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HIDDEN CONVEXITY IN SOME NONLINEAR PDEsFROM GEOMETRY AND PHYSICS

1. THE MONGE-AMPERE EQUATION(solving the Minkowski problem and playing a key role in OptimalTransport Theory sine the 90's)2. THE EULER EQUATION(desribing the motion of invisid and inompressible �uids,interpreted by Arnold as geodesi urves on in�nite dimensionalgroups of volume preserving di�eomorphisms)3. THE BORN-INFELD EQUATION(a non-linear eletromagneti model introdued in 1934, with a strongrevival in high energy Physis in the 90's)
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I) THE MONGE-AMPERE EQUATION

Given two positive smooth funtions α and β of same �nite integral over

Rd, �nd a smooth onvex funtion Φ suh that:

β(DΦ(x))det(D2Φ(x)) = α(x)Assuming D2Φ(x) to be uniformly bounded away from zero and in�nity(in the sense of symmetri matries) makes this PDE well-posed.The Monge-Ampère equation is usually related to the Minkowski problem,whih amounts to �nd hypersurfaes of presribed Gaussian urvature.
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A WEAK FORM OF THE MONGE-AMPERE EQUATION

When D2Φ(x) is uniformly bounded away from zero, then

x ∈ Rd → DΦ(x) ∈ Rd is one-to-one.Using the hange of variable y = DΦ(x), we dedue

Z

f(y)β(y)dy =

Z

f(DΦ(x)))β(DΦ(x))det(D2Φ(x))dx =

Z

f(DΦ(x)))α(x)dxfor all suitable test funtion fThus, a possible WEAK FORMULATION of the MA equation is

Z

f(y)β(y)dy =

Z

f(DΦ(x)))α(x)dx, ∀fIn other words β(y)dy AS A MEASURE IS α(x)dx

�TRANSPORTED� BY x ∈ Rd → DΦ(x) ∈ Rd AS A MAP.
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A CONVEX VARIATIONAL PRINCIPLEFOR THE MONGE-AMPERE EQUATION

Any solution to the Monge-Ampère equation

β(DΦ(x))det(D2Φ(x)) = α(x)minimizes the CONVEX funtional
Φ ⇒

Z

Φ(x)α(x)dx +

Z

Φ∗(y)β(y)dyamong all suitable onvex funtions Φ, where Φ∗ denotes theLegendre-Fenhel transform
Φ∗(y) = sup

x∈Rd

x · y − Φ(x).
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A CONVEX VARIATIONAL PRINCIPLEFOR THE MONGE-AMPERE EQUATION 3Proof
Z

Ψ(x)α(x)dx +

Z

Ψ∗(y)β(y)dy =

Z

(Ψ(x) + Ψ∗(DΦ(x)))α(x)dx(sine DΦ transports α toward β)
≥

Z

x · DΦ(x)α(x)dx(by de�nition: Ψ∗(y) = supx∈Rd x · y − Ψ(x). )
=

Z

(Φ(x) + Φ∗(DΦ(x)))α(x)dx(indeed, in the de�nition of Φ∗(y) = sup x · y − Φ(x), the supremum isahieved whenever y = DΦ(x), whih implies Φ∗(DΦ(x)) = x · DΦ(x) − Φ(x)

=

Z

Φ(x)α(x)dx +

Z

Φ∗(y)β(y)dy

CONCLUSION: Φ IS A MINIMIZERJune 15, 2009 6
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AN EXISTENCE AND UNIQUENESS RESULTFOR THE WEAK MONGE-AMPERE PROBLEM

YB, C. R. Aad. Si. Paris Sér. I Math. 305 (1987) and CPAM 44 (1991), Smith and Knott, J.Optim. Theory Appl. 52 (1987), Ca�arelli, J. AMS 5 (1992) and Ann. of Math. (2) 144 (1996), W.Gangbo, Arh. Rat. Meh. (1994), R. MCann Duke Math J. (1995), C. Villani, Topis in optimaltransportation, AMS, 2003, see also reviews and leture notes and many other papers and books.THEOREMWhenever α and β are Lebesgue integrable, with same integral, andbounded seond order moments,
Z

|x|2α(x)dx < +∞,

Z

|y|2β(y)dy < +∞,there is a unique map with onvex potential x → DΦ(x) that solves theMonge-Ampère problem in its weak formulation.
x → DΦ(x) IS CALLED THE OPTIMALTRANSPORT MAP BETWEEN α AND β
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Using the optimal map to provethe isoperimetri inequality

Let Ω be a smooth bounded open set and B1 the unit ball in R
d.THE ISOPERIMETRIC INEQUALITY READS:

|Ω|1−1/d|B1|
1/d ≤

1

d
|∂Ω|A PROOF USING THE OPTIMAL MAP:Let DΦ the optimal transportation map between

