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THE EARLY UNIVERSE RECONSTRUCTION Pb
Following Peebles 1989, Frisch and coauthors (Nature 417) 2002,
we want to reconstruct the history of the Universe from the
knowledge of the present mass density field. We consider an
expanding universe with self-gravitating matter.
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SIMPLIFIED MATHEMATICAL FORMULATION
Given t1 > t0 > 0, find a time-dependent family of probability
measures on the unit 3D periodic box D = T3 = R3/Z3

t ∈ [t0, t1]→ ρ(t,dx) ∈ Prob(D)

prescribed at t = t0 and t = t1, that minimizes the "EUR" action∫ t1

t0

dt
∫

D
t3/2{2ρ(t,dx)|v(t,x)|2 + 3|∇ϕ(t,x)|2dx }

where v = v(t,x) ∈ R3, ϕ = ϕ(t,x) ∈ R, are subject to

∂tρ+∇ · (ρv) = 0 , ρ = 1 + t ∇2ϕ

(all coefficients in red come from general relativity)
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LEAST ACTION SOLUTIONS
versus DYNAMICAL CONCENTRATIONS

The EUR action is strictly convex in (ρ, ρv, ϕ) which leads to the
existence and uniqueness of least action solutions (Loeper 2006).
They satisfy the pressure-less Euler Poisson equations

∂t(t3/2ρv) +∇ · (t3/2ρv⊗ v) = −3t1/2

2
ρ∇ϕ , ∇× v = 0

∂tρ+∇ · (ρv) = 0, ρ = 1 + t ∇2ϕ

and are not singular with respect to the Lebesgue measure at any
intermediate time t0 < t < t1

Unfortunately, typical solutions of the corresponding IVP do
concentrate in finite time, i.e. ρ(t,dx) becomes singular. This
severely diminishes the interest of Loeper’s result which cannot
handle dynamical concentrations
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Trajectories with dynamical concentrations
(1D pressure-less Euler Poisson system)

horizontal : space /vertical : time
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ZELDOVICH APPROXIMATION

Formally, optimal trajectories (t,a)→ X(t,a) are ruled by:

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =

∫
δ(x− X(t,a))da = 1 + t∇2ϕ(t,x)

where a denotes the particle label. At early times t ↓ 0, "friction"
takes over "inertia" (Einstein+Newton go back to Aristoteles!)

A simple approximation (exact in 1D!) is due to Zeldovich ∼ 1970

X(t,a) = a− t∇ϕ0(a), ∇2ϕ0(x) = lim
t↓0

ρ(t,x)− 1
t

Yann Brenier (CNRS) Monge-Ampère gravitation for the EUR problem CUHK June 2010 8 / 25



ZELDOVICH APPROXIMATION

Formally, optimal trajectories (t,a)→ X(t,a) are ruled by:

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =

∫
δ(x− X(t,a))da = 1 + t∇2ϕ(t,x)

where a denotes the particle label. At early times t ↓ 0, "friction"
takes over "inertia" (Einstein+Newton go back to Aristoteles!)
A simple approximation (exact in 1D!) is due to Zeldovich ∼ 1970

X(t,a) = a− t∇ϕ0(a), ∇2ϕ0(x) = lim
t↓0

ρ(t,x)− 1
t

Yann Brenier (CNRS) Monge-Ampère gravitation for the EUR problem CUHK June 2010 8 / 25



1D Zeldovich solutions with concentrations

horizontal : space /vertical : time
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"BURGURLENCE" AND ADHESION DYNAMICS

Zeldovich formula

X(t,a) = a− t∇ϕ0(a), ∇2ϕ0(x) = lim
t↓0

ρ(t,x)− 1
t

implies concentration in finite time

This is the starting point of "burgurlence" theory (Frisch, Sinai
etc...) based on adhesion dynamics ruled by the multidimensional
non-viscous Burgers equation

∂tu + (u · ∇)u = 0, u(t,X(t,a)) =
X(t,a)− a

t
, u(0,x) = ∇ϕ0(x)
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MONGE-AMPERE GRAVITATION

Zeldovich’ formula turns out to be exact if the Monge-Ampère
equation ρ(t,x) = det(I + tD2ϕ(t,x)) substitutes for the Poisson

equation ρ(t,x) = 1 + t∇2ϕ(t,x) which is the same in 1D.
This observation relies on optimal transport theory

IDEA: consider the MONGE-AMPERE GRAVITATIONAL MODEL

2t
3

d2X
dt2 +

dX
dt

+∇ϕ(t,X(t)) = 0

ρ(t,x) =

∫
δ(x− X(t,a))da = det(1 + t∇2ϕ(t,x))
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MONGE-AMPERE GRAVITATION (MAG)
THE ABSTRACT FRAMEWORK

