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Outline

1 A "global change" model based on the Euler-Boussinesq equation.

2 Hydrostatic Boussinesq equations and Cullen-Purser convexity
condition.

3 Derivation from the Euler-Boussinesq equation with the
"relative-entropy" method.

4 Global existence of "entropy" solutions for the hydrostatic
Boussinesq model.
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Geophysical flows: a "global change" model :-)

Let D be a smooth bounded domain D ⊂ R3 in which moves an
incompressible fluid of velocity v(t,x) at x ∈ D, t ≥ 0, subject to

the Euler equations

EB (∂tv + v · ∇)v +∇p = y, (∂t + v · ∇)y = εG(εt,x)

with ∇ · v = 0 and v//∂D.

The field y = y(t,x) ∈ R3 is a vector-valued force, taking into
account Coriolis and convection effects, with a small, slowly

evolving, "global change"-type, source term, where G is a given
smooth function with bounded derivatives.

We want to describe the evolution of this system at large times
t ∼ ε−1
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The rescaled EB model and its formal HB limit

Through (t,v,p,y)→ (εt, εv,p,y), we get the rescaled EB model

EB : y = ∇p+ε2(∂tv + (v · ∇)v), ∇ · v = 0

∂ty + (v · ∇)y = G(t,x)

We call the formal limit "HYDROSTATIC BOUSSINESQ" HB
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A natural convexity condition for the HB system

The Hydrostatic Boussinesq HB system formally obtained by
setting ε to zero

HB : ∂ty + (v · ∇)y = G(t,x), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.

Notice that, (v · ∇)y = (D2
xp · v) and v = ∇× A, for some

divergence-free vector potential A = A(t,x) ∈ R3, when d = 3.
Taking the curl of the evolution equation, we get

∇× (D2
xp(t,x) · ∇ × A) = ∇×G

This linear ’magnetostatic’ system in A is elliptic whenever p is
strongly convex 0 < cst Id < D2

xp(t,x) < cst′ Id
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Derivation of the HB model under strong convexity
condition

Theorem
Let (y,p,v) be a smooth solution of HB s.t.

0 < cst Id < D2
xp(t,x) < cst′ Id Then, any solution (yε,pε,vε) to

the rescaled EB Euler-Boussinesq equations, with same initial
condition, converges to (y,p,v).
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Our analysis is inspired by the relative entropy method
for conservation laws with convex entropy:

Let u = u(t,x) be a weak solution of ∂tu + ∂xF(u) = 0 such that

d
dt

∫
E(u)dx ≤ 0 where E is a convex entropy. Introduce the

"relative entropy" η[u,v] = E(u)− E(v)− E ′(v)(u− v) Then

d
dt

∫
η[u,v]dx ≤

∫
[(∂tv + ∂xF(v))(v− u)− ζ[u,v]∂xv]U”(v)dx

for all smooth v = v(t,x), with ζ[u,v] = F(u)− F(v)− F′(v)(u− v).

The "weak-strong uniqueness principle" easily follows in the case
0 < r ≤ E” ≤ r−1 since, then, |ζ[u,v]| ≤ Lip(F′)|u− v|2 ∼ η[u,v].
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Idea of the proof

Do not try to estimate plain L2 distances (which completely fails)
but rather use

H[y,yε] +

∫
ε2

2
|vε − v|2dx

where H is the "relative entropy"

H[y,yε] =

∫
D
[p∗(t,yε)− p∗(t,y)−∇p∗(t,y) · (yε − y)]dx ∼

∫
|y− yε|2dx

built on the Legendre-Fenchel transform
p∗(t, z) = supx∈D x · z− p(t,x) of the limit convex potential p.
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Breakdown of convexity and global solutions
Strictly convex smooth solutions of the HB model do exist for

short time (cf. Loeper) but cannot be expected to be global.

This
is obvious in the potential case G = ∇g, with special solutions

v(t,x) = 0, y(t,x) = ∇p(t,x), p(t,x) = p0(x) + tg(x)

of the EB equations, which do not depend on ε. (Such solutions
presumably get very unstable as ε << 1, unless g is convex.)

Thus, in the limit, it seems reasonable to enforce (what is known
as the Cullen-Purser condition for semi-geostrophic equations)

p(t,x) is a CONVEX function of x ∈ D, i.e. D2p(t,x) ≥ 0

in which case, the force field y(t,x) = ∇p(t,x) is completely
determined by the knowledge of all ’observables’

f→
∫

D
f(y(t,x))dx by OPTIMAL TRANSPORT THEORY
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A concept of "entropy" solutions for the HB system

By analogy with hyperbolic conservation laws, we introduce the
concept of "entropy" solution, formally self-consistent, for the HB
system
DEFINITION

We say that (t→ y(t, ·)) ∈ C0(R+,L2(D,R3)) is a solution with
convex potential to the HB system, if

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x)dx, ∀f

with y(t,x) = ∇p(t,x) for some CONVEX function p.
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Global existence of "entropy" solutions

Theorem
For each initial condition in L2, there is an "entropy solution"
y that belongs to the space C0(R+, L2(D,Rd)) and has a convex
potential: y(t, ·) = ∇p(t, ·) for each t ≥ 0.

In addition,

d
dt

∫
D

f(y(t,x))dx =

∫
D
(∇f)(y(t,x)) ·G(t,x)dx

for all smooth function f such that |∇f(x)| ≤ (1 + |x|)cst
See YB, JNLS 2009. Notice that the system is self-consistent, thanks to optimal
transport theory. However, our global existence result does not imply stability
with respect to initial conditions, except for d = 1, where we can use the theory
of scalar conservation laws, or d > 1 and G = G(x) = −x , where we can use
maximal monotone operator theory
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Open problems

Stability and singularities
Global "entropy" solutions are known to be stable with respect to
initial conditions only in some special cases, such as d = 1 or
G(x) = −x. Clearly, this needs to be extended to all cases.
Moreover, strict convexity clearly breaks down in finite time for
some data, but is it generically true? This is known only for d = 1
thanks to scalar conservation law theory.

Convergence beyond singularities
It is much more challenging to prove, after strict convexity breaks
down, that the "extended" solutions which obey the convexity
principle, correctly describe the limit of the EB solutions in the
HB regime. They may be just crude (but relevant) approximations,
in some suitable sense for which a right mathematical framework
has to be found. A similar situation occurs in shallow water
theory when shock waves ("hydraulic jumps") appear.
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Some references

a) General discussion and global existence: YB, JNLS 2009,
b) Local smooth solutions: G. Loeper 2008 (for SG equations)
c) Derivation from the EB equations:
YB and M. Cullen, CMS 2010, YB, Philos. Trans. R. Soc. Lond.
Ser. A 2013.
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