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Chapter 1

Few examples of hidden convexity,
away from PDEs

1.1 Two elementary examples

Theorem 1.1.1. Let K be a compact metric space and f be a continuous real
function on K. We denote by P (K) the convex space of all Borel probability measures
on K. Then, it is equivalent to say that f achieves its minimum at some point x0

in K and that δx0 achieves on P (K) the minimum of the linear functional

µ ∈ P (K)→ F (µ) =

∫
K

f(x)dµ(x)

Proof . Since x0 achieves the minimum of f on K, then, for every µ ∈ P (K),
one has on one hand,

F (µ) ≥
∫
K

f(x0)dµ(x) = f(x0)

and, on the other hand
F (δx0) = f(x0).

Thus δx0 minimizes F on P (K). Conversely, if δx0 minimizes F on P (K), we get for
every x ∈ K,

f(x0) = F (δx0) ≤ F (δx) = f(x),

which shows that the minimum of f is achieved by x0.

Remark : observe that if the minimum of f is achieved at once by several points
x0, · · ·, xN then the minimum of F is achieved by any convex combination of the δxi .

Remark : this result extends to the case when f is only l.s.c on K and valued
in ] − ∞,+∞], but not identically equal to +∞. In that case, F can no longer
be considered as a linear functional but rather as an l.s.c convex functional (with
respect to weak-* convergence on P (K)), valued in ]−∞,+∞] and not identically
equal to +∞.

Theorem 1.1.2. Let H be a separable Hilbert space of infinite dimension. Then,
the closed unit ball of H is the weak closure of the unit sphere.
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Remark : in finite dimension, there is no difference between the concepts of weak
and strong convergence. Therefore, the unit sphere is weakly closed and certainly
not weakly dense in the unit ball.

Proof : In infinite dimension, we can find an infinite sequence of orthonormal vec-
tors un ∈ H, i.e. such that (un|um) = δnm. This sequence weakly converges to zero.
Indeed, for each x ∈ H, one has:

0 ≤ |x−
N∑
i=1

(x|un)un|2 = |x|2 −
N∑
i=1

(x|un)2.

Thus the series of the (x|un)2 is sommable. Therefore, its generic term (x|un)2 goes
to zero which is enough to show that un weaky goes to zero. Let us now fix x such
that |x| ≤ 1. For each n, let us introduce xn = x + rnun where rn ∈ R is chosen so
that |xn| = 1. This is possible, since it amounts to solving

|x|2 + 2rn(x|un) + r2
n = 1,

i.e.
(rn + (x|un))2 = 1− |x|2 + (x|un)2,

and a solution is given by

rn = −(x|un) +
√

1− |x|2 + (x|un)2

(since |x| ≤ 1). As a consequence,

|rn| ≤ |x|+ 1,

which shows that, up to the extraction of a subsequence, still labelled by n for
notational simplicity, we may assume rn → r for some real r. So, we have found
a sequence xn of points of the unit sphere that weakly converges to x. Indeed, for
each y ∈ H, one has

(xn − x|y) = (rnun|y) = (rn − r)(un|y) + r(un|y)

where |(rn − r)(un|y)| ≤ |rn − r||y| → 0 and (un|y) → 0 since un weakly converges
to zero. So, we may weakly approximate any point of the unit ball by a sequence of
points of the unit sphere. This has been possible because the infinite dimension of
H has left a lot of room available to us!

1.2 Convexity and Combinatorics: the Birkhoff the-
orem

Theorem 1.2.1. Let DSN be the convex set of all N×N real matrices with nonneg-
ative entries such that every row and every column add up to one. (Such matrices
are frequently called doubly stochastic matrices). Then DSN exactly is the convex
hull of the subset of all permutation matrices, i.e. of all doubly stochastic matrices
with entries in {0, 1}.
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Proof.
It is obvious that the convex hull of all permutation matrices is a subset of DSN .
The converse part, as shown by G. Birkhoff [34], is a rather direct consequence of
the famous "marriage lemma" in combinatorics. that asserts that a necessary and
sufficient condition to marry N girls to N boys without dissatisfaction is that, for
all subset of r ≤ N girls, there are at least r convenient boys. Now, let us consider a
bistochastic matrix (νij). There is a permutation σ such that infi νi,σ(i) is a positive
number α > 0. (In other words the “support” of σ is contained in the support of
ν.) Then, we have the following alternative. Either α = 1 and ν is automatically a
permutation matrix. Or α < 1 and

ν ′ij = (νij − αδj,σ(i))
1

1− α
defines a new bistochastic matrix with a strictly smaller support and ν is a convex
combination of ν ′ and a permutation matrix. Recursively, after a finite number of
steps, ν is written as a convex combination of permutation matrices which completes
the proof.

Application to combinatorial optimization

Theorem 1.2.2. Let cij be a real N ×N fixed matrix. Then it is equivalent to solve
1) The so-called "linear assignment problem"

inf
σ∈SN

∑
i=1,N

ciσi

where SN denotes the symmetric group (I.e. the group of all permutations of the
first N integers);
2) The "linear program"

inf
s∈DSN

N∑
i,j=1

cijsij.

This result is striking since it reduces a combinatorial optimization problem to
a simple "linear program" (i.e. the minimization of a linear functional with linear
equality or inequality constraints).
Remark : There are algorithms of sequential computational cost O(N3) for this
problem [17], which is usually considered as very simple in Combinatorial Optimiza-
tion. Just to quote an example of a "hard" combinatorial optimization problem that
cannot be reduced to a convex optimization problem, let us mention the "quadratic
assignment problem", where a second N×N real matrix γij is given, which amounts
to solving:

inf
σ∈SN

∑
i,j=1,N

cijγσiσj .

(This "NP" problem contains as a particular case the famous traveling salesman
problem.)

1.3 The Least Action Principle for 2nd order ODEs
Let us consider the 2nd order ODE, typical of Classical Mechanics,

X”(t) = −(∇p)(t,X(t)).
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where X = X(t) ∈ Rd describes the trajectory of a particle of unit mass moving
under the action of a time-dependent potential p = p(t, x) ∈ R. We may, as well,
write this ODE as a 1st order system of ODEs:

X ′(t) = V (t), V ′(t) = −(∇p)(t,X(t)).

In order to keep our discussion as simple as possible, let us assume that p is smooth
and that its second order derivatives in x are uniformly bounded in (t, x). This is
enough, according to the Cauchy-Lipschitz theorem, to justify the globlal existence
of a unique solution t ∈ R→ (X(t), V (t)), once its value (X(t0), V (t0)) is known at
some fixed time t0 ∈ R.

As a matter of fact, this 2nd order ODE X”(t) = −(∇p)(t,X(t)) obeys the fa-
mous "Least Action Principle" (LAP), which means, in modern words, that, for
every fixed t0 < t1, its solutions X are critical points of "functional"

u ∈ C1([t0, t1]; Rd)→ Jt0,t1,p[u] =

∫ t1

t0

(
1

2
|u′(t)|2 − p(t, u(t)))dt

subject to u(t0) = X(t0) and u(t1) = X(t1). By critical point, we simply mean that
for any "perturbation" y ∈ C1([t0, t1];Rd) such that y(t0) = y(t1) = 0, the derivative
of

s ∈ R→ f(s) = Jt0,t1,p[X + sy] =

∫ t1

t0

(
1

2
|X ′(t) + sy′(t)|2 − p(t,X(t) + sy(t)))dt

vanishes at s = 0, which exactly means∫ t1

t0

(X ′(t) · y′(t)−∇p(t,X(t)) · y(t))dt = 0

i.e., after integration by part∫ t1

t0

(−X”(t) · y(t)−∇p(t,X(t))) · y(t)dt = 0.

Since y has been arbitrarily chosen, we therefore have exactly recovered the 2nd
order EDO X”(t) = −(∇p)(t,X(t)). (To check it, just observe that a dense subset
of L2([t0, t1];Rd) is formed by all y ∈ C1([t0, t1];Rd) such that y(t0) = y(t1) = 0.)

(The discovery of the LAP was attributed by Euler [140], when he was a member of the "Académie
Royale des Sciences de Berlin", to Maupertuis, who currently was the president of the same
Academy. At some stage, a mathematician, Koenig, claimed that he had a letter proving that
the LAP had been discovered earlier by Leibniz. The Academy, and Euler himself, accused Koenig
of fraud and a violent dispute started for a while. Voltaire took advantage of the situation to
write a pamphlet -where Maupertuis was nicknamed as Dr. Akakia- which became very popular
in France. Furious, Friedrich the second, king of Prussia, decided to destroy all copies available in
his kingdom.)

8



The LAP has been extended to many PDEs of Physics and Mechanics: solutions are
characterized as critical points of some suitable functional. In most examples, this
critical points are not minimizers of the functional and it would be more accurate
to speak of "Critical Action Principle", although the expression LAP has been kept
since the 18th century. However, in the very special case of our 2nd order ODE,
it turns out that solutions are really minimizers provided the time interval [t0, t1]
is sufficiently short. This follows from the fact that function s → f(s), as defined
above, is convex for small values of t1 − t0. More precisely

Theorem 1.3.1. Let p = p(t, x) be a smooth function on R × Rd for which we
assume that the 2nd order derivatives in x are uniformly bounded, so that

K(p) = sup
t,x,|y|=1

d∑
i,j=1

∂2p(t, x)

∂xi∂xj
yiyj

or, in short,
K(p) = sup

t,x,|y|=1

D2
xp(t, x) : y ⊗ y,

is finite. Let X be a solution of X”(t) = −(∇p)(t,X(t)). Then, provided that
(t1 − t0)2K(p) < π2, any curve u ∈ C1([t0, t1];Rd), different from de X, such that
u(t0) = X(t0), u(t1) = X(t1), satisfies

Jt0,t1,p[u] > Jt0,t1,p[X]

where

Jt0,t1,p[u] =

∫ t1

t0

(
1

2
|u′(t)|2 − p(t, u(t)))dt.

The proof is an easy consequence of the 1D Poincaré inequality

Lemma 1.3.2. Assume t0 < t1. Then, for every curve C1

[t0, t1]→ y(t) ∈ Rd,

such that y(t0) = y(t1) = 0,

π2

∫ t1

t0

|y(t)|2dt ≤ (t1 − t0)2

∫ t1

t0

|y′(t)|2dt.

Proof.
It is enough to expand y as a series of sine functions:

y(t) =
+∞∑
k=1

yk sin(kπ
t− t0
t1 − t0

)

and use Parceval’s identity. (Saturation is obtained as all yk vanish but y1.)
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Proof of Theorem 1.3.1

Let us compute the 2nd derivative of

s ∈ R→ f(s) = Jt0,t1,p[X + sy] =

∫ t1

t0

(
1

2
|X ′(t) + sy′(t)|2 − p(t,X(t) + sy(t)))dt,

where y is a non vanishing perturbation such that y(t0) = 0, y(t1) = 0. We first get

f ′(s) =

∫ t1

t0

((X ′(t) + sy′(t)) · y′(t)−∇p(t,X(t) + sy(t)) · y(t)) dt,

next

f”(s) =

∫ t1

t0

(|y′(t)|2 −D2p(t,X(t) + sy(t))) : y(t)⊗ y(t)dt,

and, therefore,

f”(s) ≥
∫ t1

t0

(|y′(t)|2 −K(p)|y(t)|2)dt.

From the Poincaré inequality, we deduce

f”(s) ≥ (
π2

(t1 − t0)2
−K(p))

∫ t1

t0

|y(t)|2dt > 0

as soon as K(p)(t1 − t0)2 < π2, since y is not identically null. So, f(s) is a strictly
convex function of s. We already saw that f ′(0) = 0. So s = 0 is a strict minimum
for f , which completes the proof. Finally observe that the "hidden" convexity is
directly related to the Poincaré inequality.

1.4 A continuous version of the Birkhoff theorem

Let us consider the unit cube D = [0, 1]d. We may split it in N = 2nd dyadic
subcubes of equal volume Dα for α = 1, · · ·, N and attach to each permutation
π ∈ SN the map Tπ : D → D which rigidly translates the interior of each subcube
Dα to the interior of Dπ(α). This makes Tπ an element of the set V PM(D) of all
volume preserving maps T : D → D, defined as follows:

Definition 1.4.1. Let D = [0, 1]d. We define V PM(D) as the set of all Borel maps
T : D → D such that

L(T−1(A)) = L(A),

for all Borel subset A of D, where L denotes the Lebesgue measure restricted to D,
i.e. in short L ◦ T−1 = L. Equivalently, this means∫

D

f(T (x))dx =

∫
D

f(x)dx,

for every function f ∈ C(Rd).

It is fairly easy to check the following properties of V PM(D):
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1) V PM(D) can be seen as a closed subset of the Hilbert space H = L2(D;Rd),
contained in the sphere

{ T ∈ H;

∫
D

|T (x)|2dx =

∫
D

|x|2dx }

and, therefore, cannot be a convex set.
2) V PM(D) is a semi-group for the composition rule. However, it is not a group
since it contains many non invertible maps T , such as, for example in the case d = 1,

T (x) = 2x mod. 1.

As a matter of fact, the subset of all invertible maps in V PM(D) forms a group but
is not a closed subset of H.
3) V PM(D) contains the group PN(D) of all "permutation maps" Tπ constructed as
above, for each permutation π ∈ SN , after splitting D in N = 2nd dyadic subcubes.
The collection of all these PN(D) forms a group P (D).
4) V PM(D) also contains the group SDiff(D) of all orientation and volume pre-
serving diffeomorphisms T of D, in the sense that T is the restriction of a diffeo-
morphism of Rd, still denoted by T , such that T (D) = D and

det(DT (x)) = 1, ∀x ∈ D.

This group is trivially reduced to the identity map as d = 1.

Nevertheless, V PM(D) in spite of being a closed bounded subset of the Hilbert
space H = L2(D;Rd), is not compact. However, there is a natural "compactifica-
tion" of V PM(D) [226, 78] which involves the convex set DS(D), defined as follows.

Definition 1.4.2. We define the space of doubly stochastic measures DS(D) as the
set of all Borel probability measures µ ∈ Prob(D ×D) such that

µ(D × A) = µ(A×D) = L(A),

for each Borel subset A ⊂ D, or, equivalently,∫
D×D

f(x)dµ(x, y) =

∫
D×D

f(y)dµ(x, y) =

∫
D

f(x)dx, ∀f ∈ C0(D).

P rob(D×D) is a weak-* compact subset of the space of all bounded Borel mea-
sures on D×D, namely the dual Banach space of C0(D×D;R). Thus, DS(D), as
a weak-* closed subset of Prob(D ×D), is also weak-* compact.

There is a natural injection i of V PM(D) in DS(D)

i : T ∈ V PM(D)→ µT ∈ DS(D),

defined by setting∫
D×D

f(x, y)dµT (x, y) =

∫
D

f(x, T (x))dx, ∀f ∈ C0(D ×D).
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Theorem 1.4.3. The space of doubly stochastic measures DS(D)
is the weak-* closure of i(P (D)) -and therefore of i(V PM(D))-. In other words, any
µ ∈ DS(D) can be approximated by a sequence of "permutation maps" Tn ∈ P (D)
in the sense∫

D×D
f(x, y)dµ(x, y) = lim

n

∫
D

f(x, Tn(x))dx, ∀f ∈ C0(D ×D).

Corollary 1.4.4. V PM(D) is the closure, in L2 norm, of P (D).

This Corollary is a straightforward consequence of the easy lemma:

Lemma 1.4.5. A sequence Tn ∈ V PM(D) converges to T ∈ V PM(D) in L2 norm,
if and only if∫

D

f(x, Tn(x))dx→
∫
D

f(x, T (x))dx, ∀f ∈ C0(D ×D).

which exactly means that i(Tn) weak-* converges to i(T ) in DS(D).

Observe the similarity of Theorem 1.4.3 with Theorem 1.1.2, DS(D) and
V PM(D) somehow playing the respective role of the unit ball and the unit sphere.
We also see here another manifestation of the concept of "hidden convexity", where
behind V PM(D), we have exhibited the convex set DS(D) as a natural weak-*
compactification through injection i.
Finally, Theorem 1.4.3 can be interpreted as a continuous version of the Birkhoff
theorem where the concept of weak-* closure substitutes for the concept of convex
hull. However, notice that i(V PM(D)) is strictly contained in the set of all extremal
points of the convex set DS(D). Indeed, each time T ∈ V PM(D) is not invertible,
we get automatically two extremal points µ, µ̃ of DS(D), respectively defined by∫

D×D
f(x, y)dµ(x, y) =

∫
D

f(x, T (x))dx, ∀f ∈ C0(D ×D),

∫
D×D

f(x, y)dµ̃(x, y) =

∫
D

f(T (x), x)dx, ∀f ∈ C0(D ×D),

but only µ belongs to i(V PM(D))!

Remark. It turns out -see [226, 78]- that DS(D) is also the weak-* closure of
i(SDiff(D)) provided that d ≥ 2, and, as a consequence V PM(D) is the closure of
SDiff(D) with respect to the L2 norm. This has the disturbing consequence that
any orientation reversing volume-preserving diffeomorphism of D (which clearly
belongs to V PM(D)) -such as

T (x) = (1− x1, x2), x = (x1, x2) ∈ [0, 1]d, d = 2,

can be approximated in L2 norm by a sequence of orientation and volume preserving
diffeomorphism of D.
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Proof of Theorem 1.4.3

Given µ ∈ DS(D), we want to find a sequence of “permutation” maps p such that
the corresponding doubly stochastic measures i(p) weak-* converge to µ.
Let n > 0 be a fixed integer. We split D = [0, 1]d into N = 2nd subcubes of equal
volume denoted by Dn,i for i = 1, ..., N . We set

νij = Nµ(Dn,i ×Dn,j),

for i, j = 1, ..., N so that ν is doubly matrix. By Birkhoff’s theorem, such a matrix
always can be written as a convex combination of at most K = K(N) (where, as a
matter of fact, K(N) = O(N2)) permutation matrices. Thus, there are coefficients
θ1, ..., θK ≥ 0 and permutations σ1, ..., σK such that

K∑
k=1

θk = 1, νij =
K∑
k=1

θkδj,σk(i).

Let us introduce L = 2ld, where l will be chosen later, and set

θ′k =
1

L
([Lθk] + εk),

where [.] denotes the integer part of a real number and εk ∈ [0, 1[ is chosen so that

K∑
k=1

θ′k = 1, sup
k
|θk − θ′k| ≤

1

L
.

By setting

ν ′ij =
K∑
k=1

θ′kδj,σk(i),

we get a new bistochastic matrix which satisfies∑
i,j

|ν ′ij − νij| ≤
NK

L
.

Up to a relabelling of the list of permutations, with possible repetitions, we may
assume all coefficients θ′k to be equal to 1/L and get a new expression

ν ′ij =
1

L

L∑
k=1

δj,σk(i).

Now, we can split again each Dn,i into L subcubes, denoted by Dn+l,i,m, for
i = 1, ..., N , m = 1, ..., L, with size 2−(n+l) and volume 2−(n+l)d. Then, we define

p(x) = x− xn+l,i,m + xn+l,σm(i),m,

for each x ∈ Dn+l,i,m. By construction, (i,m) → (σm(I),m) is one-to-one. Thus, p
belongs to Pn+l(D). Let us now estimate, for any fixed f ∈ C(D),

I1 − I2 =

∫
D2

f(x, y)µ(dx, dy)−
∫
D

f(x, p(x))dx.
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We denote by η the modulus of continuity of f . I1 is equal, up to an error of
η(2−n+d/2), to

I3 =
1

N

∑
i,j

f(xn,i, xn,j)νij.

I3 is equal, up to an error of sup |f |K/L to

I4 =
1

N

∑
i,j

f(xn,i, xn,j)ν
′
ij =

1

NL

∑
i,m

f(xn,i, xn,σm(i)).

Up to η(2−n+d/2), I4 is equal to

I5 =
1

NL

∑
i,m

f(xn+l,i,m, xn+l,σm(i),m).

I5, up to η(2−n−l+d/2), is equal to

I6 =
∑
i,m

∫
Dn+l,i,m

f(x, x− xn+l,i,m + xn+l,σm(i),m),

which is exactly I2, by definition of p. Finally, we have shown

|I1 − I2| ≤ sup |f |2(2n−l)d + 3η(2−n−l+d/2),

since L = 2ld, K = N2 = 22nd. This completes the proof, after letting first l and
then n to +∞.
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Chapter 2

Hidden convexity in the Euler
equations
of incompressible fluids

2.1 The central place of the Euler equations among
PDEs

This section, where we discuss the importance of the Euler equations of fluids among
PDEs, can be skipped by the reader in a hurry who may go directly to section
2.2...Anyway, as Laplace used to say:

"Lisez Euler, il est notre maître à tous !"

In our opinion, it is very difficult to question the priority and the centrality of
the Euler equations of fluids in Mathematics, Mechanics, Physics and Geometry:

1) Euler’s theory of fluids, entirely described in terms of density, velocity and pres-
sure fields, governed by a self-consistent set of partial differential equations, pro-
vides the first "Field Theory" ever in Physics, before the theories later developed by
Mawxell (Electromagnetism), Einstein (Gravitation), Schrödinger and Dirac (Quan-
tum Mechanics).

2) The Euler model is the backbone of a very large part of Natural Sciences (Fluid
Mechanics, Oceanography, Weather Forecast, Climatology, Convection Theory, Dy-
namo Theory...).

3) To the best of our knowledge, Euler’s equations form the first self-consistent
system of PDEs ever written, in 1755-57 [140], except the 1D linear wave equation
which was introduced and solved by d’Alembert few years earlier in 1746 [2]. It is
striking to compare the style of [2] and [140]. Euler introduced remarkably modern
notations that are still easily readable. On top of that, while the 1D wave equa-
tion is now considered as a rather trivial equation (which in no way diminishes the
merit of d’Alembert for its elegant solution at such an early stage of mathematical
Analysis!), the solution of the Euler equations, after a quarter of millennium, is still
considered as one of the most challenging problem in PDEs (typically, together with

15



the solution of the Einstein and the Navier-Stokes equations).

4) The Euler equations already (implicitly) contain the wave, heat and Poisson
equations, which are the basic equations of respectively hyperbolic, parabolic and
elliptic type, according to the traditional terminology of PDEs [141, 259], and, also,
the advection equation (which is just an ODE rephrased as a PDE).

5) The Euler model of incompressible fluids admits a remarkable geometric inter-
pretation due to Arnold [13, 14] that makes it an archetype of Geometry in infinite
dimension. Indeed, in the case of a fluid moving in a compact Riemannian mani-
foldM, the Euler equations just describe constant speed geodesic curves along the
(formal) Lie group SDiff(M) of all volume and orientation preserving diffeomor-
phisms ofM, with respect to the L2 norm on its (formal) Lie Algebra, made of all
divergence-free vector fields alongM. In the case of a fluid moving inside the unit
cube, D = [0, 1]d, this amounts, in more elementary terms, to looking for curves
t ∈ R→ Xt ∈ SDiff(D) ⊂ H = L2(D;Rd) that minimize∫ t1

t0

||dXt

dt
||

2

H
dt,

on short enough intervals [t0, t1], as the time-boundary values Xt0 , Xt1 are fixed.
(These geodesic curves can also be seen as harmonic maps from R to SDiff(D).
This immediately suggests a generalization to "wave maps" from an open set of R2

to SDiff(D), which, as a matter of fact, correspond to the classical model of ideal
Magnetohydrodynamics of incompressible fluids [14].)

The Euler equations

Here below are the equations written by Euler in 1755/57 [140], where we use the
familiar notation ∇ for the partial derivatives. (They are denoted more explicitly
by Euler, with a notation already modern. See below a fac simile of [140].)

∂tρ+∇ · (ρv) = 0, ∂tv + (v · ∇)v = −1

ρ
∇(p(ρ))

where (ρ, p, v) ∈ R1+1+3 denote the density, pressure and velocity fields of the fluid,
the pressure being assumed by Euler to be a given function of the density. They
can also be written is "conservation form"

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −∇(p(ρ))

and also "in coordinates" (which can be easily extended to the framework of Rie-
mannian manifolds)

∂tρ+ ∂j(ρv
j) = 0, ∂t(ρvi) + ∂j(ρv

jvi) = −∂i(p(ρ)).

(In the Euclidean case vi is just a notation for δijvj, but in the Riemannian case
vi = gijv

j definitely involves the metric tensor g.) It is important to emphasize that,
in the same paper, Euler also addresses the case of incompressible fluids, for which

∂tv +∇ · (v ⊗ v) +∇p = 0, ∇ · v = 0,
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or, equivalently,
∂tvi + ∂j(v

jvi) = −∂ip, ∂iv
i = 0,

which corresponds, grosso modo, to a constant unit density field and where p be-
comes an unknown field that balances the divergence-free condition on v. As a
matter of fact, p can be eliminated (up to boundary conditions that we do not dis-
cuss at this stage) by applying the divergence operator, which leads to the Poisson
equation for p

−∆p = (∇⊗∇) · (v ⊗ v),

(Note that the passage from the compressible case to the incompressible case is now
very well understood at the mathematical level [183, 186].)

In fact, it is important for many applications, in particular in Geophysics, to con-
sider incompressible inhomogeneous fluids. This means that the velocity is still
considered to be divergence-free but the density may vary. The resulting equation
are

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) +∇p+ ρ∇Φ = 0, ∇ · v = 0,

where we have included an external potential Φ (typically the gravity potential).
Note that, due to the divergence-free condition, such a potential has no effect in the
homogeneous case when ρ is constant. (This is why the feeling of gravity is so weak
for us when we are swimming under water because our density is essentially the same
as water.) However, for inhomogeneous fluid, the impact of Φ may be considerable.
As a matter of fact, this is the origin of convective phenomena, which play an
amazingly important role in Natural Sciences (volcanism, earthquakes, continental
drift, terrestrial magnetism,..) and daily life (heating, boiling etc...).
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The Euler system as a master equation

Let us now formally check that the most basic PDEs (heat, wave, Poisson and
advection equations [141, 259]) are hidden behind the Euler equations.

From Euler to the heat equation

We may recover the heat equation (and more generally the "porous medium" equa-
tion) from the Euler equations of compressible fluids, through a very simple process
that does not seem to be so well-known in the PDE literature, just by a straightfor-
ward, quadratic, change of time. This technique will be used later in the course, in
chapter 9. We start from a solution, denoted by (ρ̃, ṽ)(t, x), of the Euler equations

∂tρ̃+∇ · (ρ̃ṽ) = 0, ∂t(ρ̃ṽ) +∇ · (ρ̃ṽ ⊗ ṽ) = −∇(p(ρ̃))

(where, following Euler, the pressure p is a known function of the density). We
perform the quadratic change of time:

t→ τ = t2/2,
dτ

dt
= t, (ρ̃, ṽ)(t, x) = (ρ(τ, x),

dτ

dt
v(τ, x)),

(so that ṽ(t, x)dt = v(τ, x)dτ). We easily obtain

∂τρ+∇ · (ρv) = 0, ρv + 2τ (∂τ (ρv) +∇ · (ρv ⊗ v)) = −∇(p(ρ)).

For very short times τ << 1, we get an asymptotic equation by withdrawing all
terms in factor of τ . We are left with

∂τρ+∇ · (ρv) = 0, ρv = −∇(p(ρ))

which, in the "isothermal" case when p is linear in ρ, i.e. p = γ2ρ , with "sound
speed" " γ, is nothing that the heat equation (solved by Fourier in the 19th century,
half of a century after Euler’s work on fluids):

∂τρ = γ2∆ρ, ∆ = ∇ · ∇.

In the general case, we get the so-called "porous medium" equation [263]

∂τρ = ∆(p(ρ)),

that will be addressed later in the course, in chapter 5.

From Euler to the wave equation

By inputing
(ρ̃, ṽ)(t, x) = (ρ∗ + ερ(t, x), εv(t, x)),

(where ε is small and ρ∗ is a constant density of reference) in the Euler equations of
compressible fluids

∂tρ̃+∇ · (ρ̃ṽ) = 0, ∂t(ρ̃ṽ) +∇ · (ρ̃ṽ ⊗ ṽ) = −∇(p(ρ̃)),

we find
∂tρ+∇ · ((ρ∗ + ερ)v) = 0
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∂t((ρ
∗ + ερ)v) +∇ · ((ρ∗ + ερ)εv ⊗ v) = −∇

(
p(ρ∗ + ερ)− p(ρ∗)

ε

)
.

In the regime ε << 1, for "small density and velocity fluctuations", one obtains an
asymptotic equation by dropping the smallest terms and using

p(ρ∗ + ερ) = p(ρ∗) + εp′(ρ∗)ρ+O(ε2).

We are left with
∂tρ+ ρ∗∇ · v = 0, ρ∗∂tv + p′(ρ∗)∇ρ = 0

which is nothing but the famous wave equation (that d’Alembert had solved in one
space dimension, few years before Euler’s work on fluids [2]) :

∂2
ttρ = γ2∆ρ

(after eliminating v), with "sound speed" γ =
√
p′(ρ∗).

2D Euler equations as a coupling of two linear PDEs

In the case of incompressible fluids, where ∇ · v = 0, and in two space dimensions,
we may write (at least locally)

v = (−∂2ψ, ∂1ψ)

for some scalar function ψ = ψ(t, x) (usually called "stream function"). By setting
ω = ∂2v1 − ∂1v2, we easily get both

−∆ψ = ω

and
∂tω + (v · ∇)ω = 0.

In this case, the Euler equations can be interpreted as a non-trivial coupling of two
elementary linear PDEs:
1) The Poisson equation, prototype of elliptic PDEs,

−∆ψ = ω

where ψ is unknown and ω given;
2) The transport (or advection) equation

∂tω + (v · ∇)ω = 0.

where ω is unknown while v = (−∂2ψ, ∂1ψ) is given.

Euler equations and ODEs

By integrating the velocity field v of the fluid, we may recover the trajectory of each
fluid parcel, labeled by a, through

dXt

dt
(a) = v(t,Xt(a)).
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(It is common, but not necessary, to use the initial position as a label, so that
X0(a) = a.) Thanks to the chain rule, we immediately see that the Euler equation

∂tv + (v · ∇)v = −∇p
ρ

has no other meaning that the 2nd order ODE

d2Xt

dt2
(a) = −(

∇p
ρ

)(t,Xt(a)).

In the case of homogeneous incompressible fluids of unit density, we just get

d2Xt

dt2
(a) = −(∇p)(t,Xt(a)).

As a matter of fact, in his paper [140], Euler starts from this 2nd order EDO and gets
his famous equations after introducing the key concept of velocity field. (This fact
is frequently ignored in the literature.) The link with ODEs is even more striking
in the special case of homogeneous incompressible fluids in two space dimensions.
Indeed, the "vorticity equation"

∂tω + (v · ∇)ω = 0

just means that Ω(t, a) = ω(t,Xt(a)) is time independent. Indeed, the vorticity
equation is just equivalent to the trivial ODE

dΩ

dt
= 0.

Few words on the analysis of the Euler equations

So far, we have not addressed the Euler equations from the Analysis viewpoint. This
is somewhat consistent with the prophetic conclusion of Euler’s paper [140]:

“Tout ce que la théorie des fluides renferme est contenu dans les deux équations
rapportées ci-dessus, de sorte que ce ne sont pas les principes de Mécanique qui
nous manquent dans la poursuite de ces recherches, mais uniquement l’Analyse, qui
n’est pas encore assez cultivée, pour ce dessein.”

A quarter of millennium later, progresses have been indeed significant but not yet
conclusive (cf. [102, 196, 213, 214]...). So, the Analysis of the Euler equations, which
are essentially the first PDEs ever written, persists as a major challenge in the field
of nonlinear PDEs. Let us start with the case of homogeneous incompressible fluids
and quote what we believe to be the most interesting results obtained so far (in the
case D = Td, for simplicity):

1) A unique smooth classical solution always exists for a short while, as long as the
initial velocity field v0 is smooth (i.e. with Hölder continuous derivatives) (Wolibner
1933 [272]). Moreover this solution is global in the 2D case d = 2.

2) In the 2D case, a unique global solution exists (in a suitable generalized sense)
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as soon as the initial vorticity ω0 (i.e. the curl of v0) is essentially bounded on D
(Yudovich 1963 [274]) and the smoothness of the vorticity level sets is preserved
during the evolution (Chemin 1991 [100], this has been a very striking result going
very much again numerical simulations which predicted formation of singularities in
finite time). There are always global weak solutions in the special class of vorticity
fields ω(t, x) that stay, at any time t, a nonnegative bounded measure up to the
addition of an L1 function in x (Delort 1991 [121]).

3) Weak solutions v ∈ L2 in the sense of distributions globally exist for any fixed
initial condition v0 ∈ L2(D; Rd), but there are uncountably many of them! (Wiede-
mann 2011 [270]). This is a rather direct consequence of the analysis by "convex
integration" of the Euler equations performed by De Lellis and Székelyhidi [118, 119];
through similar methods, there exist weak solutions v(t, x) that are Hölder continu-
ous of exponent α less than 1/3 in x and do not preserve their kinetic energy (reso-
lution of the so-called "Onsager conjecture" [179, 93]) although, whenever α > 1/3,
the kinetic energy is necessarily conserved [105, 144].

4) Global generalized solutions, called “dissipative solutions”, always exist in
C0(R+;L2

w(D)), as soon as v0 ∈ L2(D; Rd) (Lions 1996 [196]); they are not nec-
essarily weak solutions but their kinetic energy cannot exceed its initial value and
they enjoy the "weak-strong uniqueness principle" in the sense that if there is a
classical solution with initial condition v0 then this solution is unique in the class of
dissipative solutions staring from v0.

5) From a more geometric viewpoint, the geodesic flow on the group SDiff(D)
is well defined, in a classical sense, but only in a tiny neighborhood of the identity
map for a very fine (Sobolev) topology (Ebin-Marsden 1970 [134]). Nevertheless,
as d = 3, one can prove the existence of many orientation and volume preserv-
ing diffeomorphisms, that are trivial in the third space coordinate, i.e. of form
h(x1, x2, x3) = (H(x1, x2), x3), that can be connected by smooth paths of finite
length to the identity map but none of them has minimal length (Shnirelman 1985
[251]). In this case, the minimizing geodesic problem can be relaxed as a convex
minimization problem in a suitable space of measures, which always admits general-
ized solutions, with the additional property that there is a unique pressure gradient
attached to them, that only depends on H and approximately "accelerates" all paths
of approximately minimal length (Brenier 1999 [52]). Thanks to an appropriate den-
sity result (Shnirelman 1994 [252]), this result still applies to more general data, in
particular to all h in SDiff(D) (Ambrosio-Figalli 2008 [6]).

In the case of compressible fluids, the results are less complete. Roughly speaking,
the 4th first results extend, except that the second one, proving global existence
of suitable "entropy" solutions, is valid only for d = 1 and for initial data that
are small enough in total variational. Both the existence part (Glimm [165]) and
the well-posedness (uniqueness and stability) part (Bressan [35, 87]) are remarkable
achievements of the theory of hyperbolic nonlinear systems of conservation laws.
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2.2 Hidden convexity in the Euler equations:
The geometric viewpoint

A simple geometric definition (going back to Arnold [13]) of the Euler equations of
an incompressible fluid, confined in a compact domain D ⊂ Rd without any external
force, amounts to finding curves

t ∈ R→ Xt ∈ SDiff(D) ⊂ H = L2(D;Rd)

that minimize ∫ t1

t0

||dXt

dt
||

2

H
dt,

on any sufficiently short time intervals [t0, t1], as Xt0 , Xt1 are fixed. Here SDiff(D)
is the group of all orientation and volume preserving diffeomorphisms of D. (Alter-
nately, we could consider the larger semi-group V PM(D) of all volume preserving
Borel maps of D, which is the L2 completion of SDiff(D), as long as d ≥ 2, as al-
ready discussed in chapter 1.) In other words, the Euler equations obey to the Least
Action Principle (LAP) ("le beau principe de (la) moindre action", as expressed by
Euler himself [140]), the "configuration space" being SDiff(D).

We have already discussed at the beginning of the course, in chapter 1, at least
in the case D = [0, 1]d, the completion of SDiff(D) and V PM(D) by the convex
compact set DS(D) of all doubly stochastic measures on D×D. So, it is tempting
to get a generalized version of the LAP by substituting DS(D) for SDiff(D), tak-
ing into account that SDiff(D), viewed as a subset of the ambient Hilbert space
H = L2(D;Rd), is neither compact nor convex. This is not difficult to attach to any
curve t → Xt ∈ SDiff(D) a corresponding curve of doubly stochastic measures
t→ ct ∈ DS(D), by setting∫

D2

f(x, a)dct(x, a) =

∫
D

f(Xt(a), a)da, ∀f ∈ C0(D2)

or, in short,
dct(x, a) = δ(x−Xt(a))da.

However, this is not enough to be able to define a dynamical system. So we also
attach a curve of vector-valued Borel measures

t→ qt ∈
(
C0(D2;Rd)

)′
by setting∫

D2

f(x, a) · dqt(x, a) =

∫
D

dXt

dt
(a) · f(Xt(a), a)da, ∀f ∈ C0(D2;Rd)

where dXt
dt

(a) just denotes the partial derivative ∂tXt(a). We may also write, more
briefly,

dqt(x, a) =
dXt

dt
(a)δ(x−Xt(a))da.

Notice that qt is automatically absolutely continuous with respect to ct so that we
can write its Radon-Nikodym derivative as (x, a)→ vt(x, a) ∈ Rd and denote:

dqt(x, a) = vt(x, a)dct(x, a).
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(This idea is not new, it is just an avatar of the concept of "current", familiar in
Geometric Measure Theory. See [145, 221, 273] and [10] as a recent reference.) An
important property of measures c and q is their link through the following linear
PDE

∂tct +∇x · qt = 0,

satisfied in the sense of distributions. Indeed, for every test function f = f(x, a)
defined on D ×D, we have

d

dt

∫
D2

f(x, a)dct(x, a) =
d

dt

∫
D

f(Xt(a), a)da

=

∫
D

(∇xf)(Xt(a), a) · dXt

dt
(a)da =

∫
D2

f(x, a)dqt(x, a).

Another key point is that we can rewrite the "kinetic energy" just in terms of c and
q = cv:

1

2
||dXt

dt
||

2

H
=

1

2

∫
D2

|vt(x, a)|2dct(x, a).

To check this identity, let us write the right-hand side in a dual way as:

1

2

∫
D2

|vt(x, a)|2dct(x, a) =

sup{
∫
D2

(
−1

2
|f(x, a)|2 + f(x, a) · vt(x, a)

)
dct(x, a); f ∈ C0(D2; Rd)}

(here we use the density of continuous functions in the space of L2 functions with
respect to measure ct)

= sup{
∫
D2

(
−1

2
|f(x, a)|2dct(x, a) + f(x, a) · dqt(x, a)

)
; f ∈ C0(D2; Rd)}.

= sup{
∫
D

(
−1

2
|f(Xt(a), a)|2 + f(Xt(a), a) · dXt

dt
(a)

)
da; f ∈ C0(D2; Rd)}.

(by definition of c and q = cv)

=
1

2

∫
D

|dXt

dt
(a)|2da

(by completion of squares, using that a → Xt(a) is one-to-one since Xt belongs to
SDiff(D)). These relations are of particular interest, since they provide a convex
expression in terms of (c, q):

sup{
∫
D2

(
−1

2
|f(x, a)|2dct(x, a) + f(x, a) · dqt(x, a)

)
; f ∈ C0(D2; Rd)}.

We may even go a little further, in defining for a any pair (c, q) ∈
(
C0(D2; R× Rd)

)′
K(c, q) = sup{

∫
D2

A(x, a)dc(x, a) +B(x, a) · dq(x, a);

(A,B) ∈ C0(D2; R× Rd) s.t. 2A+ |B|2 ≤ 0},
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which defines a l.s.c convex function valued in ] −∞,+∞] without any restriction
on (c, q) ∈

(
C0(D2; R× Rd)

)′, not even that c ≥ 0. Indeed, it can be shown that
K(c, q) takes the value +∞ unless c ≥ 0, q is absolutely continuous with respect to
c, with Radon-Nikodym derivative v, square integrable in c, in which case

1

2

∫
D2

|v(x, a)|2dc(x, a).

