On the mixing time of the flip walk on

triangulations of the sphere

Thomas Budzinski

ENS Paris

Journées de I'ANR GRAAL, Nancy
6 Décembre 2016

Thomas Budzinski Flips on triangulations of the sphere



Planar maps

o A planar map is a finite, connected graph embedded in the
sphere in such a way that no two edges cross (except at a
common endpoint), considered up to orientation-preserving
homeomorphism.

o A planar map is a rooted type-I triangulation if all its faces
have degree 3 and it has a distinguished oriented edge. It may
contain multiple edges and loops.
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Random planar maps in a nutshell

Let 7, be the set of rooted type-l triangulations of the sphere with
n vertices, and T,(oco) be a uniform variable on .7;,. What does
Th(o0) look like for n large?
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o when the distances are renormalized, T,(c0) to a continuum
random metric space called the Brownian map [Le Gall],
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o when the distances are renormalized, T,(cc) to a continuum
random metric space called the Brownian map [Le Gall],

o if we don't renormalize the distances and look at a
neighbourhood of the root, convergence to an infinite
triangulation of the plane called the UIPT [Angel-Schramm],
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Random planar maps in a nutshell

Let 7, be the set of rooted type-l triangulations of the sphere with
n vertices, and T,(oco) be a uniform variable on .7;,. What does
Th(o0) look like for n large?

o Exact enumeration results [Tutte],

o the distances in T,(oc0) are of order n'/*

[Chassaing—Schaeffer],
o when the distances are renormalized, T,(cc) to a continuum
random metric space called the Brownian map [Le Gall],

o if we don't renormalize the distances and look at a
neighbourhood of the root, convergence to an infinite
triangulation of the plane called the UIPT [Angel-Schramm],

o the volume of the ball of radius r in the UIPT grows like r*
[Angel, Curien-Le Gall].
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A uniform triangulation of the sphere with 10 000 vertices
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How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.
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How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.
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@ A simple local operation on triangulations : flips.
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€2

flip(t,e) =t

Thomas Budzinski Flips on triangulations of the sphere



How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.

Thomas Budzinski Flips on triangulations of the sphere



How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.

Thomas Budzinski Flips on triangulations of the sphere



How to sample a large uniform triangulation 7

o "Modern" tools : bijections with trees, peeling process.

o Back in the 80's : Monte Carlo methods : we look for a Markov
chain on .9}, for which the uniform measure is stationary.

@ A simple local operation on triangulations : flips.

Thomas Budzinski Flips on triangulations of the sphere



A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Th(k) and Tp(k + 1) = flip (Th(k), ex)-
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A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Ta(k) and Tp(k + 1) = flip (Th(k), k).

o The uniform measure on .7, is reversible for T,, thus
stationary.

@ The chain T, is irreducible (the flip graph is connected
Wagner 36]) and aperiodic (non flippable edges), so it
converges to the uniform measure.
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A Markov chain on .7,

o We fix ty € .7, and take T,(0) = to.

o Conditionally on (T,(k))o<;< let ex be a uniform edge of
Th(k) and Tp(k + 1) = flip (Th(k), ex)-

o The uniform measure on .7, is reversible for T,, thus
stationary.

@ The chain T, is irreducible (the flip graph is connected
Wagner 36]) and aperiodic (non flippable edges), so it
converges to the uniform measure.

@ Question : how quick is the convergence ?
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Mixing time of T,

@ For n >3 and 0 < £ < 1 we define the mixing time tmix(e, n)
as the smallest k such that

- <
max max IP(Th(k) € A) —P(T,(0) € A)| <,

where we recall that T,(c0) is uniform on 7.

Thomas Budzinski Flips on triangulations of the sphere



Mixing time of T,

@ For n >3 and 0 < £ < 1 we define the mixing time tmix(e, n)
as the smallest k such that

- <
max max |P(Th(k) € A) =P (Tph(0) € A)| <e,

where we recall that T,(c0) is uniform on 7.

