EXTENDED MONGE-KANTOROVICH
THEORY

Yann Brenier*

1 Abstract

We extend in various ways the Monge-Kantorovich theory (MKT), also known
as optimal transportation theory (OTT) [Ka], [KS], [RR], [Su]. This theory
has become familiar in the last ten years in the field of nonlinear PDEs, es-
pecially because of its connection with the Monge-Ampere equation [Br0],
[Br1], [Cal, [CP], [GM], the Eikonal equation [EGn], and the heat equation
[JKOJ, [Ot1], [Ot2]... The first and crucial step of all our extensions consists
in revisiting the MKT as a theory of generalized geodesics, following [BB|.
Then, various generalizations of the MKT can be investigated, including a
relativistic heat equations and a variational interpretation of Moser’s lemma.
Next, we define generalized harmonic functions and open several questions.
Then, we consider multiphase MKT with constraints, which includes the re-
laxed theory of geodesics on groups of volume preserving maps related to
incompressible fluid Mechanics [Br3]. Finally, we consider generalized ex-
tremal surfaces and we relate them to classical Electrodynamics, namely to
the Maxwell equations and to the pressureless Euler-Maxwell equations.

2 Generalized geodesics and the Monge-Kantorovich
theory

2.1 Generalized geodesics

Although we could consider the general framework of a Riemannian manifold,
we only address the case of a subset D of the Euclidean space R?, and we
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assume D to be the closure of a convex open bounded set. Given two points
Xp and X; in D, the geodesic curve

X(s)=(1—-s)Xo+sX; (1)

achieves .
151(f/0 k(X'(s))ds, (2)

for all continuous convex even function ¥ on R? among all smooth paths
s €[0,1] - X (s) € D such that X(1) = X3, X(0) = X,. This immediately
follows from Jensen’s inequality. In the spirit of Young’s generalized functions
[Yo], [Ta], let us now associate to each admissible path X the following pair
of (Borel) measures (p, E) defined on the compact set [0,1] x D by

p(s,x) :6($—X(8)), E(S,ﬂ?) =X’(S)5(.’E—X(S)), (S,.T) € [07 I]XD (3)
They satisfy the following compatibility condition in the sense of distributions
Osp+V-E=0, p0,) =po, p(1,-)=p1, (4)

where
po(z) =6(z — Xp), pi(z) =d(z — X1). (5)

Indeed, we have
— /D /01(85¢(s,x)dp(s,x) + Vé(s,z) - dE(s, x)) (6)

+ [ (61, 2)dp1 (@) = 6(0, 2)dpo(x)) = 0,
for all smooth functions ¢(s, z) defined on [0,1] x R%. (This also implies, in

a weak sense, that E is parallel to the boundary 0D.) We notice that E is
absolutely continuous with respect to p and, by Jensen’s inequality,

[ K (s)ds @

is bounded from below by

K(p,E) = [ k(e)dp. (8)
2
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where e(s,z) is the Radon-Nikodym derivative of E with respect to p. A
more precise definition of K can be given in terms of the Legendre-Fenchel
transform of £ denoted by £* and defined by
k*(y) =sup x -y — k(z), 9)
TERY
where - denotes the inner product in R?. We assume k* to be continuous on
R?. Typically

zP ¢ 1 1
k($)2| |7 k*(y):ﬂ’ _+_:1: 1<p,q<+oo,
p 9 P g
where | - | denotes the Euclidean norm in R¢. We have
1
K(p,E) =sup [ [ a(s,2)dp(s,2) + B(s,2) - dE(s.2),  (10)
a8 D Jo

where the supremum is performed over all pair («, 3) of respectively real and
vector valued continuous defined on [0, 1] x D subject to satisfy

a(s,z) + k*(B(s,z)) <0 (11)

pointwise. (Indeed, it can be easily checked that, with this definition, K (p, E)
is infinite unless i) p is nonnegative, ii) E absolutely continuous with respect
to p and has a Radon-Nikodym density e, ii) K(p, E) is just the p integral
of k(e).) Notice that K is a convex functional, valued in [0, +0o0].

It is now natural to consider the infimum, denoted by inf K, of functional
K defined by (10) among all pairs (p, F) that satisfy compatibility conditions
(4), with data (5), and not only among those which are of form (3). This
new minimization problem is convex (as the original one). Since the class of
admissible solutions has been enlarged, the following upper bound follows

(by using (1) and (3) as an admissible pair). It turns out that there is no
gap between the original infimum and the relaxed one.

Theorem 2.1 The infimum of functional K, defined by (10), among all pair
(p, E) (s, x) of measures on [0, 1] x D, satisfying (4), with boundary conditions

p(0,z) =d6(z — Xo), p(l,z) =6d(zx— Xy), (13)

is achieved by the one associated, through (3), to the straight path between
the end points X (s) = (1 — 5) Xy + sX;.
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Proof

The proof is obtained through the following simple, and typical, duality
argument that will be used several times subsequently in these lecture notes.
First, we use (6) to relax constraint (4) and write

inf 5 = inf sup [ [ "5, 7) — By6(5,2))dp(s, 7) (14)

Pl .0

+(B(s,z) — V(s, 7)) - dE(s, z) + /D(cb(l,ﬂﬁ)dm(x) — ¢(0, z)dpo()),

where (o, 3) are subject to (11), and ¢ should be considered as a Lagrange
multiplier for condition (4).
The formal optimality conditions for («, 3, @) are

a=0s¢, B=V¢, a+k*(B) =0, (15)
which leads to the Hamilton-Jacobi equation
0s¢ + k* (Vo) = 0. (16)
Thus, a good guess for (o, 3, ¢) is
¢(s,7) =z -y —sk™(y), a=0:4, f=V¢, (17)

where y € R? will be chosen later. From definition (14), we deduce, with
such a guess,

inf K > ¢(1, X1) — ¢(0, Xo) = (X1 — Xo) -y — k" (v),
for all y € R?. Optimizing in y and using that

k(z) =supz-y— k*(y),
yERY

we get
inf K Z k(Xl - Xo),

i.e. the reverse inequality of (12), which concludes the proof.

