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EULER’S MODEL OF INCOMPRESSIBLE FLUIDS

One can describe the motion of an incompressible fluid inside a
bounded domain D in Rd by a time-dependent family t→ Xt of
maps belonging to the Hilbert space H = L2(D,Rd), valued in the
subset VPM(D) ⊂ H of all Lebesgue measure-preserving maps

VPM(D) = {X ∈ H,
∫

D
q(X (a))da =

∫
D

q(a)da, ∀q ∈ C(Rd)}

The Euler model, introduced in 1755, correspond to those curves
t→ Xt ∈ VPM(D) for which there is a "pressure field" pt(x) s.t.

d2Xt

dt2 + (∇pt) ◦ Xt = 0
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POLAR FACTORIZATION OF A PERIODIC MAP

 

three maps of the periodic square: one is area preserving
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THE PRINCIPLE OF LEAST ACTION

(easy) THEOREM Let D be convex and (Xt,pt) be a solution of the
Euler equations, with D2

xpt ≤ CI.

Then, as long as C|t1 − t0|2 < π,
X|[t0,t1] is the unique minimizer, among all curves along VPM(D)
that coincide with Xt at t = t0, t = t1, of the following ACTION∫ t1

t0

||dXt

dt
||2H dt, H = L2(D,Rd)

In other words, such a curve is nothing but a (constant speed)
minimizing geodesic along VPM(D), with respect to the metric
induced by H = L2(D,Rd) on VPM(D).
See Arnold 1966, Ebin-Marsden 1970, Arnold-Khesin book 1998.
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VOLUME-PRESERVING MAPS:
APPROXIMATION PAR PERMUTATIONS

Fix D = [0,1]d and consider its dyadic decomposition by N = 2nd

sub-cubes D(α), of barycenters A(α), α = 1, · · ·,N.

For numerical purposes, we approximate the set VPM(D) of all
volume-preserving maps by the discrete subset PN(D) of all rigid
rearrangements of the N sub-cubes, namely maps of form:

s(a) = a− A(α) + A(σ(α)), a ∈ D(α), α = 1, ...,N, σ ∈ SN

where SN is the set of all permutations of {1, · · ·,N}.
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REARRANGEMENTS OF N=16 SUB-CUBES AS
EXAMPLES OF VOLUME PRESERVING MAPS
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PENALIZATION OF THE EULER ACTION

Since minimizing geodesics along a discrete set such as the set
of rigid permutations PN(D) do not make much sense, we rather
consider a penalized version of the Euler action (*)∫ t1

t0

(||dXt

dt
||2H + ε−1 inf

s∈PN(D)
||Xt − s||21

2 H) dt, H = L2(D,Rd)

(*) For smooth sets, this is a consistent approximation to minimizing geodesics
(cf. Rubin-Ungar, CPAM 1957).
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FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

Xt(a) = a− A(α) + Xt(α), a ∈ D(α),

Xt(α) = Xt(A(α)), α = 1, ...,N

Here Xt ∈ (Rd)N becomes the new, finite-dimensional, unknown.
Accordingly, the penalized action can be easily computed∫ t1

t0

(||dXt

dt
||2 + ε−1 inf

σ∈SN
||Xt − Aσ||2)dt

Here || · || denotes the euclidean norm in H = (Rd)N, SN is the set
of all permutations of {1, · · ·,N} and Aσ(α) = A(σ(α)), α = 1, ...,N.

Yann Brenier (CNRS) Vlasov-Monge-Ampère and fluid mechanics Warwick 26-30 sept. 2016 8 / 1



FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

Xt(a) = a− A(α) + Xt(α), a ∈ D(α), Xt(α) = Xt(A(α)), α = 1, ...,N

Here Xt ∈ (Rd)N becomes the new, finite-dimensional, unknown.

Accordingly, the penalized action can be easily computed∫ t1

t0

(||dXt

dt
||2 + ε−1 inf

σ∈SN
||Xt − Aσ||2)dt

Here || · || denotes the euclidean norm in H = (Rd)N, SN is the set
of all permutations of {1, · · ·,N} and Aσ(α) = A(σ(α)), α = 1, ...,N.