Theorem (B., 2016)

For all 0 < € < 1, there is a constant ¢ > 0 such that

tmix(g, n) > cn®/4,

Thomas Budzinski Flips on triangulations of the sphere



Sketch of proof

We will be interested in the existence of small separating cycles.
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Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (=~ Le Gall-Paulin, 2008)

Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.
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Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.

Let T}(0) and T2(0) be two independent uniform triangulations of
a 1-gon with J inner vertices each, and T,(0) the gluing of T}(0)
and T?2(0) along their boundary.
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Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (=~ Le Gall-Paulin, 2008)

Let £, = o(n'/*). Then, with probability going to 1 as n — oo,
there is no cycle in Tp(c0) of length at most ¢, that separates
Tn(00) in two parts, each of which contains at least 7 vertices.

Let T}(0) and T2(0) be two independent uniform triangulations of
a 1-gon with J inner vertices each, and T,(0) the gluing of T}(0)
and T?2(0) along their boundary. It is enough to prove

Proposition

Let k, = o(n/*). There is a cycle v in T,(k,) of length o(n'/*) in
probability that separates T,(k,) in two parts, each of which
contains at least 7 vertices.
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Spatial Markov property

We write .7, ,, for the set of triangulations of a p-gon with n inner
vertices. If T is uniform in .7, ,, we consider an edge e € 9T and
the face f of T adjacent to e.
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Spatial Markov property

We write .7, ,, for the set of triangulations of a p-gon with n inner
vertices. If T is uniform in .7, ,, we consider an edge e € 9T and
the face f of T adjacent to e.

with probability with probability
#Tn—1,p+1 H Tm, i1 Tn—m,p—i
#Tnp #Tn.p
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Spatial Markov property

We write .7, ,, for the set of triangulations of a p-gon with n inner
vertices. If T is uniform in .7, ,, we consider an edge e € 9T and
the face f of T adjacent to e.

with probability with probability
#Tn—1,p+1 H Tm, i1 Tn—m,p—i
#Tnp #Tn.p

Moreover, in every case, the (one or two) connected components of
T\f are independent and uniform given their volume and perimeter.
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Exploration of T,(k)

T5(0) Pn(0) =
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Exploration of T,(k)

T2(0)
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Exploration of T,(k)
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Exploration of T,(k)
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Exploration of T,(k)

T,(3) Pn(3) =
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Exploration of T,(k)

T,}(4) Pn(4) =
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Exploration of T,(k)
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Exploration of T,(k)
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Exploration of T,(k)

T,(6) Pn(6) =
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Exploration of T,(k)

T, (6)
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Exploration of T,(k)

T,}(?) Pn(7) =
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Exploration of T,(k)

T,}(?) Pn(7) =4
Vo(7) =4
=0

RN
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Exploration of T,(k)

T,(8) Pn(8) =5
Vo(8) =5
T4 = 8

)
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Exploration of T,(k)
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Exploration of T,(k)

T7(8) P,(8) =5
Vo(8) =5
T4 = 8

Flips on triangulations of the sphere
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Exploration of T,(k)

T (9) _

7
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Exploration of T,(k)

T (9) _

7
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Exploration of T,(k)

T2(10) P,(10) = 4
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Exploration of T,(k)

TH(11)

/

’ o
S
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Exploration of T,(k)
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Exploration of T,(k)
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/
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Exploration of T,(k)

T}(12)

/
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Exploration of T,(k)
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Exploration of T,(k)

T3(12) Pr(12) = 5
Vo(12) =7

T

\/
7
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Exploration of T,(k)

T3(12) Pr(12) = 5
Vo(12) =7

T
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)
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Exploration of T,(k)

T3(13) P(13) =3
Vo(13) =7

by
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T2(k) stays uniform

For all k > 0, conditionally on (T2}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.

Thomas Budzinski Flips on triangulations of the sphere



T2(k) stays uniform

For all k > 0, conditionally on (T2}(i))o<i<k, the triangulation
T2(k) is a uniform triangulation with a boundary of length
|OTL(k)| and n — | TX(k)| inner vertices.

