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HIDDEN CONVEXITY IN SOME NONLINEAR PDEs
FROM GEOMETRY AND PHYSICS

1. THE MONGE-AMPERE EQUATION

(solving the Minkowski problem and playing a key role in Optimal
Transport Theory since the 90’s)

2. THE EULER EQUATION
(describing the motion of inviscid and incompressible fluids,
interpreted by Arnold as geodesic curves on infinite dimensional

groups of volume preserving diffeomorphisms)

3. THE BORN-INFELD EQUATION

(a non-linear electromagnetic model introduced in 1934, with a strong
revival in high energy Physics in the 90’s)
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‘ I) THE MONGE-AMPERE EQUATION I

R4, find a smooth convex function ® such that:

B(D®(x))det(D2®(x)) = a(x)

(in the sense of symmetric matrices) makes this PDE well-posed.

Given two positive smooth functions a and § of same finite integral over

Assuming D?®(x) to be uniformly bounded away from zero and infinity

The Monge-Ampeére equation is usually related to the Minkowski problem,
which amounts to find hypersurfaces of prescribed Gaussian curvature.
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‘ A WEAK FORM OF THE MONGE-AMPERE EQUATION I

When D?®(x) is uniformly bounded away from zero, then
x € RY — D®(x) € R? is one-to-one.
Using the change of variable y = D®(x), we deduce

~

[ £318)dy = [ €(DB(x))BDS(x)det(D2®(x)dx = [ EDB(x))a(x)dx

\_

for all suitable test function f
Thus, a possible WEAK FORMULATION of the MA equation is

[ £3186)dy = [ £DBE)aGdx, e

In other words | 3(y)dy | AS A MEASURE IS | a(x)dx

“TRANSPORTED” BY |x € RY — D®(x) ¢ RY | AS A MAP.
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A CONVEX VARIATIONAL PRINCIPLE

FOR THE MONGE-AMPERE EQUATION

Any solution to the Monge-Ampére equation
B(D® (x))det(D2®(x)) = a(x)

minimizes the CONVEX functional

<I>:>/<I> dx—l—/<I>*

among all suitable convex functions &, where ®* denotes the

Legendre-Fenchel transform

P (y) = sup x-y— ®(x).
xeRd
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A CONVEX VARIATIONAL PRINCIPLE \

FOR THE MONGE-AMPERE EQUATION 3

Proof

/ T (x)or()dx + / T (y)A(y)dy = / (T (x) + T (DB (x)))or(x)dx

(since D® transports a toward )
> [ x De(a(x)dx
(by definition: ¥*(y) = sup, pa x-y — ¥(x). )
— [(@(x) + 2 (DB(x))a(x)dx

(indeed, in the definition of ®*(y) =sup x-y — ®(x), the supremum is
achieved whenever y = D®(x), which implies ®*(D®(x)) = x- D®(x) — ®(x)

= [ @atiax+ [ @ (3)6)ay

K CONCLUSION: ¢ IS A MINIMIZER /
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AN EXISTENCE AND UNIQUENESS RESULT

FOR THE WEAK MONGE-AMPERE PROBLEM

YB, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) and CPAM 44 (1991), Smith and Knott, J.
Optim. Theory Appl. 52 (1987), Caffarelli, J. AMS 5 (1992) and Ann. of Math. (2) 144 (1996), W.
Gangbo, Arch. Rat. Mech. (1994), R. McCann Duke Math J. (1995), C. Villani, Topics in optimal

transportation, AMS, 2003, see also reviews and lecture notes and many other papers and books.

THEOREM

Whenever a and (3 are Lebesgue integrable, with same integral, and

bounded second order moments,

/ x|2a(x)dx < +oo, / y[28(y)dy < +o0,

there is a unique map with convex potential x — D®(x) that solves the
Monge-Ampére problem in its weak formulation.

x — D®(x) IS CALLED THE OPTIMAL
TRANSPORT MAP BETWEEN a AND 3
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Using the optimal map to prove

the isoperimetric inequality

Let © be a smooth bounded open set and B; the unit ball in R?,

THE ISOPERIMETRIC INEQUALITY READS:
1
QP /9B < S joe

A PROOF USING THE OPTIMAL MAP:

Let D® the optimal transportation map between

a(x) = —

= —, x€,
o] B(y)

= , y € B1.
|B1]