(This can be shown by elementary arguments of Measure Theory. See [51] for more
details.) So, we now ready to formulate the LAP entirely in terms of (c, q) by
requiring the minimization on each sufficiently short time interval [t0, t1] of∫ t1

t0

K(ct, qt)dt,

under the constraints that ct is doubly stochastic, i.e. ct ∈ DS(D), and satisfies,
together with qt the linear PDE

∂tct +∇x · qt = 0,

while the time-boundary values ct0 , ct1 are fixed in DS(D). The novelty of this for-
mulation is that we may now ignore that c and q have be derived from some curve
t → Xt ∈ SDiff(D). In other words, we have a possible relaxed version of the
LAP, with the remarkable advantage that the formulation is now entirely convex!
In a more geometric wording, we can interpret this relaxed problem as the "minimiz-
ing geodesic" problem along DS(D) between two given points of DS(D). Although
the detailed study of this problem will be done in chapter 4, we may already at this
stage provide a synthesis of the results obtained in [52] and improved in [6, 7, 66, 17].

For notational simplicity, it is convenient to normalize t0 = 0, t1 = 1 and denote ct0 ,
ct1 by c0, c1. We will also use the following notations:
i) c(t, x, a), q(t, x, a), v(t, x, a) instead of ct(x, a), qt(x, a), vt(x, a);
ii)
∫
x,a
f(x, a)c(t, x, a) rather than

∫
D2 f(x, a)dct(x, a), etc...

Theorem 2.2.1. Let D be the periodic cube D = Td. Given any data c0 and c1 in
the convex compact set of all doubly stochastic measure on D, the relaxed minimizing
geodesic problem always admits at least one solution (c, cv) and there is a unique
pressure gradient (t, x) ∈]0, 1[×D → ∇p(t, x) ∈ R, depending only on c0 and c1 such
that

∂t

∫
a

(cv)(t, x, a) +∇x ·
∫
a

(cv ⊗ v)(t, x, a) = −∇p(t, x)

whatever solution (c, cv) is.
In addition, ∇p has some limited regularity: it is locally square integrable in time
with values in the space of bounded measures on D = Td.
Moreover, each optimal solution (c, cv) can be weakly-* approximated by a family of
smooth curves t ∈ [0, T ]→ T εt ∈ SDiff(D), in the sense that, denoting

vε =
dT εt
dt
◦ (T εt )−1,

the corresponding measures

(1,
dT εt
dt

(a))δ(x− T εt (a))
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weakly-* converge to (c, cv)(t, x, a) and without gap of energy, in the sense

∫ 1

0

∫
D

|vε(t, x)|2dxdt→
∫ 1

0

∫
x,a

(c|v|2)(t, x, a)dt.

Finally, the vε are almost solutions to the Euler equations in the sense that

∂tv
ε +∇ · (vε ⊗ vε)→ −∇p,

where ∇p is the unique pressure gradient attached to the data (c0, c1).

Let us emphasize that it is very surprising that the pressure gradient is uniquely
determined by the data. Indeed, let us consider, as Arnold did in his founding paper
[13], the finite dimensional counterpart of the Euler model of incompressible fluids,
namely the model of rigid bodies, where the finite dimensional Lie group SO(3)
substitutes for SDiff(D), and a non-degenerate quadratic form (corresponding
to the matrix of inertia of the rigid body) substitute for the L2 metric. Then
the geodesic curves precisely describe the motion of a perfect rigid body moving
in vaccuum (without external forces). There is also a substitute for the pressure
gradient, which turns out to be a 3 × 3 symmetric time dependent matrix which
is attached to each geodesic, and acts in order to preserve the rigidity of the body.
Then one can find examples of two minimizing geodesics having the same end-
points for which these matrices are not the same [66]. As a matter of fact, the
uniqueness of the pressure gradient is, in our opinion, a striking manifestation of
“hidden convexity” due to to the infinite dimension of SDiff(D) and the convexity of
its weak completionDS(D). So, in some sense, we have a rather sophisticated avatar
of Theorem 1.1.2 (where, in a Hilbert, the unit ball is the right weak completion of
the unit ball if only if its dimension is infinite).
There is certainly some room to improve the results we have just mentioned. In
particular, it would be very useful to know the precise regularity of the pressure
field. There is some evidence [66] that the pressure p(t, x) should be, locally in
time in ]0, 1[, semi-concave in x, and not more in general, which means that the
derivatives in x of p should be Borel measures up to second order and not only to
first order as in the Theorem!
To conclude this sub-section, let us just us mention a striking additional property:
the "Boltzmann entropy" ∫

x,a

(c log c)(t, x, a)

is convex in t along every generalized minimizing geodesic. This has been conjectured
in [58] and proven first by Lavenant [190] (with some restrictions) and then by
Baradat-Monsaingeon [20]. In our opinion, this convexity might be an indication
that SDiff(D) has, in some suitable sense, a nonnegative Ricci curvature (in the
spirit of Lott-Sturm-Villani [206, 256]). This is another striking manifestation of
“hidden convexity”, since, in the classical framework, the measures c(t, x, a) are delta
measures and their Boltzmann entropy is always infinite!
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2.3 Hidden convexity in the Euler equations:
the Eulerian viewpoint

Let us go back to the classical setting, where the Euler equations of incompressible
fluids read

∂tv +∇ · (v ⊗ v) +∇p = 0, ∇ · v = 0,

and mention the remarkable results of De Lellis et Székelyhidi [118, 119, 120], based
on the concepts of differential inclusions and convex integration that go back to
the work of Gromov, Nash et Tartar [172, 225, 258]. They follow earlier works by
Constantin-E-Titi, Eyink, Scheffer, Shnirelman, about the so-called "Onsager con-
jecture" [105, 144] and the existence of non trivial space-time compactly supported
weak solutions [243, 253]. Let also quote subsequent papers [93, 119, 120, 179]
among many others.

A key point in the analysis is the convex concept of subsolution to the Euler equa-
tions. We say that a pair (V,M) is such a subsolution if
1) There is a scalar function p (the "pressure") such that

∂tV +∇ ·M +∇p = 0, ∇ · V = 0

holds true, in the sense of distributions. In coordinates, this reads

∂tV
i + ∂jM

ij + ∂ip = 0, ∂iV
i = 0.

ii) M ≥ V ⊗ V holds true in the sense of distributions and symmetric matrices.
We immediately note that a subsolution (V,M) becomes a weak solution as soon as
inequality M ≥ V ⊗ V is saturated: M = V ⊗ V .
In terms of functional spaces, the concept of subsolution requires a very limited
amount of regularity. Typically, in the simple case when Q = [0, T ] × D with
D = Td, it makes sense as soon as V ∈ L2(Q;Rd) andM is a bounded Borel measure
valued in the convex cone of all nonnegative symmetric matrices. We may add an
initial condition V0, typically an L2 divergence-free vector field, to the concept of
subsolution (V,M) by requiring∫

Q

∂tAi(t, x)V i(t, x)dtdx+ ∂jAi(t, x)M ij(dtdx) +

∫
D

V i
0 (x)Ai(0, x)dx = 0,

for all smooth divergence-free vector field A = A(t, x) ∈ Rd such that A(T, x) = 0.
Notice, however, that since a priori M is just a measure, V (t, x) may not depend
continuously on t (just enjoying a bounded variation) and, therefore, there is no
reason that V (t, x) achieves V0 as t ↓ 0. We will discuss this kind of problem later
in chapter 5. This is also a situation that specialists of hyperbolic conservation laws
have to face when they deal with space boundary conditions, as discussed in the
classical paper by Bardos, Le Roux et Nédelec [22]. Let us also observe that the set
of subsolutions with initial condition V0 is trivially convex.
As inequalityM ≥ V ⊗V is strict, we speak of strict subsolutions. Conversely, when
this inequality is saturated, we recover standard weak solutions. So the situation
reminds us very much of Theorem 1.1.2 that we discussed at the beginning of the
course in chapter 1. de l’introduction où on compare la sphère unité à la boule
unité. As a consequence of the works by De Lellis et Székelyhidi [118], we have the
following result [120] :

30



Theorem 2.3.1. Let (V,M) be a strict smooth subsolution to the Euler equations
on [0, T ] × Td. Then, there exists a sequence of weak solutions vn(t, x) (which we
can even assume to be Hölder continuous in x of small exponent -no more than 1/3
anyway-) such that (vn − V )(t, x) and (vn ⊗ vn −M)(t, x) weak-* converge to zero
in L∞(Td), uniformly in t. We may further assume that, for all t ∈ [0, T ],∫

T d
(vn ⊗ vn)(t, x)dx =

∫
T d
M(t, x)dx.

This is a highly non-trivial result which requires a large amount of Analysis. We
will not even try to sketch a proof and we invite the interested reader to look at De
Lellis et Székelhydi papers [118, 120].

As already mentioned, this result can be seen as a very sophisticated version of The-
orem 1.1.2 in chapter 1, strict subsolutions and weak solutions playing respectively
the role of the points lying in the interior of the unit ball and the points of the unit
sphere.

2.4 More results on the Euler equations

In this section, that can be skipped at a first stage, we provide more informations
on the Euler equations. We start by describing various formulations of the Euler
equations.

The trajectorial viewpoint

It is very instructive to look at the Euler equations of incompressible homogeneous
fluids at the level of trajectories (in so-called "Lagrangian coordinates"). As we
already saw, they just read

d2Xt

dt2
(a) = −(∇p)(t,Xt(a)), ∀t L ◦X−1

t = L = Lebesgue,

where a denotes the label of a typical fluid particle and Xt(a) its location in the
domain D at time t. (Let us recall that this is the very starting point of Euler’s pa-
per [140]! The main point of his paper was precisely the derivation of the Eulerian
equations that have become so popular that many people ignore their origin which
is definitely on the trajectorial -or so-called "Lagrangian" side.) Indeed, Euler pos-
tulated the existence of a vector field v = v(t, x), the so-called "Eulerian velocity
field" such that

v(t,Xt(a)) =
dXt

dt
(a).

Thus, by the chain rule and assuming Xt to be one-to-one in D, one easily gets, as
Euler did,

(∂t + v · ∇)v +∇p = 0, ∇ · v = 0,

which is the "non-conservative" form of the Euler equations, usually written as

∂t +∇ · (v ⊗ v) +∇p = 0, ∇ · v = 0.
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Very much as we did in the geometrical framework, let us introduce the "mixed
Eulerian-Lagrangian" measures

c(t, x, a) = δ(x−Xt(a)), q(t, x, a) =
dXt

dt
(a)δ(x−Xt(a)),

which are defined on the space [0, T ]×D×A, where A is the space of "fluid particle
labels". (It is customary, but in no way necessary, as will be seen later on, to define
A as D itself, with the convention that a is nothing but the "initial position" X0(a)
of the particle with label a. We just assume A to be a compact metric space with
a probability measure on it, denoted by da for simplicity.) As observed before,
from its very definition, q is absolutely continuous with respect to c and therefore
it makes sense to consider its Radon-Nikodym derivative that will be denoted by
v = v(t, x, a), so that we will write

q(t, x, a) = v(t, x, a)c(t, x, a) = (cv)(t, x, a).

With such notations, we may write∫
x,a

f(x, a)c(t, x, a) =

∫
A
f(Xt(a), a)da,

∫
x,a

f(x, a)q(t, x, a) =

∫
x,a

f(x, a)(cv)(t, x, a) =

∫
A

dXt

dt
(a)f(Xt(a), a)da,

for all continuous function f on D × A and all t ∈ [0, T ]. By standard differen-
tial calculus, we can get a consistent system of PDEs for (c, v) together with ∇p.
The following computations are perfectly rigorous as long as ∇p(t, x) is sufficiently
smooth, say Lipschitz continuous in x ∈ D with a Lipschitz constant integrable in
t ∈ [0, T ]:

Proposition 2.4.1. Let ∇p(t, x) be sufficiently smooth, say Lipschitz continuous in
x, for (t, x) ∈ [0, T ]×D, where D = Td. Assume that (Xt, t ∈ [0, T ]) is a family of
measure-preserving maps in the sense that∫

A
f(Xt(a))da =

∫
D

f(x)dx,

for all f ∈ C(D) and all t ∈ [0, T ]. Further assume, that

d2Xt

dt2
(a) = −(∇p)(t,Xt(a)),

holds true for all a ∈ A and t ∈ [0, T ].
Then the measures (c, q = cv), associated with (Xt, t ∈ [0, T ]) through∫

x,a

f(x, a)c(t, x, a) =

∫
A
f(Xt(a), a)da,

∫
x,a

f(x, a)q(t, x, a) =

∫
x,a

f(x, a)(cv)(t, x, a) =

∫
A

dXt

dt
(a)f(Xt(a), a)da,

for all continuous function f on D × A and all t ∈ [0, T ], satisfy the following set
of equations ∫

a

c(t, x, a) = 1, ∂tc(t, x, a) +∇x · (cv(t, x, a)) = 0,
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(∂t(cv) +∇x · (cv ⊗ v))(t, x, a) = −c(t, x, a)∇xp(t, x).

In addition, by integrating these equations in a, we also have

∇ ·
∫
a

(cv)(t, x, a) = 0, −∆xp(t, x) = ∇x ⊗∇x ·
∫
a

(cv ⊗ v)(t, x, a).

Proof:

First, since Xt is volume-preserving, we get for all test functions f = f(x):∫
x,a

f(x)c(t, x, a) =

∫
D

f(Xt(a))da =

∫
D

f(x)dx.

Thus:
∫
a
c(t, x, a) = 1 immediately follows. Next,

d

dt

∫
x,a

f(x, a)c(t, x, a) =
d

dt

∫
f(Xt(a), a)da =

∫
(∇xf)(Xt(a), a) · dXt

dt
(a)da

=
∫
x,a
∇xf(x, a) · (cv)(t, x, a), for all test functions f = f(x, a). Similarly:

d

dt

∫
x,a

f(x, a)(cv)(t, x, a) =
d

dt

∫
f(Xt(a), a)

dXt

dt
(a)da

=

∫
(∇xf)(Xt(a), a) · (dXt

dt
⊗ dXt

dt
)(a)da−

∫
f(Xt(a), a)(∇xp)(t,Xt(a))da

=

∫
x,a

∇xf(x, a) · (cv ⊗ v)(t, x, a)− f(x, a)c(t, x, a)∇xp(t, x).

as announced. Finally,

−∆p(t, x) = ∇x ⊗∇x ·
∫
a

(cv ⊗ v)(t, x, a).

just follows from ∫
a

c(t, x, a) = 1, ∇ ·
∫
a

(cv)(t, x, a) = 0.

End of proof.
So, the relaxed equations we have derived by pure differential calculus from the
original Euler’s model, written in terms of trajectories rather than in terms of
"eulerian" fields, are nothing but the optimality conditions we have stated for the
relaxed version of the minimizing geodesic, as just seen in section 2.2. Let us recall
that this relaxed problem reads, in short,

inf{
∫ 1

0

dt

∫
x,a

c|v|2 ; ∂tc+∇x · (cv) = 0,

∫
a

c = 1}

with c(t, x, a) prescribed at t = 0 and t = 1, and is convex in (c, cv).

Remark.
As a matter of fact (we will go back to that later on), the optimality conditions
contain an extra condition: ∇x × v(t, x, a) = 0, that has a variational interpreta-
tion in terms of principle of least action (in relationship with Noether’s celebrated
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invariance theorem) and says that the velocity field v(·, ·, a) attached to the label a
is curl-free. This does not contradict that the averaged velocity∫

a

(cv)(t, x, a)

is divergence-free. As a matter of fact, this provides a striking example of a
macroscopic divergence-free vector field that can written as a linear superposition
of a family of curl-free vector fields.
End of remark.

Relaxed solutions versus sub-solutions

By averaging out the relaxed solutions of the Euler equations, we immediately get
some sub-solutions of the Euler equations, just by setting

V (t, x) =

∫
a

(cv)(t, x, a), M(t, x) =

∫
a

(cv ⊗ v)(t, x, a).

Indeed,
∂tV +∇ ·M +∇p = 0, ∇ · v = 0,

just follow from the relaxed equations

∂tc(t, x, a) +∇x · (cv)(t, x, a) = 0,

∫
a

c(t, x, a) = 1,

(∂t(cv)(t, x, a) +∇x · (cv ⊗ v))(t, x, a) = −c(t, x, a)∇xp(t, x),

after integration in a and,
M ≥ V ⊗ V

is just a consequence of Jensen’s inequality since
∫
a
c(t, x, a) = 1. Notice that these

sub-solutions have no reason to be strict and, therefore, the De Lellis-Székelyhidi
Theorem 2.3.1 a priori does not apply to them.

Relaxed versus kinetic solutions

There is a parallel formulation of the relaxed equation, of Vlasov or “kinetic” type,
involving the “kinetic” “phase-density”

f(t, x, ξ) =

∫
a

δ(ξ − v(t, x, a))c(t, x, a), (x, ξ) ∈ Td × Rd.

(Here f is a traditional notation in kinetic theory for the phase density and the letter
f should not be used to denote test functions!) It is easy to get a self-consistent
system of equations for f together with the pressure gradient, provided we go back,
as we did for the relaxed equations, to the trajectorial formulation of the Euler
equations,

d2Xt

dt2
(a)) = −(∇p)(t,Xt(a)),

where Xt is volume-preserving in the sense that∫
A
φ(Xt(a))da =

∫
T d
φ(x)dx,
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for all test functions φ on Td. Setting

f(t, x, ξ) =

∫
A
δ(ξ − dXt

dt
(a))δ(x−Xt(a))da,

we get

∂tf(t, x, ξ) +∇x · (ξf(t, x, ξ)) = ∇ξ · (∇xp(t, x)f(t, x, ξ)),

∫
ξ∈Rd

f(t, x, ξ) = 1.

Once again, this is an easy consequence of the chain rule, and we only need ∇p(t, x)
to be Lipschitz in x ∈ Td to make it rigorous. Indeed, for every test φ function
depending only on x, we first find

∫
(x,ξ)∈Td×Rd

φ(x)f(t, x, ξ) =

∫
A
φ(Xt(a))da =

∫
T d
φ(x)dx,

and, therefore, ∫
ξ∈Rd

f(t, x, ξ) = 1.

Next, we get for any test function φ depending on both x and ξ,

d

dt

∫
(x,ξ)∈Td×Rd

φ(x, ξ)f(t, x, ξ) =
d

dt

∫
A
φ(Xt(a),

dXt

dt
(a))da

=

∫
A

dXt

dt
(a) · (∇xφ)(Xt(a),

dXt

dt
(a))da

−
∫
A

(∇p)(t,Xt(a)) · (∇ξφ)(Xt(a),
dXt

dt
(a))da

=

∫
(x,ξ)∈Td×Rd

(ξ · ∇xφ(x, ξ)− (∇p)(t, x) · ∇ξφ(x, ξ)) f(t, x, ξ).

This “kinetic formulation” of the Euler equations was already introduced in [48] and
was, in some sense, the departure points of [47, 50, 52].

Well-posedness issues

As we have seen, the relaxed Euler equations:

∂tc(t, x, a) +∇x · (cv(t, x, a)) = 0,

∫
a

c(t, x, a) = 1,

(∂t(cv) +∇x · (cv ⊗ v))(t, x, a) = −c(t, x, a)∇xp(t, x),

are very well suited for the "minimizing geodesic problem". It is therefore tempting
to think that the relaxed Euler equations, or their kinetic counterpart,

∂tf(t, x, ξ) +∇x · (ξf(t, x, ξ)) = ∇ξ · (∇xp(t, x)f(t, x, ξ)),

∫
ξ∈Rd

f(t, x, ξ) = 1,

might be good candidates to substitute for the usual Euler equations when we ad-
dress the initial value problem (IVP), i.e. when we try to get a solution (c, cv) (or f ,
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in kinetic terms), just by prescribing its value at time 0. Unfortunately, it turns out
that the relaxed Euler equations are not even well-posed in short time, unless severe
restrictions are imposed to the initial conditions (c0, c0v0) (or f0 in kinetic terms).
Positive and negative results have been obtained in the last 20 years, with many con-
tributors such as Baradat, Bardos and Besse, Brenier, Grenier, Han-Kwan and Iaco-
belli, Han-Kwan and Rousset, Masmoudi and Wong [19, 21, 53, 171, 173, 174, 217].
Strictly speaking some of these papers, in particular [21, 174], are rather devoted
to the “compressible” version of the relaxed Euler equations, which reads, in kinetic
terms,

∂tf(t, x, ξ) +∇x · (ξf(t, x, ξ)) = ∇ξ · (
∇xp

ρ
(t, x)f(t, x, ξ)), ρ(t, x) =

∫
ξ

f(t, x, ξ),

where the pressure p is a given function of the density ρ.

Comparison with the Muskat equations

The Euler equations of incompressible inhomogeneous fluids admit a "friction dom-
inated" version which reads (in terms of trajectories)

dXt

dt
(a) = −ρ0(a)G− (∇p)(t,Xt(a)), L ◦X−1

t = L, ∀t,

where we assume, for a moment, that each Xt belongs to SDiff(D). Here, the
external force, denoted by G, is a given constant vector in Rd (typically along the
vertical axis, if one considers the gravity force in the simplest possible situation).
Notice that the density ρ0 exclusively features in front of the external force. This
corresponds to the so-called "Boussinesq approximation". As a matter of fact, as-
suming the existence of a velocity field v and a density field ρ such that

dXt

dt
(a) = v(t,Xt(a)), ρ(t,Xt(a)) = ρ0(a),

then the equations admit the following "Eulerian" version:

∂tρ+∇ · (ρv) = 0, ∇ · v = 0, v = −ρG−∇p.

This set of equations is sometimes called "incompressible porous media equations"
or "Muskat’s equations" [109, 257], and we will come back to them later in the
course, in section 9.4. Notice that they get trivial when there is no external force.
(Indeed, in such a case v is both potential and divergence-free.) These equations
are very useful for applications (typically, they are the basic equations for "reservoir
simulations" in Civil Engineering and Oil Industry [99]). They have been studied
in many different ways recently in the mathematical literature, in particular in the
framework of convex integration theory. Note that the concept of sub-solutions is
not so clearly defined as for the Euler equations, as explained in [257] (that we also
quote for the many references it contains).
Anyway, following what we did for the Euler equations, we can easily get a relaxed
version for these equations:

Proposition 2.4.2. The Muskat equations admit the following relaxed formulation:

∂tc(t, x, a) = ∇x · (c(t, x, a)(ρ0(a)G+∇p(t, x)))∫
a

c(t, x, a) = 1, −∆p(t, x) = ∇x ·
(∫

a

c(t, x, a)ρ0(a)G

)
.
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Proof (just as before): For all test functions f = f(x, a), we have

d

dt

∫
(x,a)

f(x, a)c(t, x, a) =
d

dt

∫
f(Xt(a), a)da

=

∫
(∇xf)(Xt(a), a) · dXt

dt
(a)da

=

∫
(∇xf)(Xt(a), a) · (−ρ0(a)G− (∇p)(t,Xt(a)))

=

∫
(x,a)

c(t, x, a)∇xf(x, a) · (−ρ0(a)G−∇p(t, x)).

leading to
∂tc(t, x, a) = ∇x · (c(t, x, a)(ρ0(a)G+∇p(t, x))) ,

as announced. Then

−∆p(t, x) = ∇x ·
(∫

a

c(t, x, a)ρ0(a)G

)
,

immediately follows from
∫
a
c(t, x, a) = 1 by integrating the previous equation with

respect to a.
End of proof.

In sharp contrast with the relaxed Euler equations, the relaxed Muskat equations
enjoy a well-posedness property for the IVP. This follows from:

Proposition 2.4.3. The relaxed Muskat system admits an extra conservation law
for the Boltzmann entropy

∫
a
c(t, x, a), namely

∂t

∫
a

(c log c)(t, x, a) +∇x · (
∫
a

c(t, x, a)ρ0(a)G) = 0.

[This is just a straightforward calculation, since:

∂t

∫
a

(c log c)(t, x, a) =

∫
a

(1 + log c(t, x, a))∇x · ((ρ0(a)G+∇p(t, x))c(t, x, a))

= −
∫
a

∇xc(t, x, a) · (ρ0(a)G+∇p(t, x)) = −∇x · (
∫
a

c(t, x, a)ρ0(a)G),

using that
∫
a
c(t, x, a) = 1.]

Since the Boltzmann entropy is strictly convex in c, the existence of this extra con-
servation law essentially suffices to guarantee the local well-posedness of the relaxed
Muskat equations, following the general theory of entropic system of conservation
laws [117] that we will discuss later in the course in chapter 6.3.

37



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

’fort.12’

Relaxed Muskat equations:
A solution featuring three "phases" (heavy, neutral, light) on top of each other.
Trajectories are drawn for the heavy and the light phases only.
Observe the final rearrangement of the phases in stable order.
(Horizontal axis: t ∈ [0, 10], vertical axis: x ∈ [0, 1].)
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Solution of the IVP by convex minimization

It is now quite clear that the relaxed Euler equations are much more adequate
for the generalized minimizing geodesic problem, where c is prescribed at the end
points t = 0 and t = 1, for which the solutions are successfully obtained by convex
minimization (with a very convincing existence and uniqueness result for the pressure
gradient), than for the initial value problem (IVP), when (c, cv) is prescribed at time
0, which is very likely to be ill-posed. Anyway, it seems foolish to solve the IVP
problem by a space-time convex minimization technique. Indeed, this may, we are
very likely to get optimality equations of space-time elliptic type and therefore ill-
posed, although there is a little room left if the convexity is sufficiently degenerate
(which is, by the way, the case of the generalized minimizing geodesic problem where
the convex functional to be minimized is homogeneous of degree one and, therefore,
degenerate). However, as will be discussed later in chapter 5, there is a (limited)
possibility of that sort which actually involves the cruder concept of sub-solutions we
have discussed in the framework of “convex integration” à la De Lellis-Székelyhidi.
The idea amounts to minimizing, on a given time interval [0, T ],∫

[0,T ]×Td
(trace M)(dtdx)

among all (V,M), where V is square-integrable space-time andM is a bounded Borel
space-time measure valued in the set of semi-definite symmetric d×dmatrices, which
satisfy M ≥ V ⊗ V and solve

∂tV +∇ ·M +∇p = 0, ∇ · V = 0,

with given initial condition V0 in the sense∫
Q

∂tAi(t, x)V i(t, x)dtdx+ ∂jAi(t, x)M ij(dtdx) +

∫
D

V i
0 (x)Ai(0, x)dx = 0,

for all smooth divergence-free vector-fields A = A(t, x) ∈ Rd that vanish at t = T .
It will be shown that:
1) Any smooth solution of the Euler equations can be obtained this way, at least for
small enough T .
2) Il may happen that the optimal solution is a classical solution to the Euler equa-
tions, but for a different initial condition than V0! This strange phenomenon is
related to the fact that M is just a space-time measure which prevents V (t, x) to
be weakly continuous at t = 0. Interestingly enough, in some special situations, the
resulting solution at time T can be seen as a “relaxed solution”, not in the sense we
have discussed so far, but rather in the sense developed by Otto [229] for incom-
pressible fluid motions in porous media and recently revisited in [164, 257]. Let us
just give an explicit example, due to Helge Dietert [125], with d = 2, not on T2 but
rather on T × [−1/2, 1/2] (to make the example easier to handle) and we assume
T ≤ 1/2. We take as initial condition

V0(x1, x2) = (sign(x2), 0),

which is an exact, time-independent, discontinuous, trivial solution to the Euler
equations, but well known to be "physically unstable" (“Kelvin-Helmholtz instabil-
ity”). Then, the convex optimization problem provides a completely different solu-
tion, which is stationary (i.e. time independent), Lipschitz continuous and explicitly
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depends on the final time T , namely

VT (x1, x2) =
(

max(−1,min(
x2

T
, 1)), 0

)
.

This looks non sense. However, if we consider this family of stationary solutions as
a time dependent solution (the final time T playing the role of the current time), we
recover the kind of relaxed solutions advocated by Otto in the (quite different but
closely related) framework of incompressible fluid motion in porous media [229, 257].
These topics will be discussed later in the course, in chapter 5.
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Chapter 3

Hidden convexity in the
Monge-Ampère equation and
Optimal Transport Theory

As we have seen earlier in the course, the Euler model of incompressible fluids
crucially relies on the ODE

d2X(t)

dt2
= −(∇p)(t,X(t)),

where p is the pressure field and adjusts itself in order to enforce the incompressibility
condition. In the simpler case when p = p(t, x) is a given potential, this ODE can
be derived from the Least Action principle (LAP) as explained in chapter 1. As a
matter of fact, the LAP also applies to many PDEs and not only to PDEs (see, for
instance, [14, 215, 131, 255, 259]....). More precisely, many PDEs can be interpreted
as optimality equation of a suitable optimization problem. One of the simplest
example is the Poisson (or Laplace) equation

∆u = f

where f is a given function on a compact domain D ⊂ Rd with suitable boundary
conditions, typically for the unknown u = u(x) ∈ R to vanish along the boundary,
i.e. as x ∈ ∂D. It is very well known that the solution can be obtained as the unique
minimizer of the functional∫

D

(
|∇u(x)|2

2
+ f(x)u(x)

)
dx

on a suitable functional space. (Typically, the Sobolev space H1
0 (D).) As we are

going to see in the present chapter, such a variational principle may apply, in a not
so obvious way, to fully nonlinear equations such as the Monge-Ampère equation
(MAE),

detD2u = f.

where
D2u(x) =

(
∂2u

∂xi∂xj
(t, x), i, j = 1, · · ·, d

)
,

at least for some suitable boundary conditions. Surprisingly enough, this variational
structure of the MAE may be suggested by the study of the Euler equations of
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incompressible fluids! (So that we may add the MAE to the long list of PDEs that
can be derived from the Euler equations, such as the wave or the heat equations, as
we have seen in chapter 2.)

3.1 The Least Action Principle for the Euler equa-
tions

Let us go back for a short while to the Euler equations of incompressible fluids.
Inspired by Arnold’s geometric interpretation (as seen in section 2.2), we introduce
the functional

Jt0,t1 [X] =

∫ t1

t0

∫
D

1

2
|∂tXt(a)|2dxdt

where D ⊂ Rd is a compact convex domain, t0 < t1 are given, t → Xt ∈ V PM(D)
is prescribed at t = t0 and t = t1, where V PM(D) is the semi-group of all volume-
preserving maps of D, i.e. all Borel maps X : D → Rd such that∫

D

φ(X(a))da =

∫
D

φ(x)dx, ∀φ ∈ C0(Rd).

Then we have the following version of the LAP:

Theorem 3.1.1. Let (X, p) be a solution of the Euler equations, in the sense:

d2

dt2
Xt(a) = −(∇p)(t,Xt(a)),

∫
D

φ(t,Xt(a))dx =

∫
D

φ(x)dx, ∀φ ∈ C0(Rd), ∀t.

Assume that the pressure field p is smooth enough so that K(p) is finite, where

K(p) = sup
(t,x)∈[t0,t1]×D

sup
k=1,···,d

λk(t, x),

where we denote by λk ∈ R the eigenvalues of D2
xp(t, x). Then, if the time interval

[t0, t1] is small enough so that

(t1 − t0)2

π2
K(p) < 1,

then, for all curves t ∈ [t0, t1]→ X̃t ∈ V PM(D) such that

X̃t0 = Xt0 , X̃t1 = Xt1 ,

different from X, one has
Jt0,t1 [X̃] > Jt0,t1 [X].
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Proof

The proof follows almost immediately from Theorem 1.3.1 already seen in chapter
1. Indeed, for (almost) every fixed a ∈ D, we have, by setting u(t) = Xt(a) and
ũ(t) = X̃t(a),∫ t1

t0

[−p(t, u(t)) +
1

2
|u′(t)|2]dt ≤

∫ t1

t0

[−p(t, ũ(t)) +
1

2
|ũ′(t)|2]dt,

and, thus,∫ t1

t0

[−p(t,Xt(a))) +
1

2
|∂tXt(a)|2]dt ≤

∫ t1

t0

[−p(t, X̃t(a))) +
1

2
|∂tX̃t(a)|2]dt,

with equality only if u = ũ. Then integrating in a ∈ D and using that both X and
X̃ are valued in V PM(D), we get∫

D

∫ t1

t0

1

2
|∂tXt(a)|2dtda ≤

∫
D

∫ t1

t0

1

2
|∂tX̃t(a)|2dtda

with equality only if X̃ = X, which completes the proof.

A dual Least Action Principle

We can a little further by observing that the pressure field itself obeys a sort of LAP
in the following sense:

Theorem 3.1.2. Using the same notations as in Theorem 3.1.1 and assuming

(t1 − t0)2

π2
K(p) ≤ 1,

then the pressure field p is a maximizer of functional

Kt0,t1 [p] =

∫ t1

t0

∫
D

p(t, x)dxdt+

∫
D

Kt0,t1,p(Xt0(a), Xt1(a))da,

where

Kt0,t1,p(u0, u1) = inf{
∫ t1

t0

(
1

2
|u′(t)|2−p(t, u(t)))dt, u ∈ C1([0, T ], D), u(t0) = u0, u(t1) = u1}

Proof

Let p̃ be a "competitor" for p. By definition,

Kt0,t1,p̃(u0, u1) = inf{
∫ t1

t0

(
1

2
|u′(t)|2−p̃(t, u(t)))dt, u ∈ C([0, T ], D), u(t0) = u0, u(t1) = u1},

we have for each fixed a ∈ D,

Kt0,t1,p̃ (Xt0(a), Xt1(a)) ≤
∫ t1

t0

(
1

2
|∂tXt(a)|2 − p̃(t,Xt(a))

)
dt.
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By integration in a ∈ D, we get∫
D

Kt0,t1,p̃ (Xt0(a), Xt1(a)) da ≤
∫
D

∫ t1

t0

(
1

2
|∂tXt(a)|2 − p̃(t,Xt(a))

)
dtda

=

∫
D

∫ t1

t0

(
1

2
|∂tXt(a)|2 − p̃(t, a))

)
dtda

(using that Xt is volume preserving). For p itself, we get equality:

Kt0,t1,p (Xt0(a), Xt1(a)) =

∫ t1

t0

(
1

2
|∂tXt(a)|2 − p(t,Xt(a))

)
dt

(because of Theorem 1.3.1) and, therefore, integrating in a,∫
D

Kt0,t1,p (Xt0(a), Xt1(a)) da =

∫
D

∫ t1

t0

(
1

2
|∂tXt(a)|2 − p(t, a))

)
dtda.

So, by subtraction, we have obtained∫ t1

t0

∫
D

p̃(t, x)dxdt+

∫
D

Kt0,t1,p̃(Xt0(a), Xt1(a))da

≤
∫ t1

t0

∫
D

p(t, x)dxdt+

∫
D

Kt0,t1,p(Xt0(a), Xt1(a))da,

which is exactly what we wanted to complete the proof.
Remark.
So, we have obtained a "dual" optimization problem that enjoys two remarkable
properties:
i) it is concave in p is concave, which shows that, behind the original optimization
problem in X, which was definitely not convex in X, we have exhibited some hidden
convexity;
ii) it does not involve any partial derivatives in p!

3.2 Monge-Ampère equation and Optimal Trans-
port

The maximization problem solved by the pressure field in the framework of the Euler
equations of incompressible fluid suggests the study of a very similar but simpler
problem, namely the maximization of functional

φ→
∫
Rd
φ(x)ρ0(x)dx+

∫
Rd

inf
x∈Rd

(
1

2
|y − x|2 − φ(x)

)
ρ1(y)dy,

where ρ0 ≥ 0 and ρ1 ≥ 1 are given compactly supported functions of unit Lebesgue
integral on Rd. Remarkably enough, this simpler problem is related to the famous,
fully nonloinear, real Monge-Ampère equation, well known in both Riemannian and
Kählerian geometries:

ρ1(x+∇φ(x))det(Id +D2φ(x)) = ρ0(x)
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(which was considered by Minkowski more than a century ago, to show that convex
hypersurfaces in Rd can be recovered just by the knowledge of their Gaussian cur-
vature). The variational study of the MAE relies on techniques borrowed from the
Monge-Kantorovich Theory of Optimal Transport (for which we refer to the books
[265, 266, 9, 241]). It is quite amazing that such a fully non-linear equation can
be solved by a concave optimization problem which does not involve any partial
derivative!

Theorem 3.2.1. Let B a closed ball in Rd centered at 0. Let µ0 and µ1 be to Borel
probability measures on B. Assume that µ0 is absolutely continuous with respect to
the Lebesgue measure, i.e. there exists ρ0 ≥ 0 in L1(B) such that µ0(dx) = ρ0(x)dx.
Then, there is a unique Borel map T : B → B that transports µ0 toward µ1 and can
be written T (x) = ∇a(x), ρ0(x)dx almost everywhere, where a is a Lipschitz convex
function on D.

Remark

This result tells us, at least in the simpler case, where µ1(dy) = ρ1(y)dy for some
ρ1 ∈ L1(B), that the MAE

ρ1(∇a(x))det(D2a(x)) = ρ0(x),

is solved, in a generalized sense, for some convex Lipschitz function a on B. Indeed,
assuming the change of variable

x ∈ B → y = ∇a(x) ∈ B, dy = det(D2a(x))dx

to be valid, we get for each u ∈ C0(B),∫
B

u(y)ρ1(y)dy =

∫
B

u(∇a(x))ρ1(∇a(x))det(D2a(x))dx =

∫
B

u(∇a(x))ρ0(x)dx,

which means that x → ∇a(x) transports ρ0(x)dx toward ρ1(y)dy as the MAE is
satisfied.
The proof of Theorem 3.2.1 goes through the solution of the "Monge-Kantorovich"
problem

inf{
∫
B

a(x)µ0(dx) +

∫
B

b(y)µ1(dy), (a, b) ∈ C0(B)× C0(B)},

under constraint a(x) + b(y) ≥ x · y, ∀x, y ∈ B. So, the solution of a fully nonlinear
geometric PDE will be optained by solving a "linear program" without any partial
derivative!

3.3 Nonlinear Helmholtz decomposition and polar
factorization of maps

A rather direct application of Theorem 3.2.1 can be obtained in the special case
when:
i) µ0 is just the (normalized) Lebesgue measure restricted to a compact subdomain
D of B;
ii) µ1 is the image measure of µ0 by a given bounded Borel map Y : D → B.
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Theorem 3.3.1. Let D be a compact domain in Rd contained in a ball B and let
Y : D → B be a Borel map. Assume the image measure of the Lebesgue measure on
D by Y , that we denote by ν, to be absolutely continuous with respect to the Lebesgue
measure on B (in which case, map Y is called a "non-degenerate" map). Then, there
is a unique "polar factorization" (or "nonlinear Helmholtz decomposition") of Y of
form Y = T ◦X where
1) X : D → D is a Lebesgue measure-preserving Borel map;
2) T : D → Rd has a "convex potential", in the sense that there exists a Lipschitz
convex function Φ : Rd → R ∪ {+∞} such that for a.e. x ∈ D T (x) = ∇Φ(x).
Moreover, X is characterized as the unique L2 projection of Y on the set V PM(D)
of all volume-preserving Borel maps of D, i.e.∫

D

|Y (x)−X(x)|2dx <
∫
D

|Y (x)− X̃(x)|2dx,

for each X̃ ∈ V PM(D) different from X.
In addition, T : D → Rd is characterized as the unique map with a convex potential
such that sending the Lebesgue measure on D to ν.

This result [49] deserves to be called "nonlinear Helmholtz decomposition" for
the following reason. The usual Helmholtz decomposition asserts that every vector
field z ∈ L2(D; Rd) can be uniquely written z = w + ∇p, where w is some L2

divergence-free vector field on D, parallel to ∂D, and p some scalar function on D.
This can be seen as the linearization of the "polar factorization" of maps about the
identity map. Indeed, at least formally, the factorization Y = ∇Φ ◦ X, for a map
Y close to the identity map, so that Y (x) = x + εz(x), with ε small, first returns
Φ(x) = |x|2/2 + εp(x), X(x) = x+ εw(x) +O(ε2), with z = ∇p+ w. Next, since X
is volume-preserving, one has, for all test function f ,

0 =

∫
D

f(x+ εw(x) +O(ε2))dx−
∫
D

f(x)dx =

∫
D

∇f(x) · w(x)dx+O(ε2)

which means, in a weak sense, that w is divergence-free and parallel to ∂D.

Furthermore, the name "polar factorization" comes form the fact that, in the very
special case, when D = B is the unit ball and Y (x) = Ax, ∀x ∈ D, for some real
d× d matrix, one has

T = ∇Φ ◦X, Φ(x) =
1

2
x ·
√
AAt x,

and, whenever A is non-degenerate (i.e. invertible),

X(x) = Ux, U = (AAt)−1/2A,

where U is an orthogonal matrix since

UU t = (AAt)−1/2AAt(AAt)−1/2 = Id = U tU,

Id denoting the identity matrix. (By the way, in this very peculiar case, X is not
only a volume-preserving map of B, but also an isometry!)

