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EULER’S MODEL OF INCOMPRESSIBLE FLUIDS

One can describe the motion of an incompressible fluid inside a
bounded domain D in RY by a time-dependent family t — A; of
maps belonging to the Hilbert space H = L?(D, RY), valued in the
subset VPM(D) C H of all Lebesgue measure-preserving maps
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maps belonging to the Hilbert space H = L?(D, RY), valued in the
subset VPM(D) C H of all Lebesgue measure-preserving maps

VPM(D) — {X c H, / q((a))da = / q(a)da, vq € C(RY)}
D D
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EULER’S MODEL OF INCOMPRESSIBLE FLUIDS

One can describe the motion of an incompressible fluid inside a
bounded domain D in RY by a time-dependent family t — A; of
maps belonging to the Hilbert space H = L?(D, RY), valued in the
subset VPM(D) C H of all Lebesgue measure-preserving maps

VPM(D) = {X € H, / q(X(a))da = / q(a)da, vq c C(RY)}
D D

The Euler model, introduced in 1755, correspond to those curves
t — A € VPM(D) for which there is a "pressure field" p(x) s.t.

d2x;
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1.5

three maps of the periodic square: one is area preserving
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THE PRINCIPLE OF LEAST ACTION

(easy) THEOREM Let D be convex and (A}, pt) be a solution of the
Euler equations, with D2p; < CI.
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THE PRINCIPLE OF LEAST ACTION

(easy) THEOREM Let D be convex and (A}, pt) be a solution of the
Euler equations, with D2p; < CI. Then, as long as C|t; — to|2 < =,
Xl 1,] IS the unique minimizer, among all curves along VPM(D)
that coincide with X; at t = tg, t = t4, of the following ACTION

/ HdXtHH dt, H=L?%D,R?)
to
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Xl 1,] IS the unique minimizer, among all curves along VPM(D)
that coincide with X; at t = tg, t = t4, of the following ACTION

/ HdXtHH dt, H=L?%D,R?)
to

In other words, such a curve is nothing but a (constant speed)
minimizing geodesic along VPM(D), with respect to the metric
induced by H = L?(D,RY) on VPM(D).
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THE PRINCIPLE OF LEAST ACTION

(easy) THEOREM Let D be convex and (A}, pt) be a solution of the
Euler equations, with D2p; < CI. Then, as long as C|t; — to|2 < =,
Xl 1,] IS the unique minimizer, among all curves along VPM(D)
that coincide with X; at t = tg, t = t4, of the following ACTION

/ HdXtHH dt, H=L?%D,R?)
to

In other words, such a curve is nothing but a (constant speed)
minimizing geodesic along VPM(D), with respect to the metric
induced by H = L?(D,RY) on VPM(D).

See Arnold 1966, Ebin-Marsden 1970, Arnold-Khesin book 1998.
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VOLUME-PRESERVING MAPS:
APPROXIMATION PAR PERMUTATIONS

Fix D = [0,1]9 and consider its dyadic decomposition by N = 2"
sub-cubes D(«), of barycenters A(a), « =1,--- N.
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APPROXIMATION PAR PERMUTATIONS

Fix D = [0,1]9 and consider its dyadic decomposition by N = 2"
sub-cubes D(«), of barycenters A(a),a =1, - - N.

For numerical purposes, we approximate the set VPM(D) of all
volume-preserving maps by the discrete subset Py(D) of all rigid
rearrangements of the N sub-cubes,
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VOLUME-PRESERVING MAPS:
APPROXIMATION PAR PERMUTATIONS

Fix D = [0,1]9 and consider its dyadic decomposition by N = 2"
sub-cubes D(«), of barycenters A(a),a =1, - - N.

For numerical purposes, we approximate the set VPM(D) of all
volume-preserving maps by the discrete subset Py(D) of all rigid
rearrangements of the N sub-cubes, namely maps of form:

's(a)=a—A(a) +A(0(a)), a€D(a), a=1,.,N, ocSy|

where Sy is the set of all permutations of {1,-- - N}.
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REARRANGEMENTS OF N=16 SUB-CUBES AS
EXAMPLES OF VOLUME PRESERVING MAPS



PENALIZATION OF THE EULER ACTION

Since minimizing geodesics along a discrete set such as the set
of rigid permutations Py(D) do not make much sense, we rather
consider a penalized version of the Euler action (*)

d¥t o 1 2 2 nd
fo||l&— H=L%D,R
/(|| e inf 1% sl ot (D. )
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PENALIZATION OF THE EULER ACTION

Since minimizing geodesics along a discrete set such as the set
of rigid permutations Py(D) do not make much sense, we rather
consider a penalized version of the Euler action (*)

dXt _1 . 2 2 d
fo||l&— H=L%D,R
/O(II e inf 1% sl ot (D. )