α(x) =
1

|Ω|
, x ∈ Ω , β(y) =

1

|B1|
, y ∈ B1.So that

(Ω, α) → (B1, β) , β(DΦ(x))det(D2Φ(x)) = α(x)

i.e. det(D2Φ(x)) =
|B1|

|Ω|
, x ∈ Ω.NB: version �quantitative� ave exposant optimal parFigalli-Maggi-Pratelli, CVGMT Pisa 2007June 15, 2009 8
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The isoperimetri inequality 2

Proof (adaptated from Gromov): Sine the range of DΦ is the unit ball,we have:

|∂Ω| =

Z

∂Ω

dσ(x) ≥

Z

∂Ω

DΦ(x) · n(x)dσ(x) =

Z

Ω

∆Φ(x)dx(using Green's formula)
≥ d

Z

Ω

(det(D2Φ(x))1/ddx(using that (detA)1/d ≤ 1/d Trace(A) for any nonnegative symmetrimatrix A)
= d|Ω|1−1/d|B1|

1/dsine det(D2Φ(x)) =
|B1|
|Ω|

, x ∈ Ω. So
|Ω|1−1/d|B1|

1/d ≤
1

d
|∂Ω|follows and equality holds only when Ω is a ball as it an be easily heked.June 15, 2009 9
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II) THE EULER EQUATION

GEOMETRIC DEFINITIONOF THE EULER EQUATIONS :The Euler equations, introdued in 1755, desribe the motion of invisidinompressible �uids. They have a very simple geometri interpretation.For a �uid moving inside a bounded onvex domain D in Rd, we get:

d2gt

dt2
◦ g−1

t + ∇pt = 0,where t → gt is a urve valued in the (formal) Lie group SDiff(D) of allvolume preserving di�eomorphisms of D and pt is a time dependent salarfuntion de�ned on D and alled the 'pressure �eld'.Suh a urve is just a geodesi, with respet to the L2 metri on the LieAlgebra of SDiff(D).f. Arnold Ann. Inst. Fourier 1966, Ebin-Marsden Ann. Maths 1970,Abraham-Marsden-Ratiu, Springer 1988, Arnold-Khesin, Topologial methods inhydrodynamis, Springer 1998.June 15, 2009 10
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A CONVEX PRINCIPLE FOR THE EULER EQUATION

A MAXIMIZATION PRINCIPLE FOR THE PRESSURE FIELDFor eah time interval [t0, t1] small enough, the pressure �eld p maximizesthe CONCAVE funtional
p ⇒

Z t1

t0

Z

D

pt(x)dtdx +

Z

D

Jp[gt0 (x),gt1 (x)]dx,with
Jp[x,y] = inf

Z t1

t0

(−pt(z(t)) +
|z′(t)|2

2
)dt,where the in�mum is taken over all urves t → z(t) ∈ D suh that

z(t0) = x ∈ D, z(t1) = y ∈ D.

June 15, 2009 11
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A CONVEX PRINCIPLE FOR THE EULER EQUATION...

Proof: For all test funtion q, by de�nition of Jq:

Z

D

Jq[gt0 (x),gt1 (x)]dx ≤

Z t1

t0

Z

D

(
1

2
|
dgt

dt
|2 − qt(gt(x)))dtdx.Beause [t0, t1] is short and gt solves the Euler equation:

Z

D

Jp[gt0 (x),gt1 (x)]dx =

Z t1

t0

Z

D

(
1

2
|
dgt

dt
|2 − pt(gt(x)))dtdx.Sine gt ∈ SDiff(D) is volume preserving, we have:

Z

D

(qt(x) − qt(gt(x))dx =

Z

D

(pt(x) − pt(gt(x))dx = 0.Thus

Z t1

t0

Z

D

qt(x)dtdx +

Z

D

Jq[gt0 (x),gt1 (x)]dx

≤

Z t1

t0

Z

D

pt(x)dtdx +

Z

D

Jp[gt0(x),gt1 (x)]dxCONCLUSION: p IS A MAXIMIZERJune 15, 2009 12
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EULER EQUATIONS AND MINIMIZING GEODESICS

A. Shnirelman, Math Sb. 128 (1985), GAFA 4 (1994), YB, J. AMS 2 (1989), Arh. Rational Meh.Anal. 138 (1997), Comm. Pure Appl. Math. 52 (1999), L. Ambrosio, A. Figalli, CVGMT preprint2007, Pisa, to appear in ARMATHEOREMWhenever g0 and g1 are given volume preserving Borel maps of D (notneessarily di�eomorphisms),1) There is a unique pressure �eld (up to an additive onstant) that solvesthe Maximization problem (in a suitable weak sense) and

p ∈ L2(]t0, t1[,BVloc(D)).2) There is a sequene gn
t valued in SDi�(D) suh that

d2gn
t

dt2
◦ (gn

t )−1 + ∇pt → 0,in the sense of distributions and gn
0 → g0, gn

1 → g1 in L2.3) When g0 and g1 are di�eomorphisms and d ≥ 3, all minimizing geodesisbehave as in 2). This is not true when d = 2.June 15, 2009 13
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III) THE BORN-INFELD SYSTEM(f.G. Boillat, CIME 1994-Springer leture notes 1640)

