS) The arctangential heat flow Edinburgh, 10-14/09/2018 1 / 24



Outline

We introduce the "arctangential" heat flow

∂tD = ∆(arctan D)

and show that this degenerate scalar parabolic
equation has a hidden gradient flow structure, in
parallel with the mean curvature flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.
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The "arctangential" heat flow:

∂tD = ∆(arctan D),

also reads, in non conservative form for D = tan(πψ),

∂tψ = cos(πψ)2∆ψ

(which makes sense for ψ ∈ R, not only for |ψ| ≤ 1/2).

In (saturated) discrete form and 2 space dimensions:

ψn+1
i ,j − ψn

i ,j

cos(πψn
i ,j)

2 =
ψn

i+1,j + ψn
i−1,j + ψn

i ,j+1 + ψn
i ,j−1

4
− ψn

i ,j .
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"fort.10"

Few numerical results.
The 1d arctangential heat flow: brownian initial condition, x ∈ R/Z.
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Numerical solution for 256 grid points, 4096 time steps.
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The 2d arctangential heat flow: level sets of the data, x ∈ R2/Z2.
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The 2d arctangential heat flow: noisy initial condition, x ∈ R2/Z2.
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"fort.47"

The 2d arctangential heat flow: recovery of the level sets
x ∈ R/Z, t ≥ 0.
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The 2d arctangential heat flow: other choice of data (with binary values), x ∈ R2/Z2.
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The 2d arctangential heat flow: noisy initial condition, x ∈ R2/Z2.
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The 2d arctangential heat flow: recovery of the level sets x ∈ R2/Z2, t ≥ 0.
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The 2d arctangential heat flow: recovery of the level sets x ∈ R2/Z2, t ≥ 0.

Yann Brenier (CNRS, DMA-ENS) The arctangential heat flow Edinburgh, 10-14/09/2018 12 / 24



The main result (Y.B. 2018, HAL preprint: hal-01740320):

The equation of extremal graphs in Minkowski’s space

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2

(which is a nonlinear wave equation) generates two
twin gradient flows.

The first one is the arctangential
heat flow ∂tD = ∆(arctan D), while the second one is
just the well known mean curvature flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.
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A "naive" but interesting gradient flow structure

The arctangential flow ∂tD = λ∆(arctan(Dλ−1) can be
easily written in optimal transport style (à la Otto):

∂tD = ∇ · (D ∇(F ′(D))) ,

where

F(D) = D log
(

D√
1+D2λ−2

)
− λarctan(Dλ−1) is the

Legendre transform of u → λarcsin(λ−1eu)
(extended by +∞ for u > logλ), which can be seen as
a “catastrophic” version of the usual exponential.
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The “catastrophic” exponential for different values of parameter λ.
u → λarcsin(λ−1 exp(u)) (extended by +∞ for u > logλ).
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The inverse of the “catastrophic” exponential
(after symmetrization and periodization), for different values of λ

v → 1
2 log(λ2 sin2(vλ−1))

is also used in “optimal unbalanced transport theory”!
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Gradient flow structure of the arctangential flow

Alternately (and more geometrically), the arctangential
flow is the gradient flow of functional D →

∫
Td

√
1 + D2

with metric ||v ||2D =
∫
Td (1 + D2)−1/2|vD|2, tangent

vectors at point D being written as Ḋ = −∇ · (vD).

It turns out that this structure is inherited from the
nonlinear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2.
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Gradient flow structure of the MC flow for graphs

In a parallel way, the mean curvature flow for graphs
can be interpreted as the gradient flow of functional
B →

∫
Td

√
1 + |B|2 with metric

||v ||2B =
∫
Td (1 + |B|2)−1/2(B · v)2 where tangent vectors

at point B = ∇φ are written as Ḃ = −∇(B · v).

Again,
this structure comes from the nonlinear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2 .
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Final part: proof of our main result.
We want to derive from the nonlinear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2,

at once, both the arctangential heat flow

∂tD = ∆(arctan D)

and the mean curvature flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.

Yann Brenier (CNRS, DMA-ENS) The arctangential heat flow Edinburgh, 10-14/09/2018 19 / 24



Final part: proof of our main result.
We want to derive from the nonlinear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2,

at once, both the arctangential heat flow

∂tD = ∆(arctan D)

and the mean curvature flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.

Yann Brenier (CNRS, DMA-ENS) The arctangential heat flow Edinburgh, 10-14/09/2018 19 / 24



Proof/First step. As φ(t , x) solves the equation of
extremal surfaces in Minkowski’s space, then

(D,B,P) =
1√

1− ∂tφ2 + |∇φ|2
(∂tφ,∇φ,−∂tφ ∇φ)

solves the "entropic" system of conservation laws:

∂tB +∇
(

P · B − D
h

)
= 0, ∂tD +∇ ·

(
PD − B

h

)
= 0,

∂tP +∇ ·
(

P ⊗ P + B ⊗ B
h

)
= ∇

(
1 + B2

h

)
,

with h =
√

1 + D2 + B2 + P2 as convex entropy.
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Proof/Second step. To get a gradient flow, we follow
Y.B. and Xianglong Duan (ARMA 2018) by performing
the simple singular change of time t → θ = t2/2 :

B(θ, x) = B(
√

2θ, x),

D(θ, x) =
D(
√

2θ, x)√
2θ

, P(θ, x) =
P(
√

2θ, x)√
2θ

,

requiring initial condition D = P = 0 at t = 0
(which corresponds to ∂tφ(0, x) = 0 in terms of φ).
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In a somewhat dual way, a second natural change is

D(θ, x) = D(
√

2θ, x),

B(θ, x) =
B(
√

2θ, x)√
2θ

, P(θ, x) =
P(
√

2θ, x)√
2θ

,

requiring initial condition B = P = 0 at t = 0
(which corresponds to ∇φ = 0 at t = 0 for φ).
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After performing the change of time t → θ = t2/2,

we get, in the 1st case, the non automous system:

∂θB = ∇
(
D − P · B

H

)
, H =

√
1 + B2 + 2θ(D2 + P2),

D −∇ ·
(
B
H

)
= −2θ

(
∂θD +∇ ·

(
PD
H

))
,

P +∇ ·
(
B ⊗ B
H

)
−∇

(
1 + B2

H

)
= −2θ

(
∂θP +∇ ·

(
P ⊗ P
H

))
.
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Neglecting the red terms leads to the mean curvature
flow (for graphs), in form:

∂θB = ∇
(
D − P · B

H

)
, H =

√
1 + B2

D = ∇ ·
(
B
H

)
, P +∇ ·

(
B ⊗ B
H

)
= ∇

(
1 + B2

H

)
,

Symmetrically, the second rescaling leads to the
arctangential heat equation and, then,
the twin gradient flow structures easily follow.
End of proof. THANKS !
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