Yann Brenier (CNRS) Vlasov-Monge-Ampère and fluid mechanics Warwick 26-30 sept. 2016 8 / 1



FINITE-DIMENSIONAL REDUCTION

It is consistent to limit ourself to piecewise affine maps of form

Xt(a) = a− A(α) + Xt(α), a ∈ D(α), Xt(α) = Xt(A(α)), α = 1, ...,N

Here Xt ∈ (Rd)N becomes the new, finite-dimensional, unknown.
Accordingly, the penalized action can be easily computed∫ t1

t0

(||dXt

dt
||2 + ε−1 inf

σ∈SN
||Xt − Aσ||2)dt

Here || · || denotes the euclidean norm in H = (Rd)N, SN is the set
of all permutations of {1, · · ·,N} and Aσ(α) = A(σ(α)), α = 1, ...,N.

Yann Brenier (CNRS) Vlasov-Monge-Ampère and fluid mechanics Warwick 26-30 sept. 2016 8 / 1



THE RESULTING (DISCRETE)
VLASOV-MONGE-AMPERE SYSTEM

Using the least-action principle, we end up with the following
finite-dimensional dynamical system

ε
d2Xt(α)

dt2 = Xt(α)− A(σopt(α)), α = 1, ...,N

σopt = Arginf{
N∑
α=1

|Xt(α)− A(σ(α)|2, σ ∈ SN}

This can be used for numerical purposes! See related work by Mérigot and
Mirebeau arXiv:1505.03306, based on Mérigot’s fast Monge-Ampère solver.
The explicit time discrete version was introduced in Y.B. CMP 2000 for ε < 0,
with convergence to the Euler model as |ε| → 0, N ≥ C|ε|−8d , δt ≤ C|ε|4.
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THE VLASOV-MONGE-AMPERE SYSTEM

The continuous version, involving the Monge-Ampère equation,
was introduced in B. and Loeper (GAFA 2004), studied by Cullen,
Gangbo, Pisante (Arma 2007), Ambrosio-Gangbo (CPAM 2008)...

∂t f (t , x , ξ) +∇x · (ξ f (t , x , ξ))−∇ξ · (∇xϕ(t , x)f (t , x , ξ)) = 0

det(I + εD2
xϕ(θ, x)) =

∫
Rd

f (t , x , ξ)dξ, (t , x , ξ) ∈ R1+d+d

It is a fully nonlinear correction of the well-known Vlasov-Poisson
system describing Newtonian gravitation as d = 3.
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(a) t = 0.0 (b) t = 0.95 (c) t = 1.1 (d) t = 1.3 (e) t = 1.5

(f) t = 0.0 (g) t = 0.25 ∗ tmax (h) t = 0.5 ∗ tmax (i) t = 0.75 ∗ tmax (j) t = tmax = 0.9

(k) t = 0.0 (l) t = 0.25 ∗ tmax (m) t = 0.5 ∗ tmax (n) t = 0.75 ∗ tmax (o) t = tmax = 1.1

(p) t = 0.0 (q) t = 0.25 ∗ tmax (r) t = 0.5 ∗ tmax (s) t = 0.75 ∗ tmax (t) t = tmax = 1.3

(u) t = 0.0 (v) t = 0.25 ∗ tmax (w) t = 0.5 ∗ tmax (x) t = 0.75 ∗ tmax (y) t = tmax = 1.5

Figure 5: (First row) Beltrami flow in the unit square at various timesteps, a classical solution
to Euler’s equation. The color of the particles depend on their initial position. (Second to fifth
row) Generalized fluid flows that are reconstructed by our algorithm, using boundary conditions
displayed in the first and last column. When tmax < 1 we recover the classical flow, while for
tmax ≥ 1 the solution is not classical any more and includes some mixing.

18
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PART II: A PURELY STOCHASTIC ORIGIN OF
THE (discrete) VLASOV-MONGE-AMPERE MODEL

Using large deviation principles and the concept of "onde pilote"
(coming from quantum mechanics), we will recover this discrete
dynamical system from the trivial stochastic model of a Brownian
point cloud.