Finally, let us mention that the polar factorization theorem, established in [49], has
been since very nicely extended to compact Riemannian manifolds by R. McCann
[211].
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POLAR FACTORIZATION OF A PERIODIC MAP

 

Polar factorization of a given map Y : T2 → T2,
drawn on the upper right corner.
The volume (area)-preserving factor lies on the lower right corner.
The map with convex potential features on the lower left corner.
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Proof of Theorem 3.2.1

The proof relies on the Rademacher theorem that asserts that any Lipschitz func-
tion on Rd is Lebesgue-almost everywhere differentiable [143] and on a well-known
result of Convex Analysis, which is a rather direct consequence of the Hahn-Banach
Theorem, namely the Fenchel-Rockafellar duality theorem, as stated in [88].

The Fenchel-Rockafellar duality theorem

Theorem 3.3.2. Let E be a real Banach space and consider two functions K1, K2 :
E → R ∪ {+∞} which are both convex. Assume that there exists a point u0 ∈ E
such that both K1 and K2 are finite at u0 while K2 is continuous at u0. Then we
have the duality equality

sup
u∈E

(−K1(u)−K2(u)) = inf
f∈E′

(K∗1(−f) +K∗2(f)) ,

where E ′ is the dual of E and the Legendre-Fenchel dual K∗ : E ′ → R∪ {+∞} of a
function K : E → R ∪ {+∞} is defined by

K∗(f) = sup
u∈E

[〈f, u〉E′,E −K(u)] .

Moreover, the infimum in the duality equality is achieved by some point f ∈ E ′.

Remark.
Surprisingly enough, this duality theorem is quite similar to the Plancherel formula
in harmonic analysis. Indeed, at least formally, one can consider the correspondence
between the algebraic structures with operations, respectively, [+, ·] and [max,+]
(sometimes in this correspondence, inequalities can show up instead of equalities).
Then, the Legendre-Fenchel transform is analogous to the Fourier transform and the
duality equality just corresponds to the Plancherel formula:∫

u · v =

∫
û · v̂,

where u→ û stands for the Fourier transform. This "Fenchel-Fourier" dictionary is
now well established in Mathematics ("Tropical Geometry" in Algebraic Geometry
being probably the most famous example, following [216], sell also [45, 106, 207].)

Application of the Fenchel-Rockafellar theorem

We introduce
E = C0(B ×B),

which is a Banach space for the sup norm. We are given a continuous function c
on B ×B (that later will be simply taken as c(x, y) = x · y). We define two convex
functions Φ, Ψ on E, valued in ]−∞,+∞] and respectively given, for each w ∈ E
by:

Φ(w) = 0, si w ≥ c, +∞ sinon,

Ψ(w) =

∫
B

a(x)µ0(dx) +

∫
B

b(y)µ1(dy) si w = a⊕ b,

for some continuous functions a, b on B, and +∞ otherwise. [Note that Ψ is defined
without ambiguity since µ0 and µ1 have the same, unit, mass.] Observe that there
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is at least one point w ∈ E where Φ is continuous and Ψ finite. [Take, for instance,
the constant function w = 1 + sup c on B×B.] Since Φ are Ψ obviously convex, we
may apply the Fenchel-Rockafellar theorem 3.3.2 and get:

inf{Φ(w) + Ψ(w), w ∈ E} = max{−Φ∗(−µ)−Ψ∗(µ), µ ∈ E ′}

where the dual space E ′ is just the space of all real-valued bounded Borel measures
µ on B×B (By Riesz’ Theorem), and Φ∗, Ψ∗ are the Legendre-Fenchel transforms:

Φ∗(µ) = sup{< µ,w > −Φ(w), w ∈ W}

Ψ∗(µ) = sup{< µ,w > −Ψ(w), w ∈ W},

where the duality bracket is defined by

< µ,w >=

∫
B×B

w(x, y)µ(dx, dy), ∀w ∈ W , ∀µ ∈ W ′.

Observe that notation "max" is used on purpose to emphasize that the sup is
achieved on the right-hand side (which is a priori not true for the infimum on the
left-hand side).

Let us now compute Φ∗ and Ψ∗. We first get Φ∗(−µ) = +∞, unless µ ≥ 0, in
which case

Φ∗(−µ) = −
∫
B×B

c(x, y)µ(dx, dy).

Next, Ψ∗(µ) = +∞, unless both projections of µ on B are respectively µ0 et µ1,
in which case Ψ∗(µ) = 0. So, we have obtained the existence of µopt ≥ 0, with
projections µ0 and µ1, that maximizes

∫
B×B c(x, y)µ(dx, dy) among all nonnegative

Borel measures on B×B with projections µ0, µ1. Furthermore, we have the duality
equality:∫

B×B
c(x, y)µopt(dx, dy) = inf{

∫
B

a(x)µ0(dx) +

∫
B

b(y)µ1(dy), a⊕ b ≥ c}.

Existence part of Theorem 3.2.1

A priori, the inf is not achieved in the duality equality. So, we consider a minimizing
sequence (an, bn). Remarkably enough, we may get a new minimizing sequence
(ãn, b̃n) with better performances, just by setting

b̃n(y) = sup
x∈B

c(x, y)− an(x),

ãn(x) = sup
y∈B

c(x, y)− b̃n(y).

(Note that b̃n ≤ bn, ãn ≤ an et ãn ⊕ b̃n ≥ c.) This new sequence is uniformly
equicontinuous on the compact set B×B. For notational simplicity, let us denote it
again by (an, bn). Since we may add an arbitrarily chosen constant to an and subtract
the same constant from bn, we may assume that the ãn and b̃n are uniformly bounded
on B. (Indeed, we may adjust an so that the supremum of x → c(x, 0) − an(x) on
B is equal to 0, which guarantees that an ≥ inf c and b̃n(0) = 0. It follows that the
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|b̃n| are uniformly by some constant R, since they are uniformly equicontinuous. By
definition, the ãn are bounded away from above by R+ sup c and bound away from
below by inf c.) At this stage, we apply the Ascoli Theorem to get a subsequence,
still denoted by (an, bn), that converges in sup norm to some limit (a, b) on B. We
may further ensure that

a(x) = sup
y∈B

c(x, y)− b(y)

(by using the same process as above). We immediately see that (a, b) minimizes the
continuous functional on C(B)× C(B) defined by:

(a, b)→
∫
B

a(x)µ0(dx) +

∫
B

b(y)µ1(dy)

among all pairs (a, b) such that a⊕ b ≥ c. Therefore, we have obtained∫
B×B

c(x, y)µopt(dx, dy) =

∫
B

a(x)µ0(dx) +

∫
B

b(y)µ1(dy),

from which we deduce∫
B×B

(a(x) + b(y)− c(x, y))µopt(dx, dy) = 0,

since µ0, µ1 are projections of µopt. Since µopt is a nonnegative measure, this implies

a(x) + b(y) = c(x, y)

for µopt−every x, y in B.

At this stage, we limit ourself to the special choice c(x, y) = x ·y and assume that µ0

is absolutely continuous with respect to the Lebesgue measure and can be written

µ0(dx) = ρ0(x)dx,

for some Lebesgue integrable function ρ0 ≥ 0 on B, with integral 1. Thus, we may
write

a(x) = sup
y∈B

x · y − b(y)

which shows that a is both Lipschitz continuous and convex on B. The Rademacher
Theorem [143] tells us that a is almost everywhere integrable in the interior of
B. Since B is smooth, its boundary ∂B is a set of zero Lebesgue measure in Rd.
Therefore the set of all points x in B which either lie on ∂B or in the interior of
B without being a point of differentiability for a is of zero µ0 measure (since µ0 is
absolutely continuous with respect to the Lebesgue measure). Since µopt admits µ0

as first projection, we deduce that, for µopt-almost every point (x∗, y∗) ∈ B × B,
x∗ belongs to the interior of B and is differentiability point for a. We may further
assume que

a(x∗) + b(y∗) = x∗ · y∗,

since, as already seen, thus property is true µopt-almost everywhere. Since

a(x) + b(y∗) ≥ x · y∗
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is true for every x ∈ B, we see that x∗ is a minimizer for function x→ a(x)− x · y∗.
Thus, by differentiation, we have

∇a(x∗) = y∗.

This property is therefore true µopt-almost everywhere, which implies

µopt(dx, dy) = δ(y −∇a(x))ρ0(x)dx,

in the precise sense that∫
B×B

w(x, y)µopt(dx, dy) =

∫
B

w(x,∇a(x))ρ0(x)dx, ∀w ∈ C(B ×B).

(Observe that this already enforces the uniqueness of the optimal solution µopt.) By
projection (i.e. by setting w(x, y) = u(y)), we deduce∫

B

u(y)µ1(dy) =

∫
B

u(∇a(x))ρ0(x)dx, ∀u ∈ C(B),

which exactly tells that x → ∇a(x) transports ρ0(x)dx toward µ1(dy). Since a
is Lipschitz continuous and convex, we have already proven the existence part of
Theorem 3.2.1.

Uniqueness part of Theorem 3.2.1

Assume the existence of a convex Lipschitz function ã such that x → y = ∇ã(x)
transports ρ0(dx) toward µ1(dy) and set

b̃(y) = sup
x∈B

x · y − ã(x), y ∈ B.

We first observe that
ã(x) + b̃(∇ã(x)) = x · ∇ã(x)

holds true for Lebesgue-almost every x ∈ B. [Indeed, by the Rademacher theorem,
almost every x∗ ∈ B lies in the interior of B and is a differentiability point for ã.
Let us set y∗ = ∇ã(x∗). Note that y∗ lies in B, since ∇ã transports ρ(x)dx toward
µ1(dy) and both measures are supported in the compact set B. The Lipschitz
concave function on B x ∈ B → x ·y∗− ã(x) is differentiable in x = x∗, which lies in
the interior of B, with zero derivative. Thus its maximum is achieved in x∗, which,
by definition, is nothing but b̃(y∗). Therefore, we have b̃(y∗) = x∗ · y∗− ã(x∗). Since
y∗ = ∇ã(x∗), we have obtained the required equality.]
Let us now set

µ(dx, dy) = δ(y −∇ã(x))ρ0(x)dx.

We have ∫
B×B

x · yµ(dx, dy) =

∫
B

x · ∇ã(x)ρ0(x)dx

=

∫
B

(ã(x) + b̃(∇ã(x))ρ0(x)dx =

∫
B×B

(ã(x) + b̃(y))µ(dx, dy)

=

∫
B×B

(ã(x) + b̃(y))µopt(dx, dy)
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(since µopt and µ have the same projections)

≥
∫
B×B

x · yµopt(dx, dy)

(because ã(x) + b̃(y) ≥ x · y). Thus µ is optimal, just as µopt, which is, as already
noticed, is the unique optimal solution. We therefore have, by definition of µ:

δ(y −∇ã(x))ρ0(x)dx = µ(dx, dy) = µopt(dx, dy) = δ(y −∇a(x))ρ0(x)dx,

and this is possible only if ∇ã(x) = ∇a(x) for ρ0(x)dx-almost every x, which is
exactly the uniqueness part of our Theorem. So, the proof of Theorem 3.2.1 is now
complete.

3.4 An application to the best Sobolev constant
problem

In this section, that can be skipped without affecting the rest of the course, we
sketch a remarkable application of the Monge-Ampère equation in the framework of
Optimal transportation. We are motivated by the non-convex minimization problem

I(U, p, q) = inf{
∫
U

|∇u(x)|pdx, u ∈ C∞c (U), t.q.

∫
U

|u(x)|qdx = 1 }

where p, q ∈]1,+∞[ and U is an open subset of Rd.
It is rather straightforward, by using linear changes of variable of type x→ rx + a
with r > 0 and a ∈ Rd on functions u ∈ C∞c (U), to see that:
i) in case U = Rd, I(U, p, q) = 0 except if 1− d/p = 0− d/q ;
ii) whenever U is bounded (in which case, we only use retractions for which r > 1)
I(U, p, q) = 0 unless if

1− d/p ≥ 0− d/q.

When U is bounded and 1− d/p > 0− d/q, traditional compactness methods may
be used and we rather easily get the existence of an optimal generalized solution in
the Banach space obtained by completion of C∞c (D) for the norm

u→ ||u||Lq(U) + ||∇u||Lp(U).

Such a solution can be easily shown to satisfy, in the sense of distributions in U ,

−∇(|∇u|p−2∇u) = λu|u|q−2

where constant λ has to be chosen so that ||u||Lq(U) = 1. In particular, in the most
usual case p = 2, we find the semi-linear PDE

−∆u = λu|u|q−2.

In the critical case, 1− d/p = 0− d/q , il is also easy to see that I(U, p, q) does not
depend on U ! It is more subtile (and this strongly connected to the "concentration-
compactness" theory [197]) to figure out, that when U is bounded, there is no
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optimal solution, even in the completed space! Furthermore, one can prove that the
minimizing sequences un have the strange property that, up to the extraction of a
subsequence, they concentrate in the sense that one can find a point x∞ in U such
that |un|q converges as a Borel nonnegative measure to the Dirac mass at point x∞.
(This is a prototype of the "bubble" phenomenon, that occurs so often in Geometric
Analysis [255].)

For a more positive result, we limit ourself to the simplest case when U is un-
bounded, namely U = Rd. Then:

Theorem 3.4.1. In the critical case 1− d/p = 0− d/q,

I(Rd, p, q) = inf{
∫
Rd
|∇u(x)|pdx, u ∈ C∞c (Rd), t.q.

∫
Rd
|u(x)|qdx = 1 }

is achieved by a unique (up to translations and dilations) solution u in the Banach
E obtained by completion of C∞c (Rd) with respect to the norm

||u||E = ||u||Lq(Rd) + ||∇u||Lp(Rd).

As a consequence, equation

−∇(|∇u|p−2∇u) = λu|u|q−2

admits a unique (up to translations and dilations) solution in E, where constant λ
has to be fixed so that

||u||Lq(Rd) = 1.

There are several possible proof, in particular by the "concentration-
compactness" method [197]. A remarkable and very simple proof follows directly (up
to a lot of technicalities) from Theorem 3.2.1 and is due to Dario Cordero-Erausquin,
Bruno Nazaret and Cédric Villani [108]. Let us sketch this proof (while skipping
many technicalities).

Consider two functions u et v dans C∞c (Rd) such that ||u||Lq(Rd) = ||v||Lq(Rd) = 1
and consider the Borel probability measures

F (x)dx = |u(x)|qdx, G(y)dy = |v(y)|qdy.

According to Theorem 3.2.1, there is a unique Borel map T that transports the first
measure to second one and can be written, for F (x)dx-almost every x,

T (x) = ∇Φ(x),

where Φ is a convex Lipschitz function on Rd. In addition, in the generalized sense
of Theorem 3.2.1, Φ satisfies the Monge-Ampère equation

G(∇φ(x))det(D2Φ(x)) = F (x).

Let us now simply evaluate

J =

∫
Rd
G(y)1−1/ddy
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and, remarkably enough, all the results we are interested in (existence, uniqueness
and explicit formulae for a solution to best Sobolev constant problem) will follow
from two elementary inequalities, namely Young’s inequality

|a|p

p
+
|b|p′

p′
≥ a · b, ∀a, b ∈ Rd, 1/p′ + 1/p = 1, p ∈]1,∞[

(with equality if and only if b = a|a|p−2 or a = b|b|p′−2) and the domination of the
geometric mean by the arithmetic mean for any finite sequence of nonnegative real
numbers, with equality only if all these numbers are equal.)

By construction of T = ∇Φ, we first get

J =

∫
Rd
G(y)1−1/ddy =

∫
Rd
G(∇Φ(x))−1/dF (x)dx

=

∫
Rd

det(D2Φ(x))1/dF (x)1−1/ddx.

(Here the proof is only formal, since the Monge-Ampère equation is a priori not
satisfied in the classical sense. For a rigorous proof, more work is needed, as in
[108].) Since Φ is convex, the eigenvalues of D2Φ are nonnegative which leads to the
point-wise inequality

det(D2Φ(x))1/d ≤ 1/d ∆Φ(x).

We deduce J ≤ J̃ where

J̃ = 1/d

∫
Rd

∆Φ(x)F (x)1−1/ddx

= −1/d

∫
Rd
∇Φ(x) · ∇(F (x)1−1/d)dx

(by integration by part)

= −s/d
∫
Rd
∇Φ(x) · u(x)|u(x)|s−2∇u(x)dx

(by setting s = (1− 1/d)q and by definition of F = |u|q)

≤ s/d||∇u||Lp(Rd)

(∫
Rd
|u(x)|(s−1)p′ |∇Φ(x)|p′dx

)1/p′

(by Young-Hölder, with 1/p′ = 1− 1/p)

= s/d||∇u||Lp(Rd)

(∫
Rd
F (x)|∇Φ(x)|p′dx

)1/p′

,

(using that (s− 1)p′ = q and F = |u|q)

= s/d||∇u||Lp(Rd)

(∫
Rd
G(y)|y|p′dy

)1/p′

,
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(since G(y)dy is the image measure by T = ∇Φ of F (x)dx). So, we have obtained
that, for all u, v of unit norm in Lq,∫

Rd
|v(y)|sdy ≤ s/d||∇u||Lp(Rd)

(∫
Rd
|v(y)|q|y|p′

)1/p′

with s = (1−1/d)q, which extends by completion to allu, v in the completed Banach
space E. Observe, furthermore, that this inequality becomes an equality if only if
the geometric-arithmetic inequality and the Hölder inequality are both saturated.
Then, one finds (after some calculations) a constant r > 0 and a point x0 such that
T (x) = (x− x0)r, u(x) = r−dv((x− x0)r) and, finally, u(x) = (µ+ |x− x0|α)βν for
some constants α, β, µ, ν to be fixed in terms of p and d via q and s (in fact, α = p′

and β = 1− d/p = −d/q). [Observe that, concerning u and v, we have exited space
C∞c (Rd) for the completed space E.]

This amounts to the following non convex duality equality

max
v∈S1(Lq)

∫
Rd |v(y)|sdy(∫

Rd |v(y)|q|y|p′dy
)1/p′

= s/d min
u∈S1(Lq)

||∇u||Lp(Rd),

s = (1− 1/d)q, 1− d/p = −d/q,

where S1(Lq) denotes the unit sphere of Lq intersected with E. Existence, uniqueness
(up to translations and dilations) of solutions in the completed Banach space E to
the best Sobolev constant problem are just direct corollary of this truly remarkable
non convex duality formula.
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Chapter 4

The optimal incompressible
transport problem

This chapter is entirely devoted to the analysis of the relaxed minimizing geodesic
problem, already presented in section 2.2, that we can call, as well, the “optimal
incompressible transport” (OIT). This problem is substantially more complicated
than the regular optimal transport problem, which is related to the Monge-Ampère
equation, as discussed in chapter 3.2. However, there are many similarities, in par-
ticular the crucial use of convexity tools, as the Fenchel-Rockafellar duality theorem.

We consider pairs of measures (c, q) ∈
(
C0([t0, t1]×D2; R× Rd)

)′ and use sys-
tematically the folllowing notation for duality brackets:

< c,A > + < q,B >=

∫
t,x,a

A(t, x, a)c(t, x, a) +B(t, x, a) · q(t, x, a)

for all (A,B) ∈ C0([t0, t1] × D2; R × Rd). The OIT problem amounts to finding
such a pair (c, q) that minimizes

K(c,m) =
1

2

∫
t,x,a

|v(t, x, a)|2c(t, x, a),

subject to the following constraints:
i) (c, q) satisfies the "microscopic continuity equation"

∂tc(t, x, a) +∇ · q(t, x, a) = 0

and c(t0, ·, ·) and c(t1, ·, ·) are given in DS(D) and are respectively denoted by ct0
and ct0 . (The word microscopic refers to the variable a which plays the role of a
parameter in the equation and the ∇ operator only involves the space variable x.)
This can be expressed in weak form by∫

t,x,a

∂tϕ(t, x, a)c(t, x, a) +∇ϕ(t, x, a)q(t, x, a)

=

∫
x,a

ϕ(T, x, a)ct1(x, a)− ϕ(0, x, a)ct0(x, a),

for all ϕ = ϕ(t, x, a) ∈ R which are continuous and C1 in (t, x).
i) at each t ∈ [t0, t1], c(t, ·, ·) is doubly stochastic, i.e.∫

x

c(t, x, a) = 1,

∫
a

c(t, x, a) = 1.
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This first constraint is automatically satisfied because of the continuity equation (to
check it, just take ϕ in the weak formulation as a function of t and a only), while
the second one can be simply expressed by∫

t,x,a

p(t, x)c(t, x, a) +

∫
[t0,t1]×D

p(t, x)dxdt, ∀p ∈ C0([t0, t1]×D).

Let us now recall the precise definition of K:

K(c, q) = sup{
∫
t,x,a

A(t, x, a)c(t, x, a) +B(t, x, a) · q(t, x, a);

(A,B) ∈ C0([t0, t1]×D2; R× Rd) s.t. 2A+ |B|2 ≤ 0},
which is a l.s.c. function (with respect to the weak-* topology),
valued in ] − ∞,+∞], with value K(c, q) = +∞, unless c ≥ 0, q is absolutely
continuous with respect to c, with a vector-valued Radon-Nikodym density v square-
integrable in c, in which case

K(c,m) =
1

2

∫
t,x,a

|v(t, x, a)|2c(t, x, a).

(The proof of this fact is a rather elementary exercise in measure theory. See [51]
for a detailed proof.)

4.1 Saddle-point formulation and convex duality
Using Lagrangian multipliers, our optimization problem can therefore be written as
the following "inf-sup" problem: Kopt(t0, t1, ct0 , ct1) =

inf
c,q

sup
A,B,ϕ,p

∫
[0,T ]×D

p(t, x)dxdt+

∫
x,a

ϕ(T, x, a)ct1(x, a)− ϕ(0, x, a)ct0(x, a)

+

∫
t,x,a

(A(t, x, a)−∂tϕ(t, x, a)−p(t, x))c(t, x, a)+(B(t, x, a)−∇ϕ(t, x, a)) ·q(t, x, a),

subject to

A(t, x, a) +
|B(t, x, a)|2

2
≤ 0, ∀(t, x, a) ∈ [t0, t1]×D2.

Notice that the optimal value can be easily rescaled, by homogeneity and translation
invariance in t, as

Kopt(t0, t1, ct0 , ct1) = (t1 − t0)−1Kopt(0, 1, ct0 , ct1)

so that we may consider only the case t0 = 0, t1 = 0 and, consistently, denote
ct0 and ct1 by c0 and c1 and Kopt(0, 1, c0, c1) just by Kopt(c0, c1), as will be done
subsequently. Notice that the sup-inf problem can be trivially computed (because
we just have to minimize in (c, q) without any constraint thanks to the Lagrange
multipliers (A,B, ϕ, p)), which leads to the maximization problem in (ϕ, p):

sup
ϕ,p

∫
[0,T ]×D

p(t, x)dxdt+

∫
x,a

ϕ(1, x, a)c1(x, a)− ϕ(0, x, a)c0(x, a),

58



where

∂tϕ(t, x, a) +
|∇ϕ(t, x, a)|2

2
+ p(t, x) ≤ 0, ∀(t, x, a) ∈ [0, 1]×D2.

(after elimination of A = ∂tϕ + p and B = ∇ϕ). Notice that we keep using the ∇
notation only for the derivation in x. As a matter of fact, there will be subsequently
never any derivation performed in the "microscopic" variable a. The first step in
our analysis is now to justify that the inf-sup and the sup-inf coincide, thanks to
the Fenchel-Rockafellar duality theorem 3.3.2 that we have already used for the
Monge-Ampère equation in chapter 3.

Rockafellar duality

We introduce
E = C0([0, 1]×D2;R× Rd),

which is a Banach space for the sup norm, and define two convex functions K1 and
K1 on E, valued in ]0,+∞], as follows. We first set

K1(A,B) = −
∫

[0,1]×D
p(t, x)dxdt−

∫
D2

ϕ(1, x, a)dc1(x, a)− ϕ(0, x, a)dc0(x, a),

whenever there are p ∈ C([0, 1] × D) and ϕ ∈ C([0, 1] × D2), which is C1 in (t, x)
such that

A(t, x, a) = ∂tϕ(t, x, a) + p(t, x), B(t, x, a) = ∇ϕ(t, x, a),

and K1(A,B) = +∞ otherwise. Then, we define

K2(A,B) = 0, if A(t, x, a) +
|B(t, x, a)|2

2
≤ 0, ∀(t, x, a) ∈ [0, 1]×D2.

and K2(A,B) = +∞ otherwise.
Notice that the first definition is consistent, in the sense that if A,B are repre-

sented as above by two different couples (ϕ, p), (ϕ̃, p̃), then the value of K1(A,B) is
unchanged.

Lemma 4.1.1. The functionals K1, K2 : E → R ∪ {+∞} verify the hypotheses of
Theorem 3.3.2.

Proof. The convexity condition is clear. Next, we have to find a function u0 in E
having the required properties in the Theorem. We observe here that there is no
chance thatK1 is continuous (for the C0-norm) because arbitrarily near any function
where K1 < +∞ there is some function with K1 = +∞. On the other side, in the
point (A0, B0) = (−1, 0) we have A0 = ∂tϕ0 + p0, B0 = ∇ϕ0 for ϕ0 = 0, p0 = −1,
so K1 is finite at this point. On the other side, K2(A0, B0) = 0 and this condition
is preserved for small perturbations of (A0, B0) in the C0-norm. Therefore the
assumptions of Theorem 3.3.2 are satisfied.

We now want to exploit Theorem 3.3.2 in our setting. We start by noticing that

K∗2(c, q) = K(c, q),
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where K is nothing but the functional introduced at the beginning of this chapter.
Let us now compute K∗1(−c,−q). By definition,

K∗1(−c,−q) = sup
ϕ,p

∫
t,x,a

(−∂tϕ(t, x, a)− p(t, x))c(t, x, a)−∇ϕ(t, x, a) · q(t, x, a)

+

∫
t,x

p(t, x)dxdt+

∫
x,a

ϕ(1, x, a)dc1(x, a)− ϕ(0, x, a)dc0(x, a).

This exactly means that K∗1(−c,−q) takes value ∞ unless∫
a

c(t, x, a) = 1, ∂tc+∇ · q = 0, c(0, x, a) = c0(x, a), c(1, x, a) = c1(x, a),

in which case K∗1(−c,−q) = 0. So, we conclude that

sup
c,q

K∗1(−c,−q) +K∗2(c, q) = Kopt(c0, c1)

which corresponds to the inf-sup problem while

sup
A,B
−K1(A,B)−K2(A,B)

is (almost by definition) just the value of the sup-inf problem that we have computed
earlier. So the inf-sup and the sup-inf have the same optimal value and we can state:

Theorem 4.1.2. The optimal incompressible transport (OIT) problem can be suc-
cessively written in primal (sup) and dual (inf) form:

sup
ϕ,p

∫
[0,1]×D

p(t, x)dxdt−
∫
D2

ϕ(1, x, a)dc1(x, a)− ϕ(0, x, a)dc0(x, a),

subject to

∂tϕ(t, x, a) +
|∇ϕ(t, x, a)|2

2
+ p(t, x) ≤ 0, ∀(t, x, a) ∈ [0, 1]×D2

and
inf
c,q
K(c, q), K(c, q) =

1

2

∫
t,x,a

|v(t, x, a)|2c(t, x, a), q = cv,

subject to

∂tc+∇ · q = 0,

∫
a

c(t, x, a) = 1, c(0, x, a) = c0(x, a), c(1, x, a) = c1(x, a),

and there is at least an optimal solution (c, q) to the second one.

4.2 Existence and uniqueness of the pressure gradi-
ent

Theorem 4.2.1. There is a unique distribution, ∇p depending only on the data c0,
c1 such that ∇pε → ∇p in the sense of distributions in the interior of [0, 1]×D, for
any (ϕε, pε) ε-solution to the primal problem. In addition, ∇p is characterized by

∇p(t, x) = −∂t
∫
a

(cv)(t, x, a)−∇ ·
∫
a

(cv ⊗ v)(t, x, a)

for all optimal solutions (c, q = cv) of the dual problem.
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We introduce a short notation for the boundary data:

BT (f) =

∫
x,a

f(1, x, a)c1(x, a)− f(0, x, a)c0(x, a)

and denote

J(p, ϕ) =

∫
[0,1]×D

p(t, x)dxdt−
∫
D2

ϕ(1, x, a)dc1(x, a)− ϕ(0, x, a)dc0(x, a).

We consider a minimizer (c, q = cv) for the dual problem, which exists by Rock-
afellar’s duality theorem, and we denote by (CE) the “continuity equation” with
boundary data, namely, in weak form,

∀f, BT (f) =

∫
t,x,a

(∂tf + (v · ∇)f)c,

and by (IC) the “incompressibililty” constraint
∫
a
c = 1.

Lemma 4.2.2. For all optimal pairs (c, cv), for all pairs (c̃, ṽc̃) satisfying (CE) but
not necessarily (IC) and for any ε-solution (pε, ϕε) of the primal problem, we have
(with

∫
meaning

∫
t,x,a

)∫
pε(c− c̃) + 1

2

∫
c̃|∇ϕε − ṽ|2 +

∫
c̃
∣∣∂tϕε + 1

2
|∇ϕε|2 + pε

∣∣
≤ 1

2

∫
c̃|ṽ|2 − 1

2

∫
c|v|2 + ε2

Proof. We use inequality ∂tϕε + 1
2
|∇ϕε|2 + pε ≤ 0, defining the ε-solutions, together

with the fact that c̃ ≥ 0, and rewrite

−BT (ϕε) = −
∫

(∂tϕ
ε + (ṽ · ∇)ϕε) c̃ =

∫ ∣∣∣∣∂tϕε +
1

2
|∇ϕε|2 + pε

∣∣∣∣ c̃
+

1

2

∫
|∇ϕε − ṽ|2c̃− 1

2

∫
|ṽ|2c̃+

∫
pεc̃.

By definition of an ε-solution, and since (c, cv) realizes the supremum in the dual
problem, we have

−BT (ϕε)−
∫
pε = −J(pε, ϕε) ≤ −1

2

∫
|v|2c+ ε2,

which inserted in the previous inequality gives the wanted result.

If in Lemma 4.2.2 we take (c̃, ṽ) = (c, v) we obtain

1

2

∫
c|v −∇ϕε|2 +

∫
c

∣∣∣∣∂tϕε +
1

2
|∇ϕε|2 + pε

∣∣∣∣ ≤ ε2. (4.2.1)

If we were able to pass to the limit in this inequality, we would obtain, as optimality
conditions for the OIT problem:

v = ∇φ, ∂tϕ+ 1
2
|∇ϕ|2 + p = 0, c− a.e. ,

∂tc+∇ · (cv) = 0,
∫
a
c(t, x, a) = 1,

∂tϕ(t, x, a) + 1
2
|∇ϕ(t, x, a)|2 + p(t, x) ≤ 0 ,∀(t, x, a) ∈ [0, 1]×D2

c(0, x, a) = c0(x, a), c(1, x, a) = c1(x, a) .

(4.2.2)
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Unfortunately, it is unclear that the limit φ can be defined in a reasonable sense
(this is an open question in the OIT theory). However, we will be shortly able to
prove the convergence of ∇pε to a definite limit ∇p. To achieve this goal, we first
perform smooth deformations of a given pair (c, v) (typically a solution of the dual
OIT problem) into another pair (c̃, ṽ) satisfying (CE) but not necessarily (IC). This
turns out to be a good way to “feel” how pε acts on test functions. We use a definition
by duality, requiring that, for all test functions f(t, x, a) ∈ R and B(t, x, a) ∈ Rd,∫

t,x,a

f(t, x, a)c̃(t, x, a) +B(t, x, a) · (c̃ṽ)(t, x, a)

=

∫
(f(t,M(t, x), a) +B(t,M(t, x), a) · [(∂t + v(t, x, a) · ∇)M(t, x)]) c(t, x, a),

where (t, x) ∈ [0, T ] × D → M(t, x) ∈ D is smooth and so that M(t, x) = x near
∂ ([0, T ]×D) and M(t, ·) is a diffeomorphism of D for all t ∈ [0, T ].
We first observe that under such hypotheses (c̃, ṽ) satisfies (CE) as soon as (c, v)
satisfies it. Indeed, denoting f̃(t, x, a) = f(t,M(t, x), a), we find:∫

[∂tf + (ṽ · ∇)f ] c̃ =

∫
((∂tf)(t,M(t, x), a)

+(∇f)(t,M(t, x), a) · [∂t + v(t, x, a) · ∇]M(t, x))c(t, x, a)

=

∫ [
∂tf̃ + v · ∇f̃

]
c = BT (f̃) = BT (f),

where we have used (CE) for (c, v) and the chain rule for f̃ .
Now, let us rewrite the conclusion of Lemma 4.2.2 where (c̃, ṽ) is as above. We first
treat the term:∫

pεc̃ =

∫
pε(t,M(t, x))c(t, x, a) =

∫
pε(t,M(t, x))dtdx,

where we used the (IC) condition for c.
Next, we write

1

2

∫
c̃|ṽ|2 = sup

A+ 1
2
|B|2≤0

∫
A(t, x, a)c̃+B(t, x, a) · c̃ṽ = sup

B

∫ (
−1

2
|B|2 +B · ṽ

)
c̃

= sup
B

∫
[−1

2
|B(t,M(t, x), a)|2 +B(t,M(t, x), a) · (∂t + v(t, x, a) ·∇)M(t, x)]c(t, x, a)

= sup
B̃

∫ [
−1

2
|B̃|2 + B̃ · (∂t + v · ∇)M)

]
c

=
1

2

∫
|(∂tM(t, x) + (v(t, x, a) · ∇)M(t, x)|2 c(t, x, a),

where B̃(t, x, a) = B(t,M(t, x), a).

So we have obtained
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Lemma 4.2.3. For all optimal pairs (c, cv), for all smooth function (t, x) ∈ [0, T ]×
D → M(t, x) ∈ D such that M(t, x) = x near ∂ ([0, T ]×D) and M(t, ·) is a
diffeomorphism of D for all t ∈ [0, T ], we have∫

t,x
(p̃ε − pε) +

∫
t,x,a

c|∂̃tϕε + 1
2
|∇̃ϕε|2 + p̃ε|+ 1

2

∫
t,x,a
|∇̃ϕε − ∂tM − (v · ∇)M |2 c

≤ 1
2

∫
t,x,a

c|∂tM + (v · ∇)M |2 − 1
2

∫
t,x,a

c|v|2 + ε2,

where we still use notation f̃(t, x, a) = f(t,M(t, x), a) for generic functions f .

Although less general, this Lemma is much more tractable than Lemma 4.2.2,
since, the dependence on (c̃, ṽ) we had is now substituted for by the dependence on
the simpler smooth function M .

Application of Moser’s lemma

Let us now use the following variant of “Moser’s Lemma” [222, 116, 238]

Lemma 4.2.4 (Moser’s Lemma for Td). Let σ0, σ1 ∈ C∞(Td) be strictly positive
probability densities (i.e. σi > 0,

∫
Td σidx = 1 for i = 0, 1). Then there exists a

diffeomorphism M : Td → Td with det(DM) > 0 such that for all continuous test
functions ϕ there holds∫

Td
ϕ(M(x))σ0(x)dx =

∫
Td
ϕ(x)σ1(x)dx.

Proof. We will find an expression of M as the flow N(t, x) at time t = 1 of a
vectorfield z(t, x): {

∂tN(t, x) = z(t, N(t, x))
N(0, x) = x

To impose the right conditions on z, we express the pushforward density obtained
from σ0(x)dx via N(t, ·) :∫

ϕ(N(t, x))σ0(x)dx =

∫
ϕ(x)σ(t, x)dx for all t, ϕ ∈ C∞(Td)

The flow equation then gives us the evolution equation ∂tσ+∇· (zσ) = 0 for σ(t, x).
If we ask that σ(t, x) = (1 − t)σ0(x) + tσ1(x), then the above equation assumes a
much simpler form: (σ1 − σ0)(x) = −∇ · [σ(t, x)z(t, x)] = −∇ · Z(x). We make the
extra Ansatz that Z = ∇ζ, and we obtain the equation

∆ζ + σ1 − σ2 = 0 on Td.

The integrability condition for this equation is
∫

(σ1 − σ0) = 0, which is satisfied
in our case. Therefore we obtain a smooth solution ζ. The vectorfield z can now
be expressed in terms of ζ, σ0, σ1 and it is bounded because of the strict positivity
condition on σ0, σ1:

z(t, x) =
∇ζ(x)

(1− t)σ0(x) + tσ1(x)
,

and since z is smooth and bounded, also N is smooth, therefore M(x) = N(1, x) is
smooth, as wanted.
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Remark 4.2.5. • For this version of Moser’s Lemma, we needed σ0, σ1 to be
strictly positive.

• In [116] a richer variant of the lemma is done on a compact domain D ⊂ Rd

and is followed by a second step where the boundary condition M(x) = x on
∂D is ensured. This somehow hints at the fact that the possible constructions
are more flexible, and that the results could be ameliorated as done in [238].

We will need the following refinement of Moser’s Lemma:

Lemma 4.2.6. Let θ ∈ C∞c (]0, 1[) be a nonnegative function and w ∈ C∞(D,Rd).
If ||θ||L∞ is small enough, we can find a family of diffeomorphisms M(t, x) such that
M(t, x) = x near ∂([0, 1]×D) and for all ϕ ∈ C1

c (Rd) there holds∫
D

ϕ(M(t, x))dx =

∫
D

ϕ(x)dx+ θ(t)

∫
D

∇ϕ(x) · w(x)dx.

Moreover M will be representable as a flow, i.e. there will hold

∂tM(t, x) = z(t,M(t, x)),

where z(t, x) = θ′(t)w(x)
1−θ(t)[∇·w(x)]

.

Proof. Call S = ||θ||L∞ , so that θ([0, 1]) = [0, S]. We observe that since θ has
compact support, θ(0) = 0. We start by defining

σ̃(s, x) = 1− s∇ · w(x)

w̃(s, t) =
w(x)

σ̃(s, x)
,

so that ∂sσ̃ +∇ · (w̃σ̃) = 0. We then consider the flow of w̃. We define{
∂sM̃(s, x) = w̃(s, M̃(s, x)) for s ∈ [0, S]

M̃(0, x) = x

Then clearly M̃(s, x) = x for x near ∂D. We observe that σ̃(0, x) = 1 and that for
all ϕ ∈ C0(D) ∫

ϕ(M̃(s, x))dx =

∫
ϕ(x)σ̃(s, x)dx.

We then define M(t, x) = M̃(θ(t)− θ(0), x) = M̃(θ(t), x), and we have

∂tM(t, x) = ∂tM̃(θ(t), x) = w̃(θ(t),M(t, x))θ′(t)

=
w(M(t, x))

σ̃(θ(t),M(t, x))
θ′(t)

=
w(M(t, x))

1− θ(t)∇ · w(M(t, x))
θ′(t)

= z(t,M(t, x))
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We can also compute∫
ϕ(M(t, x))dx =

∫
ϕ(M̃(θ(t), x))dx

=

∫
ϕ(x)σ̃(θ, x)dx

=

∫
ϕ(x)dx− θ(t)

∫
ϕ(x)(∇ · w(x))dx

=

∫
ϕ(x)dx+ θ(t)

∫
∇ϕ(x) · w(x)dx,

as wanted.

Now we can rewrite the pressure terms in Lemma 4.2.3 as∫
[pε(t,M(t, x))− p(t, x)]dx = θ(t)

∫
∇pε(t, x) · w(x)dx.

Thus, we deduce from Lemma 4.2.3:

Lemma 4.2.7. ∇pε, viewed as a distribution on the interior of [0, 1]×D, satisfies

〈∇pε, θ ⊗ ω〉 =

∫
t,x

∇pε(t, x)θ(t) · w(x) ≤ ε2 +
1

2

∫
t,x,a

(
|∂tM + v · ∇M |2 − |v|2

)
c.

So, we see that, as a distribution, ∇pε is bounded in the interior of [0, 1] × D
uniformly in ε. Up to a subsequence we then have ∇pε ⇀ ∇p in the sense of
distributions, combining Banach-Steinhaus and Banach-Alaoglu theorems.