4
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2.2 Extension to probability measures

The main advantage of the concept of generalized geodesics (p, ) as mini-
mizers of K(p, E) subject to (4) is that (p, F) can achieve boundary data

p(s=0,-)=po, p(s=1,-)=npi, (18)

that are (Borel) probability measures defined on the subset D. Probability
measures should be seen in this context, as generalized (or fuzzy) points.

Theorem 2.2 Let (pg, p1) a pair of probability measures on D. Then inf K
1s always finite and does not differ from the Monge-Kantorovich generalized
distance between py and pi usually defined by

Ii(po, ) = inf [ k(z — y)dp(e,y), (19)

where the infimum s performed on all nonnegative measures y on D x D
with projections py and p; on each copy of D.

The relationship with the M K P has been established in [BB| for numer-
ical purposes.

Proof

The proof requires the following fact, known as Kantorovich duality [RR],
[GM] :

Ii(po: p1) = sup [ (91(2)dps(x) = bo(x)dpo(a): (20)

where ¢; and ¢ are continuous functions on D subject to

o1(y) < k(x —y) + ¢o(x), Vz, y € D. (21)

From definition (19), there is always a minimizer u, so that

/D2 k(b — a)du(a,b) = Ix(po, p1)-

Let us introduce, for this pu,

p(s,x) = /D2 d(z — X(s,a,b))du(a,b), (22)

5
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E(s,z) = /D 0,X(s,0,b)5(z — X(s,a,))dp(a, b), (23)

where
X(s,a,b) = (1 — s)a + sb. (24)

Just as in the proof of Theorem 2.1, compatibility condition (4) is satisfied
and, by Jensen’s inequality,

/m k(b —a)dp(a,b) > K(p, E) (25)

> inf K > sup/ (6(1,2)dp1 () — (0, z)dpo()),
¢ JD

where

0,6 + k* (V) < 0. (26)

So we can choose ¢ to be any solution of the Hamilton-Jacobi equation (16)
on D. Using the Hopf formula to solve (16) (see [Ba], [Li]), we get

¢(s,2) = inf (40,2 + s(y — x)) + sk(y — 7)),

yeD

for all s > 0. Thus, from (25), we finally get
Li(po, p1) = /D2 k(b—a)du(a,b) > inf K > Sl;p /D(qﬁ(l,x)dpl(x)—qﬁ((],x)dpo(x)),

where
¢(1,z) = inf (4(0,y) + k(y — z)).

yeD

Thus, we conclude, using Kantorovich duality (20), that there is no difference
between I (po, p1) and inf K, which concludes the proof.

2.3 A decomposition result

From the proof of Theorem 2.2, we immediately get the following decomposition
result that asserts that generalized geodesics are mixtures of classical geodesics.

Theorem 2.3 FEach pair (py, p1) of (Borel) probability measures on D admits
a generalized geodesic (p, E) linking them with the following structure

p(s, ) = /D 8(x — X(s,0,b))dpu(a, b), (27)

6
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B(s,2) = [ 0.X(s,a,0)0(z — X(5,a,b))du(a,b), (28)
D2
where X (-, a,b) is the shortest path between a and b in D
X(s,a,b) = (1 — s)a + sb, (29)

and u is a probability measure on D? with projections py and py on each copy
of D.

Remark

Under strict convexity assumptions on k, the structure theorem can be made
more precise, because of the well known properties of the Monge-Kantorovich
problem. Indeed, in such cases, there is a unique minimizer y with structure

pu(a,b) = 6(b —T(a))

where T : D — D is a Borel map [GM], [RR]. In particular, as k(z) = |z[?/2,
[Brl], [Ca], T is a map with Lipschitz convex potential ¥. (An interesting
application of this fact to pure analysis can be found in [Bt].) This potential
solves the Monge-Ampere equation

det(D*¥(2))p(V¥(2)) = po(z) (30)

in the weak sense that p; is the image measure of pyg by VW. If D is stri-
cltly convex with a smooth boundary and if p, and p; are smooth functions
bounded away from zero on D, then W inherits the regularity of the data
and becomes a classical solution to the Monge-Ampere equation, as shown
by Caffarelli [Ca]. Notice that the assumption that D is a convex set, which
is convenient but not at all essential for the existence and uniqueness theory,
is crucial for the regularity theory, as pointed out by Caffarelli.

2.4 Relativistic MKT

Beyond the most important cost functions, namely k(v) = |v|, which corre-
sponds to the original Monge problem, and k(v) = |v|?/2, which corresponds
to the Monge-Ampere equations and is related to PDEs as different as the
Euler equations of incompressible flows [Brl], [Br2] and the heat equation
[JKO], more general cost functions have been considered in the litterature

7
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(see for instance [GM]). Surprisingly,two important cost functions have been
neglected, in spite of their obvious geometric and relativistic flavour, namely

E(v) = (1 —14/1 - =), (31)

(with value 400 as |v| > ¢) and its dual function

p|? 2

where ¢ > 0 can be interpreted as a maximal speed. Notice that the later
interpolates the important cost functions k(p) = |p| and k(p) = [p|?/2 as
c varies from 0 to +oo. Certainly, the case of (31) is the more interesting.
Indeed, due to the finite maximal propagation speed, the MK problem may
have no solution with finite cost, as the support of data py and p; are too
far from each other. The most interesting and challenging case is when
only a part of the mass can be transported, which seems a very realistic
approach to many applications. This case can be easily rephrased as a free
boundary optimal transportation problem. From the Analysis point of view,
the regularity of the free boundary is certainly a challenging problem.