(*) For smooth sets, this is a consistent approximation to minimizing geodesics
(cf. Rubin-Ungar, CPAM 1957).
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FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

A(a) =a— A(a) + Xi(«), a€ D(w),
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FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

X(a) =a—A(a) + Xi(a), acD(a), Xi(a)=X(A(@), a=1,..,N

Here X; € (RY)N becomes the new, finite-dimensional, unknown.
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FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

X(a) =a—A(a) + Xi(a), acD(a), Xi(a)=X(A(@), a=1,..,N

Here X; € (RY)N becomes the new, finite-dimensional, unknown.
Accordingly, the penalized action can be easily computed

dX 4.
/(H BRUR -+ int X~ A[R)ot
to TESN

Here || - || denotes the euclidean norm in H = (R9)N, Sy is the set
of all permutations of {1,---,N} and A,(«) = A(o(«)), a=1,...,N.
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THE RESULTING (DISCRETE)
VLASOV-MONGE-AMPERE SYSTEM

Using the least-action principle, we end up with the following
finite-dimensional dynamical system

d2X
Edttzga) = Xi(@) — A(oopt()), a=1,...N

N
oopt = Arginf{ > " [Xi(a) — A(o(a)?, o € Sn}

a=1

This can be used for numerical purposes! See related work by Mérigot and
Mirebeau arXiv:1505.03306, based on Mérigot’s fast Monge-Ampére solver.

The explicit time discrete version was introduced in Y.B. CMP 2000 for ¢ < 0,
with convergence to the Euler model as |¢| — 0, N > Cle|™%9, 6t < Cle|*.
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THE VLASOV-MONGE-AMPERE SYSTEM

The continuous version, involving the Monge-Ampére equation,
was introduced in B. and Loeper (GAFA 2004), studied by Cullen,
Gangbo, Pisante (Arma 2007), Ambrosio-Gangbo (CPAM 2008)...

‘8tf(t7X7§) + vX ’ (é f(t7 ng)) - Vg ' (Vx(p(t,X)f(t,X7§)) = 0‘

det(I + eD2p(6, x)) = / f(t, X, )¢, (1,x,¢) € R0+
Rd
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THE VLASOV-MONGE-AMPERE SYSTEM

The continuous version, involving the Monge-Ampére equation,
was introduced in B. and Loeper (GAFA 2004), studied by Cullen,
Gangbo, Pisante (Arma 2007), Ambrosio-Gangbo (CPAM 2008)...

‘atf(tv)(?g) + vX ’ (§ f(ta ng)) - Vg ' (VX()O(LX)f(t?Xvé)) = 0‘

det(I + eD2p(6, x)) = / f(t, X, )¢, (1,x,¢) € R0+
Rd

It is a fully nonlinear correction of the well-known Vlasov-Poisson
system describing Newtonian gravitation as d = 3.
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(f) t=0.0 (8) t = 0.25 % tmax (h) £ = 0.5 % tmax (i) £ = 0.75 * tmax ()¢t

(k) t =0.0 (1) t = 0.25 * tmax (m) t = 0.5 * tmax (n) t = 0.75 % tmax (0) t =1

() t=00 () t = 0.25 % tmax (r) t = 0.5 % fmax (5)t =075 % tmax ~ (£) %
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PART II: A PURELY STOCHASTIC ORIGIN OF
THE (discrete) VLASOV-MONGE-AMPERE MODEL

Using large deviation principles and the concept of "onde pilote"
(coming from quantum mechanics), we will recover this discrete
dynamical system from the trivial stochastic model of a Brownian

point cloud.
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PART II: A PURELY STOCHASTIC ORIGIN OF
THE (discrete) VLASOV-MONGE-AMPERE MODEL

Using large deviation principles and the concept of "onde pilote"
(coming from quantum mechanics), we will recover this discrete
dynamical system from the trivial stochastic model of a Brownian
point cloud.

As a consequence and in some sense, the Euler model of
incompressible fluids can be obtained out of pure noise!
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WANDERING OF A BROWNIAN POINT CLOUD

We consider N independent Brownian curves issued from the
cubic lattice {A(a) € R?, o = 1,---, N} and wandering in R:

Ala) + VeBi(a), a=1,-- N

We define a point cloud as a finite set of indistinguishable points,
i.e. as a point in the quotient space (R9)N/Sy.
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Wandering of a cloud in R3

t=20
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LET US FOLLOW "L'ONDE PILOTE"

Introducing the heat equation in the space of "clouds" X ¢ RN

dp

S(HX) = EAp(t,X), p(t=0,X) = NIZ&X Ay)

ocESN
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Introducing the heat equation in the space of "clouds" X ¢ RN

dp

S(HX) = EAp(t,X), p(t=0,X) = NIZ&X Ay)

ocESN

we solve the ODE

o,
at

= v(t,X), v(t.X)=—5Vxlogp(t X)
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LET US FOLLOW "L'ONDE PILOTE"