Uniqueness of the limit ∇p

Let us use again the inequality in Lemma 4.2.7, but we now take a limit in the
time-dependent test function θ(t) more carefully:

θ(t) = δζ(t)for ζ ∈ C∞c (]0, T [), and for |δ| small

therefore M(t, x) = δζ(t)w(x). We now want to take the limit as δ → 0. Therefore
we start by computing:

M(t, x)− x = O(δ)

∂tM(t, x) = δζ ′(t)w(x) +O(δ2)

M(t, x) = x+ δζ(t)w(x) +O(δ2)

∂

∂xj
M(t, x) = δij + δζ(t)

∂w

∂xj
(x) +O(δ2),

and inserting this in the integrand in the right hand side of the inequality of Lemma
4.2.7, we obtain

|∂tM + v · ∇M |2 − |v|2 =

1

2

∣∣∣∣∣δζ ′(t)wj(x) + vi +
∑
j

vjδζ(t)∂jwi +O(δ2)

∣∣∣∣∣
2

− |v|2

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=
∑
i

δ

[
ζ ′(t)wi(x) +

∑
j

vjζ∂jwi

]
vi +O(δ2),

and since the inequality should hold along the subsequence εn → 0 such that∇pεn ⇀
∇p found in the previous section and for all δ small enough, we obtain (first passing
n→∞ then δ → 0)

〈∇p, θ ⊗ w〉 =
∑
i

∫
t,x,a

[
ζ ′wi +

∑
j

vj∂jwiζ

]
cvi

= −
∑
i

〈∂t
∫
a

cvi +
∑
j

∂j

∫
a

cvivj, ζ ⊗ wi〉,

which means that in the sense of distributions,

∇p = −∂t
∫
a

cv −∇ ·
∫
a

cv ⊗ v.

Since this is true for every optimal solution (c, cv), ∇p is uniquely defined. This
means that the limit ∇p is unique as a distribution, and in particular it does not
depend on the sequence ∇pεn which we choose. Therefore ∇pε → ∇p.

Remark 4.2.8 (regularity of the pressure field). From the above discussion we
obtain that ∇p is the derivative of a measure. By working substantially harder,
in [52], ∇p(t, x) was shown to be itself a locally bounded measure in the interior of
[0, 1]×D, and an improvement on the time integrability was achieved in [7, 6], where
∇p(t, x) is an L2

loc function ot t valued in the set of bounded measures in x ∈ D.
∇p ∈ L2(]0, T [, C0(D;Rd)′) was shown.

4.3 Convergence of approximate solutions
Definition 4.3.1. We say that a couple (cε, qε) ∈ E ′
(we recall that E = C0([0, 1]×D2;R× Rd), is an approximate solution if:
i) cε ≥ 0, qε � cε, qε = cεvε and

K(cε, qε) =
1

2

∫
t,a,x

|vε(t, x, a)|2cε(t, x, a) < +∞

ii) the continuity equation and the incompressibility constraint -we denote them re-
spectively by (ACE) and (AIC)- hold in the limit ε → 0 (in the sense of distribu-
tions);
ii) K(cε, qε)→ Kopt(c0, c1) as ε→ 0.

Theorem 4.3.2. There is a unique pressure gradient ∇p which depends only on the
data (c0, c1), such that, for all approximate solutions (cε, qε = cεvε), we have in the
sense of definition (4.3.1),

∂t

∫
a

cεvε +∇ ·
∫
a

cεvε ⊗ vε → −∇p,

as ε → 0, in the sense of distributions. This pressure gradient is precisely the one
just found in the study of the OIT problem.
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Proof. We first observe that, from the assumption, the positive measures cε form a
precompact set since (beacuse of condition (ACI))∫

t,x,a

cε(t, x, a)→
∫

[0,T ]×D
dxdt = 1.

For the measures |qε| we get

∫
|qε| ≤

√∫
|qε|2
cε

√∫
cε =

√
2K(cε, qε)

√∫
cε →

√
2Kopt(c1, c0).

From the above two boundedness results it follows that up to extracting a subse-
quence we may assume that (cε, qε) converge to a measure (c, q) weakly. Passing
to the limit in the equations (ACE) and (AIC) we obtain (CE), (IC), which makes
(c, q) an admissible solution for the OIT problem. Next, by lower semicontinuity
(looking at K in its dual formulation), we obtain

K(c, q) ≤ lim inf K(cε, qε) = Kopt(c1, c0),

which the optimal value of the OIT problem. Since (c, q) is an admissible solution,
we obtain that the equality should hold and, therefore, (c, q) is an optimal solution
of the OIT problem.
Now, let us show the convergence of

∫
a
cεvε ⊗ vε to

∫
a
cv ⊗ v in the sense of distri-

butions. To do this we first observe that by compactness, there exist a symmetric-
matrix valued measure ν(t, x, a) and a subsequence εn → 0 such that

cεnvεn ⊗ vεn → ν weakly.

Then by lower semicontinuity we have cv ⊗ v ≤ ν in the sense of symmetric-matrix
valued measures. But since we already know that∫

t,x

tr(ν) = lim

∫
t,a,x

cεn|vεn |2 = 2K(c, q) =

∫
a

cv ⊗ v,

we get ν =
∫
a
cv ⊗ v. So

∇ ·
∫
a

cεvε ⊗ vε → ∇ ·
∫
a

cv ⊗ v.

Since we have cεvε = qε → q = cv, we deduce

∂t

∫
a

cεvε +∇ ·
∫
a

cεvε ⊗ vε → ∂t

∫
a

cv +∇ ·
∫
a

cv ⊗ v.

But, as we have seen, (c, q = cv) is optimal and therefore satisfies

∂t

∫
a

cv +∇ ·
∫
a

cv ⊗ v = ∇p,

where ∇p is unique pressure gradient of the OIT problem. This completes the
proof.
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4.4 Shnirelman’s density theorem

In this section, we want to show how the convex OIT problem is a good way to treat
the minimizing geodesic problem leading to the Euler equation according to Arnold
[14]. We consider two maps X0 and X1 in V PM(D), the semi-group of volume
preserving maps of D, and associate the corresponding doubly stochastic measures
c0 and c1 defined by

c0(x, a) = δ(x−X0(a)), c1(x, a) = δ(x−X1(a)).

For simplicity we assume X0(a) = a and simply denote X1 by X. This is not a
restriction from the geometric viewpoint. Indeed, in that case, we restrict ourself
to two maps X0, X1 in the group SDiff(D), and see that the minimizing geodesic
problem from X0 to X1 is strictly equivalent to the one from Id to X1 ◦X−1

0 .

Let us now quote a crucial result due to Shnirelman [252] (or, more precisely, the
version used in [7])

Theorem 4.4.1 (Shnirelman’s approximation theorem). Assume d ≥ 2.
Let (c, q) ∈ E ′ be an admissible solution to the OIT problem with data c0, c1

c0(x, a) = δ(x− a), c1(x, a) = δ(x−X(a)), X ∈ VPM(D),

i.e. satisfying (IC) and (CE) conditions with K(c, q) < +∞. Then, we can find, for
every small ε > 0, a smooth divergence-free vector field vε(t, x), compactly supported
in the interior of [0, 1]×D, with associated volume-preserving flow gεt (x), defined by

d

dt
gεt (x) = vε(t, gεt (x)), gε0(x) = x,

such that 
∫
D
|X(a)− gε1(a)|2da ≤ ε2,

1
2

∫ 1

0

∫
D
|v(t, x)|2dxdt ≤ K(c, q) + ε2.

From this result, we immediately obtain approximate solutions as in Definition
4.3.1, by setting:{

cε(t, x, a) = δ(x− gεt (a))
qε(t, x, a) = ∂tg

ε
t (a)cε(t, x, a) = vε(t, gεt (a))cε(t, x, a) = vε(t, x)cε(t, x, a)

We easily verify (ACE):∫
t,x,a

[∂tf + vε · ∇f ] cε =

∫
t,a

[∂tf(t, gεt (a), a) + ∂tg
ε
t (a) · (∇f)(t, gεt (a), a)]

=

∫
a

[f(1, gε1(a), a)− f(0, gε0(a), a)]

=

∫
a

[f(1, gε1(a), a)− f(0, a, a)]

→
∫
a

f(1, X(a), a)−
∫
a

f(0, a, a) = 〈c1, f(1, ·, ·)〉 − 〈c0, f(0, ·, ·)〉,
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as wanted. As for the verification of (AIC), we have:∫
t,x,a

f(t, x)cε(t, x, a) =

∫
t,a

f(t, gεt (a))

=

∫
t,x

f(t, x),

since gεt is volume preserving. Finally, we verify the convergence of the energy:

K(cε, qε) = inf
A+

1
2
|B|2≤0

∫
t,x,a

[Acε +B · qε]

= inf
A+

1
2
|B|2≤0

∫
t,x

[A(t, gεt (a), a) + ∂tg
ε
t (a) ·B(t, gεt (a), a)]

=
1

2

∫
t,a

|∂tgεt (a)|2

=
1

2

∫
t,a

|vε(t, gεt (a))|2 =
1

2

∫
t,x

|vε(t, x)|2

→ Kopt(c1, c0).

From the existence of such “Shnirelman” approximate solutions, combined with the
convergence theorem 4.3.2, we conclude that the OIT problem provides the correct
relaxation of the minimizing geodesic problem.
For the sake of completeness we provide in the next section a rather explicit ersatz of
Shnirelman’s theorem, for admissible solutions (c,m) to the OIT problem on D = T3

such that m · e = 0 where e is the vertical direction, e = (0, 0, 1), of the unit torus.
Let us call them “flat” admissible solutions. (Actually they can be identified to the
admissible solutions of the OIT problem in one less space dimension, i.e. on T2.)
This flatness property allows us to play with the vertical coordinate to construct,
rather explicitely, a smooth time-dependent vector field u on D which, in general,
needs a tiny but non-trivial component e · v to do the approximation correctly. As
a matter of fact, the flatness condition is sufficient to cover all data X that are
trivial in the third coordinate e, namely: e · (X(a) − a) = 0. This is precisely for
this kind of data that Shnirelman was able in 1985 to prove the non-existence of
classical solutions to the minimizing geodesic problem [251]. Therefore, the flatness
condition is perfectly meaningful with respect to this fondamental negative result of
Shnirelman. In addition, from the physical point of view, the flatness condition is
directly related to the popular “hydrostatic approximation” of the Euler equations
used in geo-sciences to describe fluid motions in thin domains, such as lakes, oceans
or the atmosphere, as will be discussed subsequently.

4.5 Approximation of a generalized flow by intro-
duction of an extra dimension

This section is devoted to the proof of a variant of Shnirelman’s density theorem
4.4.1, using the introduction of an additional space dimension. More precisely, we
consider here an optimal solution of the OIT (or generalized geodesic) problem,
(c,m)(t, x, a), where t is valued in [0, 1] and the space variable x belongs to D = Td,
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with typically d = 2. So far, the space of labels a has always been considered to be
D itself. However, since in the OIT theory, there is never any differential calculus
performed in the a variable, but only integrations, we may use any abstract space
of labels A instead of D. It turns out to be very convenient to take A = T, the one
dimensional torus T, instead of D. This will allow us to substitute for a an extra
space variable z ∈ T and, through a rather explicit construction, to approximate
(c,m) by a classical flow of volume preserving diffeomorphisms living no longer on
the former spatial domainD = Td but rather on the new domainD×T with an extra
dimension. From a physical viewpoint, this approach is quite natural, in particular
in the geophysical context of fluid motions on very thin domains (typically the
atmosphere and the oceans) where "reduced" models are frequently used, involving
only two space variables, as will be discussed in section 4.6.

Step 1: mollification

We first prove the following approximation result:

Proposition 4.5.1. Let Q = [0, 1] × D × A where D = Td and the label space
is A = T. Let (c,m = cv) be a given pair in the dual Banach space E ′, where
E = C0(Q ;R× Rd), such that

c ≥ 0,

∫
a

c = 1, ∂tc+∇ · (cv) = 0, K(c,m) =
1

2

∫
|v|2 c < +∞.

Then, we can find a sequence (cn,mn = cnvn), made of smooth functions on Q,
valued in R× Rd, such that the following hold:

• (cn,mn) ⇀ (c,m), for the the weak-∗ convergence of measures;

• cn ≥ 1
n
and

∫
α
cn(t, x, a)da = 1;

• ∂tcn +∇ · mn = 0,

• K(cn,mn) ≤ K(c,m) + o(1) as n→ +∞.

Proof. The proof will consist in first extending the time variable t to R, while shrink-
ing the temporal interval t ∈ [0, 1] to t ∈ [ε, 1−ε], where ε = 1/n, n ≥ 2, and finally
performing a suitable mollification by convolution in all variables (t, x, a). Every
step will keep the action arbitrarily close to K(c,m) while both the continuity equa-
tion and the incompressibility condition will be preserved.

Extension and retraction We first extend and retract (c,m) to R × D × T, i.e.
to all t ∈ R, by setting for all (x, a) ∈ D × T,

cε(t, x, a) = c(
t− ε
1− ε

, x, a) ∀t ∈ [ε, 1− ε],

cε(t, x, a) = c0(x, a), ∀t < ε, c(t, x, a) = c1(x, a), ∀t > 1− ε,

mε(t, x, a) = 0, ∀t ∈ R \ [ε, 1− ε],

mε(t, x, a) =
1

1− ε
m(

t− ε
1− ε

, x, a) ∀t ∈ [ε, 1− ε].
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By doing so, we keep for (cε,mε) the main properties of (c,m) namely the nonnega-
tivity of c, the continuity equation (extended to R×D × T) , the incompressibility
condition and the time boundary conditions. In addition, K(cε,mε) differs from
K(c,m) only by O(ε).

Positivity of cε and convolution. We first perform a convex interpolation by substi-
tuting for (cε,mε) the new pair (ε+ (1− ε)cε, (1− ε)mε), which maxes cε ≥ ε > 0,
without affecting the continuity equation and the incompressibility condition, while
K(cε,mε) is reduced since K is convex and K(1, 0) = 0. To keep notations simple,
we still denote by (cε,mε) the result of this second step. Finally we perform the
convolution (cε,mε)(t, x, a) in all variables (t, x, a) by a mollifier ζε(t)γε(x, a) where
γε is a periodic positive mollifier on Td×T = Td+1 and ζε is a compactly supported
nonnegative mollifier with support in [−ε, ε]. Again, this convex operation affects
neither the continuity equation nor the incompressibility condition and diminishes
K(cε,mε) (by convexity of K).

Let us emphasize that, at each step, we have only performed small, controlable, mod-
ifications of (c,m) in the weak-* sense of measures, which completes the Proof.

Step 2: Construction of a classical incompressible flow with one more
space dimension

Now we take (cn,mn = cnvn), for some fixed n big enough, as in the previous
section, and we temporarily denote it by (c,m = cv) to make notations lighter. We
now consider the new spatial domain D × T where D = Td, whose variable will be
denoted by (x, z) ∈ D × T = Td+1. The new vertical coordinate z ∈ T is going to
substitute, in a non-trivial way, for the label variable a ∈ T.
To pass from the label a ∈ T to the vertical variable z ∈ T representing the “extra
dimension”, we consider the monotone rearrangement map R(t, x, ·) : T→ T sending
c(t, x, a)da to the 1D Lebesgue measure on T. More precisely, we implicitly define
the unique smooth function z ∈ R 7→ R(t, x, z) ∈ R, such that ∂zR > 0, R(t, x, z)−z
is T-periodic in z with zero mean and,∫

T
f(R(t, x, z))dz =

∫
T
f(a)c(t, x, a)da,

for all bounded Borel T-periodic function f and for all (t, x) ∈ [0, 1]×D. We then
define a smooth time-dependent divergence-free vector field

(t, x, z) ∈ [0, 1]×D × T→ (u(t, x, z), w(t, x, z)) ∈ Rd × R

by setting first
u(t, x, z) = v(t, x, R(t, x, z)), v =

m

c
,

and then defining w to be, for each fixed (t, x) the unique T-periodic function z ∈
T→ w(t, x, z), with zero mean, such that

∂zw(t, x, z) = −∇x · u(t, x, z).

which exactly means that (u,w) is divergence-free on D × T. Next, we introduce
the volume-preserving flow (ξt, ηt) generated on D × T by (u,w) through:

∂tξ = u(t, ξ, η) ∂tη = w(t, ξ, η).
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By construction of R,∫
t,x,a

f(t, x, a)c(t, x, a) =

∫
t,x,z

f(t, x, R(t, x, z)), ∀f ∈ C0(Q).

Since (ξt, ηt) is a volume-preserving diffeormorphism, this can be also written∫
t,x,a

f(t, x, a)c(t, x, a) =

∫
t,x,z

f(t, ξt(x, z), R̃(t, x, z))

where
R̃(t, x, z) = R(t, ξt(x, z), ηt(x, z)).

Similarly, by definition of R and u,∫
t,x,a

f(t, x, a)m(t, x, a) =

∫
t,x,z

f(t, x, R(t, x, z))v(t, x, R(t, x, z))

=

∫
t,x,z

f(t, x, R(t, x, z))u(t, x, z) =

∫
t,x,z

f(t, ξt(x, z), R̃(t, x, z))u(t, ξt(x, z), ηt(x, z))

=

∫
t,x,z

f(t, ξt(x, z), R̃(t, x, z))
d

dt
ξt(x, z).

Now, let us use that (c,m) = (cn,mn) satisfies the continuity equation so that, tor
all sufficiently smooth function f(t, x, a),∫

t,x,a

∂tfc+∇xf ·m = BTn(f) ∼ BT (f), n→∞,

where
BTn(f) =

∫
x,a

f(T, x, a)cn(1, x, a)− f(0, x, a)cn(0, x, a),

BT (f) =

∫
a

f(1, x, a)c1(x, a)− f(0, x, a)c0(x, a).

Using the new expression of c in terms of ξ and R, we get

BTn(f) =

∫
t,x,z

(∂tf)(t, ξt(x, z), R̃(t, x, z)) + (∇xf)(t, ξt(x, z), R̃(t, x, z))
d

dt
ξt(x, z)

=

∫
t,x,z

d

dt
[f(t, ξt(x, z), R̃(t, x, z))]− (∂af)(t, ξt(x, z), R̃(t, x, z))∂tR̃(t, x, z)

=

∫
x,z

[f(T, ξT (x, z), R̃(T, x, z))− f(0, x, R̃(0, x, z))]

−
∫
t,x,z

(∂af)(t, ξt(x, z), R̃(t, x, z))∂tR̃(t, x, z).

In particular, whenever f vanishes at t = 0 and t = T , we get

0 =

∫
t,x,z

(∂af)(t, ξt(x, z), R̃(t, x, z))∂tR̃(t, x, z),
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The right-hand side can also be written, using the definition of R̃∫
t,x,z

(∂af)(t, ξt(x, z), R(t, ξt(x, z), ηt(x, z)))(DtR)(t, ξt(x, z), ηt(x, z)),

(where DtR is a short notation for (∂t + u · ∇x + w∂z)R) which is nothing but∫
t,x,z

(∂af)(t, x, R(t, x, z))DtR(t, x, z)

(since (ξt, ηt) is a volume-preserving diffeoorphism).

Introducing g(t, x, z) = f(t, x, R(t, x, z)), so that

∂zg(t, x, z) = (∂af)(t, x, R(t, x, z))∂zR(t, x, z),

we deduce ∫
t,x,z

∂zg(t, x, z)
DtR(t, x, z)

∂zR(t, x, z)
= 0,

which is possible only if DtR(t, x, z) = ∂zR(t, x, z)β(t, x) for some function β(t, x).
In other words

(∂t + u · ∇x + (w − β)∂z)R = 0.

Since w(t, x, z) is T-periodic in z with zero mean we deduce that β(t, x) = 0 and
get:

(∂t + u · ∇x + w∂z)R = 0.

This means that R(t, ξt(x, z), ηt(x, z)) = R(0, x, z) and widely simplifies the formulae
we have obtained for (c,m). Indeed, we may now write∫

t,x,a

f(t, x, a)c(t, x, a) =

∫
t,x,z

f(t, ξt(x, z), R(0, x, z))

∫
t,x,a

f(t, x, a)m(t, x, a) =

∫
t,x,z

f(t, ξt(x, z), R(0, x, z))
d

dt
ξt(x, z),

Finally, denoting (R, ξ) by (Rn, ξ
n), in order to remind their dependence on n, we

have obtained the following behavior for the time-boundary term

BTn(f) =

∫
x,z

f(1, ξn1 (x, z), Rn(0, x, z))− f(0, x, Rn(0, x, z))

∼ BT (f) =

∫
a

f(1, x, a)c(1, x, a)− f(0, x, a)c0(x, a),

for all f , as n→∞.

Step 3: matching of the time-boundary data

At this stage, we limit ourself to the case when the time-boundary data (c0, c1) are
of special form

c1(1, x, a) = δ(x−X1(a)), c0(x, a) = δ(x−X0(a))
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where a ∈ T→ X0(a) ∈ D and a ∈ T→ X1(a) ∈ D are two given Lebesgue-measure
preserving maps such that, for each ε, there is a smooth map hε : D → D with∫

T
|X1(a)− hε(X0(a))|2da ≤ ε2.

(Notice that the domain of definition T and the range D = Td of these maps may be
of different dimension, so that X0 and X1 cannot be expected to be smooth.) Let
us now introduce smooth approximation for X0 and X1, respectively denoted by Xε

0

and Xε
1 , so that∫

T
|Xε

0(a)−X0(a)|2da ≤ ε2,

∫
T
|Xε

1(a)−X1(a)|2da ≤ ε2.

By choosing successively f(t, x, a) = (1−t)|x−Xε
0(a)|2 and f(t, x, a) = t|x−Xε

1(a)|2
in the asymptotic formula we have just obtained, namely

lim
n

∫
x,z

f(1, ξn1 (x, z), Rn(0, x, z))− f(0, x, Rn(0, x, z))

=

∫
x,a

f(1, x, a)c(1, x, a)− f(0, x, a)c0(x, a),

we get

lim
n

∫
x,z

|ξn1 (x, z)−Xε
1(Rn(0, x, z))|2 =

∫
[0,1]

|Xε
1(a)−X1(a)|2da ≤ ε2 ,

lim
n

∫
x,z

|x−Xε
0(Rn(0, x, z))|2 =

∫
[0,1]

|Xε
0(a)−X0(a)|2da ≤ ε2 .

By the triangle inequality, we have√∫
x,z

|x−Xε
0(Rn(0, x, z))|2 −

√∫
x,z

|x−X0(Rn(0, x, z))|2

≤

√∫
x,z

|Xε
0(Rn(0, x, z))−X0(Rn(0, x, z))|2

=

√∫
T
|Xε

0(a)−X0(a)|2da ≤ ε

(by construction of Rn). Similarly, we get√∫
x,z

|ξn1 (x, z)−Xε
1(Rn(0, x, z))|2 ≤

√∫
x,z

|ξn1 (x, z)−X1(Rn(0, x, z))|2 + ε .

So, we can pass to the limit in ε and get∫
x,z

|ξn1 (x, z)−X1(Rn(0, x, z))|2 → 0,

∫
x,z

|x−X0(Rn(0, x, z))|2 → 0 .
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At this stage, we limit ourself to the case when X0 is one-to-one (this looks strange
since X0 maps T to D = Td, but is perfectly plausible: this just means that
X0 is a measure preserving Borel isomorphism between T equipped with the 1D
Lebesgue measure and D = Td equipped with the d−dimensional Lebesgue mea-
sure (cf. [239]). Thus we may consider h = X1 ◦X−1

0 as a volume preserving map
of D = Td, which, for every ε > 0 admits some approximation by a smooth map
hε : D → D with respect to the L2(D;Rd) norm:∫

D

|X1 ◦X−1
0 (x)− hε(x))|2dx ≤ ε2.

which also means ∫
T
|X1(a)− hε(X(

0a))|2da ≤ ε2.

Thus,√∫
x,z

|ξn1 (x, z)−X1(Rn(0, x, z))|2 −

√∫
x,z

|ξn1 (x, z)− hε(X0(Rn(0, x, z)))|2

≤

√∫
x,z

|X1(Rn(0, x, z))− hε(X0(Rn(0, x, z)))|2 =

√∫
a

|X1(a)− hε(X0(a))|2 ≤ ε.

Using that∫
x,z

|hε(x)− hε(X0(Rn(0, x, z)))|2 ≤ Lip(hε)
2

∫
x,z

|x−X0(Rn(0, x, z)))|2 → 0,

we have obtained
lim sup

n

∫
x,z

|ξn1 (x, z)− hε(x)|2 ≤ ε2,

which can also be written

lim sup
n

∫
a,z

|ξn1 (X0(a), z)− hε(X0(a))|2 ≤ ε2,

By passing to the limit in ε, we have finally obtained:

Proposition 4.5.2.

lim

∫
a,z

|ξn1 (X0(a), z)−X1(a)|2 = 0. (4.5.1)

Step 5: rescaling the vertical direction

In this last and very simple step, we just rescale the vertical variable by substituting
R/εZ for T = R/Z. Accordingly, we define

ũ(t, x, z) = u(t, x, z/ε), w̃(t, x, z) = εw(t, x, z/ε),

where, ũ(t, x, z) and w̃(t, x, z) are now εT-periodic in z. and we introduce the
corresponding flow ξ̃, η̃ as above. The action of this classical volume-preserving flow
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can be easily estimated as follows:

1

2

∫
|∂tξ|2 +

∫
|∂tη|2 =

1

2

∫
|ũ|2 + |w̃|2

∼ 1

2

∫
|u|2 + ε2

∫
|w|2

≤ K(c,m) + o(1),

while the previous estimates on the time-boundary conditions, as well as the conti-
nuity and incompressibility equations, continue to hold by straightforward compu-
tations, which completes the proof of our variant of Theorem 4.4.1 using one extra
space dimension.

4.6 Hydrostatic solutions to the Euler equations
In this section, we want to relate the concept of generalized solution to the Euler
equations on a two dimensional domain D to the concept of classical solution to
the so-called "hydrostatic approximation", somewhat in the same spirit as in the
previous section.

More precisely, let us consider a “classical” solution (v(t, x), p(t, x)) of the Euler
equations, in a very thin three-dimensional domain such as Dε = D×Tε, where D,
for simplicity is just D = T2 and Tε is just the 1D torus with period ε: Tε = R/εZ.
Let us rescale the vertical coordinate x3 and the third component v3 of the velocity
field: (x3, v3) → (εx3, εv3). After this rescaling we get, on the rescaled 3D domain
D × [0, 1], no longer the Euler equations but a rescaled version of them, namely

IεDtv +∇p = 0, Dt = ∂t + v · ∇, ∇ · v = 0,

where Iε denotes the diagonal matrix Iε = diag(1, 1, ε2). Notice that the operators
Dt and ∇· are unchanged and ε only features in Iε. It is very customary in geo-
sciences to neglect ε by substituting I0 = diag(1, 1, 0) for Iε. This is the so-called
hydrostatic approximation, for which the pressure does not depend on the vertical
coordinate x3:

I0Dtv +∇p = 0, Dt = ∂t + v · ∇, ∇ · v = 0.

This approximation of the 3D Euler equations in a thin domain is very commonly
used in ocean-atmosphere computational models. As an evolution equation, the
hydrostatic limit of the Euler equations is much more singular than the original Euler
equations: it is ill-posed, in some sense, on any linear Sobolev space, but well-posed
on some adequate functional convex cone [53, 57, 171, 217]. Of course, all smooth
solutions of the 2D Euler equations on the 2D domain D are particular solutions of
this hydrostatic limit, but there are many other solutions that are genuinely three
dimensional.
Let us consider a smooth solution (v(t, x), p(t, x)) of this hydrostatic limit of the
Euler equations on the 3D domain D×T. We denote by gt(x) the volume-preserving
flow in D × T generated by

d

dt
gt(x) = v(t, gt(x)), g0(x) = x, x ∈ D × T.
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Let us now consider an arbitrarily chosen one-to-one Borel map X0 : D → D × T
that transports the 2D Lebesgue measure on D to the 3D Lebesgue measure on
D × T, i.e. ∫

D

f(X0(a))da =

∫
D×T

f(x)dx, ∀f ∈ C0(D × T).

(Such maps do exist but cannot be smooth. See [239] for more details. Many
examples can be easily obtained just by using binary notations and {0, 1}N as an
intermediate space between D and D × T.)
Next, we define X t(a) = gt(X0(a)) ∈ D, for all a ∈ D. Let us now denote
Xt(a) = (X

1

t (a), X
2

t (a)) ∈ D the two first components of X t(a). This defines a
time-dependent family of maps D → D that preserves the 2D Lebesgue measure on
D. Indeed, if we consider a continuous function f on T2, we can trivially lift it as a
continuous function F on T3 by setting F (x1, x2, x3) = f(x1, x2) and we get∫

D

f(Xt(a))da =

∫
D

F (X t(a))da =

∫
D×T

F (x1, x2, x3)dx1dx2dx3

=

∫
D×T

f(x1, x2)dx1dx2dx3 =

∫
D

f(x1, x2)dx1dx2,

which is enough to show that Xt preserves the 2D Lebesgue measure on D. Mean-
while, since (v, p) is solution of the hydrostatic limit of the Euler equations, we get
for X:

d2

dt2
Xt(a) + (∇p)(t,Xt(a)) = 0

where ∇ denotes the two-dimensional gradient on the two-dimensional domain D.
(We again have used that p(t, x) does not depend on x3 and, therefore, can be seen as
a time-dependent function on the two-dimensional domain D.) So, we have obtained
that (Xt(a), p(t, x)) is a solution of the Euler equations on the 2D domain D, in a
generalized sense (already discussed in section 2.4), although they are not solutions
of the 2D Euler equations in the classical sense.
Even more provocative is the perspective of 1D solutions to the Euler equations.
Indeed, in the classical setting, there are only trivial solutions of the Euler equations,
because of the divergence-free condition. Indeed, on the 1D torus T, the only possible
solutions are constant velocity fields v. However, there are many non-trivial 1D
solutions to the Euler equations with the generalized definition we have just used.
Once again, such solutions can be obtained by rescaling a thin 2D domain and by
passing to the hydrostatic limit in the 2D Euler equations, by dimension reduction,
exactly as we did from three to two dimensions.

4.7 Explicit solutions to the OIT problem
Let us finish this chapter devoted to the OIT problem by providing very few examples
of explicit solutions. So far, we have systematically made the assumption D = Td
and we limited ourself to the time normalized time interval [0, 1] for simplicity.
However, it is easier to provide explicit examples on domains with boundary such
as the unit cube or the unit disk and on more general time intervals [0, T ]. The
simplest non trivial explicit 1D generalized solution to the Euler equations, in the
sense of the OIT, known to us, can be written as follows. We take D = [−1, 1]
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equipped with the normalized 2D Lebesgue measure dx. We set T = π and define,
for ã = (a, ω) ∈ D × [0, 1] and (t, x) ∈ [0, T ]×D,

Xt(ã) = Xt(a, ω) = a cos t+
√

1− a2 sin t cos(2πω), p(t, x) = p(x) = x2/2.

One can check (easily) that

d2

dt2
Xt(ã) = −Xt(ã) = −p′(Xt(ã))

and (not so easily but crucially) that Xt transports the Lebesgue measure on D ×
[0, 1] to the Lebesgue measure on D. At T = π, we have X0(ã) = X0(a, ω) = a and
XT (ã) = XT (a, ω) = −a, while p′′(x) = 1. Then, the corresponding measures (c, q)
defined by

c(t, x, ã) = δ(x−Xt(a, ω)), q(t, x, ã) = ∂tXt(a, ω)δ(x−Xt(a, ω)), ã = (a, ω),

can be shown, thanks to the 1D Poincaré inéquality, to be an optimal solution for
the IOT problem set on [0, T ]×D with boundary data

c0(x, ã) = δ(x− a), cT (x, ã) = δ(x+ a), ã = (a, ω).

A closely related generalized solution can be defined in 2D on the unit disk D
(with normalized Lebesgue measure). The formulae are very similar. (Actually the
previous 1D solution can be interpreted just as the projection from the unit disk to
[−1, 1] of this one.) We define

ã = (a, ω) = (a1, a2, ω) ∈ D × [0, 1]

Xt(ã) = Xt(a, ω) = a cos t+
√

1− |a|2 sin t exp(2πiω), p(t, x) = |x|2/2.
with an abusive complex notation and, again, set

c(t, x, ã) = δ(x−Xt(a, ω)), q(t, x, ã) = ∂tXt(a, ω)δ(x−Xt(a, ω)), ã = (a, ω).

Observe that we have D2
xp(t, x) = Id, X0(a, ω) = a, XT (a, ω) = −a, if we choose

T = π. Once again, this provides a generalized solution to the Euler equations and
(c, q) can be shown to be optimal for the OIT on [0, T ]×D with data

c0(x, ã) = δ(x− a), cT (x, ã) = δ(x+ a), ã = (a, ω) ∈ D × [0, 1].

This OIT amounts to transfering all particles from their initial position to the op-
posite one on the unit disk D, during the time interval [0, π], in an incompressible
fashion inside D. Of course the obtained motion is not at all conventional: every
“particle” issued from x in the unit disk get split according to the “microscopical” (or
“hiddem”) variable ω and follow a continuum of different trajectories parameterized
by ω ∈ [0, 1], with equal probability, and eventually reaches its destination −x at
time T = π. This strange motion looks much more conventional, once lifted as a
3D incompressible motion by adding a vertical coordinate x3 along a small interval
of length ε, and projecting back to the 2D basis. This is just another example of
hydrostatic limit of the 3D Euler equation. The multiplicity of trajectories observed
on the 2D domain D just correspond to the projection of three dimensional trajec-
tories in D× [0, ε]. Accordingly, the “hidden” variable ω is just keeping record (in a
non-trivial way) of the missing vertical coordinate x3.
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It is interesting to notice, that in the 2D case, there are two other solutions X+

and X− to the very same OIT problem, namely

X+
t (a, ω) = a exp(it), X−t (a, ω) = a exp(−it), p(t, x) = |x|2/2,

with an obvious complex notation. They actually do not depend on the “micro”
variable ω and correspond to two classical solutions of the 2D Euler equations with
(stationary) velocity fields v+(x) = (−x2, x1), v−(x) = (x2,−x1). Geometrically,
they correspond to simple rigid rotations of the unique disk. We further point out
that these three different solutions to the same IOT problem share the same pressure
field, which is fully consistent with Theorem 4.2.1. Surprinsingly enough, there is a
very rich family of other solutions to the same OIT problem, obtained by M. Bernot,
A.Figalli and F. Santambrogio [32]. In particular, our generalized solution can be
“decomposed” as the average of two more “fundamental” generalized solutions of the
Euler equations (which was very surprizing to us).
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’fort.10’

Exact 1D generalized solution to the Euler equations.
(Horizontal axis: x ∈ [−1, 1], vertical axis: t ∈ [0, π].)
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SOLUTION EXACTE

’fort.12’

Exact 1D generalized solution to the Euler equations.
Only a few selected trajectories are drawn
(Horizontal axis: x ∈ [−1, 1], vertical axis: t ∈ [0, π].)
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’fort.10’

Another 1D generalized solution to the Euler equations.
(Horizontal axis: x ∈ [0, 1], vertical axis: t ∈ [0, 1].)
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Chapter 5

Solutions of various initial value
problems
by convex minimization

Solving initial value problems by convex minimization is an old idea going back
to the least square method for linear equations. For nonlinear systems of PDEs,
in particular for parabolic equations and various gradient flows, there has been
many contributions, including Brezis-Ekeland, Ghoussoub, Mielke-Stefanelli, Vis-
intin [92, 156, 220, 267] etc... In a recent work [71], we have introduced a different
approach, essentially based on the concept of weak, distributional solutions, that
works for systems of hyperbolic conservation laws with a convex entropy, including
the Euler equations of fluid mechanics, and the simple Burgers equation without
viscosity. This has been further extended by Vorotnikov [269] to a large class of
Fluid Mechanics models.
More recently, we figured out how the method also applies to some parabolic prob-
lems, one of them being the quadratic porous medium equations. This case is so
simple and the analysis is so straightforward that we have decided to describe it as
our first example, although the strategy was first defined for the Euler equations of
incompressible fluids.
In addition, let us mention that the convex optimization problems obtained by this
method can be seen as some generalized variational mean-field games à la Lasry-
Lions [96], with the peculiarity that they usually involve matrix-valued rather than
scalar density fields, which is, to the best of our knowledge, still unusual in the
theory of MFGs.

5.1 The porous medium equation with quadratic
non linearity

The porous media equations with quadratic non linearity (QPME, in brief), set on
the periodic cube Td (for simplicity), reads

∂tu = ∆u2/2, u = u(t, x) ∈ R, t ≥ 0, x ∈ Td,

where u is, a priori, a nonnegative function that can be interpreted as a "density"
function for some fluid moving in a porous medium.
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N.B. From a statistical mechanics viewpoint, this equation, set on the entire eu-
clidean space Rd, can be obtained, as, more or less, in [198], as the macroscopic
limit of the properly rescaled very simple (deterministic) system of N interacting
particles:

dXk

dt
= ε−1

∑
j=1,N

(Xk −Xj) exp(−|Xk −Xj|2

ε
),

u(t, x) ∼ 1

N

∑
j=1,N

δ(x−Xj(t)), 1/N << εd << 1.

This equation admits a Ljapunov (or "entropy") functional, namely∫
Td
u2(t, x)dx,

for which we get, at least formally

d

dt

∫
Td
u2(t, x)dx = −

∫
Td
u(t, x)|∇u|2(t, x)dx,

We start with the rather absurd problem of minimizing, on a given finite time
interval [0, T ], the time integral of the "entropy"∫

Q

u2(t, x)dxdt, Q = [0, T ]× Td,

among all weak (i.e. distributional) solutions in L2([0, T ]× Td) of the QPME

∂tu = ∆u2/2, u = u(t, x) ≥ 0, t ≥ 0, x ∈ Td,

with a prescribed initial condition u0 ≥ 0, given, for simplicity, in L∞(Td). A
priori this problem is absurd since it is well known since the 80s that the Cauchy
problem is uniquely solvable, for nonnegative distributional solutions, in L1(Rd)
[91], and that all Lp spaces (in particular L2) are preserved by the corresponding
semi-group of (nonnegative) solutions. Therefore, once u0 is prescribed, there is a
unique nonnegative admissible solution and the minimization problem looks trivial.
However, we do not require that the weak solutions are nonnegative, which makes
the problem more uncertain.
Anyway, this strange minimization problem admits a saddle point formulation which
reads

I(u0) = inf
u

sup
φ

∫
Q

(
u2 − 2∂tφu−∆φ u2 + 2u0∂tφ

)
,

where the only constraints are:
i) for test function φ to be smooth and vanish at t = T ;
ii) for function u to be square integrable on Q. By reversing the inf and the sup, we
get a (non trivial!) relaxed problem

J(u0) = sup
φ

inf
u

∫
Q

(
u2 − 2∂tφu−∆φ u2 + 2u0∂tφ

)
.

At this level, we may just claim that I(u0) ≥ J(u0) and there may be a "duality
gap" since the problem we started from is not formulated as a convex problem. The
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relaxed problem is very simple. Indeed, it is enough to perform the minimization in
u pointwise in (t, x), since there is no more constraint on u:

J(u0) = sup
φ

inf
u

∫
Q

(
u2 − 2∂tφu−∆φ u2 + 2u0∂tφ

)
=

sup
φ

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u0∂tφ

)
, ∆φ ≤ 1, φ(T, ·) = 0.

Notice that the optimal value of u, for a given point (t, x), is given by

u =
∂tφ(t, x)

1−∆φ(t, x)
,

under the condition that ∆φ(t, x) < 1 (otherwise the infimum in u is −∞, unless
both ∆φ(t, x) = 1 and ∂tφ(t, x) = 0 hold true simultaneously.).
Setting q = ∂tφ, σ = 1−∆φ, we get an alternative formulation:

J(u0) = sup
σ,q

∫
Q

(
−q

2

σ
+ 2u0 q

)
, ∂tσ + ∆q = 0, σ ≥ 0, σ(T, ·) = 1.

Remark. This optimization problem is strongly reminiscent of the optimal transport
problem (with quadratic cost), in its temporal (also known as Benamou-Brenier)
formulation. Furthermore, in the 1D case, it is identical (up to the time-boundary
conditions) to the optimization problem introduced by Huesmann and Trevisan in
[178]. In their paper, the authors obtain a "Benamou-Brenier" formulation of the
so-called martingale optimal transport problem (a very popular subject in the last
years, initially motivated by financial mathematics, that will not be covered in this
book [23, 158, 175, 180, 260]) and they already point out a connection with the 1D
porous medium equation.