2.5 A relativistic heat equation

As an application of the relativistic cost (31), let us compute, a relativistic
heat equation, defined, in the spirit of [JKO], as a gradient flow of the Boltz-
mann entropy for the metric corresponding to cost (31). The Boltzmann
entropy is given by

1(p) = [ (1o p(x) = Dp(x)dz, (33)
where p is a density function defined on R¢. To do the computation, we follow
the time discrete approach of [JKO], rather than the stricter formalism of

[Ot2]. The time dependent solution p(t, z) is approximated at each time step
ndt, n =1,2,3,... by p,(z) subject to achieve

i;}zf (Vn(pn) + /01 /Rd k(e(s,x))p(s,x)dsdx) ,

8
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where (p, e) are subject to (4) (with E = pe) and boundary conditions

p(0,+) = pn-1, p(1,°) = pa.

Here v > 0 is a parameter. This minimization problem can be easily written
as a saddle point problem

infsup / / — 8,6 — ¢ V) pdsda

+ /(¢(1,x) + v(log pp(z) — 1)) pn(z)dz — /(;5(0, z)pp—1(x)dz,
which leads to the optimality conditions
Vk(e) = Ve, ¢(1,-)+vlogp, =0,

and

0s¢ + k* (Vo) = 0.
The first condition is equivalent to
Vo

Ji+ B

which, as expected, is always bounded by c. Letting formally ¢ go to zero,
leads to the closure relation

e = Vk* (Vo) =

¢ = _Vlogp’

which, combined to (4), gives the desired relativistic heat equation with
propagation speed bounded by c :

__P¥P v;: _ (34)
/p2 + v ‘VP|

Notice that v has the dimensionality of a kinematic viscosity (length?/time).
This equation interpolates the regular heat equation (as ¢ — 400) and the
following limit equation, where the propagation speed is always c

op =vV -

Vp

W (35)

Op=cV - pro—
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An interesting output of equation (34) is the concept of ’relativistic Fischer
information’ defined as the entropy production, namely :

i/ o dx_/,,ﬂ
at ) PSP e

which interpolates the classical Fischer information (see [OV] for instance)
\V/ 2
p

c/\V,o|dac.

Let us finally mention that this relativistic heat equation can probably be
found among the various “flux limited diffusion” equations used in the theory
of radiation hydrodynamics [MM]. Indeed, A very similar equation

and the ’total variation’

pPVp

v|Vp|
P+

Op =vV - (36)

can be read (in our notations!) in [MM] (p.479). The author is grateful to
Bruno Després for this comment.

2.6 Laplace’s equation and Moser’s lemma revisited

The formulation of the MKT in terms of generalized geodesics allows us
to introduce a genuine extension of the MKT by relaxing the constraint
for functional K(p, E) to be homogeneous of degree one in the pair (p, E),
as enforced by dual definition (10), (11). In particular, we can consider
functionals that do not depend on p, such as

K(p,E) = / / ))dsdz, (37)

at least when F is absolutely continuous with respect to the Lebesgue mea-
sure, where k is a fixed continuous convex function on R*. We can give a
more precise definition of K by setting

K(p, F) = sup/ / )-dE(s,z) — k*(B(s, x))dsdz) , (38)

10
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where (3 is any continuous function on [0,1] x D and k* is the Legendre-
Fenchel transform of k.

Notice that, with this definition, the finiteness of K(p, ) implies that £
is absolutely continuous with respect to the Lebesgue measure, provided &
and k* are strictly convex (which rules out k(z) = |z| for example). Given
probability measures py, p1 on D, let us find a generalized geodesics between
them for this new type of functionals (inaccessible by the usual MKT). The
minimization problem amounts to solve

insup [ [ (K(B) = 0,69~ B-6) + [ (6(1, 01 — 60, )po).

oE 4
The saddle-point conditions obtained by differientating in £ and p are :
(VE)(E) =V¢, 0.6 =0,
which reduces to

E(s,z) = E(z) = (VE')(Vo(2)), p(s,2) = po(x)(1 = 5) + pr(2)s.

In a complete contrast with the MKT, here the data py and p; are just
linearly interpolated, while potential ¢ does not depend on s. Because of the
compatibility condition

Osp+V-E =0,
we deduce that ¢ solves the k— Laplace equation
—V.((VE)(V$)) = p1 — po, (39)

with £— Neumann boundary condition
(VE")(V)) -n =0,

along 0D, where n denotes the outward normal to dD. To get a more rigorous

argument, we notice that to each admissible pair (p, E) we may associate a
new admissible pair (p, E') such that

E(s,x) = E(x) p(s,z) = po(2)(1 = 5) + p1(2)s,

with K(E) < K(E), just by setting
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Indeed, K is lowered by Jensen’s inequality and (6) is enforced as soon as