∂tB + ∇× (
B × (D × B) + D

p

1 + D2 + B2 + (D × B)2
) = 0, ∇ · B = 0,

∂tD + ∇× (
D × (D × B) − B

p

1 + D2 + B2 + (D × B)2
) = 0, ∇ · D = 0,This system is a nonlinear orretion to the Maxwell equations, whih andesribe strings and branes in high energy Physis. Global smoothsolutions have been proven to exist for small loalized initial onditions(Chae and Huh, J. Math. Phys. 2003, using Klainerman's null forms).The additional onservation law

∂th + ∇ · Q = 0,where

h =
q

1 + D2 + B2 + (D × B)2, Q = D × B.provides an 'entropy funtion' h whih is a onvex funtion of theunknown (D,B) ONLY in a neighborhood of (0, 0).June 15, 2009 14
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THE AUGMENTED BORN-INFELD (ABI) SYSTEMThe 10 × 10 augmented Born-Infeld system (ABI) is made of the originalBI system augmented by adding the 4 'energy-momentum' onservationlaws (provided by Noether's theorem):

∂tQ + ∇ · (
Q⊗ Q − B ⊗ B − D ⊗ D

h
) = ∇(

1

h
), ∂th + ∇ · Q = 0to the 6 original BI evolution equations

∂tB + ∇× (
B × Q + D

h
) = ∂tD + ∇× (

D × Q − B

h
) = 0 , ∇ · B = 0, ∇ · D = 0while DISREGARDING THE ALGEBRAIC CONSTRAINTS

h =
q

1 + D2 + B2 + (D × B)2, Q = D × B,whih de�ne the 6 dimensional BI MANIFOLD in the spae

(h,Q,D,B) ∈ R10.For smooth solutions, THE BI SYSTEM IS JUST EQUIVALENT TOTHE AUGMENTED SYSTEM RESTRICTED TO THE BI MANIFOLD.f. YB, Arh. Rat. Meh. Analysis 2004June 15, 2009 15
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FIRST OCCURENCE OF CONVEXITY IN THE BI SYSTEM

Surprisingly enough, the 10 × 10 augmented ABI system has an extraonservation law:
∂tη + ∇ · Ω = 0,where

η(h,Q,D,B) =
1 + D2 + B2 + Q2

h
,is CONVEX, whih leads to the GLOBAL hyperboliity of the system.The ABI system looks like lassial MHD equations and enjoys classicalGalilean invariane:

(t,x) → (t,x + U t), (h,Q,D,B) → (h,Q − hU,D,B),for any onstant speed U ∈ R3!

June 15, 2009 16
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SECOND OCCURENCE OF CONVEXITY IN THE BI SYSTEM

The 10 × 10 ABI (augmented Born-Infeld) system is linearly degenerate (inthe sense of Lax) and stable under weak-* onvergene: weak limits ofuniformly bounded sequenes in L∞ of smooth solutions depending on onespae variable only are still solutions. (This an be proven by using theMurat-Tartar 'div-url' lemma.)
⇒ CONJECTURE: THE CONVEX HULL OF THE BI MANIFOLD ISTHE NATURAL CONFIGURATION SPACE OF THE BI THEORY(As a matter of fat, the di�erential onstraints ∇ · D = ∇ · B = 0 must betaken into aount.) (YB, Arh. Rat. Meh. Analysis 2004)The onvex hull is entirely de�ned by the following inequality:

h ≥
q

1 + D2 + B2 + Q2 + 2|D × B − Q|.D. Serre, A remark on Y. Brenier's approah to Born-Infeld eletro-magneti �elds,Contemp. Math., 371, AMS 2005.June 15, 2009 17
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ON THE CONVEXIFIED BI MANIFOLD...

1) The eletromagneti �eld (D,B) and the 'density and momentum' �elds

(h,Q) an be hosen independently of eah other, as long as they satisfy therequired inequality h ≥
p

1 + D2 + B2 + Q2 + 2|D × B − Q|.The AUGMENTED system desribes a �eld/matter oupling while theoriginal Born-Infeld model is purely eletromagneti.2) 'Matter' may exist without eletromagneti �eld: B = D = 0, whihleads to the Chaplygin gas (a possible model for 'dark energy' or 'vauumenergy')

∂tQ + ∇ · (
Q ⊗ Q

h
) = ∇(

1

h
), ∂th + ∇ · Q = 0,3) 'Moderate' Galilean transforms are allowed

(t,x) → (t,x + U t), (h,Q,D,B) → (h,Q − hU,D,B)(whih is impossible on the original BI manifold). This is left from speialrelativity under weak ompletion ('subrelativisti' onditions.)f. YB, Methods Appl. Anal. 12 (2005)June 15, 2009 18