Analysis of the relaxed concave optimization problem

Let us now perform a rough analysis of our relaxed concave optimization problem,
using what is already known about the QPME. To make our reasoning easier, we
limit ourself to the easy case when u0 is smooth and positive on Td. We want to
prove

Theorem 5.1.1. Any smooth positive solution (t, x) ∈ Q = [0, T ]× Td → u(t, x)
of the quadratic porous medium equation QPME

∂tu = ∆u2/2

can be recovered as
u =

∂tφ

1−∆φ
,

where φ solves the concave optimization problem

J(u0) = sup
φ

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u0∂tφ

)
, ∆φ ≤ 1, φ(T, ·) = 0,

and satisfies
1−∆φ ≥ (t/T )d/(d+2).
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Proof. By standard parabolic regularity theory, the unique nonnegative weak
solution u(t, x) with smooth positive initial condition u0 is a smooth and positive
function of (t, x) ∈ Q = [0, T ]×Td. It is known [263] that all (nonnegative) solutions
u = u(t, x) of the QPME satisfy the Aronson-Bénilan estimate

∆u ≥ −κ/t ,

where κ = d/(d+2) just depends on d. Let us try to find a solution φ to the concave
optimization problem just by solving the final value problem

∂tφ = (1−∆φ)u, φ(T, ·) = 0,

i.e., in terms of α = 1−∆φ,

∂tα + ∆(αu) = 0, α(T, ·) = 1.

We claim that α(t, x) ≥ (t/T )κ follows from the Aronson-Bénilan estimate. Indeed,
since u is smooth, we can write

∂tα + ∆(αu) = ∂tα + u∆α + 2∇α · ∇u+ α∆u = 0

and, using both the maximum principle and the Aronson-Bénilan estimate, we get
for A(t) = infx∈Td α(t, x) the differential inequality

A′(t) ≤ κA(t)/t.

So, logA(T )− logA(t) ≤ κ(log T− log t), and therefore A(t) ≥ (t/T )κ (since A(T ) =
1). This estimate shows that the function α = 1−∆φ stays positive on ]0, T ]× Td.
Let us now finally show that φ is optimal for the concave maximization problem.
For that purpose, let us just evaluate

j =

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u0∂tφ

)
.

which, by definition of J(u0), is certainly bounded from above by J(u0). Since u
solves the QPME with initial condition u0, we have∫

Q

(
2∂tφu+ ∆φu2 − 2∂tφu0

)
= 0.

Thus, since φ solves ∂tφ = (1−∆φ)u,

j =

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u∂tφ+ ∆φu2

)
=

∫
Q

u2

which shows that φ is optimal since, by construction,

J(u0) ≥ j =

∫
Q

u2 ≥ I(u0) ≥ J(u0).

End of Proof.
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Various comments

1) Through additional technical work, this proof should extend to all initial condi-
tions in L2(Rd). The theory should also apply to the case of the entire euclidean
space Rd and to the famous "Barenblat profiles", that have compact support and
saturate the Aronson-Bénilan estimate [263].
2) Notice that, strictly speaking, we have not shown the uniqueness of a maximizer
for the concave maximization problem.
3) Our formulation in terms of convex optimization might be a useful way of getting
new regularity results for the QPME. This problem is of current interest since new
regularity results have been obtained:
a) in [155] by Gess, Sauer and Tadmor, for the porous medium equation, through
quite unusual methods in the elliptic setting such as "average lemmas" coming from
kinetic theory [167];
b) in [166] by Goldman and Otto, for the quadratic optimal transport problem in its
temporal "Benamou-Brenier" formulation, which looks very similar to the relaxed
concave optimization problaim we have just obtained for the QPME.

5.2 The viscous Hamilton-Jacobi equation
and the Schrödinger problem

The analysis performed for the porous medium equation also applies to the viscous
quadratic Hamilton-Jacobi equation

∂tφ+
1

2
|∇φ|2 =

ε

2
∆φ,

with initial condition φ0 where ε > 0 is the viscosity coefficient. We set Q =
[0, T ]×D, with D = Td for simplicity, and assume the initial condition B0 to be the
gradient of a periodic function φ0 of zero mean on D. This scalar equation can be
written in divergence form by introducing the vector field B = ∇φ, which leads to
the IVP

∂tB +∇(
|B|2 − ε∇ ·B

2
) = 0, B(0, ·) = B0 = ∇φ0.

Then, we want to minimize
∫
Q
|B|2 among all weak solutions B of the IVP with

initial condition B0. Using Lagrange multipliers, we get the saddle-point problem

inf
B

sup
A

∫
Q

|B|2

2
− ∂tA · (B −B0)−∇ · A |B|

2

2
− ε

2
∇(∇ · A) ·B

where the vector field A = A(t, x) ∈ Rd is just subject to A(T, ·) = 0. (Notice that
we do not have to enforce that B is a gradient, since it automatically follows from
the weak formulation.) The dual problem is just obtained by exchanging the sup
and the inf and can be very easily computed (since there is no constraint on B). We
get

sup
A

∫
Q

−|∂tA+ ε∇(∇ · A)/2|2

2(1−∇ · A)
+ ∂tA ·B0,

where A is subject to A(T, ·) = 0 and inequality ∇ · A ≤ 1. This dual problem can
be nicely formulated in terms of

ρ(t, x) = 1−∇ · A(t, x) ≥ 0, q(t, x) = ∂tA(t, x) ∈ Rd,
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More precisely:

Proposition 5.2.1. The dual problem generated by the viscous Hamilton-Jacobi
equation reads

sup
ρ,q

∫
Q

−|q − ε∇ρ/2|
2

2ρ
+ q ·B0,

where the fields ρ ≥ 0, q ∈ Rd are constrained by

∂tρ+∇ · q = 0, ρ(T, ·) = 1.

In addition, there is no duality gap in the saddle-point formulation.

Before proving that there is no duality gap, let us make several observations.

Connection with the Schrödinger problem

The optimization problem we have derived from the viscous Hamilton-Jacobi equa-
tion can be written in a slightly different way by noticing first that∫

Q

−|q − ε∇ρ/2|
2

2ρ
+

∫
Q

|q|2 + |ε∇ρ/2|2

2ρ
=

∫
Q

εq · ∇ρ
ρ

=

∫
Q

−ε log ρ∇ · q

=

∫
Q

ε log ρ ∂tρ =

∫
Q

ε∂t(ρ log ρ− ρ) =

∫
Q

ε∂t(ρ log ρ) = −
∫
D

ε(ρ log ρ)(t = 0, ·)

(using that ρ(T, ·) = 1) and, next, that∫
Q

q ·B0 =

∫
Q

−∇ · q φ0

(since B0 = ∇φ0)

=

∫
Q

∂tρ φ0 =

∫
D

(1− ρ(t = 0, ·))φ0 =

∫
D

−ρ(t = 0, ·))φ0

(using that ρ(T, ·) = 1 and that φ0 has zero mean). So, the maximization problem
now reads

sup
ρ,q

∫
Q

−|q|
2 + |ε∇ρ/2|2

2ρ
+

∫
D

−ρ(t = 0, ·)φ0 − ε(ρ log ρ)(t = 0, ·),

where (ρ, q) are constrained by

∂tρ+∇ · q = 0, ρ(T, ·) = 1.

At this stage, we have obtained a variant (with a different time-boundary term)
of the famous Schrödinger problem [242], intensively studied in the recent years,
in particular after Ch. Léonard [191], as a natural "entropic regularization" of the
optimal transport problem (with quadratic cost), with a stochastic interpretation
in terms of brownian clouds. In that framework, the regularization term is the
well-known "Fisher information"

ρ→
∫
|∇ρ|2

2ρ

which plays an important role in various fields (information theory, statistics, func-
tional analysis, quantum mechanics...).
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Connection with the Schrödinger equation

Not so surprisingly, the Schrödinger problem (1931) is closely related to the
Schrödinger equation (1925). Indeed the solutions of the Schrödinger equation,
written in the hydrodynamical formulation due to Madelung (1926) [208], exactly
correspond to the critical points (ρ, q) of the following action -featuring a crucial
change of sign- ∫

|q(t, x)|2 − |∇ρ(t, x)|2

2ρ(t, x)
dxdt

under space-time compactly supported perturbations and constraint

∂tρ+∇ · q = 0,

one of the optimality equation being

q = ρ∇θ,

for some scalar potential θ = θ(t, x) ∈ R. (See [268]) for more details.) Then, the
wave function ψ = ψ(t, x) solution of the Schrödinger equation is simply recovered
by polar factorization through the Madelung transform (1926) [208] as

ψ(t, x) =
√
ρ(t, x) eiθ(t,x) ∈ C.

Notice that there is a degeneracy of this transform when the wave function van-
ishes, which makes the Madelung formulation of the Schrödinger equation not very
satisfactory.

No duality gap in the saddle-point formulation

To conclude this section, let us check that there is no duality gap between the inf-sup
and the sup-inf in the saddle-point formulation, namely let us prove that

sup
A

inf
B

= inf
B

sup
A

inf
B

∫
Q

|B|2

2
− ∂tA · (B −B0)−∇ · A |B|

2

2
− ε

2
∇(∇ · A) ·B.

For simplicity, we assume the initial condition φ0 to be smooth so that the viscous
Hamilton-Jacobi equation admits a unique smooth solution that we denote φs =
φs(t, x) on the compact set Q = [0, T ] × D, where D = Td, and we set Bs(t, x) =
∇φs(t, x) so that

Bs(0, x) = B0(x) = ∇φ0(x).

(The superscript smeans "solution".) The proof is very elementary and even simpler
that in the case of the porous medium equation discussed in the previous section.
By definition, we first get

1

2

∫
Q

|∇φs|2 =
1

2

∫
Q

|Bs|2 ≥ inf sup .

Next, we notice that a good guess for the optimal solution (ρ, q) of the dual problem
is obtained by minimizing in B in the saddle-point problem. This leads to solving
the backward linear PDE in A:

(1−∇ · A)Bs = ∂tA+
ε

2
∇(∇ · A)
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with final condition A(T, ·) = 0, where we have input Bs for B. We get, after taking
the divergence of the equation, the backward transport-diffusion equation

∇ · (ρBs) = −∂tρ−
ε

2
∆ρ.

for ρ(t, x) = 1 − ∇ · A(t, x), with final condition ρ(T, x) = 1. This standard PDE
admits a unique smooth positive solution ρs(t, x), since the field Bs is smooth. The
previous equation now reads:

ρsBs = ∂tA−
ε

2
∇ρs

so that

A(t, x) = −
∫ T

t

(ρsBs +
ε

2
∇ρs)(τ, x)dτ

since A(T, ·) = 0. Next, we define

qs(t, x) = ∂tA(t, x) = ρsBs(t, x) +
ε

2
∇ρs(t, x)

We have
−∂tρs = ∇ · (ρsBs) +

ε

2
∆ρs = ∇ · qs,

so that the continuity equation is satisfied which makes (ρs, qs) an admissible solution
for the dual problem:

sup inf = sup
ρ,q

∫
Q

−|q − ε∇ρ/2|
2

2ρ
+ q ·B0.

Thus
sup inf ≥

∫
Q

−|q
s − ε∇ρs/2|2

2ρs
+ qs ·B0

=

∫
Q

−ρ
s|Bs|2

2
+ qs ·B0

(using the definition of qs)

=

∫
Q

−ρ
s|Bs|2

2
+ ∂tρ

sφ0

(using the continuity equation and that B0 = ∇φ0)

=

∫
Q

−ρ
s|Bs|2

2
+

∫
D

(1− ρs(0, ·))φ0

(using that ρs(T, ·) = 1 and that φ0 does not depend on t).

=

∫
Q

−ρ
s|∇φs|2

2
+

∫
D

(1− ρs(0, ·))φ0.

Now, we use both the transport-diffusion equation for ρs and the viscous Hamilton-
Jacobi equation for φs, to get

∂t((1− ρs)φs) = (∇ · (ρs∇φs) +
ε

2
∆ρs)φs − (1− ρs)( |∇φ

s|2

2
− ε

2
∆φs)
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and deduce (using integration by part)

d

dt

∫
D

(1− ρs)φs =

∫
D

(−ρs − 1)
|∇φs|2

2
.

So ∫
D

(ρs(0, ·)− 1)φ0 =

∫
Q

(−ρs − 1)
|∇φs|2

2

(by integration in t ∈ [0, T ], using that ρs(T, ·) = 1). Since we had just obtained

sup inf ≥
∫
Q

−ρ
s|∇φs|2

2
+

∫
D

(1− ρs(0, ·))φ0,

we finally get

sup inf ≥
∫
Q

|∇φs|2

2

and conclude that indeed there is no duality gap since we already know∫
Q

|∇φs|2

2
≥ inf sup ≥ sup inf .

5.3 The Navier-Stokes equations
Now, we want to minimize

∫
Q
|v|2 on the time-space domain Q = [0, T ] × D, D =

Td, among all weak solutions v = v(t, x) ∈ Rd, of the Navier-Stokes equations of
incompressible fluids with initial condition v0:

∂tv +∇ · (v ⊗ v) +∇p = ε∆v, ∇ · v = 0,

(where, as usual, ∇p can be eliminated thanks to the divergence-free condition
∇ · v = 0), which can be also written as

∂tv +∇ · (v ⊗ v) +∇p = ε∇ · (∇v +∇vt

2
), ∇ · v = 0.

This problem can be immediately written as a saddle-point problem:

inf
v

sup
A,h

∫
Q

1

2

(
|v|2 − (∇A+∇At) : v ⊗ v

)
−∂tA·(v−v0)−εv·(∇·(∇A+∇At

2
)−v·∇h,

where A = A(t, x) ∈ Rd is a divergence-free vector field such that A(T, ·) = 0 and
h = h(t, x) ∈ R is a Lagrange multiplier for the divergence-free condition on v. We
get a dual problem by exchanging sup and inf.

Proposition 5.3.1. The dual problem generated by the Navier-Stokes equations can
be written as a kind of generalized Schrödinger problem:

sup
M,q

∫
Q

q · v0 −
(q − ε∇ ·M) ·M−1 · (q − ε∇ ·M)

2

where the symmetric matrix-valued field M = M(t, x) ≥ 0 and the vector field
q = q(t, x) ∈ Rd are subject to

∂tM + Lq, M(T, ·) = Id,

where L is the constant coefficient first-oder pseudo-differential operator

Lq = ∇q +∇qT − 2D2∆−1∇ · q.
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Proof.
After exchanging the sup and the inf, the minimization in v is very easy and leads
to

inf
v

sup
A,h

∫
Q

1

2
(Id −∇A−∇At)−1 ·

(
∂tA+∇h+ ε∇ · (∇A+∇At

2
)

)
+ ∂tA · v0,

where A is subject to Id −∇A −∇At ≥ 0 in the sense of symmetric matrices. We
now introduce

M = Id −∇A−∇At, q = ∂tA+∇h.

Since A is divergence free, we have

∆h = ∇ · q,

and therefore
∂tA = q −∇∆−1∇ · q.

So, we get the compatibility condition between M and q that allows us to recover
A and h from them:

∂tM +∇q +∇qT − 2D2∆−1∇ · q = 0, M(T, ·) = Id,

which completes the proof.

Remarks.

1) The generalized Schrödinger problem generated by the NS equations features
a matrix-valued version of the Fisher information

(∇ ·M) ·M−1 · (∇ ·M), M = MT ≥ 0,

very roughly similar to the Einstein-Hilbert Lagrangian, which reads, in 4 space-time
dimension, up to a null Lagrangian [131],

(Γmij g
ij Γkkm − Γmik g

ij Γkjm)
√
−det g

for which g is a Lorentzian metric and Γ is its Levi-Cività connection:

Γijk = gim(gkm,j + gjm,k − gkj,m)/2.

2) The generalized Schrödinger problem derived from the Navier-Stokes equations
looks very similar to the "Brödinger problem" (or rather "Bredinger") introduced by
Arnaudon, Cruzeiro, Léonard, Zambrini [12], in particular in its recent interpretation
by Baradat and Monsaingeon [20]. This problem can be seen as the "entropic
regularization" of the incompressible optimal problem already extensively discussed
in this book in connection with the Euler equations of incompressible fluids.

5.4 The quantum diffusion equation
Just to indicate, without any further analysis, a highly non trivial example of a
parabolic system for which the initial value problem could be fruitfully addressed
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in terms of convex optimization, let us mention the so-called quantum diffusion
equation (written as a system in weak form according to [160] sect. 1.8):

QDE : ∂tu+ ∆2u−D2 :
g ⊗ g
u

= 0, g = ∇u,

where u : (t, x) ∈ Q = [0, T ]× Td → u(t, x) ≥ 0, for which∫
Td

|g(t, x)|2

2u(t, x)
dx

is a Ljapunov function, or an "entropy" in Otto’s framework of gradient flows for
transportation metrics [160].
We start by minimimizing the time integral over [0, T ] of the entropy among all
weak solutions of QDE with given initial condition u0, which leads to the saddle
point problem:

I(u0) = inf
(u≥0, g)

sup
(φ,P )

−
∫
Td
u0(x)φ(0, x)dx

+

∫
Q

(
|g|2

2u
− ∂tφu+ ∆2φu−D2φ :

g ⊗ g
u
− P · g − u∇ · P

)
(t, x)dxdt,

(where P = P (t, x) ∈ Rd is a Lagrange multiplier for constraint g = ∇u). Reversing
the inf and the sup leads to the desired relaxed concave maximization problem. By
minimizing in g (pointwise in (t, x) since there is no constraint on g), we first get

J(u0) = sup
(φ,P )

inf
u≥0
−
∫
Td
u0(x)φ(0, x)dx

+

∫
Q

u(t, x)

(
−1

2
(Id − 2D2φ)−1 : P ⊗ P − ∂tφ+ ∆2φ−∇ · P

)
(t, x)dxdt,

where Id is the identity matrix and φ : (t, x) ∈ Q = [0, T ] × Td → φ(t, x) ∈ R is
subject to D2φ ≤ Id and φ(T, ·) = 0. Then, after minimizing, again pointwise, in
u ≥ 0, we finally obtain:

J(u0) = sup
(φ,P )

−
∫
Td
u0(x)φ(0, x)dx,

where, φ is subject, again, to D2φ ≤ Id and φ(T, ·) = 0 and also to the pointwise
inequality:

∂tφ−∆2φ+ 1/2(Id − 2D2φ)−1 : (P ⊗ P ) +∇ · P ≤ 0,

for some unknown vector field P : (t, x) ∈ [0, T ]× Td → P (t, x) ∈ Rd.

5.5 Entropic conservation laws

A system of first-order conservation laws read

∂tU +∇ · (F (U)) = 0, U = U(t, x) ∈ W ⊂ Rm, t ∈ R, x ∈ D,
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where we assume D = Td for simplicity. Such a system is called entropic [117] if the
given function F (usually called the "flux function") enjoys the symmetry property

m∑
β=1

∂βE(W )∂αF
iβ(W ) = ∂αQ

i(W ), ∀W ∈ W ,

for some pair of functions (E , Q) : W → R1+d, where W is an open convex subset
of Rm and E (usually called "entropy") is strictly convex over W . This stuctural
condition implies that, whenever U = U(t, x) is a smooth solution of the system, we
get the additional conservation law

∂t(E(U)) +∇ · (Q(U)) = 0.

Indeed, in coordinates (with implicit summation on repeated indices),

−∂t(E(U)) = ∂αE(U)∂i(F iα(U)) = ∂αE(U)∂βF iα(U)∂iU
β

= ∂βQi(U)∂iU
β = ∂i(Qi(U)).

Of course the simplest example is the so-called "inviscid Burgers" equation, where
U = u(t, x) is a real-valued function of a single space variable x with the simplest
nonlinear flux function F = u2/2:

∂tu+ ∂x(u
2/2) = 0.

It is well established [117] that, in most situations, such systems admit smooth
solutions that blow up (in Lipschitz norm) after a finite time, phenomenon known
as "shock formation", by reference to compressible gas dynamics.
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Inviscid Burgers equation : ∂tu+ ∂x(u
2/2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.

Formation of two shock waves. (Vertical axis: t ∈ [0, 1/4]. horizontal axis: x ∈ T.)
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A canonical example:
the Euler equations of isothermal compressible fluids.

They simply read

∂tρ+∇ · q = 0, ∂tq +∇ · (q ⊗ q
ρ

) +∇ρ = 0,

and fit into the general framework just by defining

U = (ρ, q) ∈ W =]0,+∞[×R3, F = (q,
q ⊗ q
ρ

+ I3ρ), E = −|q|
2

2ρ
− ρ log ρ

The least square approach?

Given U0 on Td and T > 0, if F (U) is linear in U , the least square method can be
used for the IVP and clearly leads to a (degenerate) convex problem

inf
U(t=0,·)=U0

∫
[0,T ]×Td

|∂tU +∇ · (F (U))|2

but this is no longer true for nonlinear systems.

Alternately, we are going to use the convex optimization method based on weak
solutions, that we have already presented for several parabolic equations, for in-
stance the quadratic porous medium equation.

Minimization approach to the initial value problem

Given U0 on D = Td and T > 0, we minimize the time integral over [0, T ] of the
entropy among all weak solutions U of the IVP:

I(U0) = inf
U

∫ T

0

∫
D

E(U), U = U(t, x) ∈ W ⊂ Rm subject to

∫ T

0

∫
D

∂tA · U +∇A · F (U) +

∫
D

A(0, ·) · U0 = 0

for all smooth A = A(t, x) ∈ Rm with A(T, ·) = 0. The problem is not trivial
since there may be many weak solutions starting from U0 which are not entropy-
preserving (by "convex integration" à la De Lellis-Székelyhidi) [118, 119, 120]. We
get the resulting saddle-point problem

inf
U

sup
A

∫ T

0

∫
D

E(U)− ∂tA · U −∇A · F (U)

−
∫
D

A(0, ·) · U0

where A = A(t, x) ∈ Rm is smooth with A(T, ·) = 0.
Here U0 is the initial condition and T the final time.
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Reversing infimum and supremum

This leads to a concave maximization problem in A, namely

J(U0) = sup
A(T,·)=0

inf
U

∫ T

0

∫
D

E(U)− ∂tA · U −∇A · F (U)−
∫
D

A(0, ·) · U0

= sup
A(T,·)=0

∫ T

0

∫
D

−G(∂tA,∇A)−
∫
D

A(0, ·) · U0

where G is defined by

G(E,B) = sup
V ∈W⊂Rm

E · V +B · F (V )− E(V ), (E,B) ∈ Rm × Rm×d.

Notice that G is automatically convex (but presumably degenerate!). Thus we have
obtained a (possibly degenerate) space-time elliptic system in A, which is reminiscent
of those appearing in optimal transport theory (as will be discussed later on). Here
is the paradox! How a convex optimization problem could be compatible with a
well-posed evolution problem? For instance, if G were just a square, we would get

sup
A

∫ T

0

∫
D

−|∂tA|2 − |∇A|2 −
∫
D

A(0, ·) · U0

which would correspond to an ill-posed equation for A:

∂2
ttA+ ∆A = 0.

The answer to the paradox is that, in our construction, G is very likely to be convex
degenerate which is presumably still compatible with the solution of a well-posed
initial value problem.

Examples and interpretation
in terms of matrix-valued variational mean-field games

Let us look more carefully at explicit examples of hyperbolic conservation laws, such
as the Burgers equation (without viscosity) and the much more challenging Euler
equations. In the elementary example of the Burgers equation, the maximization
problem in A simply reads

sup
A

∫
[0,T ]×T

− (∂tA)2

2(1− ∂xA)
−
∫
T
A(0, ·)u0.

with A = A(t, x) ∈ R subject to A(T, ·) = 0, ∂xA ≤ 1. Introducing

ρ = 1− ∂xA ≥ 0, q = ∂tA,

we get:

sup
(ρ,q)

{
∫

[0,T ]×T
− q

2

2ρ
− qu0 | ∂tρ+ ∂xq = 0, ρ(T, ·) = 1}.

This problem can be interpreted, in our opinion, as the "ballistic" version (à la
Ghoussoub [157]) of the optimal transport problem with quadratic cost and, as well,
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as a rather trivial example of mean-field game (MFG) à la Lasry-Lions [188] (with-
out noise nor interaction) of variational type. So we may expect more interesting
connections with MFG, while addressing more complex equations than the inviscid
Burgers equation.
Also notice that the resulting problem

sup
(ρ,q)

{
∫

[0,T ]×T
− q

2

2ρ
− qu0 | ∂tρ+ ∂xq = 0, ρ(T, ·) = 1}

is so close to an optimal transport problem (in its so-called Benamou-Brenier for-
mulation) that, at the computational level, it differs from it just by two lines of
(fortran) code, when using the algorithm designed in [26].
Let us now move to the more sophisticated case of the isothermal Euler equations:

∂tρ+∇ · q = 0, ∂tq +∇ · (q ⊗ q
ρ

) +∇ρ = 0.

In this case, we are going to see that our convex optimization problem to solve the
IVP can be interpreted as a generalized (variational deterministic) mean-field game
involving fields of nonnegative symmetric matrices instead of density fields. Indeed,
we get the convex optimization problem∫

[0,T ]×D
exp(u) exp(

1

2
Q ·M−1 ·Q) +

∫
D

σ0ρ0 + w0 · q0,

among all fields u = u(t, x) ∈ R, Q = Q(t, x) ∈ Rd, M = M(t, x) = M t(t, x) ∈ Rd×d,
M ≥ 0, of form:

u = ∂tσ + ∂iwi, Qi = ∂twi + ∂iσ, Mij = δij − ∂iwj − ∂jwi,

where σ and w must vanish at t = T .
Finally, let us discuss the Euler equations of incompressible fluids that can be seen
as a singular limit of the compressible case (as well known [183, 187]):

∂tq +∇ · (q ⊗ q) = −∇p, ∇ · q = 0,

where q is prescribed at t = 0 and p is now a Lagrange multiplier for constraint
∇ · q = 0. We get again a generalized MFG for measures valued in the cone of
semi-definite symmetric matrices.

sup
(M,Q)

−
∫

[0,T ]×D
q0 ·Q+

1

2
Q ·M−1 ·Q,

where now Q is a vector field (not necessarily divergence-free) and M = M t ≥ 0 is
a field of semi-definite symmetric matrices subject to

Mij(T, ·) = δij, ∂tMij = ∂jQi + ∂iQj + 2∂i∂j(−∆)−1∂kQ
k.

So, we see that our convex optimization method to solve IVP is a natural way to
obtain non trivial matrix-valued generalizations of the concept of (variational) MFG.
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Main results for entropic conservation laws

Theorem 5.5.1. If U is a smooth solution to the IVP and T is not too large, so
that

∀ t, x, ∀ V ∈ W , E”(V )− (T − t)F”(V ) · ∇(E ′(U(t, x))) > 0,

in the sense of symmetric matrices, then U can be recovered from the concave max-
imization problem which admits A(t, x) = (t− T )E ′(U(t, x)) as solution.

Notice that the smallness condition requires, in particular,

E”(V )− TF”(V ) · ∇(E ′(U0(x))) > 0, ∀ x, ∀ V ∈ W ,

and definitely restricts the choice of T with respect to U0. This is clearly a drawback
of the theory. So we could worry about the generic apparition of shock waves and
give up any hope to be able to solve the initial value problem for arbitrarily large
values of T . Observe, however, that the smallness condition gets less restrictive as
t approaches T and even allows a blow-up of ∂i (∂αE(U(t, x))) of order (T − t)−1.
As a matter of fact, in the very special and elementary case of the "inviscid" Burgers
equation with initial condition u0, the smallness condition simply reads

1 + (T − t)∂xu(t, x) > 0, ∀t ∈ [0, T ], x ∈ T

and turns out to be equivalent to:

1 + Tu′0(x) > 0, ∀x,∈ T

This exactly means that T is smaller than

T ∗ = inf
x∈T

1

max{−u′0(x), 0}
∈]0,+∞],

which is exactly the first time when a shock forms. So, at least in this very elemen-
tary case, all smooth solutions can be recovered from the maximization problem
without any restriction.

Proof of the Theorem

Since U is supposed to be a smooth solution of the system of conservation laws, we
have

∂tU
α + ∂βF iα(U)∂iU

β = 0.

Thus W defined by

Wα(t, x) = (t− T )∂αE(U(t, x)), α ∈ {1, · · ·,m},

solves

∂tWγ − ∂γE(U) = (t− T )∂2
αγE(U)∂tU

α = −(t− T )∂2
αγE(U)∂βF iα(U)∂iU

β

which is equal, thanks to the structural symmetry property, to

−(t− T )∂2
αβE(U)∂γF iα(U)∂iU

β = −(t− T )∂i(∂αE(U))∂γF iα(U)

= −∂iWα∂γF iα(U).
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Thus, we have obtained

∂tWγ + ∂iWα∂γF iα(U)− ∂γE(U) = 0,

which precisely means that, at each point (t, x), V = U(t, x) satisfies the first order
optimality condition in the definition of G(∂tW (t, x), DW (t, x)) through

G(∂tW (t, x), DW (t, x)) = sup
V ∈W

∂tWγ(t, x)V γ + ∂iWα(t, x)F iα(V )− E(V ).

Meanwhile, the smallness condition tells us, by definition of W , that

∂2
βγE(V )− ∂iWα(t, x)∂2

βγF iα(V )

is a positive definite matrix for all (t, x, V ), which means that, for each fixed (t, x),

V ∈ W → ∂iWα(t, x)F iα(V )− E(V )

is a concave function. So the first order optimality condition we have already ob-
tained for V = U(t, x) is enough to deduce that

G(∂tW,DW ) = ∂tWγU
γ + ∂iWαF iα(U)− E(U).

Thus, integrating on Q = [0, T ]×D, where D = Td, and using that U is solution of
the system of conservation laws, we get∫

Q

G(∂tW,DW ) + E(U) =

∫
Q

∂tWγU
γ + ∂iWαF iα(U) =

=

∫
D

Wγ(T, ·)Uγ(T, ·)−Wγ(0, ·)Uγ(0, ·) =

∫
D

−Wγ(0, ·)U0

since U0 is the initial condition and, by definition, W (T, ·) = 0. By definition, the
optimal value J(U0) of the maximization problem is larger than∫

Q

−G(∂tW,DW )−
∫
D
−Wγ(0, ·)Uγ

0 .

Thus, we have obtained

J(U0) ≥
∫
Q

E(U).

But, by definition, I(U0) is certainly smaller than
∫
Q
E(U) (since U solves the system

of conservation laws) and is also larger than J(U0). (Indeed inf sup ≥ sup inf is
always true.) We conclude that I(U0) = J(U0) which shows that there is no duality
gap and thatW is optimal for the maximization problem. This completes the proof.

The special case of the inviscid Burgers equation

In the very elementary case of the Burgers equation, all entropy solutions (in the
sense of Kruzhkov, see [117] for this concept of solutions) can be recovered, for
arbitrarily large T , but in some unusual way. More precisely
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Theorem 5.5.2. If u is a Kruzhkov solution of the inviscid Burgers equation on
some fixed time interval T with initial condition u0, then the relaxed convex opti-
misation problem enables us to recover not necessarily the Kruzhkov solution itself
but rather the unique solution uT (t, x) of the inviscid Burgers equation enjoying the
following properties:
1) uT and u coincide at the final time T ;
2) uT is shock free up to time t = T (not included).
In general, the initial value of uT differs from u0, unless no shock have formed before
T .

A proof can be found in [71] and will not be reproduced here.

So, our method is able to recover the right Kruzhkov entropy but only at the fi-
nal given time T , as soon as shock have formed before T . This result is also a
new answer to the paradox discussed earlier. Something is left from the degener-
ate space-time ellipticity of the convex minimization problem in the sense that the
smoothest possible solution of the inviscid Burgers equation compatible with the
right final solution is selected, just by substituting for the given initial condition u0

another one, namely uT (0, ·).
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’fort.10’

Inviscid Burgers equation : ∂tu+ ∂x(u
2/2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.

Formation of two shock waves. (Vertical axis: t ∈ [0, 1/4]. horizontal axis: x ∈ T.)
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’fort.19’

Inviscid Burgers equation : ∂tu+ ∂x(u
2/2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.

Recovery of the solution at time T=0.1 by convex optimization.
Observe the formation of a vacuum zone as the first shock has formed.
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Inviscid Burgers equation : ∂tu+ ∂x(u
2/2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.

Recovery of the solution at time T=0.16 by convex optimization.
Observe the formation of a second vacuum zone as the second shock has formed.
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’fort.29’

Inviscid Burgers equation : ∂tu+ ∂x(u
2/2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.

Recovery of the solution at time T=0.225 by convex optimization.
Observe the extension of both vacuum zones.
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Chapter 6

Convex formulations
of first order systems of conservation
laws

6.1 A short review of first order systems of conser-
vation laws

First order systems of conservation laws read:

∂tu+
d∑
i=1

∂xi(Qi(u)) = 0,

or, in short, using the nabla notation,

∂tu+∇ · (Q(u)) = 0,

where u = u(t, x) ∈ Rm depends on t ≥ 0, x ∈ Rd, and · denotes the inner product
in Rd. The Qi (for i = 1, · · ·, d) are given smooth functions from Rm into itself.
The system is called hyperbolic when, for each τ ∈ Rd and each U ∈ Rm, the
m × m matrix

∑
i=1,d τiQ

′
i(U) can be put in diagonal form with real eigenvalues.

There is no general theory to solve globally in time the initial value problem for
such systems of PDEs. (See [36, 117, 212, 244] for a general introduction to the
field.) In general, smooth solutions are known to exist for short times but are
expected to become discontinuous in finite time. Therefore, it is usual to consider
discontinuous weak solutions, satisfying additional "entropy conditions", to adress
the initial value problem. Some special situations are far better understood. First,
for some very special (but nevertheless very important in Physics and Geometry)
systems (enjoying "linear degeneracy" or "null conditions"), smooth solutions may
be global (shock free), at least for "small" initial data (see [181, 196, 254], for
instance). This includes the famous result on the stability of the Minkowski space
in General Realivity by Klainerman and Christodoulou [107]. Next, in one space
dimension d = 1, for a large class of systems, existence and uniqueness of global
weak entropy solutions have been proven Bianchini et Bressan for initial data of
sufficiently small total variation [35]. Still, in one space dimension, for a limited
class of systems (typically for m = 2), existence of global weak entropy solutions
have been obtained for large initial data by "compensated compactness" arguments

107



[258, 126, 199]. Finally, there is a very comprehensive theory in the much simpler
case of a single "scalar" conservation laws, i.e. when m = 1. Kruzhkov [187] showed
that such a scalar conservation law has a unique "entropy solution" u ∈ L∞ for
each given initial condition u0 ∈ L∞. (If the derivative Q′ is further assumed to
be bounded, then we can substitute L1

loc for L∞ in this statement.) An entropy
(or Kruzhkov) solution is an L∞ function that satisfies the following distributional
inequality

∂tC(u) +∇x · (QC(u)) ≤ 0,

for all Lipschitz convex function C : R → R, where the derivative of QC is defined
by (QC)′ = C ′Q′ (the initial condition u0 being prescribed by continuity at t = 0,
in L1

loc, namely:

lim
t→0

∫
B

|u(t, x)− u0(x)|dx = 0,

for all compact subset B of Rd). Beyond their existence and uniqueness, the
Kruzhkov solutions enjoy many interesting properties. Each entropy solution u(t, ·),
with initial condition u0, continuously depends on t ≥ 0 in L1

loc and can be written
T (t)u0, where (T (t), t ≥ 0) is a family of order preserving operators:

T (t)u0 ≥ T (t)ũ0 , ∀t ≥ 0,

whenever u0 ≥ ũ0. Since constants are trivial entropy solutions to a scalar conser-
vation law, it follows that if u0 takes its values in some fixed compact interval, so
does u(t, ·) for all t ≥ 0. Next, two solutions u and ũ, with u0 − ũ0 ∈ L1, are L1

stable with respect to their initial conditions:∫
|u(t, x)− ũ(t, x)|dx ≤

∫
|u0(x)− ũ0(x)|dx,

for all t ≥ 0. As a consequence, the total variation TV (u(t, ·)) of a Kruzhkov solution
u at time t ≥ 0 cannot be larger than the total variation of its initial condition u0.
This easily comes from the translation invariance of the scalar conservation law
and from one of the most classical definitions of the total variation of a function v,
namely:

TV (v) = sup
η∈Rd, η 6=0

∫
|v(x+ η)− v(x)|

|η|
dx,

where | · | denotes the Euclidean norm on both R and Rd. As a matter of fact, the
space L1 plays a key role in Kruzhkov’s theory. Indeed, there is no Lp stability with
respect to initial conditions in any p > 1. Typically, for p > 1, the Sobolev norm
||u(t, ·)||W 1,p of a Kruzhkov solution blows up in finite time. This fact has induced a
great amount of pessimism about the possibility of a unified theory of global solu-
tions for general multidimensional systems of hyperbolic conservation laws. Indeed,
simple linear systems, such as the wave equation (written as a first order system) or
the Maxwell equations, are not well posed in any Lp but for p = 2 [85]. However,
as we are going to see that L2 turns out to be a perfectly suitable space for entropy
solutions to multidimensional scalar conservation laws, provided a different formu-
lation is used, based on a combination of level-set, kinetic and transport-collapse
approximations, in the spirit of previous works by Giga, Miyakawa, Osher, Tsai and
the author [40, 42, 43, 56, 163, 262]. As a matter of fact, this new formulation
is really due to Panov [232] and was just rediscovered, in a different style, by the
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author in [62]. (See [233].) Let us also mention the more recent approach of Serre
and Vasseur where the space L2 can also be used for conservation laws, from a
quite different angle [248]. Finally let us emphasise that this new formulation à la
Panov is entirely convex, and provides a remarkable example of "hidden convexity"
in nonlinear PDEs.

6.2 Panov formulation of scalar conservation laws
The main result

N.B. For notational simplicity, we limit ourself to initial conditions u0 that can be
written as

u0(x) =

∫ 1

0

1{Y0(a, x) < 1/2}da,

for some "level set function" Y0 enjoying the following properties

Y0(x, 0) = 0, Y0(x, 1) = 1, ∂aY0(a, x) > 0.

(As a matter of fact, this way we may recover all u0 with a range compactly sup-
ported in ]0, 1[, and, therefore all u0 in L∞(Td), up to a trivial rescaling of the "flux
function" Q.)
Theorem 6.2.1. Let Y0(a, x) be any L∞ function of x ∈ T d and a ∈ [0, 1] such that

Y0(x, 0) = 0, Y0(x, 1) = 1, ∂aY0(a, x) > 0.

Let, for all y ∈ [0, 1],

u0(x, y) =

∫ 1

0

1{Y0(a, x) < y}da,

Then, the unique Kruzhkov solution to the scalar conservation law

∂tu+∇ · (Q(u)) = 0,

with initial condition u0(x, y) can be written

u(t, x) =

∫ 1

0

1{Y (t, a, x) < y}da,

where Y solves the subdifferential inclusion in L2(T d × [0, 1]):

0 ∈ ∂tY + q(a) · ∇xY + ∂K[Y ],

with q = Q′, K[Y ] = 0 if ∂aY ≥ 0, and K[Y ] = +∞ otherwise.
Let us be more explicit for the definition of this subdifferential inclusion.

Definition 6.2.2. We say that Y is a solution to

0 ∈ ∂tY + q(a) · ∇xY + ∂K[Y ], if :

1) t→ Y (t, ·, ·) ∈ L2(Td × [0, 1]) is continuous and satisfies ∂aY ≥ 0,
2) Y satisfies, in the sense of distribution,

1

2

d

dt

∫
Td×[0,1]

|Y − Z|2(t, a, x)dadx

+

∫
Td×[0,1]

(Y − Z)(t, a, x)(∂tZ + q(a) · ∇xZ)(t, a, x)dadx ≤ 0,

for each smooth function Z(t, a, x) such that ∂aZ ≥ 0.
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Remark

As shown by Perepelitsa in [233], Y → F ′(a) · ∇xY + ∂Φ[Y ] actually is a maximal
monotone in the classical sense of [89] and generates a semi-group of contractions
in L2 . It is rather astonishing that scalar conservation laws can be reduced to the
rather conventional theory of maximal monotone operators in L2. Indeed, in the
80s, scalar conservation laws were frequently presented as one of the most striking
applications of the more advanced theory or maximal operators...in L1!