[ V0@ E@ds = [ 0@)(p1(a) - po(a))da (40)
which means, in weak sense that
—V-E=pi—po
with E parallel to dD. It follows that
inf K = inf /D k(E(z))dz,

where FE is subject to (40). This new minimization problem is nothing but
the dual formulation of the p— Laplacian equation with homogeneous p—
Neumann boundary condition. So, we have obtained an interpretation of p—
Laplace problems as generalized Monge-Kantorovich problems to the expense
of using a cost K which is not homogeneous of degree one. This interpreta-
tion may look artificial, since, after all, the interpolation variable s has dis-
appeared at the end as well as the transportation framework. Nevertheless,
thanks to this approach, we get a new interpretation, in terms of generalized
MKT, of the Moser lemma in its simplest form (see [DM], [GY] for more so-
phisticated versions). The purpose of Moser’s lemma is to construct a smoth
map 7' transporting two given probability densities py to p; that are assumed
to be smooth and bounded away from zero on a nice domain D. The simplest
Moser construction consists first in solving the Laplace equation

—A¢ = p1 — po, (41)

inside D, with homogeneous Neumann boundary conditions along 9D, next
in introducing a velocity field

where
p(s, ) = po(x)(1 — s) + pi(x)s,

which automatically satisfies
Osp+ V- (pe) =0, p(0,) =po, p(1,") = p1. (42)

12
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Then T is obtained, after integrating e, as T'(x) = X (1, x) where
0s X (s,z) =e(s, X (s,2)), X(0,z)=rz.
This scheme exactly fits our generalized MK problem with cost

_|BP

K(p,E) = K(E) = —

Thus, the Moser construction, in its simpler version, can be interpreted as
the solution to a generalized MK problem.

3 Generalized Harmonic functions
3.1 Classical harmonic functions

Let U be a smooth bounded open set in R™ and l_et D be the closure of a
bounded convex open subset of R%. A map u € U — X (u) valued in the
interior of D is harmonic if it minimizes

/ %|VX(u)|2du (43)

among all other maps assuming the same values along the boundary oU.
This means that X solves the homogeneous Laplace equation

AX =0. (44)

To each map X, we can associate a pair of measures (p, F), valued in
RT x R™ defined by

plu,z) =6(x — X(u)), E(u,z)=VX(u)dlx — X(u)), (45)
or, more precisely,
Eio(u,z) = 0, X;(u)d(z — X(u)), a=1,..,m, i=1,..,d,

for all (u,z) € U x D. These measures satisfy the following compatibility
condition in the sense of distributions

Vup+Ve-E =0, (46)
with boundary conditions

p(u,") =6 —X(u)), Yuedl. (47)

13
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Equation (46) is a compact notation for
Ou, P+ Z O, Bia, a=1,...,m.
i=1,d

Equation (46) and boundary condition (47) can be expressed in weak form :
[, (V- 6, 2)dp(u,2) + Vad(u,2) - dE(u, ) (48)
X

= ¢(u, z)p(u, dz) - dn(u),

oUxD

for all smooth functions ¢ = (¢, = 1,...,m) defined on in U x D and
valued in ™, where dn(u) = n(u)dH™ (u), n(u) is the outward normal to
OU at v and H™! stands for the m —1 dimensional Hausdorff measure. This
equation is a compact notation for

z%%mmmm+§;%%mm%@@

b

a=1 a=

- /8U><D i ¢a(ua x)na (u)p(u, dx)deil(u)'

We observe that E is absolutely continuous with respect to p and has a
Radon-Nikodym density e(u,x). By Jensen’s inequality,

2/ sa:|dp8x</—|VX()|du

Functional K can be equivalently defined by Legendre duality as :
K(ﬂa E) = Sup CV(U, ac)dp(u, .Z‘) +ﬂ(u,x) ) dE(u7 m)? (49)

a,f JUXD
where the supremum is performed over all pair («, 8) of continuous functions
defined on U x D respectively valued in R and K™ subject to satisfy

alu,x +ZZ ,Bmu:c (50)

alzl

pointwise.

Now, we can define a generalized harmonic functions to be a pair of
measures (p, E) subject to (46) that minimizes K (p, E') defined by (49) as the
value of p along the boundary U is fixed. This is an obvious generalization of
the earlier concept of generalized geodesics which corresponds to the special
case m = 1, U =]0, 1[. We have again a consistency result

14
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Theorem 3.1 Let X : U — R? be harmonic, with values in the interior of
D. Then, the corresponding pair of measures (p, E), defined on U x D by
(45), achieves the infimum of K, defined by (49), among all pairs of measures
(p, E) satisfying (46) with boundary values

p(u,z) =d(x — X(u)), Yu € IU. (51)

Proof

The proof is very similar to the one we had for generalized harmonic func-
tions. Almost identically, we get

1
/ 5| VX (u)Pdu > inf K
U

> sup/ é(u, X(u)) - dn(u),
¢ JOU
where ¢ = (¢o, @ = 1,...,m) is subject to
1
Vi 6+ 5|Veo|” <O0. (52)
Let us look for a solution ¢ of the generalized Hamilton-Jacobi equation
1

which is linear in = (which turns out to be sufficient for our purpose). We
set

d
Palu, ) =Y win(u)z; + 20(u), a=1,...,m,
i=1

where w is a smooth fixed function and z is chosen so that

1
Vuz(u) + slww)* =0,

which is always possible (by solving an inhomogeneous Laplace equation
~AQw) = g u()P, uwel,
and setting z(u) = V((u)). Thus,
|, ol X W) -dn(w) = [ V.- (8(u, X (w)du

15
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(by Green’s formula)

= [,V wla) - X () + 2(w)du = [ (V.- (w() - X(@) = 5 () P

So, if we choose
w(u) = VX (u),

we obtain

AU¢WVXWD'WKM::/

[ (vu (VuX (1) - X (u)) — %|VuX(u)|2> du,
= [(AX () X() + VX (@) ~ 3VX ()] )du,
which is exactly )
/U 5| VuX (w)Pdu,

since X is harmonic. Thus, we have obtained the desired reverse inequality
1
iﬁKz/;mmem,
U

which completes the proof.