Introducing the heat equation in the space of "clouds" X ¢ RN

dp

S(HX) = EAp(t,X), p(t=0,X) = NIZax Ay)

ocESN

we solve the ODE

o,
at

= v(t,X), v(t.X)=—5Vxlogp(t X)

This is an adaptation of de Broglie’s "onde pilote" concept. As a matter of fact,
a similar calculation also works for the free Schrédinger equation:
(i0c+ A)p =0, 9(0,X) =3 exp(—||X — As||?/&®), v=VImlogy
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THE "ONDE PILOTE" SYSTEM

We get the "onde pilote"” system, setting t = exp(26),

ATV SR SR o (|§69X§|2|"))
0

do ZUESN eXp(TD(%))
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ZERO-NOISE LIMIT ANALYSIS

As c goes to zero, we get the first order dynamical system

Xy,

do oopt = Arginf ;cs), [ Xo — AUH2

Topt )
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ZERO-NOISE LIMIT ANALYSIS

As c goes to zero, we get the first order dynamical system

ax .

T;ZXQ—AJOM, Topt = Arginf ses, || Xo — A2
CldiXe = L . s "
i.e. a0 = —V&(Xp) | which is the "gradient flow" of the

semi-convex function ®(X) = — inf I|1X — As]|?/2
gESN

N.B. this formulation automatically include 1D sticky collisions.
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Sticky collisions

horizontal : 51 grid points in x /vertical : 60 grid points in t

25 T

0.5 L
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From free (Bosonic) Schrédinger to sticky particles

"1ort.57' +

09 |
0.8 [ 4
0.7 | 4
06 1
05 B
04 f 1
03} |
0.2 [ 4

0.1
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

Back to the "onde pilote" trajectories, let us add some noise 7,

—[1X5—As |2
dXs B > oesy Ao eXP( 5 o )
d69 = Xee — < A > +77 ‘206 ’ < A > = S5 7||)2(eeij(|2|z)

> oesy OP(2caprn )
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

Back to the "onde pilote" trajectories, let us add some noise 7,

—[|X5—As |2

X< B > oesy Ao eXP( 5 o )
ijee = Xg — < A > +77 dd; ’ < A > = S5 7”)2(3(2(‘2;)
> oesy OP(2caprn )

For ¢ fixed, we first use the Freidlin-Vencel theory to get the "good
rate function" for the large deviations of the system as n — 0.
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

Back to the "onde pilote" trajectories, let us add some noise 7,

—[|X5—As |2

X< B > sesy Ar eXP( 3 4 )
C:;; =X;—<A> +nij; < A> = S ||)2( exj(ie)
2 oecsy P2 @)

For ¢ fixed, we first use the Freidlin-Vencel theory to get the "good
rate function" for the large deviations of the system as n — 0.
Then, we may pass to the limit ¢ — 0 (*) and obtain as "I —limit"

aX, .
JUGGIR+ Fe0a) Pdb. 600 =~ inf [1X - Ad|f/2

(*) thanks to L. Ambrosio, private communication.
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LEAST ACTION PRINCIPLE

The least action principle applied to

aX, .
JUGGIR+ Ve Pab. 000 =~ inf [1X - Ad|f/2

(formally) leads to the following dynamical system

d?Xy
dy?

2
= vV )
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LEAST ACTION PRINCIPLE

The least action principle applied to

% 2 2 i . 2
JUGGIR+ Ve Pab. 000 =~ inf [1X - Ad|f/2

(formally) leads to the following dynamical system

a2X,

Ivo|?
a2 Vi

2

)(Xp) = —(V®)(Xp)

Indeed ||[V®|> = —2¢ because —2¢ is a squared distance function.
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THE RESULTING DYNAMICAL SYSTEM

So, we have finally obtained

d2 X
dgga) = Xg(a) = A(ogpt(@)) , Xp(a) € RY a=1,--- N
N
oopt = Arginf ;¢s), Z | Xp(a) — A(U(a))]2
a=1
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THE RESULTING DYNAMICAL SYSTEM

So, we have finally obtained

a2 X
dgga) = XQ(OZ) — A(O'opt(a)) R Xg(a) = Rd, a=1,--- N
N
oopt = Arginf ;¢s), Z | Xp(a) — A(U(a))]z
a=1

which was precisely the dynamical system we introduced to
dicretize the Euler equations by rearrangement techniques!
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THE RESULTING DYNAMICAL SYSTEM

So, we have finally obtained

a2 X
dgga) = XQ(OZ) — A(O'opt(a)) R Xg(a) = Rd, a=1,--- N
N
oopt = Arginf ;¢s), Z | Xp(a) — A(U(a))]z
a=1

which was precisely the dynamical system we introduced to
dicretize the Euler equations by rearrangement techniques!

THANKS!
see Y.B. arXiv:1504.07583
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