Idea of the proof

We follow the presentation of [62] rather than the earlier work of Panov [232]. (We
refer to [233] for a more detailed comparison of [232] and [62].)
The main idea is to consider, instead of a single initial condition u0(x) for the scalar
conservation law

∂tu+∇ · (Q(u)) = 0,

a one-parameter family of initial conditions u0(x, y). We make the crucial assump-
tion that this family is monotonically increasing with respect to the parameter y, By
the standard comparison principle for scalar conservation laws, the corresponding
Kruzhkov solutions u(t, x, y) are also monotone with respect to y. Assume, for a
while, that u(t, x, y) is a priori smooth and strictly increasing in y. Thus, we can
write

u(t, x, Y (t, a, x)) = a, Y (t, u(t, x, y)) = y

where Y (t, a, x) is smooth and strictly increasing in a ∈ [0, 1]. Then, a straightfor-
ward calculation shows that Y must solve the simple linear equation

∂tY + q(a) · ∇xY = 0

(which admits Y (t, a, x) = Y (t = 0, x − tq(a), a) as exact solution). This is just a
rephrasing of the celebrated "method of characteristics". Unfortunately, this linear
equation is not able to preserve the monotonicity condition ∂aY ≥ 0 in the large.
However, by properly correcting it, namely by adding the subdifferential term ∂K,
it is possible to enforce ∂aY ≥ 0, and, this way, to recover the correct Kruzhkov
entropy solutions. More precisely, as Y solves the subdifferential inclusion stated
above, then

u(t, x, y) =

∫ 1

0

1{Y (t, a, x) < y}da

will be shown to be, for each fixed value y, the right entropy solution with initial
conditions x→ u0(x, y).
Observe that this approach is strongly related to both the kinetic formulation and
the level set method for scalar conservation laws. Let us recall that the kinetic ap-
proach amounts to lift a non-linear scalar conservation law by averaging out a linear
advection equation involving a hidden extra variable. This idea (that has obvious
roots in the kinetic theory of Maxwell and Boltzmann) was introduced for scalar
conservation laws in parallel by Giga-Miyakawa and the author [40, 42, 43, 163].
Its time continuous counter-part is nothing but the celebrated "kinetic formulation"
of Lions, Perthame and Tadmor [200] which, with the crucial help of the so-called
"averaging lemma" [167], provided the first regularity results (in suitable fractional
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Sobolev spaces) for multidimensional scalar conservation laws, (under suitable non-
linearity conditions). Concerning the "level set method", its application to scalar
conservation laws by Tsai, Giga and Osher [262] can be interpreted as a parabolic
approximation of our subdifferential inclusion, as will be discussed below.

Elements of a proof

We follow the constructive proof of [62] based on the analysis of the time-discrete
scheme known as the "transport-collapse method" [43]. We will show that, as the
time step goes to zero, the approximate solutions we are going to construct both
converge to solutions in the Kruzhkov sense and solutions in the subdifferential
sense. We assume that Y0(a, x) ∈ [0, 1] (which is consistent with the statement of
Theorem 6.2.1). We fix a time step h > 0 and approximate Y (nh, a, x) by Yn(a, x),
for each positive integer n. To get Yn from Yn−1, we perform two steps, making the
following induction assumptions:

∂aYn−1 ≥ 0, Yn−1 ∈ [0, 1],

which are consistent with our assumptions on Y0.

Predictor step

The first "predictor" step amounts to solve the linear equation

∂tY + q(a) · ∇xY = 0,

for nh − h < t < nh, with Yn−1 as initial condition at t = nh − h. We exactly get
at time t = nh the predicted value:

Y ∗n (a, x) = Yn−1(a, x− h q(a))

Thanks to the induction assumption, we still have Y ∗n ∈ [0, 1], however, although
∂aYn−1 is nonnegative, the same may not be true for ∂aY ∗n . This is why, we need a
"corrector step".

Corrector step

In the second step, we ’rearrange’ Y ∗ in increasing order with respect to a ∈ [0, 1],
for each fixed x, and get the corrected function Yn. Let us recall some elementary
facts about rearrangements:

Lemma 6.2.3. Let: a ∈ [0, 1]→ X(a) ∈ R an L∞ function. Then, there is unique
L∞ function Y : [0, 1]→ R, such that Y ′ ≥ 0 and:∫ 1

0

H(y − Y (a))da =

∫ 1

0

H(y −X(a))da, ∀y ∈ R.

We say that Y is the rearrangement of X. In addition, for all Z ∈ L∞ such that
Z ′ ≥ 0, the following rearrangement inequality:∫ 1

0

|Y (a)− Z(a)|pda ≤
∫ 1

0

|X(a)− Z(a)|pda.

holds true for all p ≥ 1.
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So, we define Yn(a, x) to be, for each fixed x, the rearrangement of Y ∗n (a, x) in
a ∈ [0, 1]:

∂aYn ≥ 0,

∫ 1

0

H(y − Yn(a, x))da =

∫ 1

0

H(y − Y ∗n (a, x))da, ∀y ∈ R.

Equivalently, we may define the auxiliary function:

un(x, y) =

∫ 1

0

H(y − Y ∗n (a, x))da, ∀y ∈ R,

i.e.

un(x, y) =

∫ 1

0

H(y − h Yn−1(a, x− h q(a)))da,

and set:
Yn(a, x) =

∫ ∞
0

H(a− un(x, y))dy.

At this point, Yn is entirely determined by Yn−1. Notice that, from the very definition
of the rearrangement step, un, by definition, can be equivalently written:

un(x, y) =

∫ 1

0

H(y − Yn(a, x))da.

Also notice that, for all function Z(a, x) such that ∂aZ ≥ 0, and all p ≥ 1:∫
|Yn(a, x)− Z(a, x)|pdadx ≤

∫
|Y ∗n (a, x)− Z(a, x)|pdadx

follows from the rearrangement inequality. Finally, we see that ∂aYn ≥ 0 is automat-
ically satisfied (this was the purpose of the rearrangement step) as well as Yn ∈ [0, 1]
(since the convex hull of the range of Y ∗n has been preserved by the rearrangement
step). So, the induction assumption is enforced at step n and the scheme is well
defined.

Remark

Observe that, for any fixed x, un(x, y), as a function of y, is the (generalized) inverse
of Yn(a, x), viewed as a function of a, in the sense of Lemma 6.2.3. Also notice that
the level sets {(a, y); y ≥ Yn(a, x)} and {(a, y); a ≤ un(x, y)} coincide.

The transport-collapse scheme revisited

The time-discrete scheme can be entirely recast in terms of the auxiliary function
un defined as above. Indeed, introducing

jun(x, y, a) = H(un(x, y)− a),

we can rewrite the "predictor-corrector" steps in terms of un and jun as simply as:

un(x, y) =

∫ 1

0

jun−1(x− h q(a), y, a)da,

which exactly define the "transport-collapse" (TC) approximation to the scalar con-
servation law, or, equivalently, its "kinetic" approximation, according to [40, 42, 43,
163].
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Convergence to the Kruzhkov solution

We are now going to prove that, on one hand, Yn(a, x) converges to Y (t, a, x) as
nh→ t, and, on the other hand, un(x, y) converges to u(t, x, y), where Y and u are
respectively the unique solution to the subdifferential inclusion

0 ∈ ∂tY + q(a) · ∇xY + ∂K[Y ],

with initial condition Y0(a, x) and the unique Kruzhkov solution to the scalar con-
servaton law with initial condition (where y is just a parameter)

u0(x, y) =

∫ 1

0

H(y − Y0(a, x))da. (6.2.1)

We take for granted the convergence analysis of the TC method [40, 42, 43, 163]
and obtain that, as nh→ t,∫

|un(x, y)− u(t, x, y)|dydx→ 0,

where u is the unique Kruzhkov solution with initial value u0. More precisely,
if we extend the time discrete approximations un(x, y) to all t ∈ [0, T ] by linear
interpolation in time:

uh(t, x, y) = un+1(x, y)
t− nh
h

+ un(x, y)
nh+ h− t

h
,

then uh − u converges to 0 in the space C0([0, T ], L1(R × Td)) as h → 0. It is now
natural to introduce the level-set function Y defined from the Kruzhkov solution by

Y (t, a, x) =

∫ ∞
0

H(a− u(t, x, y))dy.

(Notice that, at this point, we do not know that Y is a solution to the subdifferential
inclusion.) Let us interpolate the Yn by

Y h(t, a, x) = Yn+1(a, x)
t− nh
h

+ Yn(a, x)
nh+ h− t

h
,

for all t ∈ [nh, nh+ h] and n ≥ 0. Next, we crucially use the "co-area formula" (or
in other words Lebesgue’s "horizontal" integration by level sets) to get∫

|Y (t, a, x)− Yn(a, x)|dadx =

∫
|u(t, x, y)− un(x, y)|dydx.

Thus:
sup
t∈[0,T ]

||Y (t, ·)− Y h(t, ·)||L1 ≤ sup
t∈[0,T ]

||u(t, ·)− uh(t, ·)||L1 → 0,

and we conclude that the approximate solution Y h must converge to Y in
C0([0, T ], L1([0, 1]×Td)) as h→ 0. Notice that, since the Y h are uniformly bounded
in L∞, the convergence also holds true in C0([0, T ], L2([0, 1]× Td)).

We are finally left with proving that Y is the solution to the subdifferential
inclusion with initial condition Y0 in the sense of Definition 6.2.2.
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Consistency of the transport-collapse scheme

Let us check that the TC scheme is consistent with the subdifferential formulation
in the precise sense of Definition 6.2.2. For each smooth function Z(t, a, x) with
∂aZ ≥ 0 and p ≥ 1, we have∫

|Yn+1(a, x)− Z(nh+ h, a, x)|pdadx

≤
∫
|Y ∗n+1(a, x)− Z(nh+ h, a, x)|pdadx

(because of the rearrangement step, which is non expansive in any Lp)

=

∫
|Yn(a, x− h q(a))− Z(nh+ h, a, x)|pdadx

(by definition of the predictor step)

=

∫
|Yn(a, x)− Z(nh+ h, a, x+ h q(a))|pdadx

=

∫
|Yn − Z(nh, ·)|pdadx+ h Γ + o(h)

where:

Γ = p

∫
(Yn − Z(nh, ·))|Yn − Z(nh, ·)|p−2{−∂tZ(nh, ·)− q · ∇xZ(nh, ·)}dadx

(by Taylor expanding Z about (nh, a, x)). Since the approximate solution provided
by the TC scheme has a unique limit Y , as shown in the previous section, this limit
must satisfy:

d

dt

∫
|Y − Z|pdadx ≤ p

∫
(Y − Z)|Y − Z|p−2(−∂tZ − q(a) · ∇xZ)dadx,

in the distributional sense in t. In particular, for p = 2, we exactly recover the dif-
ferential inequality of Definition 6.2.2. We conclude that the approximate solutions
generated by the TCM scheme do converge to the solutions of the subdifferential
inclusion in the sense of Definition 6.2.2, which completes the proof of Theorem
6.2.1.

Viscous approximations

A natural regularization for our subdifferential inclusion amounts to substituting a
barrier function for the convex cone K in L2([0, 1]×Td) of all functions Y such that
∂aY ≥ 0. Typically, we introduce a convex function φ : R →] −∞,+∞] such that
φ(τ) = +∞ if τ < 0, we define, for all Y ∈ K,

Φ[Y ] =

∫
φ(∂aY )dadx,

and set Φ[Y ] = +∞ if Y does not belong to K. Typical examples are:

φ(τ) = − log(τ), φ(τ) = τ log(τ), φ(τ) =
1

τ
, ∀τ > 0.
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Then, we considered the perturbed subdifferential inclusion

0 ∈ ∂tY + q(a) · ∇xY − q0(a) + ε∂Φ[Y ],

for ε > 0. The general theory of maximal monotone operators guarantees the
convergence of the corresponding solutions as ε → 0. It is not difficult (at least
formally) to identify the corresponding perturbation to our scalar conservation

∂tu+∇ · (Q(u) = 0.

Indeed, assuming φ(τ) to be smooth for τ > 0, we get, for each smooth function Y
such that ∂aY > 0:

∂Φ(Y ) = −∂a(φ′(∂aY )).

Thus, any smooth solution Y of the perturbed subdifferential inclusion satisfying
∂aY > 0, solves the following parabolic equation:

∂tY + q(a) · ∇xY = ε∂a(φ
′(∂aY )).

Introducing, the function u(t, x, y) implicitely defined by

u(t, Y (t, a, x), x) = a,

we get (by differentiating with respect to a, t and x):

(∂yu)(t, Y (t, a, x), x)∂aY (t, a, x) = 1,

(∂tu)(t, x, y) + (∂yu)(t, x, y)∂tY = 0,

(∇xu)(t, x, y) + (∂yu)(t, x, y)∇xY = 0.

Then, we get

−∂tu− q(u) · ∇xu− q0(u)∂yu = ε∂y(φ
′(

1

∂yu
)).

In particular, in the case φ(τ) = − log τ , we obtain

∂tu+ q(u) · ∇xu = ε∂2
yyu,

with viscosity only in the y variable. This includes viscous effects not on the space
variable x but rather on the "level-set parameter" y ∈ R. This unusual type of regu-
larization has already been used and analyzed in the level-set framework developped
by Giga, Giga, Osher and Tsai for scalar conservation laws [162, 262].

Related equations

A similar method can be applied to some special systems of conservation laws.
A typical example (which was crucial for our understanding) is the ’Born-Infeld-
Chaplygin’ system considered in [56], and the related concept of ’order-preserving
strings’. This system reads:

∂t(hv) + ∂y(hv
2 − hb2)− ∂x(hb) = 0,

∂th+ ∂y(hv) = 0, ∂t(hb)− ∂x(hv) = 0,
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where h, b, v are real valued functions of time t and two space variables x, y. In [56]
this system is related to the following subdifferential system:

0 ∈ ∂tY − ∂xW + ∂K[Y ], ∂tW = ∂xY,

where (Y,W ) are real valued functions of (t, a, x) andK[Y ] is stillO or +∞ according
to whether ∂aY ≥ 0 is true or not. The (formal) correspondence between is obtained
by setting:

h(t, x, Y (t, a, x))∂aY (t, a, x) = 1,

v(t, x, Y (t, a, x)) = ∂tY (t, a, x), b(t, x, Y (t, a, x)) = ∂xY (t, a, x).

Unfortunately, this system is very special (its smooth solutions are easily integrable).
In our opinion, it is very unlikely that L2 formulations can be found for general
hyperbolic conservation laws as easily as in the multidimensional scalar case.

More details on the subdifferential inclusion

Let us examine few additional properties of the subdifferential inclusion

0 ∈ ∂tY + q(a) · ∇xY + ∂K[Y ],

obtained from the "transport-collapse" approximation scheme. First, we observe
that, in the TC scheme,
1) the predictor step (a translation in the x variable by h q(a) is isometric in all Lp
spaces,
2) the corrector step (an increasing rearrangement in the a variable) is non-expansive
in all Lp.
Thus the scheme is non-expansive in all Lp([0, 1]× Td)
Since the scheme is also invariant under translations in the x variable, we get the
following a priori estimate:

||∇xYn||Lp ≤ ||∇xY0||Lp .

Moreover, if we compare two solutions of the scheme Yn and Ỹn = Yn+1 obtained
with initial condition Ỹ0 = Y1, we deduce:∫

|Yn+1(a, x)− Yn(a, x)|pdadx ≤
∫
|Y1(a, x)− Y0(a, x)|pdadx

≤
∫
|Y ∗1 (a, x)− Y0(a, x)|pdadx =

∫
|Y0(a, x− h q(a))− Y0(a, x)|pdadx.

So we get a second a priori estimate:

||Yn+1 − Yn||Lp ≤ ||q||L∞||∇xY0||Lph.

We conclude that the solutions Y to the subdifferential inclusion obtained from the
TC scheme satisfy the a priori bounds:

||∇xY (t, ·)||Lp ≤ ||∇xY0||Lp ,

||∂tY (t, ·)||Lp ≤ ||q0||Lp + ||q||L∞||∇xY0||Lp .
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Lp and Monge-Kantorovich stability properties

As just mentioned, the solutions of the subdifferential inclusion enjoy the Lp stability
property with respect to their initial conditions, not only for p = 2 but also for all
p ≥ 1. The case p = 1 is of particular interest. Indeed, let us consider two solutions
Y and Ỹ of of the subdifferential inclusion and the corresponding Kruzhkov solutions
u and ũ, as in the proof of Theorem 6.2.1. Using the co-area formula we find, for
all t ≥ 0, ∫

R

∫
Td
|u(t, x, y)− ũ(t, x, y)|dxdy =

=

∫ 1

0

∫
R

∫
Td
|H(u(t, x, y)− a)−H(ũ(t, x, y)− a)|dadxdy

=

∫ 1

0

∫
R

∫
Td
|H(y − Y (t, a, x))−H(y − Ỹ (t, a, x))|dadxdy

=

∫ 1

0

∫
Td
|Y (t, a, x)− Ỹ (t, a, x)|dxda ≤

∫ 1

0

∫
Td
|Y0(a, x)− Ỹ0(a, x)|dxda

=

∫
R

∫
Td
|u0(x, y)− ũ0(x, y)|dxdy.

Thus, Kruzhkov’s L1 stability property is nothing but a very incomplete output of
the much stronger Lp stability property enjoyed by the subdifferential inclusion!

As a matter of fact, it is possible to translate the Lp stability of the level set
function Y in terms of the Kruzhkov solution u by using Monge-Kantorovich (MK)
distances. Let us first recall that for two probability measures µ and ν compactly
supported on RD, their p MK distance can be defined (see [265] for instance), for
p ≥ 1, by:

δpp(µ, ν) = sup

∫
φ(x)dµ(x) +

∫
ψ(y)dν(y),

where the supremum is taken over all pair of continuous functions φ and ψ such
that:

φ(x) + ψ(y) ≤ |x− y|p, ∀x, y ∈ RD.

In dimension D = 1, this definition reduces to:

δp(µ, ν) = ||Y − Z||Lp ,

where Y and Z are respectively the "generalized inverse" of u and v defined on R
by:

u(y) = µ([−∞, y]), v(y) = ν([−∞, y]), ∀y ∈ R.

Next, observe that, for each x ∈ Td, the y derivative of the Kruzhkov solution
u(t, x, y), can be seen as a probability measure compactly supported on R. (Indeed,
∂yu ≥ 0, u = 0 near y = −∞ and u = 1 near y = +∞.) Then, the Lp stability
property simply reads:∫

Td
δpp(∂yu(t, ·, x), ∂yũ(t, ·, x))dx ≤

∫
Td
δpp(∂yu0(·, x), ∂yũ0(·, x))dx.

Let us refer to [37] and [97] for recent occurences of MK distances in the field of
scalar conservation laws.
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Uniqueness theory

Let us consider a solution Y to the subdifferential inclusion in the sense of Definition
6.2.2. By definition Y (t, ·) depends continuously of t ∈ [0, T ] in L2. From definition
(6.2.2), using Z = 0 as a test function, we see that:

d

dt
||Y (t, ·)||2L2 ≤ 2

∫
Y (t, a, x)q0(a) dadx ≤ ||Y (t, ·)||2L2 + ||q||2L2 ,

which implies that the L2 norm Y (t, ·) stays uniformly bounded on any finite interval
[0, T ]. Thus, T > 0 being fixed, we can mollify Y and get, for each ε ∈]0, 1] a smooth
function Yε(t, a, x), still increasing in a, so that:

sup
t∈[0,T ]

||Y (t, ·)− Yε(t, ·)||L2 ≤ ε.

Let us now consider an initial condition Z0 such that ∇xZ0 belongs to L2. We
know that there exist a solution Z to the subdifferential inclusion, still in the sense
of Definition 6.2.2. obtained by TC approximation, for which both ∂tZ(t, ·) and
∇xZ(t, ·) stay uniformly bounded in L2 for all t ∈ [0, T ]. This function Z has
enough regularity to be used as a test function when expressing that Y is a solution
in the sense of Definition 6.2.2. So, for each smooth nonnegative function θ(t),
compactly supported in ]0, T [, we get from Definition 6.2.2∫

{θ′(t)|Y − Z|2 + 2θ(t)(Y − Z)(q0(a)− ∂tZ − q(a) · ∇xZ)}dadxdt ≥ 0.

Substituting Yε for Y , we get∫
{θ′(t)|Yε − Z|2 + 2θ(t)(Yε − Z)(q0(a)− ∂tZ − q(a) · ∇xZ)}dadxdt ≥ −Cε,

where C is a constant depending on θ, Z, q0 and q only. Since Z is also a solution,
using Yε as a test function, we get from Definition 6.2.2:∫

{θ′(t)|Z − Yε|2 + 2θ(t)(Z − Yε)(q0(a)− ∂tYε − q(a) · ∇xYε)}dadxdt ≥ 0.

Adding up these two inequalities, we deduce:∫
{2θ′(t)|Yε − Z|2 + 2θ(t)(Yε − Z)(∂t(Yε − Z) + q(a) · ∇x(Yε − Z))}dadxdt ≥ −Cε.

Integrating by part in t ∈ [0, T ] and x ∈ Td, we simply get:∫
θ′(t)|Yε − Z|2dadxdt ≥ −Cε.

Letting ε→ 0, we deduce:

d

dt

∫
|Y − Z|2dadx ≤ 0.

We conclude, at this point, that:

||Y (t, ·)− Z(t, ·)||L2 ≤ ||Y0 − Z0||L2 , ∀t ∈ [0, T ]
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This immediately implies the uniqueness of Y . Indeed, any other solution Ỹ with
initial condition Y0 must also satisfy:

||Ỹ (t, ·)− Z(t, ·)||L2 ≤ ||Y0 − Z0||L2 .

Thus, by the triangle inequality:

||Ỹ (t, ·)− Y (t, ·)||L2 ≤ 2||Y0 − Z0||L2 .

Since Z0 is any function such that ∇xZ0 belongs to L2, we can make ||Y0 − Z0||L2

arbitrarily small and conclude that Ỹ = Y , which completes the proof of uniqueness.

6.3 Entropic systems of conservation law
We consider general systems of conservative laws of form:

∂tU
α + ∂i(F iα(U)) = 0, α = 1, · · ·,m,

(with implicit summation on repeated indices) where U = U(t, x) ∈ W ⊂ Rm, t ≥ 0,
x ∈ Rd, ∂t = ∂

∂t
, ∂i = ∂

∂xi
,W is a smooth convex subset of Rm and the "flux function"

F :W → Rd×m is smooth with some suitable control near ∂W . Once again, we can
go back to Euler to start the theory, with his equations of compressible fluids which
read, in the isothermal case,

∂tρ+∇ · q = 0, ∂tq +∇ · (q ⊗ q
ρ

) +∇ρ = 0

(ρ > 0 and q ∈ Rd respectively denoting the density and the momentum of the
fluid), which fits to the general framework by setting

U = (ρ, q) ∈ W =]0,+∞[×Rd, F(U) = (q,
q ⊗ q
ρ

+ ρ Id).

From now on, we limit ourself to the subclass of "entropic system of conservation
laws" (ESCL):

Definition 6.3.1. We call ESCL a system of conservation laws for which the flux
function F satisfies the additional symmetry condition

∀i ∈ {1, · · ·, n}, ∀β, γ ∈ {1, · · ·,m}, ∂2
αβE∂γF iα = ∂2

αγE∂βF iα,

for some smooth function, called "entropy" E :W → R, strictly convex in the sense
that the symmetric matrix (∂2

αβE) is everywhere definite positive on W.

This property looks strange, at first glance, but is essentially equivalent to the
"conservation of entropy" in the sense that every C1 solution of the ESCL satisfies
the additional conservation law

∂t(E(U)) + ∂i(Qi(U)) = 0,

where the "entropy flux function" Q :W → Rd can be explicitly computed from F
and E .

119



[Indeed, the symmetry condition with respect to E is equivalent to

∂γ(∂αE∂βF iα) = ∂β(∂αE∂γF iα),

which means that ∂αE∂βF iα is the gradient of some function Qi : W → R, i.e.
∂αE∂βF iα = ∂βQ

i. Therefore, for any solution U of class C1,

−∂t(E(U)) = ∂αE(U)∂i(F iα(U)) = ∂αE(U)∂βF iα(U)∂iU
β

= ∂βQi(U)∂iU
β = ∂i(Qi(U)),

which implies the conservation of entropy.]
The class of ESCL contains many examples from Continuum Mechanics, Physics
and Geometry (Euler equations of compressible fluids, Elastodynamics, Electromag-
netism, Magneto-Hydrodynamics, Extremal surfaces in Lorentzian spaces, etc...) Of
course the simplest nonlinear example of ESCL is the Burgers equation (without vis-
cosity)

∂tu+ ∂x(
u2

2
) = 0, u ∈ R,

where F(u) = u2/2 and for which a possible choice of entropy is E(u) = u2/2, with
Q(u) = u3/3.

More general is the class of scalar conservation laws when m = 1, W = R, for
which the symmetry condition is trivially satisfied and any convex function E can
play the role of an entropy. We have already seen that this subclass enjoys a "hidden
convexity" property, through the Panov formulation, as discussed in section 6.2.1.

The example of Euler’s equations is richer. For instance, in the isothermal case,
we find as a strictly convex entropy

E(U) =
|q|2

2ρ
+ ρ(log ρ− 1), U = (ρ, q).

Few results on the ESCL

In order to get general results without too much technicalities in our proofs, we
make some simplifying assumptions, which are not necessarily satisfied by our basic
examples (inviscid Burgers and Euler equations). So, we assume:
i) W = Rm;
ii) all derivatives of F are bounded;
iii) there is a constant r ∈]0, 1] such that, for all points in W = Rm, the spectrum
of matrix ∂2

αβE is contained in [r, 1/r],
and we consider only solutions U = U(t, x) that are Zd−periodic in x (in other
words, x ∈ Td = (R/Z)d).
A first structural property is the possibility of writing any ESCL in symmetric form.

Theorem 6.3.2. For any solution U = U(t, x) of class C1 on [0, T ]×Td, the ESCL
can be written in non-conservative form

A0
αβ(t, x)∂tU

β(t, x) + Ajαγ(t, x)∂jU
γ(t, x) = 0,

where A0, Aj, j = 1, · · ·m, are fields of symmetric m×m matrices, A0 being definite
positive.
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This "symmetric" writing is important because it leads to a local existence and
uniqueness result:

Theorem 6.3.3. For any initial condition U0 in Hs(Td), with s− d/2 > 1, there is
a time T > 0 (depending on U0) and a unique solution U = U(t, x), of class Hs, to
the ESCL with initial condition U0: U(0, ·) = U0.

Observe that the exponent s− d/2 > 1 corresponds to the continuous injection
of the Sobolev space Hs(Td) in C1(Td). Next, we address the link between classical
and weak solutions.

Definition 6.3.4. We call weak solution of the ESCL with initial condition U0, on
a given time interval [0, T ], any function U ∈ L2([0, T ]× Td;Rm) such that∫

[0,T ]×Td
∂tWαU

α + ∂iWαF iα(U) +

∫
Td
Wα(0, ·)Uα

0 = 0,

for all smooth function (t, x) ∈ [0, T ] × Td → W = W (t, x) ∈ Rm, such that
W (T, ·) = 0.

(The choice of Lp with p = 2 is not essential and just related to the simplifying
assumptions we have made. For concrete applications, p is subject to change.)

Theorem 6.3.5. Let U be a solution of the ESCL, de classe C1 on [0, T ]×Td with
initial condition U0. Then, U is the unique weak solution with initial condition U0,
such that ∫

Td
E(U(t, x))dx ≤

∫
Td
E(U0(x))dx,

for a.e. t ∈ [0, T ].

In this statement, called "strong-weak uniqueness", the condition that the en-
tropy of the weak solution is always bounded from above by the entropy of the initial
condition plays a crucial role.

(As a matter of fact, the method of "convex integration" applied by De Lellis,
Székelyhidi and their co-authors to several ESCL of importance, show they are an
infinite number of weak solutions for generic initial data!)

Proof of Theorem 6.3.2

Let U be solution of the ESCL, of class C1 on [0, T ]× Td. Since we have

∂t(E,α(U)) = E,αβ(U)∂tU
β = E,αβ(U)F jβ,γ (U)∂jU

γ

(where partial derivatives are temporarily denoted by comma), it is enough to set

A0
αβ(t, x) = E,αβ(U(t, x))

Ajαγ(t, x) = E,αβ(U(t, x))F jβ,γ (U(t, x))

= E,γβ(U(t, x))F jβ,α (U(t, x))

(because of the symmetry condition that characterizes the ESCL, on top of the
convexity of E). This completes the proof.
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Elements of proof for Theorem 6.3.3

This result is standard in the field of conservation laws [117, 212]. The starting
point is a stability result in the space L2(Td), and more generally in Sobolev spaces
Hs(Td), of the linear system with variable coefficients:

A0
αβ(t, x)∂tU

β(t, x) + Ajαγ(t, x)∂jU
γ(t, x) = Mαγ(t, x)Uγ(t, x)

where the M , A0, Aj, j = 1, · · ·m, are given fields of m ×m symmetric matrices,
definite positive in the case of the A0. Once this result is established, the nonlinear
system where the Ak depend on U , via:

A0
αβ(t, x) = E,αβ(U(t, x))

Ajαγ(t, x) = E,γβ(U(t, x))F jβ,α (U(t, x)),

can be analyzed by some fixed-point argument de point fixe, through a careful control
of the various nonlinearities by the C1(Td) norm of U , which, itself, can be controled
by the Sobolev Hs(Td) norm of U , as soon as s− d/2 >. The complete proof is too
technical to be reproduced here and we limit ourself to a sketch of proof of the L2

stability of the linear system with variable coefficients mentioned above.

Proposition 6.3.6. Assume that there exist constants r ∈]0, 1] and κ ∈ R such
that, at each point (t, x), the symmetric matrices A0 and

C = ∂tA
0 − ∂jAj +M +MT

have their spectrum uniformly contained respectively in [r, 1/r] and ]−∞, κ]. Then
the linear system

A0
αβ(t, x)∂tU

β(t, x) + Ajαγ(t, x)∂jU
γ(t, x) = Mαγ(t, x)Uγ(t, x)

is L2(Td) stable:

||U(t, ·)||L2(Td) ≤ ||U(s, ·)||L2(Td) exp(κ|t− s|)/r2, ∀t, s ∈ R.

By multiplying the linear system by Uα, we get

∂t
(
UαA0

αβU
β
)
− ∂j

(
UαAjαβU

β
)

= UαCαβU
β.

Thus, by integrating in x ∈ Td, we obtain
d

dt

∫
Td
UαA0

αβU
β =

∫
Td
UαCαβU

β.

By assumption, we deduce

| d
dt

∫
Td
UαA0

αβU
β| ≤ κ/r

∫
Td
UαA0

αβU
β

and, therefore,∫
Td
Uα(t, ·)A0

αβ(t, ·)Uβ(t, ·) ≤ exp(κ|t− s|/r)
∫
Td
Uα(s, ·)A0

αβ(s, ·)Uβ(s, ·).

Finally:

||U(t, ·)||L2(Td) ≤ ||U(s, ·)||L2(Td) exp(κ|t− s|/r)/r2, ∀t, s ∈ R.

N.B. With additional work, one get similar estimates for all Hs norm for s ∈ N
and, once s − d/2 > 1, we may control the C1 norm of U (which is crucial for the
fixed-point argument, when addressing nonlinear systems).
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Proof of Theorem 6.3.5

Let (t, x) ∈ [0, T ]×Td → U(t, x) ∈ Rm be a weak solution of the ESCL in the sense
of Definition 6.3.4 and let (t, x) ∈ [0, T ]×Td → V (t, x) ∈ Rm be a smooth function.
Let us introduce

η(u, v) = E(u)− E(v)− E ,α (v)(uα − vα) ∀u, v ∈ Rm,

ζ iα(u, v) = F iα(u)−F iα(v)−F iα,γ (v)(uγ−vγ) ∀u, v ∈ Rm, i ∈ {1, ···, d}, α ∈ {1, ···,m}.

From the assumptions made on E and F , we easily get

r|u− v|2 ≤ η(u, v) ≤ |u− v|2/r, |ζ(u, v)| ≤ Cη(u, v)

(where C is a constant depending on the sup norm of the second derivatives of F),
so that ∫

Td
η(U(t, x), V (t, x))dx

controls
||U(t, ·)− V (t, ·)||2L2 .

Let us perform the following calculations in the sense of distributions on ]0, T [×Td,
∂t(η(U, V )), et, pour commencer,

∂t (E(V ) + E ,α (V )(Uα − V α))

= E,α(V )∂tV
α + E,αβ(V )∂tV

β(Uα − V α) + E,α(V )(−∂i(F iα(U))− ∂tV α)

(using that U is a weak solution which gives a rigorous meaning to E,α(V )∂i(F iα(U))
in the sense of distributions)

= E,αβ(V )(Rβ[V ]−F iβ,γ (V )∂iV
γ)(Uα − V α)

−∂i(E,α(V )F iα(U)) + E,αγ(V )∂iV
γF iα(U)

[where we have introduced the "redisual"

Rβ[V ] = ∂tV
β + ∂i(F iβ(V )) = ∂tV

β + F iβ,γ (V )∂iV
γ

which makes V → R[V ] a nonlinear operator which vanishes as soon as V is a C1

solution of the ESCL, which will be used a little later]

= E,αβ(V )(Uα − V α)Rβ[V ]− E,γβ(V )F iβ,α (V )∂iV
γ(Uα − V α)

−∂i(E,α(V )F iα(U)) + E,βγ(V )∂iV
γF iβ(U)

(where we have crucially used the symmetry property of F with respect to E and
also replaced mute index α by β in the very last term)

= E,αβ(V )(Uα − V α)Rβ[V ] + E,γβ(V )∂iV
γ(ζ iβ(U, V ) + F iβ(V ))− ∂i(E,α(V )F iα(U))

(where we have used the definition of ζ). Note that, by definition of Q,

E,γβ(V )∂iV
γF iβ(V ) = ∂i

(
E,β(V )F iβ(V )

)
−F iβ,γ (V )E,β(V )∂iV

γ

= ∂i
(
E,β(V )F iβ(V )−Qi(V )

)
.
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So, we have obtained, still in the sense of distributions on ]0, T [×Td,

∂t (E(V ) + E ,α (V )(Uα − V α))

= E,αβ(V )(Uα − V α)Rβ[V ] + E,γβ(V )∂iV
γζ iβ(U, V )− ∂i

(
Qi(V )

)
.

Since U is a weak solution in the sense of definition 6.3.4, one can write this equation
in integral form while incorporating the initial condition U0. By doing so, we get
for every test function ψ(t, x) = χ(t)⊗ 1 with χ ∈ C∞(R) supported in ]−∞, T [,

−
∫ T

0

χ′(t)

∫
Td

(E(V ) + E ,α (V )(Uα − V α)) (t, x)dxdt

−χ(0)

∫
Td

(E(V (0, x)) + E ,α (V (0, x))(Uα
0 (x)− V α(0, x))) dx

=

∫ T

0

χ(t)

∫
Td

(
E,αβ(V )(Uα − V α)Rβ[V ] + E,γβ(V )∂iV

γζ iβ(U, V )
)

(t, x)dxdt.

At this stage, we incorporate the term E(U) in the left-hand side in order to exhibit
faire apparaıitre à gauche le terme

η(U, V ) = E(U)− E(V )− E ,α (V )(Uα − V α).

We find (after changing all signs)

−
∫ T

0

χ′(t)

∫
Td
η(U, V )(t, x)dxdt = −

∫ T

0

χ′(t)

∫
Td
E(U)(t, x)dxdt

−χ(0)

∫
Td
η(U0(x), V (0, x))dx+ χ(0)

∫
Td
E(U0(x))dx

−
∫ T

0

χ(t)

∫
Td
E,αβ(V )(Uα − V α)Rβ[V ](t, x)dxdt

−
∫ T

0

χ(t)

∫
Td
E,γβ(V )∂iV

γζ iβ(U, V )(t, x)dxdt.

Using the assumptions made on E and F , and assuming now on that χ ≥ 0, we
easily dominate the very last term by

c

∫ T

0

χ(t)λ(t)

∫
Td
η(U, V )(t, x)dxdt,

where we denote by λ(t) the Lipschitz constant in x ∈ Td of V (t, ·) and by c a
generic constant depending only on functions E et F . Denoting temporarily

θ(t) =

∫
Td
η(U, V )(t, x)dx, h(t) =

∫
Td
E(U(t, x))dx,

θ0 =

∫
Td
η(U0(x), V (0, x))dx, h0 =

∫
Td
E(U0(x))dx,

ρ(t) =

∫
Td

(
E,αβ(V )(Uα − V α)Rβ[V ]

)
(t, x)dx
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we have so obtained

−
∫ T

0

χ′(t)θ(t)dt ≤ −
∫ T

0

χ′(t)h(t)dt+χ(0)(θ0−h0)−
∫ T

0

χ(t)ρ(t)dt+c

∫ T

0

χ(t)λ(t)θ(t)dt.

Almost every τ ∈ [0, T [ is a Lebesgue point of functions θ and h. In such a point,
that we fix for a while, we take ε > 0 small enough so that τ + ε < T and we take
χ ∈ C∞c (R) so that:
i) for t ∈ [−1, τ − ε], χ(t) = 1 ;
ii) for t > τ + ε, χ(t) = 0 ;
iii) for t ∈ [τ − ε, τ + ε], χ(t) is non increasing. Through the limit ε ↓ 0, we get

θ(τ) ≤ h(τ) + θ0 − h0 −
∫ τ

0

ρ(t)dt+ c

∫ τ

0

λ(t)θ(t)dt.

At this point, we crucially use the assumption∫
Td
E(U)(τ, x)dx ≤

∫
Td
E(U0(x))dx

which holds true for a.e. τ ∈ [0, T ], i.e. h(τ) ≤ h0. We deduce that for a.e.
τ ∈ [0, T [,

θ(τ) ≤ θ0 −
∫ τ

0

ρ(t)dt+ c

∫ τ

0

λ(t)θ(t)dt

and, using the Grönwall lemma, we have obtained:

Proposition 6.3.7. For a.e. t ∈ [0, T ],

θ(t) ≤ θ0 exp(c

∫ t

0

λ(s)ds)−
∫ t

0

ρ(s) exp(c

∫ t

s

λ(σ)dσ)ds.

where λ(t) is the Lipschitz constant in x ∈ Td of V (t, ·), c is a constant depending
only on functions E, F , and

θ(t) =

∫
Td
η(U, V )(t, x)dx, θ0 =

∫
Td
η(U0(x), V (0, x))dx,

ρ(t) =

∫
Td

(
E,αβ(V )(Uα − V α)Rβ[V ]

)
(t, x)dx.

Assuming that V is a smooth solution of the ESCL with initial condition U0, we
automatically get R[V ] = 0, since

Rβ[V ] = ∂tV
β + ∂i(F iβ(V )),

and θ0 = 0. Thus ∫
Td
η(U, V )(t, x)dx = 0,

for a.e. t ∈ [0, T ]. Since this quantity dominates, up to a multiplicative positive
constant, the squared L2 norm of U(t, ·) − V (t, ·), we conclude that U = V which
shows the uniqueness of V among all weak solutions with initial condition U0 that
keep their entropy at time t below the entropy of U0, for a.e. t. This completes the
proof of Theorem 6.3.5.
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6.4 A convex concept of "dissipative solutions"

During the proof of Theorem 6.3.5, we have established Proposition 6.3.7 which
suggest a new concept of generalized solutions for the ESCL. This idea goes back to
the works of Dafermos and DiPerna in the 80s. (See [117, 126, 127].) Lions made this
concept more explicit in the special case of the Euler equations of incompressible
fluids [196], and introduced the wording of "dissipative solutions", that we will
conserve in this course, although the word "dissipative solution" is used in different
contexts by several authors. Strictly speaking, the Euler equations of incompressible
fluids do not belong to the ESCL class. However they are just a limit case and the
concept easily goes through. The main observation is that the inequality obtained
in Proposition 6.3.7 is convex with respect to solution U . Indeed, η(U, V ) is convex
in U by definition, and, in the right-hand side, only feature linear terms in U . This
is a very fruitful which easily provides some weak compactness. More precisely, let
us introduce the space C0

w([0, T ], L2(Td;Rm) of all functions

U : t ∈ [0, T ]→ U(t, ·) ∈ L2(Td;Rm)

which are continuous in t with respect to the weak topology of L2(Td;Rm), i.e. such
that, for each function ψ ∈ L2(Td;Rm),

t ∈ [0, T ]→
∫
Td
Uα(t, x)ψα(x)dx

is continuous.

Definition 6.4.1. We say that U ∈ C0
w([0, T ], L2(Td;Rm)) is a "dissipative solution"

of the ESCL with initial condition U0 if U(0, ·) = U0 and the inequality established
in Proposition 6.3.7 holds true for all smooth function V .

Then, it is immediate to check:

Proposition 6.4.2. Given U0 ∈ L2(Td;Rm), the set of all dissipative solutions of
the ESCL with initial condition U0:
i) is convex (if not empty!)
ii) has a single element as soon as the ESCL admits a smooth solution U with initial
value U0 and this element is precisely U .