3.2 Open problems
Optimality equations

Because of the definition of generalized harmonic functions as minimizers of
a (lower semi continuous) convex functional on a compact set of measures,
we immediately get the following result.

Proposition 3.2 Let (A,da) be a probability space. Let (u,a) € U x A —
X (u,a) € R? be a (measurable) family of maps such that

2
/U/A |V X (u, a)|*duda < +oo.

Define
p(u, ) = /A(S(x — X(u,a))da.

Then there is always a generalized harmonic functions (p, E) such that p =p
along the boundary of U.

16
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Indeed, it is enough to notice that p, together with
E(u,z) = / VX (u,a)é(z — X (u, a))da,
A

defines an admissible solution with finite energy (by Jensen’s inequality).
Thus, there is an optimal solution by a standard compactness argument. It
is harder to establish optimality equations. The formal equations are easily
derived as saddle point equations for

. 1,
ik f (Gl = Vurs = Vop )y

(where the boundary terms have been dropped since they do not affect the
local equations), namely

1
e=V.p, Vi, o+ EW””W =0. (54)
This can equivalently expressed by
8jeia = 8,‘63'0, (55)

(which means that e(u, z) is curl free in x) and

m m d
Z 8(162'& + Z Z €jaaj€m =0 (56)
a=1

a=1j=1

(which is obtained by differentiating in z the second optimality condition).
Equation (56) can be written in conservation form, using (46),

m m d
Z da(peia) + 2 Z 9;(pejatia) = 0. (57)
a=1 a=1j=1

Following the techniques of [Br3], it seems possible to establish rigorously
the later equation for all generalized harmonic functions. However, it seems
difficult to justify the curl-free condition (55).

17
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Superharmonicity of the Boltzmann entropy

An interesting output of the optimality equations is the (formal) superhar-
monicity in u € U of the Boltzmann entropy. More precisely, given a smooth
generalized harmonic functions (p, F) satisfying the optimality conditions,
the entropy of p

n(w) =: [ (log ple,u) = Dp(z, u)da, (58)

satisfies A,7 > 0. This property is already known for generalized geodesics,
as m =1, U =)0, 1] (corresponding to the MKT with quadratic cost), as the
'displacement convexity’ of the entropy, following McCann’s [Mcl], [OV].
So, the entropy is superharmonic. Thus, by the maximum principle, the
maximum of the entropy must be achieved along the boundary of U. If this
result (that we are going to establish only for smooth generalized harmonic
functions) is correct in full generality, we can expect the following result :

Conjecture 3.3 Let (p, E) be a generalized harmonic function. If p(u,-) is
absolutely continuous with respect to the Lebesgue measure in D for all u
along the boundary OU, then this property also holds true for all u inside U.

For the proof, (p, F) is assumed to be smooth, p > 0. For simplicity,
implicit summation will be performed on repeated indices and notations

0 0

=— a=1,....m, 0;=
au&’ I Y I K3 axz’

Oa

1=1,...,d,
will be used. We have

Ayn(u) = Oa / log p Oap dz

= 0, / 0ip €io dx

(using (46) and integrating by part in x)
= /&ﬁip €ia dT + /@-p O0n€ia dx
= — /p €ja (91-8]-6,-(1 dr — /azp €jaaj €in dx
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(using (56) and again (46)
= /p 6ieja Bjeia dx

= /,0 Bjem 8jez’a dx Z 0

(using (55)), which shows that 7 is superharmonic, as announced.

Decomposition of generalized harmonic functions

A natural question concerns the possibility of decomposing a generalized
harmonic functions as a mixture of classical harmonic functions.

Problem 3.4 Let (p, E) be a generalized harmonic function. Is there a prob-
ability space (A, da) and a family (u,a) € Ux A — X (u,a) € R? of harmonic
functions, i.e.

Ay X (u,a) =0,

such that
plu,x) = /Aé(x — X(u,a))da, E(u,z)= /AVUX(U, a)d(z — X (u,a))da

holds true?

We already know that the answer is positive as U =|0,1[, m = 1, which
corresponds to the case of generalized geodesics. It is fairly clear that the
answer is also positive as the target is one-dimensional, i.e. as d = 1, because
of the maximum principle and the irrelevance of the curl free condition (55).
Let us sketch a tentative proof, which is far from being complete.

A tentative proof

The idea of the proof, in case d = 1, is based on the fact that, given a
generalized harmonic function (p, F), we can always write

p(u, z) = /A 5(z — X (u, a))da, (59)

where A = [0, 1] equipped with the Lebesgue measure da and X is nonde-
creasing in a for each values of u € OU. Now, we claim that, because of the
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monotonicity of X and because (46) is just an ODE in z,
1) we can write

E(s,x) = /A VX (u,a)d(z — X (u,a))da,
2) the convexity inequality
1
K(p,B) <5 [ IVuX(u,a)Pda
2 Juxa

actually is an equality. (This has to be proven with some care.) Then we
conclude that, for each a, X(-,a) must be harmonic. Otherwise, we could
introduce, for each fixed a, X (-, a) to be the harmonic extension in U of the
values of X (-,a) along OU. Because of the maximum principle, X (u,a) is
nondecreasing in a. Defining the corresponding (p, F), and using that X is
harmonic, we would get

K(p,E) < K(p, E),
which is a contradiction since (p, F') is supposed to be a generalized harmonic
function.