So that
(2,a) = (B1,8), B(D®(x))det(D?®(x)) = a(x)
B1]
Q] -

NB: version ‘“quantitative’” avec exposant optimal par
Figalli-Maggi-Pratelli, CVGMT Pisa 2007

ie. det(D?*®(x)) = x € Q.
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‘ The isoperimetric inequality 2 I

Proof (adaptated from Gromov): Since the range of D® is the unit ball,
we have:

02| = /89 do(x) > /89 D®(x) - n(x)do(x) = /Q AP (x)dx

(using Green’s formula)

> d/ (det(D?®(x))/ddx
Q

(using that (detA)'/d < 1/d Trace(A) for any nonnegative symmetric
matrix A)
— d|ﬂ|1_1/d|B1|1/d

since det(D?®(x)) = ||]?21|| , x€Q. So

Q1 4By VY < S]09)

Q-

\follows and equality holds only when (2 is a ball as it can be easily checke(y
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‘ II) THE EULER EQUATION I

GEOMETRIC DEFINITION
OF THE EULER EQUATIONS :

The Euler equations, introduced in 1755, describe the motion of inviscid
incompressible fluids. They have a very simple geometric interpretation.
For a fluid moving inside a bounded convex domain D in R?, we get:

where ¢t — g; is a curve valued in the (formal) Lie group SDiff(D) of all
volume preserving diffeomorphisms of D and p; is a time dependent scalar
function defined on D and called the ’pressure field’.

Such a curve is just a geodesic, with respect to the L? metric on the Lie

Algebra of SDiff(D).

cf. Arnold Ann. Inst. Fourier 1966, Ebin-Marsden Ann. Maths 1970,

Abraham-Marsden-Ratiu, Springer 1988, Arnold-Khesin, Topological methods in

Qfdrodynamics, Springer 1998. /
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‘ A CONVEX PRINCIPLE FOR THE EULER EQUATION I

A MAXIMIZATION PRINCIPLE FOR THE PRESSURE FIELD

the CONCAVE functional

t1
p = / pe(x)dbdx + / T l&60 (%), g6, (x)]dx,
to D D

with

O
2

Toby] =int [ (<p(a() +

to

where the infimum is taken over all curves t — z(t) € D such that
z(tg) =x € D, z(t1) =y € D.

~

For each time interval [tg,?1| small enough, the pressure field p maximizes
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A CONVEX PRINCIPLE FOR THE EULER EQUATION... I

Proof: For all test function q, by definition of Jg:

k

[ Jalieo (). ey (x))ax < / [ GIE R — aule ) dedx,

Because [tg,t1] is short and gt solves the Euler equation:

/ Ipl8to (%), 8t (x dX—/t:1/ 5 (iigtt — pt(ge(x)))dtdx.

Since gt € SDiff (D) is volume preserving, we have:

/ (at(x) — at(gt(x))dx = / (pt (%) — pt(gt(x))dx = 0.
D

D
Thus
t1
/ /Qt(X)dtdx—l—/ Jql8to (%), 8, (x)]dx
to /D D
t1
S/ /Pt(X)dtdx—l—/ Jpl8to (%), g1, (x)]dx
to /D D
\ CONCLUSION: p IS A MAXIMIZER /
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EULER EQUATIONS AND MINIMIZING GEODESICS I

A. Shnirelman, Math Sb. 128 (1985), GAFA 4 (1994), YB, J. AMS 2 (1989), Arch. Rational Mech.
Anal. 138 (1997), Comm. Pure Appl. Math. 52 (1999), L. Ambrosio, A. Figalli, CVGMT preprint
2007, Pisa, to appear in ARMA

THEOREM

Whenever ggp and g; are given volume preserving Borel maps of D (not
necessarily diffeomorphisms),
1) There is a unique pressure field (up to an additive constant) that solves
the Maximization problem (in a suitable weak sense) and
p € L2(Jto, t1][, BVioc(D)).
2) There is a sequence g;' valued in SDiff(D) such that

dzg?
dt2

o (g?)™ '+ Vps — 0,

in the sense of distributions and gg — go, g7 — g1 in L2.
3) When gop and g; are diffeomorphisms and d > 3, all minimizing geodesics

behave as in 2). This is not true when d = 2.