This result is far from being satisfactory. However, it turns out that:
i) it is usually possible (although sometimes quite technical) to get an existence proof
through suitable approximations enjoying the same type of weak compactness, and
for arbitrarily long time interval, which is usually impossible for smooth solutions;
ii) the concept is very useful to show that the ESCL can be rigorously derived from
a more fondamental model by passing to the limit with suitable small parameters.
(Let us quote the example of the Euler equations of incompressible fluids that can
be derived from the Navier-Stokes equations [196] or from the Boltzmann equation
[240]. See also [33, 161, 189, 235]...)
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Chapter 7

Hidden convexity in some models of
Convection

As already mentionned earlier in this course, Convection is one of the most im-
portant phenomena in natural sciences (oceanography, volcanism, continental drift,
terrestrial magnetism, etc...) and also in daily life (weather, heating and boiling!). It
describes in particular the way that incompressible fluids move under the differential
action of gravity caused by their inhomogeneity which, itself, results of difference
of mass, temperature, salinity, etc...Typically fluid parcels try to rearrange them-
selves in order to reach more stable states (typically, heavy parcels at bottom and
light ones at top), which creates motion and, therefore, generates no instabilities
and so on. In this chapter, we discuss some crude convection models derived from
the Euler or Navier-Stokes equations of incompressible fluids including additional
terms describing buoyancy and Coriolis forces in some suitable asymptotic regimes
of physical interest. Some of these models will be shown to be exhibit some hidden
convexity, in close relationship with the concept, well known in optimal transport
theory, of rearrangement of maps as gradient of convex functions, as we have seen
earlier in this course.

7.1 A caricatural model of global climatic change

Let D be a smooth bounded domain D ⊂ R3 (or, alternately, the torus T3) in which
moves an incompressible fluid of velocity v(t, x) at x ∈ D, t ≥ 0, subject to the
Navier-Stokes-Boussinesq (NSB) equations

(∂tv + v · ∇)v − ν∆v +∇p = y,

(∂t + v · ∇)y = εG(εt, x)

with ∇ · v = 0 and v = 0 along ∂D.
The field y = y(t, x) ∈ R3 is a "generalized buoyancy", vector-valued, force, with

a small, slowly evolving, source term, where G is a given smooth function with
bounded derivatives.
We can see these equations as a caricatural model of a global climatic change: we
look for the long time impact of a small, slowly evolving, source term of amplitude
ε on long time scales of order ε−1.
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By substituting (t, v, p, y) for (εt, εv, p, y) in the NSB equations, we get the fol-
lowing rescaled RNSB equations

(RNSB) y = ∇p+ ε2(∂tv + (v · ∇)v)− εν∆v, ∇ · v = 0, ∂ty + (v · ∇)y = G(t, x).

We call "hydrostatic Boussinesq" HB equations, the formal limit obtained for
ε = 0:

y = ∇p, ∇ · v = 0, ∂ty + (v · ∇)y = G(t, x).

Remark 1

In the concrete convection model considered in [74], there is no x2 dependence and
G1 = 0. Then the force field y is vector-valued and combines both Coriolis (in the
x1 direction) and buoyancy (in the x3 direction) effects. The ε→ 0 limit is, then,
related to Brian Hoskins’ "x-z" semi-geostrophic equations [114, 177]. (See also
[5, 25, 113, 202].)

Remark 2

From the PDE viewpoint, global existence of weak solutions in 3D follows from
Leray [192] and Diperna-Lions [129].

Remark 3

For any suitable test function f we have INDEPENDENTLY of ε, v the following
key property

d

dt

∫
D

f(y(t, x))dx =

∫
D

(∇f)(y(t, x)) ·G(t, x)dx

This is valid even for the Leray weak solutions, thanks to DiPerna-Lions’ theory on
ODEs [129].

Remark 4

When both the source term and the initial force are gradients and the fluid initially
is at rest

G = G(x) = ∇g(x), y(0, x) = ∇p0(x), v(0, x) = 0,

then the rescaled NSB system has a trivial but interesting "convection-free" solution,
independently of ε, namely

v(t, x) = 0, y(t, x) = ∇p(t, x), p(t, x) = p0(x) + tg(x).

Of course, these solutions are also trivial solutions to the HB system.

7.2 Hidden convexity
in the Hydrostatic-Boussinesq system

The Hydrostatic Boussinesq system

(HB) y = ∇p, ∇ · v = 0, ∂ty + (v · ∇)y = G(t, x),
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we have formally obtained by setting ε to zero in the rescaled Navier-Stokes-
Boussinesq equations looks strange since there is no evolution equation for v. How-
ever, we have a constraint for y, namely to be a gradient. Thus, we can recover v
as a kind of Lagrange multiplier of this constraint. Indeed, notice first that,

(v · ∇)y = (D2
xp · v)

and v = ∇× A, for some divergence-free vector potential A = A(t, x) ∈ R3, at least
when d = 3. Then, taking the curl of the evolution equation in the HB system, we
get

∇× (D2
xp(t, x) · ∇ × A) = ∇×G.

At each fixed time t, knowing p, this is a just a linear "magnetostatic" system in A,
which is elliptic whenever p is convex in the strong sense

(SCC) c Id < D2
xp(t, x) < c−1 Id, ∀x,

for some constant c > 0. This strongly suggests that the HB system is well-posed,
under this strong convexity assumption, which, presumably, is sustainable, at least
on short time intervals. This a typical example of hidden convexity! This intuition is
indeed correct and was proven by Loeper (for a specific choice of G, but his method
goes through the general case of a smooth function G with bounded derivatives),
using a Monge-Ampère reformulation of the system [202]. The proof has been ob-
tained by Loeper only in the case of a periodic domain, such as D = T3. This
periodic setting requires a little bit of care: the pressure p(t, x) should be under-
stood as the sum of |x|2/2 and a Z3-periodic function p′(t, x), the strong convexity
condition meaning

c Id < Id+D2
xp
′(t, x) < c−1 Id, ∀x,

for some constant c > 0. Accordingly, y(t, x) − x = ∇p′(t, x) is also a Z3-periodic,
vector-valued function, just as v(t, x). Notice that this condition implies that the
Legendre-Fenchel transform of p, defined as usual by

p∗(t, y) = sup
x∈Rd

x · y − p(t, x),

also satisfies
c Id < D2

xp
∗(t, y) < c−1 Id, ∀y.

As a consequence, both x → ∇p(t, x) and y → ∇p∗(t, y) define global orientation-
preserving diffeomorphisms of R3.

Derivation of the HB model under strong convexity condition

The strong convexity condition (SCC) is sufficient to get a rigorous derivation of the
HB equations from the RNSB equations as ε goes to zero, at least in the case of a
periodic domain.

Theorem 7.2.1. Let D = T3. Assume G to be smooth with bounded derivatives up
to second order. Let (yε, vε, pε) be a Leray-type solution to the RNSB equations Let
(y = ∇p, v) be a smooth solution to the HB equations on a given finite time interval
[0, T ]. Assume that the strong convexity condition (SCC) is satisfied up to time T .
Then, the L2 distance between yε and y stays uniformly of order

√
ε as ε goes to zero,

uniformly in t ∈ [0, T ], provided it does at t = 0 and the initial velocity vε(t = 0, x)
stays uniformly bounded in L2.
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Let us just tell a brief idea of the proof. (See [67] for a detailed proof.) A natural
but very faulty idea would be to compare yε and y directly in L2 (or more generally
Sobolev) norm and try to get Gronwall-type differential inequalities for them. This
method completely fails, due to the presence of an irreducible term of size ε−1.
The right idea is to consider the "relative entropy"∫

D

{K(t, yε(t, x), y(t, x)) +
ε2

2
|vε − v|2}dx

where

K(t, y′, y) = p∗(t, y′)− p∗(t, y)−∇p∗(t, y) · (y′ − y) ∼ |y − y′|2,

where p∗ is the Legendre-Fenchel transform of p. Then we can get a Gronwall
estimate to deduce that the relative entropy, which is small at time t, cannot grow
more than exponentially in time with a rate that depends on the smoothness of p∗.
This is enough to get convergence as ε goes to zero.
Remark.
Notice the remarkable feature of this "relative entropy" with respect to the previous
relative entropies discussed in this course. Instead of a universal convex function
which is expanded about all possible limit solutions as we have seen so far in the
previous sections, here the convex function reads

(v, y)→ p∗(t, y) +
ε2

2
|v|2,

is not at all universal and includes the limit solution p∗ itself!

Breakdown of convexity and concept of "entropy" solutions

Unfortunately, we cannot expect the strong condition (SCC) to be sustainable for
large times. This can be seen immediately with the trivial solutions already men-
tioned, namely:

v(t, x) = 0, y(t, x) = ∇p(t, x), p(t, x) = p0(x) + tg(x)

Indeed, it is sufficient to have a source term G = ∇g, with D2g(x) ≤ −cId for some
positive constant c, to fail the strong convexity condition in finite time. However,
these trivial solutions, of both the HB and the RNSB system, can be expected to
be dynamically very unstable solutions of the RNSB equations, especially as ε gets
smaller and smaller. This why, it seems reasonable to look for solutions of the HB
system which keep the convexity condition, at least in the large sense

D2p(t, x) ≥ 0.

In the framework of semi-geostrophic equations [114, 177], this condition is called
the Cullen-Purser condition [114]. By analogy with the theory of hyperbolic conser-
vation laws we rather call this convexity condition "entropy condition".
The main point now is that any "entropy solution" y(t, x) = ∇p(t, x), square inte-
grable at each time t, can be entirely recovered by the knowledge of all "observables"

f →
∫
D

f(y(t, x))dx,
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for all continuous function f with at most quadratic growth at infinity. This is a
direct consequence of the optimal transport theorem 3.2.1. Now, we have already
obtained an evolution equation for all these observables, namely

d

dt

∫
D

f(y(t, x))dx =

∫
D

(∇f)(y(t, x)) ·G(t, x)dx

which is valid for the RNSB equations independently of both v and ε. This suggest
the following concept of "entropy" solution for the HB system:

Definition 7.2.2. We say that (t→ y(t, ·)) ∈ C0(R+, L
2(D,R3)) is an entropy to

the HB system

(HB) y = ∇p, ∇ · v = 0, ∂ty + (v · ∇)y = G(t, x),

if, for each time t, y = ∇p is a map with convex potential p and if

d

dt

∫
D

f(y(t, x))dx =

∫
D

(∇f)(y(t, x)) ·G(t, x)dx,

for all C1 function f with supy (1 + |y|)−1|∇f(y)| <∞.

Global existence of "entropy" solutions for the HB system

The global existence of entropy conditions is an easy consequence of the convergence
of the following time-discrete scheme with time step τ > 0, where we approximate
y(t = nτ, x) by yn,τ (x), for n = 0, 1, 2, · · ·, as follows:

i) we first perform a predictor step: ỹn+1,τ (x) = yn(x) + τ G(x).

ii) then, the corrector step amounts to perform a rearrangement as a map with
convex potential: yn+1,τ = (ỹn+1,τ )

] = ∇pn+1,τ where pn+1,τ is convex (in the large
sense of D2pn+1,τ ≥ 0.

Observe that the last step is possible thanks to the optimal transport theory we
have discussed earlier in this course. It is indeed enough to apply Theorem 3.2.1 to
get ∇pn+1 as the unique gradient of a convex function that transports the Lebesgue
measure on D to its image by map ỹn+1,τ (x).

Theorem 7.2.3. As τ → 0, the time-discrete scheme has converging subsequences.
Each limit y belongs to the space C0(R+, L

2(D,Rd)), admits a convex potential:
y(t, ·) = ∇p(t, ·) for each t ≥ 0 and satisfies

d

dt

∫
D

f(y(t, x))dx =

∫
D

(∇f)(y(t, x)) ·G(t, x)dx

for all smooth function f such that supy (1+ |y|)−1|∇f(y)| <∞. This exactly means
that y is a global entropy solutions to the HB equations in the sense of Definition
7.2.2.

The proof is rather easy and can be found in [52]. Let us just check the consis-
tency of the scheme, in the special case G = G(x). Given a smooth function f , we
get ∫

D

f(yn+1,τ (x))dx =

∫
D

f(ỹn+1(x))dx
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(because yn+1,τ is a rearrangement of ỹn+1)

=

∫
D

f(yn,τ (x) + τG(x))dx

(by definition of predictor ỹn+1,τ )

=

∫
D

f(yn,τ (x))dx+ τ

∫
D

(∇f)(yn,τ (x)) ·G(x)dx +O(τ 2),

which, indeed, means that the time-discrete scheme is consistent.

7.3 The 1D time-discrete rearrangement scheme
Remarkably enough, the rearrangement scheme we have just introduced still makes
perfect sense in one space dimension, although it has been derived from a model
of incompressible fluids requiring at least 2 space dimensions. We should not be
surprised by this paradoxical phenomenon after all the time we have devoted to the
generalized formulations of the Euler equations in the first part of this course!

As a matter of fact, it is quite interesting to look at the 1D case. First, because the
analysis of convergence can be very much improved thanks to the theory of scalar
conservation laws already discussed in this course. Second, because the discrete
scheme makes sense as a crude model of 1D, "column", convection. Finally and
unexpectedly, it also admits interesting interpretations in the field of social sciences.

Rearrangement in increasing order

Before revisiting the time-discrete scheme in 1D, let us recall the well-known fact of
Analysis (see [193] for example). Any L2 real-valued function

x ∈ [0, 1]→ z(x),

admits a unique rearrangement in increasing order, i.e. a unique non decreasing L2

function z] such that, ∫
[0,1]

f(z](x))dx =

∫
[0,1]

f(z(x))dx

for all continuous function f with at most quadratic growth.
Notice that in the discrete case when

z(x) = Zj, j/N < x < (j + 1)/N, j = 0, ..., N − 1,

then z](x) = Z]
j where (Z]

1, ..., Z
]
N) is just (Z1, ..., ZN) sorted in increasing order.

(Of course, this result is just a special occurence of the optimal transport theorem
3.2.1.)
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A function and its rearrangement in increasing order

N = 200 grid points in x
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The 1D rearrangement-scheme
as a very crude model of column convection

We consider a vertical column x ∈ [0, 1] and denote by y(t, x) the temperature field
along the column. We assume the existence of a steady source of heat along the
column: G = G(x). The convection model is described through the following time-
discrete scheme with time step τ > 0, and two sub-steps:

-predictor (heating): ỹn+1,τ (x) = yn,τ (x) + τ G(x)

-corrector ("instantaneous" convection): yn+1,τ = (ỹn+1,τ )
]

so that the temperature profile stays monotonically increasing at each time step.
(This actually corresponds to a succession of stable equilibria with a boost of heat-
ing at each time step.) We see that we exactly recover, in its 1D version, the
time-discrete scheme introduced in the previous section in several space dimensions.
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Column convection.
Heat profiles at different times with a rough time step
Data: G(x) = 1 + exp(−25(x− 0.2)2)− exp(−20(x− 0.4)2)
t, x ∈ [0, 1] τ = 0.1 (= 10 time steps) 500 grid points in x,
y=y(t,x) versus x drawn every 2 time steps (predictor and corrector).
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Column convection.
Heat profiles at different times with a fine time step
Data: G(x) = 1 + exp(−25(x− 0.2)2)− exp(−20(x− 0.4)2)
t, x ∈ [0, 1] τ = 0.005 (= 200 time steps) 500 grid points in x,
y=y(t,x) versus x drawn every 40 time steps (predictor and corrector).
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Column convection.
Drawing of the temperature mixing zone.
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Convergence analysis

Using the classical theory of maximal monotone operators [89], it is fairly easy to
prove

Theorem 7.3.1. As τ → 0, the time-discrete scheme has a unique limit y = y(t, x),
monotonically increasing in x,
characterized as the unique solution in C0(R+, L

2(D,Rd)) of the subdifferential in-
clusion:

G(x) ∈ ∂ty + ∂C[y], y(t = 0, ·) = y0,

where C[y] = 0 or +∞, according to whether or not y is a non decreasing function
of x.

In addition, the cumulative function u(t, s) =
∫ 1

0
1{y(t, x) < s}dx, which is the

"pseudo-inverse" function of y, is an entropy solution to the scalar conservation
law

∂tu+ ∂s(g(u)) = 0, g(v) =

∫ v

0

G(w)dw.

The second statement of this theorem is not a surprise. Indeed, the scheme we
have described is nothing but the "transport-collapse" method [43], that we have
already used in in the framework of Panov’s formulation of multidimensional scalar
conservation laws. (See section 6.2.)

Qualitative features

Scalar conservation laws such as ∂tu+ ∂s(g(u)) = 0, are known to produce in finite
time solutions s→ u(t, s) with discontinuities, known as "shock waves". For the
temperature field x→ y(t, x), this means the formation of a plateau, which cor-
responds to a zone where the temperature field is homogenized. In the canonical
example G = G(x) = 1− x, corresponding to the famous "inviscid" Burgers equa-
tion ∂tu + ∂s(u − u2/2) = 0, it can be shown that, for all initial conditions, a
single plateau forms for large t, which corresponds to a perfectly homogenized tem-
perature. For functions like G(x) = 1− cos(3πx), the long-time behavior is more
complex, featuring a central plateau surrounded by two tails, one cold at bottom
and one hot at top.

7.4 Related models in social sciences

A model of competition by rank

For N agents (factories, researchers, universities...) in competition, we denote by
Xn,τ (α) the cumulated production of agent α = 1, · · ·, N at time nτ , n ∈ N, where
τ > 0 is the time step, and by σn,τ (α) the rank of agent α at time nτ , in reverse
order so that σn,τ (α) = N (resp. = 1) for the agent α with highest (resp. lowest)
production at time n and σn,τ can be seen as an element of the symmetric group
SN .

Then, the model assumes the existence of a bounded function G defined on [0, 1]
such that

Xn+1,τ (α) = Xn,τ (α) + τ G(N−1σn,τ (α))
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which means that the production between two different times depends only on the
ranking.
For example G(u) = 1−u describes an equalitarian behaviour where the top people
slow down their production while the bottom people catch up as fast as possible. A
choice like G(u) = 1−cos(3πu) seems more realistic: bottom people are discouraged
while top people get even more competitive:

G(0) = 0, G(1/3) = 2, G(2/3) = 0, G(1) = 2.

We observe that the corresponding sorted sequence Yn,τ = X]
n,τ satisfies:

Yn+1,τ = (Yn,τ + τ G)],

which is just a space-discrete version of the rearrangement-scheme discussed in the
previous sub-section.

Tax on capital according to rank

We denote by Zn(α) ≥ 0 the capital for year n of each tax-payer α ∈ {1, · · ·, N}.
We introduce σn(α) ∈ {1, · · ·, N} the (reverse) rank of the capital of taxpayer α at
year n. We assume

Zn+1(α) = Zn(α) exp(rτ) exp(−F (N−1σn)τ)

where τ is the time step, r is the capital growth, which we assume, very crudely, to
be the same for each tax-payer, while the taxation rate depends only on the rank
through a given real bounded function F defined on [0, 1].
Thus we recover for Xn,τ = logZn exactly the same scheme we had in the previous
model, namely,

Xn+1,τ (α) = Xn,τ (α) + τ G(N−1σn,τ (α))

just by setting
G(u) = r − F (u), ∀u ∈ [0, 1].

The social science interpretation is that, depending on the choice of G, different
policies may be enforced. For instance, an equalitarian policy can be obtained by
homogenizing the capital of the different taxpayers (with a final discrepancy of order
O(τ)) which will hold true provided that G satisfies the condition

g(u) =

∫ u

0

G(v)dv > g(0) = g(1), ∀u ∈]0, 1[,

which corresponds to the formation of a single shock wave. For different choices of
functionG, several shock waves may form, leading to a segmentation of the taxpayers
in different homogenized classes.
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Chapter 8

Augmentation of conservation laws
with polyconvex entropy

This chapter closely follows the papers [59, 84, 132] by Xianglong Duan, Wenan Yong
and the author. We discuss two examples: the nonlinear theory of Electromagnetism
designed in 1934 by Max Born et Leopold Infeld [38]; the theory of time-like extremal
surfaces in the Minkowski space, at least of those which can be written as graphs.
In terms of applications, both examples are well known in Hygh Energy Physics
(String Theory and "Dirichlet-branes") [234]. In both cases, we get system of first
order conservation laws with non-convex entropy. So, we cannot directly apply the
concepts of relative entropy and dissipative solutions already discussed in this course
(section 6). However, it turns out that, in each case, the entropy is a "polyconvex"
function, in the sense that it is a convex function of some nonlinear combination of
the unknowns. For instance, in the second case, the unknowns are matrix-valued and
the entropy is a convex function of the minors of the corresponding matrices. Then,
the basic idea amounts to findind extra-conservation laws for these extra-variables
and trying to get an enlarged system of conservation laws, with the hope there is a
convex entropy for the augmented system. To the best of our knowledge, this idea
has been successfully applied by Qin to a large class of models in non-linear Elasticity
[236]. In the two examples covered in this chapter, there is an additional remarkable
property. Indeed, we can rewrite the augmented systems in the amazingly simple
non-conservative form:

∂tUα + Aiβγα Uγ∂iUβ = 0,

(with implicit summation on repeated indices),
where U = U(t, x) ∈ Rm, x ∈ Rd, and the coefficients Aiβγα are constant. So these
systems look like non-trivial generalizations of the famous inviscid version of the
Burgers equation, namely:

∂tu+ u∂xu = 0.

In addition, for each fixed i = 1, ···, d, γ = 1, ···,m, the Aiβγα form a symmetricm×m
matrix in α, β. This is enough, with any further effort, to guarantee [117, 212] that
the initial value problem (IVP) is locally well-posed in all Sobolev spaces Hs(Rd)
with continuous injection in C1, i.e. for all s > 1 + d/2.
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8.1 The Born-Infeld equations
In 1934, Max Born and Leopold Infeld introduced a non-linear correction of the
classical Maxwell model. This amounts to finding critical points (with respect to
compactly supported perturbations)

(t, x) ∈ R1+3 → (E,B)(t, x) ∈ R3 × R3,

of the following action

Aλ[E,B] =

∫ ∫
(1−

√
1 + λ−2(B2 − E2)− λ−4(B · E)2) dxdt

where λ > 0 is a physical constant (the "absolute field"), under constraints

∇ ·B = 0, ∂tB +∇× E = 0.

In the "low-field" limit λ→∞, the classical Maxwell model is recovered

λ2Aλ[E,B] ∼ 1

2

∫
(E2 −B2) dxdt

leading to the famous (homogeneous) Maxwell equations

∂tB +∇× E = 0, ∂tE = ∇×B, ∇ ·B = ∇ · E = 0.

The electrostatic case

The electrostatic case is consistently obtained by canceling the magnetic field B:

Aλ[E, 0] =

∫ ∫
(1−

√
1− λ−2E2) dxdt

under constraint
∇× E = 0.

So, the constant λ > 0 just appears as the maximal possible electrostatic field in
the theory (just like 1 is the maximal possible velocity in Special Relativity). This
was Max Born’s original idea.

Remark: a more general and geometric definition

For a general 1 + d dimensional Lorentzian manifold with metric gijdxidxj the BI
model involves a closed 2-form B = Bijdx

i ∧ dxj and the Born-Infeld Action now
reads

Aλ[g,B] =

∫
(
√
−detg −

√
−det(g + λB)).

Notice that this Action is "fully covariant", i.e. invariant as g and B are deformed
by any space-time diffeomorphism. (Indeed, there is an exact compensation between
the determinant and the modifications brought to gijdxidxj and Bijdx

i∧dxj by any
diffeomorphism

x = (x0, · · ·, xd) ∈ R1+d → Φ(x) ∈ R1+d.

Of course, in the special case d = 3, g = diag(−1, 1, 1, 1),one may recover (through
an elementary but instructive calculation, involving elementary linear algebra and
properties of 4 × 4 skew symmetric matrices) the previous formulae introduced in
1934 in the special case of the standard 1+3 Minkowski space.
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Remark: high-field limit of the Born-Infeld model and Magneto namics

The original Born-Infeld model

Aλ[E,B] =

∫ ∫
(1−

√
1 + λ−2(B2 − E2)− λ−4(B · E)2) dxdt

∇ ·B = 0, ∂tB +∇× E = 0

admits an interesting "high-field" limit obtained as λ→ 0, namely, at least formally,

λAλ[E,B] ∼ −
∫ ∫ √

B2 − E2 dxdt

under the additional pointwise constraint E · B = 0. This pointwise constraint
E ·B = 0 is equivalent to E = B × v for some new field v = v(t, x). This leads to

λAλ[E,B] ∼ −
∫ ∫ √

B2(1− v2) + (B · v)2 dxdt

with differential constraints

∇ ·B = 0, ∂tB +∇× (B × v) = 0

which can be interpreted as the "induction equation" in ideal Magnetohydrodynam-
ics, where B and v may be seen respectively as the magnetic field and the velocity
field of a charged fluid.

The Born-Infeld equations in Hamiltonian form

After normalization λ = 1, written in Hamiltonian form, the Born-Infeld equations
read

∂tB +∇× (
B × (D ×B) +D√

1 +D2 +B2 + (D ×B)2
) = 0, ∇ ·B = 0,

∂tD +∇× (
D × (D ×B)−B√

1 +D2 +B2 + (D ×B)2
) = 0, ∇ ·D = 0.

As shown by Speck [254], using Klainerman’s null forms, global smooth solutions
to the initial value problem have been proven to uniquely exist for small localized
initial conditions. We are going to follow a very different way to analyse the Born-
Infeld equations, by augmenting the system and finding a suitable convex "entropy
function".

The energy-momentum conservation laws

By Noether’s theorem, since the Born-Infeld Action is manifestly invariant under
time and space translations in the Minkowski space R1+3, we expect four extra
conservation laws. There calculation is elementary but not completely obvious:

∂tQ+∇ · (Q⊗Q−B ⊗B −D ⊗D
h

) = ∇(
1

h
), ∂th+∇ ·Q = 0

for the energy and momentum fields

h =
√

1 +D2 +B2 + (D ×B)2, Q = D ×B.
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The augmented Born-Infeld system

Following [59] we define the 10 by 10 augmented Born-Infeld system (ABI) as the
original BI system augmented by the 4 energy-momentum conservation laws

∂tB +∇× (
B ×Q+D

h
) = ∂tD +∇× (

D ×Q−B
h

) = 0

∂tQ+∇ · (Q⊗Q−B ⊗B −D ⊗D
h

) = ∇(
1

h
), ∂th+∇ ·Q = 0

while disregarding the original algebraic constraints

h =
√

1 +D2 +B2 + (D ×B)2, Q = D ×B,

which define a 6 dimensional algebraic submanifold in the space (h,Q,D,B) ∈ R10

that we call the "BI manifold".

The ABI system in non-conservative variables

Here, our analysis follows [84] rather than [59]. Indeed, the augmented BI system
looks even simpler in so-called "non-conservative variables"

b = B/h, d = D/h, v = Q/h, τ = 1/h

Namely
∂tb+ (v · ∇)b− (b · ∇)v + τ∇× d = 0

∂td+ (v · ∇)d− (d · ∇)v − τ∇× b = 0

∂tv + (v · ∇)v − (b · ∇)b− (d · ∇)d− τ∇τ = 0

∂tτ + (v · ∇)τ − τ∇ · v = 0

This turns out to be just a symmetric system with purely quadratic non-linearities!
In some, a generalization of the inviscid Burgers equation, of form

∂tUα + Aiβγα Uγ∂iUβ = 0,

written "in coordinates" (with implicit summation on repeated indices), where U =
U(t, x) ∈ R10 and, for each fixed indices i = 1, · · ·, 3 and γ = 1, · · ·, 10, the 10× 10
matrices (Aiβγα ) are symmetric in α, β. Also observe that there is no limitation
of range for the variables U = (n, d, v, τ) in the space R10. (In particular it makes
sense to consider negative or null values of τ , which is not possible in the conservative
formulation of the ABI system since ρ = 1/τ . This is a remarkable advantage of the
non-conservative version! Of course, we don’t make any comment on the possible
physical meaning of considering negative values of τ !) Concerning the BI manifold,
its expression in terms of non-conservative variables is even simpler. We get the
following algebraic (quadratic) 6-dimensional submanifold of R10:

NCBIM τ 2 + b2 + d2 + v2 = 1, τv = d× b.

(Notice that we may consider both positive and negative values of τ in this defini-
tion!)

So, we obtain, essentially for free, the following result
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Theorem 8.1.1. The non-conservative augmented Born-Infeld (NCABI) system is
locally well-posed in any Sobolev space Hs(R3) continuously imbedded in C1 (namely,
for any s > 5/2). In addition the non-conservative Born-Infold manifold is preserved
under evolution.

Because of the preservation of the manifold, we have immediately, without any
further analysis, obtained the local well-posedness of the orginal Born-Infeld equa-
tions. Of course, the analysis provided by Speck [254] is much more sophisticated
and leads to a global existence and uniqueness result of smooth solutions to the ex-
panse of assuming to initial conditions to be small and localized, which is in no way
needed in our cruder analysis. An interesting open question is the possible global
existence of smooth solutions not only for the original BI system but also for its
augmented version.

Remark: reduced versions of the NCABI system:
motion of strings and photons

It is perfectly consistent to assume τ = 0, d = 0 in the non-conservative augmented
BI (NCABI) system. We then get a reduced system which describes a continuum of
vibrating strings

∂tb+ (v · ∇)b− (b · ∇)v = 0, ∂tv + (v · ∇)v − (b · ∇)b = 0

The corresponding BI manifold b2 + v2 = 1, v · b = 0 corresponds to relativistic
strings, like in "classical" String Theory (i.e. without quantization). We may further
consistently assume b = 0 in the NCABI and get ∂tv+(v ·∇)v = 0 with reduced BI-
manifold v2 = 1 which describes the motion of (classical) massless particles moving
at the speed of light (e.g. photons).

First appearance of convexity in the augmented Born-Infeld system

Let us now go back to the 10 × 10 augmented ABI system in conservative form.
Surprisingly enough, the augmented system, as shown in [59], admits an extra con-
servation law, namely

∂tη +∇ · ω = 0, η =
1 +D2 +B2 +Q2

h
, ω = ω(h,Q,D,B)

where η is a strictly convex function and the "entropy flux" can be explicitly com-
puted. This makes the ABI system an example of entropic system of conservation
laws (ESCL), for which we can use all the concepts of "relative entropy method"
and "dissipative solutions".

Remark: Galilean invariance of the augmented Born-Infeld system

The ABI system looks pretty much like classical MHD equations and enjoys an
astonishing classical Galilean invariance, under the transform

(t, x)→ (t, x+W t), (h,Q,D,B)→ (h,Q− hU,D,B)

for any constant speed W ∈ R3! This looks contradictory with the definite
Lorentzian origin of the Born-Infeld system. However, there is no contradiction
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since those Galilean transforms are incompatible with the Born-Infeld manifold,
where Q is algebraically slaved by B and D through Q = D × B! Moreover, we
conjecture that this amazing property characterizes the Born-Infeld model among
all alternative Electromagnetic theories, including ...Maxwell’s one!

Second appearance of convexity in the augmented Born-Infeld system

The 10 × 10 ABI (augmented Born-Infeld) system is linearly degenerate (in the
sense of Lax [117]) and enjoy an interesting stability under weak-* convergence.
More precisely:

Theorem 8.1.2. Each weak-* limit of uniformly bounded sequences in L∞ of smooth
solutions depending on one space variable of the ABI system are still solutions of
the ABI system.

This follows from a straightforward application of the Murat-Tartar ’div-curl’
lemma [224, 258]. This suggests that the convex hull of the BI manifold might be a
natural completed configuration space for the Born-Infeld theory. However, this is
not so clear, as pointed out to the author by Felix Otto, since one has to take into
account the differential constraints ∇ · D = ∇ · B = 0. Anyway, as shown in [59],
the convex hull has full dimension in R10 and has been explicitly computed by Serre
[247] and is defined by the single inequality

h ≥
√

1 +D2 +B2 +Q2 + 2
√
|P −D ×B|2 + (B · P )2 + (D · P )2

Moreover Müller and Palombaro [223], using convex integration theory, have proven
that the differential constraints ∇ · D = ∇ · B = 0 are not an obstruction to the
conjecture.
On the convexified BI manifold, defined by Serre’s inequality, we have the following
properties:
1) The electromagnetic field (D,B) and the ’density and momentum’ fields (h,Q)
can be chosen independently of each other at initial time, provided they satisfy
Serre’s inequality
2) The augmented BI system can be interpreted (in MHD style) as the coupling of
an electromagnetic field with a fluid

∂tB +∇× (
B ×Q+D

h
) = ∂tD +∇× (

D ×Q−B
h

) = 0

∂tQ+∇ · (Q⊗Q−B ⊗B −D ⊗D
h

) = ∇(
1

h
), ∂th+∇ ·Q = 0.

(while the original Born-Infeld model is purely electromagnetic, without any inter-
action with matter).
3) ’Matter’ may exist without electromagnetic field, in the case when B = D = 0,
which leads to the so-called "Chaplygin gas" (which has been advocated as a pos-
sible model for "dark energy" or "vacuum energy") with an usual speed of sound c,
namely c = 1/h,

∂tQ+∇ · (Q⊗Q
h

) = ∇(
1

h
), ∂th+∇ ·Q = 0
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4) ’Moderate’ Galilean transforms are allowed

(t, x)→ (t, x+ U t), (h,Q,D,B)→ (h,Q− hU,D,B)

(which is impossible on the original BI manifold). As a matter of fact, this seems to
be a general feature of Special Relativity under weak completion (cf. "subrelativis-
tic" conditions, as discussed in [60, 24].

8.2 Extremal time-like surfaces in the Minkowski
space

Let us now consider a second example of an augmented system with convex entropy
derived from a system of conservation laws with a polyconvex entropy. This section
closely follows the paper [132] by Xianglong Duan.

In the (1+n+m)−dimensional Minkowski space R1+(n+m), let X(t, x) be a time-like
(1 + n)−dimensional surface (called n−brane in String Theory [234]), namely,

(t, x) ∈ Ω ⊂ R× Rn → X(t, x) = (X0(t, x), . . . , Xn+m(t, x)) ∈ R1+(n+m),

where Ω is a bounded open set. This surface is called an extremal surface if X is
a critical point, with respect to compactly supported perturbations in the open set
Ω, of the following area functional (which corresponds to the Nambu-Goto action in
the case n = 1)

−
∫∫

Ω

√
− det(Gµν) , Gµν = ηMN∂µX

M∂νX
N ,

where M,N = 0, 1, . . . , n + m, µ, ν = 0, 1, . . . , n, and η = (−1, 1, . . . , 1) denotes
the Minkowski metric, while G is the induced metric on the (1 + n)−surface by η.
Here ∂0 = ∂t and we use the convention of implicit summations on repeated indices.

Through the least-action principle,
the Euler-Lagrange equations gives the well-known equations of extremal surfaces,

∂µ

(√
−GGµν∂νX

M
)

= 0, M = 0, 1, . . . , n+m,

where Gµν is the inverse of Gµν and G = det(Gµν).

Now, let us concentrate on the special case where the extremal surfaces are graphs
of the form

X0 = t, X i = xi, i = 1, . . . , n, Xn+α = Xn+α(t, x), α = 1, . . . ,m.

By using notation

Vα = ∂tX
n+α, Fαi = ∂iX

n+α, α = 1, . . . ,m, i = 1, . . . , n.

Dα =

√
det(In + F TF )(Im + FF T )−1

αβVβ√
1− V T (Im + FF T )−1V
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we find that the extremal surface equation is now equivalent to the following system
for the matrix-valued function F = (Fαi)q×p and a vector valued function D =
(Dα)α=1,2,...,q,

∂tFαi + ∂i

(
Dα + FαjPj

h

)
= 0, ∂tDα + ∂i

(
DαPi + ξ′(F )αi

h

)
= 0,

∂jFαi = ∂iFαj, Pi = FαiDα, h =
√
D2 + P 2 + ξ(F ), 1 ≤ i, j ≤ p, 1 ≤ α ≤ q,

where

ξ(F ) = det
(
I + F TF

)
, ξ′(F )αi =

1

2

∂ξ(F )

∂Fαi
= ξ(F )(I + F TF )−1

ij Fαj.

As we have seen for the Born-Infeld equations, there are extra conservation laws for
the "energy" density h and the "momentum" vector P as defined above, namely,

∂th+∇ · P = 0, ∂tPi + ∂j

(
PiPj
h
−
ξ(F )(I + F TF )−1

ij

h

)
= 0.

Viewing h and P as independent variables, the new system admits a polyconvex
entropy (which means that the entropy can be written as a convex function of the
minors of F ). Here, for 1 ≤ k ≤ r, and any ordered sequences 1 ≤ α1 < α2 < . . . <
αk ≤ m and 1 ≤ i1 < i2 < . . . < ik ≤ n, let A = {α1, α2, . . . , αk}, I = {i1, i2, . . . , ik},
the minor of F with respect to the rows α1, α2, . . . , αk and columns i1, i2, . . . , ik is
defined as

[F ]A,I = det
(

(Fαpiq)p,q=1,...,k

)
.

Now, by viewing these minors [F ]A,I as new independent variables, we can further
enlarge this system. As for the Born-Infeld equations, the augmented system is
hyperbolic with a convex entropy, linearly degenerate and preserves the algebraic
constraints that have been given up in the process of augmenting the system.

The augmented system

Now let us consider the energy density h, the vector field P and the minors [F ]A,I
as independent variables. As shown by Xianglong Duan [132], the original system
can be augmented to the following system of conservation laws. More precisely, for
h > 0, D = (Dα)α=1,2,...,m, P = (Pi)i=1,2,...,n,
MA,I with A ⊆ {1, 2, . . . ,m}, I ⊆ {1, 2, . . . , n}, 1 ≤ |A| = |I| ≤ r = min{m,n}, the
augmented system reads

∂th+∇ · P = 0

∂tDα + ∂i

(
DαPi
h

)
+
∑
A,I,i

α∈A,i∈I

(−1)OA(α)+OI(i)∂i

(
MA,IMA\{α},I\{i}

h

)
= 0

∂tPi +
∑
A,I,j

j∈I,i/∈I\{j}

(−1)OI(j)+OI\{j}(i)∂j

(
MA,(I\{j})

⋃
{i}MA,I

h

)

+ ∂j

(
PiPj
h

)
− ∂i

(
1 +

∑
A,IM

2
A,I

h

)
= 0 (8.2.1)
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∂tMA,I +
∑
i,j

i∈I,j /∈I\{i}

(−1)OI\{i}(j)+OI(i)∂i

(
MA,(I\{i})

⋃
{j}Pj

h

)

+
∑
α,i

α∈A,i∈I

(−1)OA(α)+OI(i)∂i

(
MA\{α},I\{i}Dα

h

)
= 0 (8.2.2)

∑
i∈I

(−1)OI(i)∂i

(
MA′,I\{i}

)
= 0, 2 ≤ |I| = |A′|+ 1 ≤ r + 1.

Here OA(α) denotes the integer such that α is the OA(α)th smallest element
in A

⋃
{α}. All the sum are taken in the convention that A ⊆ {1, . . . ,m},

I ⊆ {1, . . . , n}, 1 ≤ α ≤ m, 1 ≤ i, j ≤ n.
Following [132], it can be first checked that the augmented system reduces to

the original system under the algebraic constraints which were given up in order to
enlarge the system, namely

Pi = FαiDα, h =
√
D2 + P 2 + ξ(F ), MA,I = [F ]A,I .

The following result is obtained in [132]:

Proposition 8.2.1. The augmented system written above admits an additional con-
servation law for the convex entropy

S(h,D, P,M) =
1 +D2 + P 2 +

∑
A,IM

2
A,I

2h
,

namely:

∂tS +∇ ·
(
SP

h

)
+
∑
A,I,i

α∈A,i∈I

(−1)OA(α)+OI(i)∂i

(
DαMA\{α},I\{i}MA,I

h2

)

+
∑
A,I,j

j∈I,i/∈I\{j}

(−1)OI(j)+OI\{j}(i)∂j

(
PiMA,(I\{j})

⋃
{i}MA,I

h2

)

−∂j
(
Pj(1 +M2

A,I)

h2

)
= 0.

Non-conservative form

The non-conservative form of the augmented system has a very simple structure, as
shown by Xianglong Duan [132]:

Theorem 8.2.2. In the case of graphs, the equations of extremal time-like surfaces
of dimension 1 +n in the Minkowski space of dimension 1 +n+m can be translated
into a first order symmetric hyperbolic system of PDEs, which admits the very simple
form

∂tW +
n∑
j=1

Aj(W )∂xjW = 0, W : (t, x) ∈ R1+n → W (t, x) ∈ Rn+m+(m+n
n ),

where each Aj(W ) are suitable (n+m+
(
m+n
n

)
)× (n+m+

(
m+n
n

)
) symmetric matrix

depending linearly onW . Accordingly, this system is automatically well-posed, locally
in time, in the Sobolev space W s,2 as soon as s > n/2 + 1.
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The structure of the resulting equations is reminiscent of the celebrated prototype
of all nonlinear hyperbolic PDEs, the so-called inviscid Burgers equation ∂tu +
u∂xu = 0, where u and x are both just valued in R, with the simplest possible
nonlinearity. Of course, to get such a simple structure, the relation to be found
between X (valued in R1+n+m) andW (valued in Rn+m+(m+n

n )) is very involved [132].
More precisely, it can be shown that the case of extremal surfaces corresponds to a
special subset of solutions of the augmented system for which W lives in a suitable
algebraic sub-manifold of Rn+m+(m+n

n ), which is preserved by the dynamics of the
augmented system.