4 Multiphasic MKT

As seen earlier, the MKT on a subset D of R? (still assumed to be the closure
of a bounded convex open set), is just a theory of generalized geodesics, or,
equivalently, following Otto’s point of view [Ot2], a theory of geodesics on
the “manifold” Prob(D) of all probability measures on D. It is therefore
natural to extend this idea to more complex (convex) “manifolds”. The
most interesting case, in our opinion, is the the set DS(D) of all doubly
stochastic probability measures on D, namely the set of all Borel measures p
on D x D having as projection on each copy of D the (normalized) Lebesgue
measure on I, which means

/DXD f(z)dp(z, y) = /D L Wdn(z,y) = /D f(x)dz,

for all continuous functions f on D. As d > 1, this compact convex set
turns out to be just the weak closure of the group of orientation and volume
preserving diffeomorphisms of D, usually denoted by SDif f(D) [AK], [Ne],
through the following embedding

g € SDiff(D) — py € DS(D), py(z,y) =6y — g(v)).
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This group is of particular importance because it is the configuration space
of incompressible fluids. SDif f(D) is naturally embedded in the space
L?(D,R%) of all square Lebesgue integrable maps from D to R?. Therefore,
SDif f(D) inherits the L? metric. Then, as pointed out by Arnold [AK], the
equations of geodesic curves along SDif f (D) exactly are the Euler equations
of incompressible inviscid fluids (see also [MP] and [Br2]).

In our framework, it is very easy to define generalized geodesic curves (and
even harmonic maps!) on DS(D).

Definition 4.1 Given pg, gy in DS(D), we define a (minimizing) general-
ized geodesic curve joining po and py to be a pair (u, E) of (Borel) measures
defined on Q = [0,1] x D x D and valued in R, X R¢ such that

/Q 0, f (s, 2, y)du(s, z,y) + Vo f(s,2,y) - dE(s, z, y) (60)

= [ faydmy) — [ F0,2,5)du(,y),
D2 D2
for all smooth function f on [0,1] x D?, and

/Qf(s,a:)du(s,x,y) = /Ol/Df(s,a:)dxds, (61)

for all continuous function f on [0,1] x D, that minimizes

K(u, E) = sup J afs, z,y)du(s, z,y) + B(s,z,y) - dE(s, z,y) (62)

where the supremum is performed over all pair (e, B) of continuous functions
defined on Q respectively valued in R and R™®, subject to satisfy

a(s,z,y) + %|/3(s,9c,y)|2 <0. (63)

pointwise.

This can be seen as a multiphasic MK problem, where to each point y € D
is attached a “phase” described by u(-,-,y) and E(-,-,y). These phases are
coupled by constraint (61) which forces the different phases to share the
volume available in D during their motion. Not surprisingly, this makes the
optimality equations more subtle than in the classical MKT. Indeed, there
is a Lagrange multiplier corresponding to constraint (61) that physically
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speaking is the pressure p(s,z) of the fluid at each point x € D and each
s € [0,1]. The formal optimality conditions read

E(s,z,y)/u(s,z,y) = e(s,2,y), e(s,z,y) = Va0(s,2,y), (64)

1
058(s: 2, y) + 5|Vat (s, 2, y)|> +p(t,z) = 0.

This multiphasic MK problem has been studied in details in [Br3] and related
to the classical Euler equations. (In some cases it is shown that generalized
geodesics can be approximated by classical solutions to the Euler equations
with vanishing forcing.) To motivate further researches, let us just quote
two results that are true for any pair of data (po, 1) in DS(D). First, Vp
is uniquely defined (although there may be several generalized minimizing
geodesic between po and pp). This fact follows easily from convex duality,
but is rather surprising from the classical fluid mechanics point of view. Next,
Vp has a (very) limited regularity. It is a locally bounded measures in the
interior of [0, 1] x D, which is not obvious and follows from the minimization
principle. Further regularity can therefore be expected (maybe the second
derivatives in space of p are also measures?), in particular as the data pqg
and p; are absolutely continuous with respect to the Lebesgue measure on
D? with smooth positive density, as in Caffarelli’s regularity theory of the
(quadratic) MKT [Ca]. It is amusing to notice that (at least formally) the
Boltzmann entropy, here defined by

1w = [, Uog u(z,y) ~ Da(a, y)dzdy, (65)

is again “displacement convex” along generalized geodesics. The formal cal-
culation is almost identical to those previously performed in these notes. But
this has not been rigorously proven so far.

5 Generalized extremal surfaces

In this section, we first consider a (hyper)surface X of dimension m embedded
in R, We assume that ¥ is the image ¥ = X (U) of a nice domain U in R™
by a smooth map X with values in a convex subdomain D of RY.

For each sequence i = (i1, ..., i,) of integers such that 1 <y < ... < iy, < d,
we associate to X a measure p;(x) defined by

pi(z) = /U 6(z — X (u) D €(0)05, X, (w)...05,, X, (u)du, (66)

g
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where o is any permutation of the m first integers and e(o) denotes its sig-
nature. For each o and each i = (iy,...,4,) in {1,...,d}™, we set

po; = €(0)ps,

so that from now on p; is antisymmetric in ¢. If

f= Z f,(l‘)dl‘“ /\..../\dl‘id

1<i1<...<im<d

is a differential form of degree m on R, p = (p;, iy < ... < i) acts as a
current (i.e. a linear form on differential forms, see [GMS] for instance) on
f by the duality bracket

<pf>=30<pifi> (67)

= S 52600) [ i) X020, X (). 0, i ()

which (by the area formula) is nothing but the integral of f on X. If f is
the derivative of a m — 1 differential form ¢, we get from the Stokes theorem

that
[do=[ o
b (o)
ie.