N /

une 15, 2009

13



Université

1ce s S
L /" \
‘ IIT) THE BORN-INFELD SYSTEM I

(cf.G. Boillat, CIME 1994-Springer lecture notes 1640)

Bx(DxB)+D
v1+ D2+ B2+ (D x B)?

B + V x ( )=0, V-B=0,

Dx(DxB)—-B
v1+ D2+ B2+ (D x B)2

D + V x ( )=0, V-D=0,

This system is a nonlinear correction to the Maxwell equations, which can
describe strings and branes in high energy Physics. Global smooth
solutions have been proven to exist for small localized initial conditions

(Chae and Huh, J. Math. Phys. 2003, using Klainerman’s null forms).
The additional conservation law

oth+V-Q =0,

where

h=1/1+D2 B2+ (DxB)? Q=DxB.

provides an ’entropy function’ h which is a convex function of the
unknown (D,B) ONLY in a neighborhood of (0,0). /
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THE AUGMENTED BORN-INFELD (ABI) SYSTEM \
The 10 x 10 augmented Born-Infeld system (ABI) is made of the original

BI system augmented by adding the 4 ’energy-momentum’ conservation
laws (provided by Noether’s theorem):

QQ-BB-D®D
h

HQ+V - ( )=V(1), ah+V-Q=0

to the 6 original BI evolution equations

DxQ-B
h

B D
9B+ v x (29T

while DISREGARDING THE ALGEBRAIC CONSTRAINTS

h=1/1+D2 B2+ (DxB)? Q=DxB,

which define the 6 dimensional BI MANIFOLD in the space
(h,Q,D,B) € R'9.

For smooth solutions, THE BI SYSTEM IS JUST EQUIVALENT TO
THE AUGMENTED SYSTEM RESTRICTED TO THE BI MANIFOLD.

Q YB, Arch. Rat. Mech. Analysis 2004 /

une 15, 2009
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FIRST OCCURENCE OF CONVEXITY IN THE BI SYSTEM I

Surprisingly enough, the 10 X 10 augmented ABI system has an extra

conservation law:

ogn+ V-Q =0,

where

h Y
is CONVEX, which leads to the GLOBAL hyperbolicity of the system.
The ABI system looks like classical MHD equations and enjoys classical

n(h,Q,D,B) =

Galilean invariance:

(t,x) — (t,x+Ut), (h,Q,D,B)— (h,Q—hU,D,B),

for any constant speed U € R3!

\_

~
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the sense of Lax) and stable under weak-* convergence: weak limits of

space variable only are still solutions. (This can be proven by using the

Murat-Tartar ’div-curl’ lemma.)

= CONJECTURE: THE CONVEX HULL OF THE BI MANIFOLD IS
THE NATURAL CONFIGURATION SPACE OF THE BI THEORY

taken into account.) (YB, Arch. Rat. Mech. Analysis 2004)

The convex hull is entirely defined by the following inequality:

h>/1+D21+B2+Q2+2DxB-Q|

Contemp. Math., 371, AMS 2005.

\_

~

SECOND OCCURENCE OF CONVEXITY IN THE BI SYSTEM I

The 10 x 10 ABI (augmented Born-Infeld) system is linearly degenerate (in

uniformly bounded sequences in L°° of smooth solutions depending on one

(As a matter of fact, the differential constraints V-D =V - B =0 must be

D. Serre, A remark on Y. Brenier’s approach to Born-Infeld electro-magnetic fields,

/
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ON THE CONVEXIFIED BI MANIFOLD... I

1) The electromagnetic field (D,B) and the ’density and momentum’ fields
(h,Q) can be chosen independently of each other, as long as they satisfy the
required inequality h > \/1+ D2 + B2 + Q2 + 2|D x B — Q|.

The AUGMENTED system describes a field /matter coupling while the
original Born-Infeld model is purely electromagnetic.

2) "Matter’ may exist without electromagnetic field: B =D = 0, which
leads to the Chaplygin gas (a possible model for ’dark energy’ or ’vacuum

energy’)

Q®Q

hQ+V - ( h

)=V(1), ah+V- Q=0

3) 'Moderate’ Galilean transforms are allowed

(t,x) — (t, x4+ Ut), (hQ,D,B)— (h,Q—hU,D,B)

(which is impossible on the original BI manifold). This is left from special
relativity under weak completion (’subrelativistic’ conditions.)

Kf‘. YB, Methods Appl. Anal. 12 (2005) /
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