Let H = L2(D,Rd), D ⊂ Rd and

S = { s ∈ H ,

∫
D

f(s(a))da =

∫
D

f(a)da, ∀f ∈ C(Rd) }

the subset of all Lebesgue-measure preserving maps of D

The MAG action
for a curve t→ X(t) ∈ H is defined by

∫ t1

t0

2t3/2

3
||dX

dt
||2 + t−1/2Q[X(t)] dt, Q[X] = inf{||X− s||2 ; s ∈ S}
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MONGE-AMPERE GRAVITATION (MAG)

Using Eulerian coordinates

ρ(t,dx)(1,v(t,x)) =

∫
D
δ(x− X(t,a))(1, ∂tX(t,a))da

we recover the Monge-Ampère gravitation MAG model

∂t(t3/2ρv) +∇ · (t3/2ρv⊗ v) = −3t1/2

2
ρ∇ϕ , ∇× v = 0

∂tρ+∇ · (ρv) = 0, det(I + t D2
xϕ) = ρ

where the nonlinear Monge-Ampère equation ρ = det(I + t D2
xϕ)

substitutes for the linear Poisson equation ρ = 1 + t∇2ϕ and
makes Zeldovich’ approximation exact
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SPECIAL STRUCTURE OF THE MAG ACTION
In the MAG action, the potential part satisfies:

Q[X] = inf{||X− s||2 ; s ∈ S} =
1
4
||∇HQ[X]||2

and we can rewrite the MAG action:∫ t1

t0

8
3

t3/2||dX
dt
||2 + t−1/2||∇HQ[X(t)]||2 dt

By reorganizing the squares and integrating by part in time, we
find (in the EUR case)

8
3

∫ t1

t0

t−1/2||tdX
dt
− 1

2
∇HQ[X(t)]||2 dt + time boundary term
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GRADIENT FLOW SOLUTIONS
AS SPECIAL LEAST-ACTION SOLUTIONS

Due to the special structure of the MAG action, we find as
particular least action solutions any solution to the
GRADIENT FLOW EQUATION

t
dX
dt

=
1
2
∇HQ[X(t)] , Q[X] = inf{||X− s||2 ; s ∈ S}

(just like "instantons" in YANG-MILLS theory)

It turns out that Zeldovich solutions are just exact solutions of
this gradient flow equation!
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GLOBAL SOLUTIONS OF THE GRADIENT FLOW

Let us introduce the Lipschitz convex function R defined by

R[X] =
||X||2 −Q[X]

2
= sup{((X,s))− 1

2
||s||2, s ∈ S}

For each X ∈ H, we use the key concept of "lazy" gradient d0R[X],
which is the unique vector w ∈ H with lowest norm ||w|| such that

R[Z] ≥ R[X] + ((w,Z− X)), ∀Z ∈ H

By the classical maximal monotone operator theory (going back
to the 70’), the initial value problem for the gradient-flow equation
has a unique global solution X ∈ C0([t0,+∞[,H) in the sense

t
dX(t + 0)

dt
= X(t)− 1

2
d0R[X(t)] , ∀t ≥ t0
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THE MODIFIED MAG ACTION TAKING
CONCENTRATIONS INTO ACCOUNT
It turns out that the "lazy" gradient favors dynamical
concentrations!
Thus, we take concentration into account by introducing a
modified MAG action, by substituting the "lazy" gradient for the
regular gradient∫ t1

t0

t−1/2||tdX
dt
− X(t) + d0R[X(t)]||2 dt

where we recall that

R[X] = sup{((X,s))− 1
2
||s||2, s ∈ S}
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NUMERICS

In the next slides,
we show samples of 1D simulations, directly based on the
minimization of the fully space and time discrete version of the
action.

As a matter of fact, the discrete scheme does not even rely on the
computation of "lazy" gradients. The calculation entirely relies on
many (∼ 105) iterations of an elementary sorting algorithm.
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EUR-case 1: reconstructed trajectories

horizontal : 51 grid points in x /vertical : 60 grid points in t
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EUR-case 1: IVP with reconstructed velocities

horizontal : 51 grid points in x /vertical : 60 grid points in t
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EUR-case 2: solution of the gradient flow equation

horizontal : 51 grid points in x /vertical : 60 grid points in t
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DISCUSSION

Among the minimizers of the modified action, we recover, by
construction, all solutions of the gradient-flow equation in the
sense of maximal monotone operator theory, which do take into
account concentration phenomena.

This leads,
in our opinion, to a much better handling of the EUR problem,
with a drawback: the substitution of the Monge-Ampère
gravitation for the Newton gravitation, which is, of course,
questionable from the physical viewpoint.
Numerics are easy to do in 1D but are challenging in higher
dimensions.
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