As a consequence and in some sense, the Euler model of
incompressible fluids can be obtained out of pure noise!
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WANDERING OF A BROWNIAN POINT CLOUD

We consider N independent Brownian curves issued from the
cubic lattice {A(α) ∈ Rd , α = 1, · · ·,N} and wandering in Rd :

A(α) +
√
εBt (α), α = 1, · · ·,N

We define a point cloud as a finite set of indistinguishable points,
i.e. as a point in the quotient space (Rd)N/SN.
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Wandering of a cloud in R3
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LET US FOLLOW "L’ONDE PILOTE"

Introducing the heat equation in the space of "clouds" X ∈ RNd

∂ρ

∂t
(t ,X ) =

ε

2
4 ρ(t ,X ), ρ(t = 0,X ) =

1
N!

∑
σ∈SN

δ(X − Aσ)

we solve the ODE

dXt

dt
= v(t ,Xt ), v(t ,X ) = − ε

2
∇X log ρ(t ,X )

This is an adaptation of de Broglie’s "onde pilote" concept. As a matter of fact,
a similar calculation also works for the free Schrödinger equation:

(i∂t +4)ψ = 0, ψ(0,X ) =
∑

σ exp(−||X − Aσ||2/a2), v = ∇Im logψ
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THE "ONDE PILOTE" SYSTEM

We get the "onde pilote" system, setting t = exp(2θ),

dXθ
dθ

= Xθ − < A > < A > =

∑
σ∈SN

Aσ exp(−||Xθ−Aσ ||2
2ε exp(2θ) )∑

σ∈SN
exp(−||Xθ−Aσ ||2

2ε exp(2θ) )

Yann Brenier (CNRS) Vlasov-Monge-Ampère and fluid mechanics Warwick 26-30 sept. 2016 16 / 1



ZERO-NOISE LIMIT ANALYSIS

As ε goes to zero, we get the first order dynamical system

dXθ
dθ

= Xθ − Aσopt , σopt = Arginf σ∈SN ||Xθ − Aσ||2

i.e.
d+Xθ

dθ
= −∇Φ(Xθ) which is the "gradient flow" of the

semi-convex function Φ(X ) = − inf
σ∈SN

||X − Aσ||2/2

N.B. this formulation automatically include 1D sticky collisions.
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Sticky collisions

horizontal : 51 grid points in x /vertical : 60 grid points in t
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From free (Bosonic) Schrödinger to sticky particles
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LARGE DEVIATIONS OF THE "ONDE PILOTE"

Back to the "onde pilote" trajectories, let us add some noise η

dX ε
θ

dθ
= X ε

θ − < A > +η
dBθ
dθ

, < A > =

∑
σ∈SN

Aσ exp(
−||X ε

θ−Aσ ||2
2ε exp(2θ) )∑

σ∈SN
exp(

−||X ε
θ−Aσ ||2

2ε exp(2θ) )

For ε fixed, we first use the Freidlin-Vencel theory to get the "good
rate function" for the large deviations of the system as η → 0.

Then, we may pass to the limit ε→ 0 (*) and obtain as "Γ−limit"∫
||dXθ

dθ
||2 + ||∇Φ(Xθ)||2dθ, Φ(X ) = − inf

σ∈SN
||X − Aσ||2/2

(*) thanks to L. Ambrosio, private communication.
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LEAST ACTION PRINCIPLE

The least action principle applied to∫
||dXθ

dθ
||2 + ||∇Φ(Xθ)||2dθ, Φ(X ) = − inf

σ∈SN
||X − Aσ||2/2

(formally) leads to the following dynamical system

d2Xθ
dθ2 = ∇(

||∇Φ||2
2

)(Xθ)

= −(∇Φ)(Xθ)

Indeed ||∇Φ||2 = −2Φ because −2Φ is a squared distance function.
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THE RESULTING DYNAMICAL SYSTEM

So, we have finally obtained

d2Xθ(α)

dθ2 = Xθ(α)− A(σopt (α)) , Xθ(α) ∈ Rd , α = 1, · · ·,N

σopt = Arginf σ∈SN

N∑
α=1

|Xθ(α)− A(σ(α))|2

which was precisely the dynamical system we introduced to
dicretize the Euler equations by rearrangement techniques!

THANKS!
see Y.B. arXiv:1504.07583
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