Z Z / 1 ¢Z2 )(X(u))atnXh (u)"'aUmXZm du - / ¢7 68

which implies, in the distributional sense,
d
Z 6i1pi1,...im =0, (69)
11=1

foralll <1y < ... <1, <d. The Euclidean area of the embedded surface X
is given [EGr]| by

[

/ JZ(Ze )85, Xiy (). -(%mXim(u))zdu, (70)
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which can be written in terms of p as

[ ko), k(o) = \/ZT (71)

sup < p, f > (72)
f

or, by duality,

where the supremum is performed over all compactly supported differential
form f = (f;) of degree m in R? such that

Zfz-(:r)Q <1, Vzerd

We can now define a generalized surface and a generalized minimal surface :

Definition 5.1 Let p = (p;) be a family, antisymmetric in i € {1,...,d}™,
of measures p; defined on a subset of RY, denoted by D (and assumed to be
the closure of a bounded open conver set). We say that p is a generalized
surface lying in D if

> [ Oubiin(@dpi(a) = 0, (73)
i
for each family of smooth function ¢;, antisymmetric in i and compactly
supported in the interior of D.

Definition 5.2 Let k be a nonnegative continuous convez function, homo-
geneous of degree one. We say that a generalized surface p in D has a finite
k— area if

K(p) = [ k(p) < +oc.

We say that p is a k— generalized minimal surface if

K(p) < K(p)

for every generalized surface p lying in D such that
5 [ O (@)(dpi(2) - dpi(a)), (74)

for each family of smooth function ¢; defined on R?, antisymmetric in i.

Notice that (74) plays the role of a boundary condition along 0D (this is
why the ¢; are not supposed to vanish along the boundary!).
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5.1 MKT revisited as a subset of generalized surface
theory

The MK'T corresponds to the particular case when
m=1, D=Dx][0,1], d=d+1.
A current point of D is denoted by
x = (z1,..., %4, 8) = (2, 5),

and, accordingly, p;(x) and ps(x) respectively correspond to E;(s,z) and
p(s,z), for i = 1,...,d in our previous notations. Similarly k(p) is now
k(p, E). The boundary values p are null along the [0,1] x dD and, with
the previous notations, they are given by pg on {0} x D and p; on {1} x D.

5.2 Degenerate quadratic cost functions

Since the MKT has been extended to cost functions k(p, E) that are not
homogeneous of degree one, we may extend the generalized surface theory in
the same way. Not surprisingly, in the special case

D=Dx[0,1, d=d+1,
where current points of D are denoted by

x = (z1,..., 24, 8) = (2, 5),
the (degenerate) quadratic cost

Kp)= > w

1<) <ol <

(where the p; for which i,, = s are absent) will directly lead to a Hodge-
Laplace problem for differential forms of degree m — 1 in D.
For example, if

m=2 D=Dx[0,1, d=5+1,

and a point is denoted by (¢, x1, z2, 3, s) we recover the (elliptic) Maxwell
equations in R* : In classical notations

—V'E:pl—po, atE+VXB:J1—J0, (75)
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V-B=0, ,B+V xE=0. (76)
Because of the degeneracy of the cost function, the “electromagnetic field”
(E, B) depends only the classical time space variable (¢, ), while the “charge
and current” densities (p, J) are linear interpolation in s of the “boundary”
data (po, Jo) given at s =0 and (po, Jo) at s =1:

p(t,s,z) = (1 —s)po(t,z) +spi(t,x), J(t,s,2) = (1—5)Jo(t,x)+ sJi(t, x).
(This will be checked in more details in a subsequent section.)
6 Generalized extremal surfaces in ®° and Electrody-

namics

In order to address the framework of Electrodynamics, we substitute for the
Euclidean metric of R the Minkowski metric with signature (—,+, ..., +).
Assume that m = 2 and d = 5. A point in R? will be denoted (¢, 71, o, T3, 5)
and the partial derivative will be denoted accordingly (i.e. 0, O, ...., Os).
The components of p are denoted

Pst = P,
pit = E;
Pis = _Ji7

p12 = Bs, pe3 = Bi1, ps1 = Bs.
Compatibility conditions (69) become

Op+V-J=0 (78)
(here - is the inner product in R*),
Osp+V-E =0, (79)
O,E —0,J +V x B =0. (80)
We consider a functional K defined by
K(p, ], B, B) = [ k(p, ], E, B), (81)

where k is a given function defined on R'°. For example, the Euclidean area
corresponds to

k(p, J,E, B) = \/p? + J2 + B2 + B2, (82)
while the Minkowski area is given by
k(p,J,E, B) = \Jp? — J? + E? — B2, (83)
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6.1 Recovery of the Maxwell equations

In the same way as the Laplace equation can be recovered from the M KT
by using a degenerate quadratic functional, the Maxwell equations can be
easily recovered by using a simplified functional such as

E? — B?

k(p,J,E,B) = 5

(84)

To check this statement, we introduce two Lagrange multipliers ¢(t, s, z) €
R, A(t,s,z) € R? to enforce the compatibility conditions and we define the
corresponding Lagrangian L(p, J,E, B, ¢, A) :

B — B
/}—77——p@¢-EV¢—E@A+J@A—BVXfuw@m (85)

where the boundary terms have been skipped since they do not affect the
local equations. Varying the Lagrangian yields

8,6 =0, 9,A=0, (86)

E=0A+V¢, B=-VxA (87)

We see that ¢, A, E, B depend only on (t,z) and not on s. By using the
compatibility conditions (79), (80) and eliminating ¢ and A, we get

dp+V-E =0, (88)
V-B=0, (89)
O,E —8,] —V x B=0, (90)
OB+ V x E=0. (91)