As for the augmented Born-Infeld equations, the strategy of proof follows the
concept of system of conservation laws with “polyconvex” entropy in the sense of
Dafermos [117]. The first step is to lift the original system of conservation laws to
a (much) larger one which enjoys a convex entropy rather than a polyconvex one.
This strategy has been successfully applied in many situations, such as nonlinear
Elastodynamics [236], nonlinear Electromagnetism [59, 84, 245], just to quote few
examples. Let us add that the calculations provided in [132] crucially rely on the
classical Cauchy-Binet formula.
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Chapter 9

Convex entropic formulation
of some degenerate parabolic systems

As we have already seen, entropy methods can be used in a fruitful way already at
the level of the simple linear heat equation. In the present chapter, we would like
to address more sophisticated examples, typically mean curvature flows of various
co-dimensions. Our main idea here is to address those parabolic systems that we
can derive from systems of conservation laws with convex entropy and to transfer
the rather comprehensive theory we had obtained for the later, as explained in the
previous chapter. This is precisely the case of mean curvature flows as we will see.
Our main trick to derive parabolic systems from systems of first order conservation
laws is extremely simple, although not yet used, at least for evolution PDEs, in
the literature, to the best of our knowledge. It amounts to performing a quadratic
change of time near t = 0 and, then, neglecting the higher order terms. Let us
emphasise that this is just an algebraic trick and there is no analysis involved at
this level.

9.1 From dynamical systems to gradient flows
by quadratic change of time

Let us first apply the quadratic change of time method (QCTM) to the simple
dynamical system

d2X

dt2
= −(∇ϕ)(X),

by setting

X(t) = Y (θ), θ = t2/2 θ′ =
dθ

dt
= t.

This leads to
dX

dt
= θ′

dY

dθ
, −(∇ϕ)(Y (θ)) =

d

dt
(θ′
dY

dθ
) = θ”

dY

dθ
+ (θ′)2d

2Y

dθ2

and thus
dY

dθ
+ 2θ

d2Y

dθ2
= −(∇ϕ)(Y ).

For large θ, we get the purely inertial motion governed by:

d2Y

dθ2
= −(∇ϕ)(Y ),
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while, for small θ, we rather get the so-called "gradient flow" regime with:

dY

dθ
= −(∇ϕ)(Y ).

Remark :

The quadratic rescaling θ = t2/2 perfectly fits with Galileo’s experiment: a rigid
ball descends a rigid ramp of constant slope, with zero initial velocity and constant
acceleration G, reaching position X(t) = x0 + Gt2/2 = x0 + Gθ = Y (θ) at time t.
So, Y is just a linear function of the rescaled time θ!

dY

dθ
+ 2θ

d2Y

dθ2
= G

but also simultaneously
dY

dθ
= G,

d2Y

dθ2
= 0,

i.e. both the gradient flow and the inertial regimes.

End of remark.
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The Galileo experiment.
Small bells are set up along the ramp according to a parabolic spacing (1, 4, 9, 16, 25...) so that,
when falling down, the ball rings each bell periodically.
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For the original dynamical system,

d2X

dt2
= −∇ϕ(X),

we get the usual conservation of energy

d

dt
[
1

2
|dX
dt
|2 + ϕ(X)] = 0

For the time-rescaled version Y (θ) = X(t), θ = t2/2, we find

d

dθ
[ϕ(Y )] + θ

d

dθ
|dY
dθ
|2 = −|dY

dθ
|2

In the asymptotic regime when θ is very small, we recover the gradient flow

dY

dθ
= −∇ϕ(Y )

and the classical ”energy − dissipation” relation

d

dθ
[ϕ(Y )]+ = −|dY

dθ
|2.

We may compare, for short times, X solution of the original equation, with zero
initial velocity, to Y solution of the gradient flow

d2X

dt2
= −∇ϕ(X), X ′(0) = 0,

dY

dθ
= −∇ϕ(Y ), Y (0) = X(0).

Under strong convexity and smoothness assumptions on ϕ, Assuming the spectrum
the symmetric matrix D2ϕ(x) to be valued in a fixed interval [r, 1/r], uniformly in
x, for some constant r > 0, we may easily prove

|X(t)− Y (t2/2)|2 + |dX
dt

(t)− tdY
dθ

(t2/2)|2 ≤ t4 exp(t2c)c.

by monitoring the "relative energy"

1

2
|dX
dt
− tdY

dθ
|2 + ϕ(X)− ϕ(Y )−∇ϕ(Y ) · (X − Y ),

which is just obtained (as a "relative entropy") by substracting from the energy of
X what we obtain by expanding linearly the energy in X about Y . Notice that
constant c depends only on r and on Y .

9.2 From the Euler equations to the heat equation
by quadratic change of time

As a leitmotiv, we first go back to the Euler equations, this time for compressible
fluids. as written by Euler in 1755-57 (i.e. without thermodynamics nor energy
equation: they are frequently called "isentropic Euler equations"):

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) = −∇p
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where (ρ, p, v) ∈ R1+1+3 are the density, pressure and velocity fields of a fluid and p
is assumed to be a given function of ρ. Let us perform the quadratic change of time
(QCT)

t→ θ = t2/2, (ρ, v)(t, x)→ (ρ(θ, x), θ′v(θ, x)), θ′ =
dθ

dt
= t

Let us perform the following quadratic change of time (QCT)

ρ̃(t, x) = ρ(θ, x), ṽ(t, x) = θ′v(θ, x), θ = θ(t) = t2/2 θ′ =
dθ

dt
= t

(so that ṽ(t, x)dt = v(θ, x)dθ). We get:

∂tρ̃+∇ · (ρ̃ṽ) = 0 → θ′∂θρ+ θ′∇ · (ρv) = 0

∂t(ρ̃ṽ) +∇ · (ρ̃ṽ ⊗ ṽ) = −∇p(ρ̃) →

θ”ρv + (θ′)2∂θ(ρv) + (θ′)2∇ · (ρv ⊗ v) = −∇p(ρ)

→ ρv + 2θ∂θ(ρv) + 2θ∇ · (ρv ⊗ v) = −∇p(ρ)

So, after the quadratic change of time, the Euler equations become

∂θρ+∇ · (ρv) = 0, ρv + 2θ[∂θ(ρv) +∇ · (ρv ⊗ v)] = −∇p(ρ)

Notice that the continuity equation has stayed unchanged. (Actually, this was the
main purpose of the different rescaling of variables ρ and v.) The new system of
evolution PDEs is no longer "autonomous": it depends explicitly on the new time
variable θ, actually in a very simple, linear, way. So we may consider two asymptotic
regimes, according to the size of θ. For very large θ, we just obtain the so-called
"pressureless Euler" equations:

∂θρ+∇ · (ρv) = 0, ρv + ∂θ(ρv) +∇ · (ρv ⊗ v) = 0,

which is just a degenerate (but tricky!) version of the Euler equations. We are
much more interested in the second regime when θ is very small. Then, we obtain
the so-called "porous media equation"

∂θρ+∇ · (ρv) = 0, ρv = −∇p,

or, in short,
∂θρ = ∆(p(ρ)),

including the heat equation in the special ("isothermal") case p(ρ) = ρ. So, the
quadratic change of time has clearly introduced a change of type in the equations,
since we have moved from the hyperbolic, first order, setting of the Euler equations
to the parabolic, second order in space, setting of the heat and the porous medium
equations.
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9.3 Quadratic change of time for mean-curvature
flows

We are now going to get some optimal transport gradient flows (typically mean
curvature flows) from hyperbolic equations (typically geometric wave equations)
through the quadratic change of time method. This has been developed for the
curve-shortening flow (which is the mean-curvature flow in dimension 1, i.e. in co-
dimension d− 1), with Xianglong Duan [76]. Here, we emphasise the substantially
simpler case of mean curvature flow for graphs, with co-dimension one, studied in
[72].

Theorem 9.3.1. Through the quadratic change of time method, the nonlinear wave
equation, which describes graphs of extremal area in the Minkowski space R1+d,

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2

generates two twin evolution PDEs. The first one is the "arctangential" heat equa-
tion ∂tD = ∆(arctanD), while the second one is just the well known mean curvature
flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.

Remark: a "naive" interpretation of the arctangential heat equation in
optimal transport terms:

The arctangential flow ∂tD = λ∆(arctan(Dλ−1) (where we have input the scaling
parameter λ > 0) can be easily written in optimal transport style (à la Otto) [230,
231]

∂tD = ∇ · (D ∇(F ′(D))) ,

where
F(D) = D log

(
D√

1 +D2λ−2

)
− λ arctan(Dλ−1)

is the Legendre transform of

u→ λ arcsin(λ−1eu)

(extended by +∞ for u > log λ), which can be seen as a “catastrophic” version of
the usual exponential. (N.B. The inverse of this "catastrophic" exponential u →
λ arcsin(λ−1 exp(u)) can be symmetrized and periodized as v → 1

2
log(λ2 sin2(vλ−1)),

which, surprisingly enough, also plays a crucial role in the recent theory of “unbal-
anced optimal transport” [104, 185, 194].)

156



 0

 5

 10

 15

 20

 25

 30

 35

-6 -4 -2  0  2  4  6

’fort.58’

-5

-4

-3

-2

-1

 0

 1

 2

 3

-60 -40 -20  0  20  40  60

’fort.57’

The “catastrophic” exponential function, drawn for different values of parameter
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Proof of Theorem 9.3.1

We want to derive from the nonlinear wave equation (studied by Lindblad in [195])

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2,

at once, both the arctangential heat flow

∂tD = ∆(arctanD)

the mean curvature flow for graphs

∂tφ =
√

1 + |∇φ|2 ∇ ·

(
∇φ√

1 + |∇φ|2

)
.

P roof/F irst step.
Here we proceed as we did for the Born-Infeld equations, by introducing a suitable
augmented system revealing the hidden convexity structure of the wave equation.
More precisely:

Theorem 9.3.2. As φ(t, x) solves the equation of extremal surfaces in Minkowski’s
space, then

(D,B, P ) =
1√

1− ∂tφ2 + |∇φ|2
(∂tφ,∇φ,−∂tφ ∇φ)

solves the "entropic" system of conservation laws:

∂tB +∇
(
P ·B −D

h

)
= 0, ∂tD +∇ ·

(
PD −B

h

)
= 0,

∂tP +∇ ·
(
P ⊗ P +B ⊗B

h

)
= ∇

(
1 +B2

h

)
,

with
h = h(D,B, P ) =

√
1 +D2 +B2 + P 2

as convex "entropy", which is a strictly convex function of (D,B, P ) and obeys an
extra conservation law.

Let us postpone the proof of this result for a moment and continue the proof of
Theorem 9.3.1.

Proof of Theorem 9.3.1. /Second step.
We apply the quadratic change of time method t → θ = t2/2 in two different

ways. A first possible rescaling is

B(θ, x) = B(
√

2θ, x),

D(θ, x) =
D(
√

2θ, x)√
2θ

, P(θ, x) =
P (
√

2θ, x)√
2θ

,

requiring initial condition D = P = 0 at t = 0, which corresponds to ∂tφ(0, x) = 0
in terms of the solution φ to the nonlinear wave equation.
In a somewhat dual way, a second natural change is

D(θ, x) = D(
√

2θ, x),
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B(θ, x) =
B(
√

2θ, x)√
2θ

, P(θ, x) =
P (
√

2θ, x)√
2θ

,

requiring initial condition B = P = 0 at t = 0, which corresponds to ∇φ = 0 at
t = 0 in terms of φ.
After performing the change of time t → θ = t2/2, we get, in the 1st case, the non
automous system:

∂θB = ∇
(
D − P · B

H

)
, H =

√
1 + B2 + 2θ(D2 + P2),

D −∇ ·
(
B
H

)
= −2θ

(
∂θD +∇ ·

(
PD
H

))
,

P +∇ ·
(
B ⊗ B
H

)
−∇

(
1 + B2

H

)
= −2θ

(
∂θP +∇ ·

(
P ⊗ P
H

))
,

Neglecting the red terms leads to the mean curvature flow (for graphs), written as
an augmented system, in form:

∂θB = ∇
(
D − P · B

H

)
, H =

√
1 + B2

D = ∇ ·
(
B
H

)
, P +∇ ·

(
B ⊗ B
H

)
= ∇

(
1 + B2

H

)
.

Symmetrically, the second rescaling leads to the arctangential heat equation and,
then, the twin gradient flow structures easily follow.
End of proof.

Proof of Theorem 9.3.2

First step : Hamiltonian form of the minimal surface equations.
The non linear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2,

is easily obtained by finding critical points φ of the Minkowski area of the graph
(t, x)→ (t, x, φ(t, x)), namely

−
∫ ∫ √

1− ∂tφ2 + ∂kφ ∂kφ dtdx,

under space-time compactly supported perturbations. For the sequel, it is crucial
to use the Hamiltonian form of the nonlinear wave equation. For that purpose, we
introduce the fields

E(t, x) = ∂tφ(t, x), Bi(t, x) = ∂iφ(t, x),

which are linked by the differential constraint ∂tBi = ∂iE. Introducing the La-
grangian function

L(E,B) = −
√

1− E2 +BkBk ,
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we look at critical points (E,B) of∫ ∫
L(E(t, x), B(t, x))dtdx

under space-time compactly supported perturbations, subject to the differential con-
straints. In other words, we look for saddle-points (E,B, ψ) of∫ ∫ (

L(E(t, x), B(t, x)) + ∂tψ
iBi(t, x)− ∂iψiE(t, x)

)
dtdx

where ψ = ψ(t, x) ∈ Rd is a Lagrange multiplier for the differential constraint.
Independently of the specific definition of L, we may introduce the Hamiltonian H
as the partial Legendre-Fenchel transform of the Lagrangian L(E,B) with respect
to E,

H(D,B) = sup
E∈R

DE − L(E,B)

and the corresponding "dual" field

D(t, x) = (
∂L

∂E
)(E(t, x), B(t, x)).

Then, we get, by standard differential calculus, the Hamiltonian formulation

∂tBi = ∂i

(
∂H

∂D
(D,B)

)
, ∂tD = ∂i

(
∂H

∂Bi

(D,B)

)
,

and, as a consequence, an extra conservation law involving H

∂t(H(D,B)) + ∂i(P
i(D,B)) = 0, P i(D,B) =

(
∂H

∂D

∂H

∂Bi

)
(D,B).

In the case of the nonlinear wave equation we get, explicity,

H(D,B) =
√

(1 +Bk Bk)(1 +D2)

and, after elementary calculations, deduce

Proposition 9.3.3. The nonlinear wave equation

∂t(
∂tφ

R
) = ∇ · (∇φ

R
), R =

√
1− ∂tφ2 + |∇φ|2,

can be written in Hamiltonian form

∂tBi = ∂i

(√
1 +BkBk

1 +D2
D

)
, ∂tD = ∂i

(√
1 +D2

1 +BkBk
Bi

)
, (9.3.1)

with the extra-conservation law

∂tH + ∂iP
i = 0, H =

√
(1 +Bk Bk)(1 +D2), P i = −DBi.

In addition, (D,B) are related to φ by

Bi = ∂iφ, D =
∂tφ√

1− ∂tφ2 + ∂kφ ∂kφ
.
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Second|; step Construction of an augmented system with convex entropy.
Since the Hamiltonian

H(D,B) =
√

(1 +Bk Bk)(1 +D2)

is, unfortunately, not a convex function of (D,B), and, therefore the hamiltonian
form of the nonlinear wave equation (9.3.1) does not belong to our favorite class of
systems of entropic system of conservation laws with a convex entropy. However,
there is also an extra conservation law for P = −DB, namely

∂tP +∇ ·
(
P ⊗ P +B ⊗B

h

)
= ∇

(
1 +B2

h

)
,

where h = h(D,B, P ) =
√

1 +D2 +BkBk + PkP k is nothing but H(D,B), written
as a function of (D,B, P ). We can add this new conservation laws to the one we
have previously obtained for (D,B), namely

∂tB +∇
(
P ·B −D

h

)
= 0, ∂tD +∇ ·

(
PD −B

h

)
= 0

(where we input the new variable h). This allows us, ignoring the algebraic con-
straint P = −DB, to consider (D,B, P ), as a solution of an augmented system
of conservation laws which turns out to enjoy an extra conservation law for the
strictly convex "entropy" h(D,B, P ) =

√
1 +D2 +BkBk + PkP k . The detailed

calculations are provided in the appendix of [72].

9.4 Inhomogeneous incompressible Euler and
Muskat equations

Another example when we can fruitfully derive degenerate parabolic equations out
of entropic systems of conservation laws come from Fluid Mechanics. We start with
the Euler equations, set on Td for simplicity, of an incompressible inhomogeneous
fluid subject to the action of an external potential Φ and we use the Boussinesq
approximation:

∂tρ+∇ · (ρv) = 0, ∇ · v = 0,

ρ(∂tv +∇ · (v ⊗ v)) +∇p = −ρ∇Φ, ρ = cst.

Notice that the density field ρ is advected by the velocity field v in the sense that

(∂tρ+ v · ∇)ρ = 0,

which is a consequence of both the continuity equation and the divergence-free con-
dition on v.

Remark.
In geophysical Fluid Mechanics, the Boussinesq approximation, which is still widely
used because its substantially simplifies numerical computations, amounts to ne-
glecting the variation of the density in the acceleration term and substituting for it
the constant ρ which should be considered as an average density (and, accordingly,
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ρ should be thought as the density minus its average rather than the density itself,
which does not affect the equations since adding a constant to ρ does not mod-
ify them, thanks to the pressure term and the divergence-free condition). Anyway,
this model is fully consistent with the least action principle without requiring any
approximation, provided the action is defined by

A =

∫ ∫ (
1

2
ρ|v(t, x)|2 − ρ(t, x)Φ(x)

)
dxdt

subject to constraints:

∂tρ+∇ · (ρv) = 0, ∇ · v = 0.

Indeed, introducing two Lagrange multipliers θ = θ(t, x) ∈ R and q = q(t, x) ∈ R
for the constraints, we form the Lagrangian

L =

∫ ∫ (
1

2
|v(t, x)|2 − ρ(t, x)Φ(x)− ∂tθρ−∇θ · ρv −∇q · v

)
dxdt

(where we have set ρ = 1 for notational simplicity) and get, by successively varying
v and ρ,

v = ρ∇θ +∇q, ∂tθ + v · ∇θ + Φ = 0,

which leads back to
∂tv +∇ · (v ⊗ v) +∇p = −ρ∇Φ,

after elementary calculations, where p is related to q through:

p =
1

2
|v|2 − v · ∇q.

[Strickly speaking this derivation is incomplete as d > 3 (which does not matter
from a mechanical viewpoint) since the "Clebsch" decomposition v = ρ∇θ +∇q is
too restrictive to describe a divergence-free vector field as d > 3. Then, additional
Lagrange multipliers must be added in the action principle.]
End of remark.

From now on, we simplify notations by setting ρ = 1 and define the "Euler-
Boussinesq" as

(EB) : ∂tv +∇ · (v ⊗ v) +∇p = −ρ∇Φ, ∂tρ+∇ · (ρv) = 0, ∇ · v = 0.

Observe the (formal) conservation of energy:

d

dt

∫
Td

(
1

2
|v(t, x)|2 + ρ(t, x)Φ(x)

)
dx = 0.

Also notice that for any suitable function Ψ we get the extra conservation

d

dt

∫
Td

Ψ(ρ(t, x)))dx = 0.

So, we may as well rewrite the conservation of energy as

d

dt

∫
Td
{|v(t, x)|2 + (ρ(t, x) + Φ(x))2}dx = 0.

(just by taking Ψ(r) = r2).
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From Euler to Muskat by quadratic change of time

Let us again use the quadratic change of time method, applied to the Euler-
Boussinesq (EB) system:

t→ θ = t2/2, new ρ(θ, x) = old ρ(
√

2θ, x),

new v(θ, x) =
1√
2θ

old v(
√

2θ, x),

After this change, the Euler-Boussinesq system becomes

∂θρ+∇ · (ρv) = 0, ∇ · v = 0,

v + 2θ(∂θv +∇ · (v ⊗ v)) +∇p = −ρ∇Φ,

For small θ we just find, as asymptotic equations, the Muskat equations

∂θρ+∇ · (ρv) = 0, ∇ · v = 0, v +∇p = −ρ∇Φ.

Relative energy estimate for the Euler-Boussinesq equations

Proposition 9.4.1. If (v, ρ) is a weak solution of Euler-Boussinesq with decreasing
energy. Then, for all smooth fields (ṽ, ρ̃) such that ∇ · ṽ = 0, we get the "relative
energy" differential inequality

d

dt
{||v − ṽ||2L2(Td) + ||ρ− ρ̃||2L2(Td)} ≤ 2

∫
Td
L+Q,

L = (ṽ − v) · Ẽ1 + (ρ̃− ρ)Ẽ2

Q = (ρ̃− ρ)(ṽ − v) · ∇(Φ + ρ̃)− (ṽ − v)⊗ (ṽ − v) · (∇ṽ +∇ṽT ),

Ẽ1 = ∂tṽ +∇ · (ṽ ⊗ ṽ) + ρ̃∇Φ, Ẽ2 = ∂tρ+ ∂j(ρv
j),

At this point, we have just Lions did for the homogeneous Euler equations in
[196]. Then, still following Lions, we can get from the relative energy estimate
a good concept of "dissipative" solutions to the Euler-Boussinesq system and get
global existence and "weak-strong" stability (and uniqueness) results for the Euler-
Boussinesq system.

Dissipative solutions" for the Muskat system

From the "relative energy" estimate obtained for the Euler-Boussinesq system, we
almost immediately get a corresponding new concept of "dissipative solution" for
the Muskat system just by using, again, the quadratic change of time method. The
result is therefore just a definition:

Definition 9.4.2. We say that (ρ, v) ∈ (C0(L2
w) × L2)([0, T ] × Td) is a dissipative

solution to the Muskat system if: i) ∇ · v = 0,
ii) ∀(ρ̃, ṽ) ∈ (W 1,∞ × L2)([0, T ]× Td) s.t. ∇ · ṽ = 0,

∀t ∈ [0, T ],

∫
Td

(ρ̃− ρ)(t, ·)2 ≤ e t r̃
∫
Td

(ρ̃− ρ)(0, ·)2

−
∫ t

0
e(t−s)r̃ ∫

Td{2(v − ṽ) · Ẽ1 + 2(ρ− ρ̃)Ẽ2

+|ṽ − v|2 + |ṽ − v − (ρ̃− ρ)∇(Φ + ρ̃)|2}(s, x)dxds,

Ẽ1 = ṽ + ρ̃∇Φ, Ẽ2 = ∂tρ̃+ ṽ · ∇ρ̃, r̃ = ||∇(Φ + ρ̃)||L∞.
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Chapter 10

A dissipative least action principle
and its stochastic interpretation

The purpose of this chapter is first to introduce a modified least action principle
that can include energy dissipation and, afterwards, to provide a stochastic inter-
pretation of this modification in terms of large deviations (which will be done in the
final sectio), at least in a special case strongly related to both the Euler equations
of incompressible fluids and the gravitational Vlasov-Poisson system that describes
Newtonian gravitation, As usual in this course, convexity plays a crucial role in this
chapter.

There are examples, typically in infinite dimension (but not necessarily), of formally
hamiltonian systems which do not necessarily preserve the energy because of some
hidden dissipative mechanism:
i) the (inviscid) Burgers equation

∂u

∂t
+

∂

∂x
(
u2

2
) = 0, (t, x) ∈ R+ × R→ u(t, x) ∈ R;

ii) the Euler equations of incompressible fluids: at least at the physical level, it
is often believed that the energy could dissipate according to Kolmogorov’s "K41"
theory of turbulence [150].

Let us start the discussion with a special example of finite dimensional dynamical
systems for which a dissipative version of the least action principle can be designed.

10.1 A special class of Hamiltonian systems

Given an Euclidean space H (or more generally a Hilbert space) with norm || · ||
and a potential Q : H → R,

1

2
||Vt||2 +Q[Xt]

is the conserved energy (or Hamiltonian) for the dynamical system

dVt
dt

= −∇Q[Xt],
dXt

dt
= Vt, (Xt, Vt) ∈ H ×H.
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As well known, its solutions can be obtained from the "least action principle" by
looking for critical points of the "action"∫ t1

t0

1

2
||dXt

dt
||2 −Q[Xt] dt,

among all curves t ∈ [t0, t1]→ Xt with fixed values at t0 and t1.
We are going to define a special class of hamiltonian systems (in finite dimension),
for which a modified least action principle can be designed that can include energy
dissipation. This issue has been already discussed by various authors, Shnirelman
and Wolansky, for instance [250, 271]. The systems we are going to discuss are very
special but, among them, we will get discrete or approximate versions of the Euler
model of incompressible fluids.

Let H be a Euclidean space and S a bounded closed subset. Set

Q[X] = −1

2
dist2(X,S) = − inf

s∈S

||X − s||2

2

and consider the corresponding dynamical system

d2Xt

dt2
= −∇Q[Xt]

N.B.: Q is semi-convex, but not smooth (unless S is convex).
Indeed: Q[X] = −1

2
||X||2 +R[X], where R[X] = sups∈S((X, s))− 1

2
||s||2 is convex.

10.2 The main example
and the Vlasov-Monge-Ampère system

Let us now describe our main example. Let {A(1), · · ·, A(N)} be a cubic lattice of
N points approximating D = [−1/2, 1/2]d ⊂ Rd as N tends to infinity. Define

H = (Rd)N , S = {(A(σ1), · · ·, A(σN)) ∈ H, σ ∈ SN}

(where SN denotes the group of all permutations of the first N integers, while | · |
and || · || = are the euclidean norms respectively on Rd and RNd.)
Then, the dynamical system introduced in the previous section reads, after elemen-
tary calculations,

β
d2Xt(α)

dt2
= Xt(α)− A(σopt(α)) , Xt(α) ∈ Rd, α = 1, · · ·, N (10.2.1)

σopt = Arginf σ∈SN

N∑
α=1

|Xt(α)− A(σ(α))|2 (10.2.2)

with β = 1, involving, at each time t, a discrete optimal transport problem.
This system was introduced, in the case β = −1, in [54], where its hydrodynamic
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limit to the Euler equations has been established.
Notice that, as d = 1, this system reduces to

β
d2Xt(α)

dt2
= Xt(α)− 1

2N

∑
α′ 6=α

sgn(Xt(α)−Xt(α
′)).

This describes the Newtonian gravitational interaction of N parallel planes as β = 1
(with a global neutralization of the total mass, expressed by the linear term Xt).
The continuous version, involving the Monge-Ampère equation, closely related to
optimal transport theory, was introduced by B. and Loeper [82], and studied by
Cullen, Gangbo, Pisante [113], Ambrosio-Gangbo [8]. We find

∂tf(t, x, ξ) +∇x · (ξ f(t, x, ξ))−∇ξ · (∇xϕ(t, x)f(t, x, ξ)) = 0 (10.2.3)

det(I− βD2
xϕ(t, x)) =

∫
Rd
f(t, x, ξ)dξ, (t, x, ξ) ∈ R×D × Rd. (10.2.4)

This fully nonlinear version of the Vlasov-Poisson system is related to Electrody-
namics (β = −1) and Gravitation (β = 1). The formal limit β = 0 reads

∂tf +∇x · (ξ f)−∇ξ · (∇xp f) = 0,

∫
Rd
f(t, x, ξ)dξ = 1,

where p = p(t, x) substitutes for ϕ as a Lagrange multiplier of constraint
∫
fdξ = 1.

It can be understood as a "kinetic formulation" of the Euler equations of homo-
geneous incompressible fluids (see [47, 52], for this concept). Classical solutions
(v, p) to the Euler equations correspond to very special and singular solutions of the
kinetic version of form

f(t, x, ξ) = δ(ξ − v(t, x)).

10.3 A proposal for a modified least action principle
Let us go back to the general case, where H and S can be chosen freely, respectively
as an Euclidean space and a bounded closed subset. The dynamical system

d2Xt

dt2
= −∇Q[Xt]

withQ[X] = −1
2
||X||2 +R[X], where R[X] = sups∈S((X, s))− 1

2
||s||2 is convex, Lip-

schitz continuous, but not smooth (unless S is convex), cannot be treated by the
usual Cauchy-Lipschitz theory. However the second derivatives of R are nonnegative
bounded measures and we may apply the DiPerna-Lions theory [129], as general-
ized by Bouchut and Ambrosio to second-order ODEs with "coefficients of bounded
variation" [3, 39]: for "almost every initial condition"

(X0,
dX0

dt
) ∈ H ×H,

d2Xt

dt2
= −∇Q[Xt] = Xt −∇R[Xt]

admits a global C1,1 solution, unique in a sense precised by Ambrosio.
Such a solution is "conservative" and time-reversible. For the system of particles
discussed in the previous section, in particular in the framework of 1D-Newtonian
gravitation, this corresponds to elastic, non-dissipative collisions.
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Rewriting of the action for "good" curves

There is a subset N ⊂ H, which is small in both the Baire category sense and the
Lebesgue measure sense (but not empty unless S is convex), outside of which every
point X ∈ H \N admits a unique closest point π[X] on S and

Q = −1

2
dist2(·, S)

is differentiable at X with:

−∇Q[X] = X − π[X], Q[X] = −1

2
||X − π[X]||2 = −1

2
||∇Q[X]||2.

So, the potential can be rewritten as a negative squared gradient.
Thus, for any "good" curve which almost never hits the bad set N , the action can
be written

1

2

∫ t1

t0

||dXt

dt
||2 + ||∇Q[Xt]||2 dt

which can be rearranged as a perfect square up to a boundary term that does not
play any role in the least action principle

1

2

∫ t1

t0

||dXt

dt
+∇Q[Xt]||2 dt −Q[Xt1 ] +Q[Xt0 ].

Gradient-flow solutions as special least-action solutions

Due to the very special structure of the action, we find as particular least action
solutions any solution to the first-order "gradient-flow equation"

dXt

dt
= −∇Q[Xt]

(somewhat like "instantons" in Yang-Mills theory). However, this is correct only
when t → Xt ∈ H is a "good" curve (i.e. almost never hits the "bad set" where Q
is not differentiable).

Global dissipative solutions of the gradient-flow

Since Q is semi-convex, we may use the classical theory of maximal monotone op-
erators (going back to the 70’, as in the book by H. Brezis [89]) to solve the initial
value problem for the gradient-flow equation.
For each initial condition, there is a unique global solution s.t

d+Xt

dt
= −∇Q[Xt] , ∀t ≥ 0., X ∈ C0([0,+∞[, H). (10.3.1)

Here, d+
dt

denotes the right-derivative at t, and, for each X,

∇Q[X] = −X +∇R[X]

where ∇R[X] is the "relaxed" gradient of the convex function R at point X, i.e. the
unique w ∈ H with lowest norm, ||w||, such that

R[Z] ≥ R[X] + ((w,Z −X)), ∀Z ∈ H.

168



The relaxed gradient is well defined for every X and extends the usual gradient to
the "bad set" N . These solutions in the sense of maximal monotone operator theory
are in general not conservative solutions (in the sense of Bouchut-Ambrosio) to the
original dynamical system. Indeed, they allow velocity jumps and are generally only
Lipshitz continuous and not C1.
However, they have interesting dissipative features. Indeed, the velocity may jump
with an instantaneous loss of kinetic energy.
In the case of one-dimensional gravitating particles, these jumps precisely correspond
to sticky collisions [78, 79]. The bad set N is just the collision set and the relaxed
gradient precisely encodes sticky collisions instead of elastic collisions.

The modified action

The conservative solutions, that are only defined for almost every initial condition,
manage to hit the bad set only for a negligible amount of time, while the gradient
flow solutions enjoy very much staying in it as soon as they enter it.
Our proposal is to pick up the nice dissipative property of the gradient flow solutions
and to lift them to the full dynamical system. For that purpose, we introduce the
"modified action" ∫ t1

t0

||dXt

dt
+∇Q[Xt]||2 dt (10.3.2)

which favors "bad" curves that stay on the "bad set" for a while. Let us recall that
∇Q denotes the "relaxed" gradient of the semi-convex function

Q[X] = −1

2
dist2(X,S) = −1

2
||X||2 + sup

s∈S
{((X, s))− 1

2
||s||2}. (10.3.3)

10.4 Stochastic origin
of the dissipative least action principle

Using large deviation principles (or alternatively the concept of guiding wave coming
from quantum mechanics), we will derive, following [4] and from essentially noth-
ing but noise (namely N independent Brownian particles without any interaction
nor external potential), the dissipative least action principle (10.3.2,10.3.3), for the
special system (10.2.1,10.2.2), in the "gravitational" case β = 1. Let us recall that
this system is a discretization of the Vlasov-Monge-Ampère system (10.2.3,10.2.4)
as well as an approximation of the Euler equations.
The first step of our analysis is very much related to the Schrödinger problem, as
analyzed by Christian Léonard [191].

Localization of a Brownian point cloud

Given a point cloud
{A(α) ∈ Rd, α = 1, · · ·, N},

we consider N independent Brownian curves issued from this cloud

Yt(α) = A(α) +
√
εBt(α), α = 1, · · ·, N.
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At a fixed time T > 0, the probability for the moving cloud to reach position
X = (X(α), α = 1, · · ·, N) ∈ RdN has density

1

Z

∑
σ∈SN

N∏
α=1

exp(−|X(α)− A(σ(α))|2

2εT
)

=
1

Z

∑
σ∈SN

exp(−||X − Aσ||
2

2εT
)

(here SN denotes the group of all permutations of the first N integers, while | · |
and || · || = are the euclidean norms respectively on Rd and RNd and Z is the
normalization factor which is proportional to εNd/2).
Since

−ε log
1

Z

∑
σ∈SN

exp(−||X − Aσ||
2

2εT
) ∼ 1

2T
inf σ∈SN ||X − Aσ||2

as ε → 0, an observer at time T feels that the particles arrived at XT ∈ RdN , have
travelled along straight lines by "optimal transport"

Xt = (1− t

T
)Aσopt +

t

T
XT , σopt = Arginf σ∈SN ||XT − Aσ||2.

This formula implies

dXt

dt
=
Xt − Aσopt

t
, σopt = Arginf σ∈SN ||Xt − Aσ||2.

(Indeed, we observe that, for all t ∈]0, T [ σopt(t) is unchanged and equal to σopt.)
The resulting "deterministic" process is, as a matter fact, just the output of the pure
observation of a random process as the level of noise vanishes. This is a good example
of order emerging from pure desorder! Of course, this is strongly related to the
Schrödinger problem already discussed in this course [191]. It is quite remarkable,
as explained in [70], that, from a physical viewpoint, this model is equivalent to the
Zeldovich model in Cosmology [275, 249, 151, 77]

An alternative viewpoint: the pilot wave

We Introduce the heat equation in the space of "clouds" X ∈ RNd

∂ρ

∂t
(t,X) =

ε

2
∆ρ(t,X), ρ(t = 0, X) =

1

N !

∑
σ∈SN

δ(X − Aσ),

where ∆ is the Laplacian in the very large space (Rd)N) and the initial condition
has been symmetrized by the symmetric group SN .
Then, mimicking the idea of "pilot wave" introduced by de Broglie for Quantum
Mechanics, we introduce the ODE

dXt

dt
= v(t,Xt)

where v is the "pilot" velocity field

v(t,X) = − ε
2
∇X log ρ(t,X), t > 0, X ∈ (Rd)N ,
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i.e.
dXt

dt
=
Xt − < A >

2t
, < A >=

∑
σ∈SN Aσ exp(−||Xt−Aσ ||

2

2εt
)∑

σ∈SN exp(−||Xt−Aσ ||
2

2εt
)
.

Notice that, as in de Broglie’s theory, the corresponding trajectories are smooth and
not at all Brownian curves! [As a matter of fact, a similar calculation also works for
the free bosonic Schrödinger equation:

(i∂t + κ∆)ψ = 0, ψ(0, X) =
∑
σ∈SN

exp(−||X − Aσ||2/a2), v = Im∇ logψ,

where κ, a > 0 are suitable constants to be related to the Planck constant. However
the analysis becomes much more difficult than for the heat equation and we will not
discuss further this very interesting issue.]

Using exponential time t = exp(2θ), we get

dXθ

dθ
= Xθ − < A > , < A >=

∑
σ∈SN Aσ exp(−||Xθ−Aσ ||

2

2ε exp(2θ)
)∑

σ∈SN exp(−||Xθ−Aσ ||
2

2ε exp(2θ)
)
.

Notice that we may also write (after expanding each square and noticing that
||Aσ|| = ||A||, for every σ ∈ SN):

dXθ

dθ
= Xθ −

∑
σ∈SN Aσ exp

(
((Xθ,Aσ))
ε exp(2θ)

)
∑

σ∈SN exp
(

((Xθ,Aσ))
ε exp(2θ)

) = −∇XQε[θ,Xθ],

Qε[θ,X] = −||X||
2

2
+ ε exp(2θ) log

∑
σ∈SN

exp

(
((X,Aσ))

ε exp(2θ)

)
, X ∈ (Rd)N .

This "potential" Qε is a (time-dependent) semi-convex function. Indeed

X ∈ (Rd)N → ε exp(2θ) log
∑
σ∈SN

exp

(
((Xθ, Aσ))

ε exp(2θ)

)
is a convex function in X, with a Lipschitz constant uniformly bounded in ε and θ
by ||A|| and its limit, in sup norm, is just

X → sup
σ∈SN

((Xθ, Aσ)).

Thus, the limit in ε → 0 of this smooth ODE can be analyzed in the framework of
maximal monotone operators [89, 209] and we obtain (10.3.1) the generalized ODE,
which should be understood in the sense of maximal monotone operators,

d+Xθ

dθ
= −∇Q[Xθ],

Q[X] = −||X||
2

2
+ sup

σ∈SN
((Xθ, Aσ)) =

||A||2

2
− inf

σ∈SN

||X − Aσ||2

2
,

in which features the generalized gradient of the limit potential Q. So, at this
stage, up to the change of time variable t = exp(2θ), we have fully recovered the
dissipative system already discussed in the previous sections. However, in order
to get the discrete Vlasov-Monge-Ampère system we are mostly interested in, it is
better to keep ε > 0 fixed for a while, and apply the large deviation theory to the
"pilot wave" ODE.
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Large deviations of the pilot system

Let us fix ε for a while and add some noise η to the "guided" trajectories

dXθ

dθ
= −∇Qε[θ,Xθ] +

√
η
dBθ

dθ
.

Since
Qε[θ,X] +

||X||2

2
= ε exp(2θ) log

∑
σ∈SN

exp

(
((X,Aσ))

ε exp(2θ)

)
is a smooth function, Lipschitz continuous in X, we may apply the standard large
deviation theory of Vencel-Freidlin [264] that asserts that the probability to go from
a point Y0 ∈ (Rd)N at time θ = θ0 to some other point Y1 ∈ (Rd)N at time θ = θ1

essentially behaves (in a suitable technical sense), as η → 0, as

exp(−A[θ0, θ1, Y0, Y1]

η
), A[θ0, θ1, Y0, Y1] =

inf{Iε[X; θ0, θ1]; X ∈ C1([θ0, θ1]; (Rd)N), Xθ0 = Y0, Xθ1 = Y1},

where Iε is the so-called good rate function

Iε[X; θ0, θ1] =
1

2

∫ θ1

θ0

(
||dXθ

dθ
+∇Qε[θ,Xθ]||2

)
dθ.

It also shows that the most likely trajectories converge to minimizers of the good
rate function. Finally, we may let ε go to zero. One can prove, as done in [4], that
the good rate function Γ-converges, as ε→ 0 to

I[X; θ0, θ1] =
1

2

∫ θ1

θ0

(
||dXθ

dθ
+∇Q[Xθ]||2

)
dθ.

where

Q[X] = −||X||
2

2
+ sup

σ∈SN
((Xθ, Aσ)) =

||A||2

2
− inf

σ∈SN

||X − Aσ||2

2
,

which exactly returns the dissipative least action principle introduced and discussed
in the previous sections.
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