We deduce that p and J depend linearly on s, namely
p(t,s,z) = (1 —8)po(t, ) + spi(t, z), (92)
J(t,s,x) = (1 — s)Jo(t, z) + sJi(t, x), (93)

and (E, B) satisfy the Maxwell equations

V-E=p—py, HBE—-VxB=J —Jp, (94)
V-B=0, 8,B+V xE=0. (95)
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6.2 Derivation of a set of nonlinear Maxwell equations

Let us now get the variational equations corresponding to the original, non
quadratic, Action (83), with compatibility conditions (79), (80). The corre-
sponding Lagrangian is given by

/ (R—pdyp— ENG — EA+ JO,A — BN x Addtdsdr,  (96)

where

R=\/p?+E* - J? - B (97)

and boundary terms have been disregarded since they do not affect the local
equations we are looking for, although they play an important role to get
correct boundary conditions. Varying the Lagrangian leads to

p=Rd,6, J=RO,A, (98)

E=R(QA+V¢), B=—-RV x A. (99)

By using compatibility conditions (79), (80) and eliminating the Lagrange
multipliers in (98), (99), ¢ and A, we deduce, after elementary calculations,

W(JR ) —0,(ER )+ V(pR ) =0, (100)

O(BR™)+Vx(ER™) =0, V.(BR')=0. (101)

To get an evolution equation for p, we can use compatibility condition
(78) and disregard (79). Notice that an additional compatibility condition
can also be derived from (98), (99), namely

V x (JR™Y) + 8,(BR™) =0. (102)

Of course, all these compatibility conditions are not independent from each
other and we can select those which lead to a self-consistent system of time-
evolution equations.

So, we retain for the set of variables

p, j=JR, E,b=BR ' (103)
the following evolution equations
op+ V.(Rj) = 0. (104)
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0ij — 0;(ER™') + V(pR™") = 0, (105)
FE — 9,(Rj) — V x (Rb) =0, (106)
0b+V x (ER™') =0, (107)

where R is now expressed by

/ p2+E2

After introducing

Z =\/(p? + E2)(1 + j2 + 1) (109)
and noticing that
0z 4 0Z . 07 ., 07
we finally get such a system, namely
0z 0Z 0z
=-V.(— E = 0,(— — 111
. 07z 07z 0Z
O = aS(G—E) - V(a_p)’ O = =V x (6—E)' (112)

From now on, we call these equations M K M E's (Monge-Kantorovich Maxwell
equations).

6.3 An Euler-Maxwell-type system

Since the M K M E's are time evolution equations, it is natural to supplement
them with initial value conditions. We also need boundary conditions, at
least for the interpolation variable s € [0,1]. As a matter of fact, the most
interesting boundary conditions are

(E,B)(t,s =0,z) = (E,B)(t,s=1,2) = 0. (113)

Observe that these conditions are natural since, in the special case when
(p, J, E, B) is generated from a surface X they correspond to

05X (t,s =0)=0,X(t,s=1) =0, (114)
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which is the right free boundary condition for an extremal surface.

It is now interesting to focus on the fields (p,.J) at the end points s =
0 and s = 1, since they are not prescribed any longer. Let us introduce
notations

(p—, J)(t, z) = (p, J)(t, s = 0,2), (p4,J5)(t2) = (p, I)(t, s = 1, ).
(115)
Remarkable simplifications occur in the M KM FE's restricted at s = 0 and
s = 1 for such boundary conditions. Indeed, we get, at s = 0 and s = 1,
since E = B =0, from (97), (108),

P
R=\/p?—J?= ik (116)

p ) . pJ : PJ
LA 1+ 2, Ri = — 85 Ri) = 85 — ). 117
7= V1t] 1= e (Rj) (m) (117)
Thus, using (104), (105), (106), we get at s =0 and s =1
Op- +V.(p-v)=0ps+ V. (pyvy) =0, (118)

where we introduce notation

J
= ) 119
Ve )
8tj_ + V\/ 1 +]g = 856‘8:0, 8tj+ + V\/ 1+ _]_2+_ = 65€|s:1, (120)
pJ pJ
0s(——==5)|s=0 = Os(——==5)|s=1 = 0. 121
(m)l 0 (m)\ 1 ( )
Using the standard identity
, J : J -
Vy/1+ 352 = —.V)j + — x (V x j), 122
PR Vit (V) (22)
and (102) we can rewrite (120),
(O +v_.V)j_.=E_+v_x B_, (123)
(at + U+.V)j+ = E_|_ + Uy X B_|_, (124)

where the ’electromagnetic’ fields (E_, B_)(t,z), (E;, B1)(t,z) are defined
by
E_(t,z) = 0se(t,s =0,z), E,(t,z) = 0se(t,s =1,1z), (125)
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B (t,x) = 0b(t,s =0,z), By(t,z)=0b(t,s=1,x). (126)
These fields are linked by (107)

OB_+VxE =8B, +VxE =0, V.B.=V.B,=0, (127)

which is one half of the usual Maxwell equations. Thus, with equations
(118), (123), (124) and (127), we are not far from the standard (relativistic
pressureless) Euler-Maxwell system, for which the very same equations would
be supplemented by

E E B B
E=-"2 Fp =" B =-" B =" (128)
m_— my m_— my
OEo—V X By = pij+ — p-j-, V.Eg=pi—p, (129)

where m_ (resp. m. ) denote the mass of negatively (resp. positively) charged
particles and (Ey, By)(t, z) the electromagnetic field. Of course, in the result-
ing Euler-Maxwell system, the s variable has completely disappeared. For
the M K M E's, however, such a simple closure is not possible since we cannot
eliminate the interpolation variable s and the coupling is much subtler.
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