Proof : induction on k :
o if ek lies in the interior of T}(k), then T2(k + 1) = T2(k),

o if ey lies in the interior of T2(k), stationarity of the uniform
measure on triangulations with a boundary,

o if e, € OT}(k), it follows from the spatial Markov property.
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Peeling estimates

o We write 7; for the times k such that e,_1 € OT}(k — 1). Let

'Dn(j) = Pn(Tj) and Vn(j) = Vn(Tj)'

@ Then (Pp, V,) has the same distribution as the perimeter and
volume processes associated to the peeling of a uniform
triangulation of the sphere with 7 vertices.
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Peeling estimates

o We write 7; for the times k such that e,_1 € OT}(k — 1). Let

'Dn(j) = Pn(Tj) and Vn(j) = Vn(Tj)'

@ Then (Pp, V,) has the same distribution as the perimeter and
volume processes associated to the peeling of a uniform
triangulation of the sphere with 7 vertices.

If j» = o(n3/*) then maxo<j<;, Pa(j) = o(y/n) and V,(j») = o(n)
in probability.
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Peeling estimates

o We write 7; for the times k such that e,_1 € OT}(k — 1). Let

'Dn(j) = Pn(Tj) and Vn(j) = Vn(Tj)'

@ Then (Pp, V,) has the same distribution as the perimeter and
volume processes associated to the peeling of a uniform
triangulation of the sphere with 7 vertices.

If j» = o(n3/*) then maxo<j<;, Pa(j) = o(y/n) and V,(j») = o(n)
in probability.

Proof :
@ estimates by Curien—Le Gall for the UIPT : the lemma holds if

we replace Pp(j) and V,(j) by Pso(j) and Vo ()),
@ coupling between the UIPT and uniform finite triangulations.
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Time change estimates

Conditionally on (P, V,,), the 7,11 — 7; are independent and

geometric with parameters 5;(_'25 so for ¢ > 0 small, w.h.p.

3/4
en
— nxen3/*

3n—6
E[7.,3/4|Pn]) = — > =en’/?,
en " ; Pa(i) Vvn

so after o(n®/#), the number of peeling steps performed is o(n%/*)
in probability.
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Time change estimates

Conditionally on (P, V,,), the 7,11 — 7; are independent and
geometric with parameters 3"( ) so for & > 0 small, w.h.p.

en/t 5 3/4

nxen
I["?‘[Tz-:n3/4|’Dn] Z \/ﬁ = 6[75/4,

so after o(n®/#), the number of peeling steps performed is o(n%/*)
in probability. Hence,

Pa(o(n®/*)) = Pa(o(n*/*)) = o(/n),
Va(o(n®/4)) = Va(o(n*'*)) = of(n).
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Small cycles in triangulations with a small perimeter

We know that T2 (o(n®*)) is a uniform triangulation with a
boundary of length o(+/n) and (3 — o(1)) n inner vertices.

Theorem (Krikun, 2005)

In the UIPT, there is a cycle of length O(r) in probability
surrounding the ball of radius r.

Coupling lemma : for p, << r2 << y/n, w.h.p.

T

nvp"
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Small cycles in triangulations with a small perimeter

We know that T2 (o(n®*)) is a uniform triangulation with a
boundary of length o(+/n) and (3 — o(1)) n inner vertices.

Theorem (Krikun, 2005)

In the UIPT, there is a cycle of length O(r) in probability
surrounding the ball of radius r.

Coupling lemma : for p, << r2 << y/n, w.h.p.
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Is the lower bound sharp?

o Back-of-the-enveloppe computation :
e in a typical triangulation, the distance between two typical
vertices x and y is ~ n'/%.
o The probability that a flip hits a geodesic is ~ n~
o The distance between x and y changes ~ kn—3/* times before

time k.
o If d(x,y) evolves roughly like a random walk, it varies of

~ Vkn=3/4 = n'/* for k = n5/*.

3/4.
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Is the lower bound sharp?

o Back-of-the-enveloppe computation :
e in a typical triangulation, the distance between two typical
vertices x and y is ~ n/4.
o The probability that a flip hits a geodesic is ~ n~
o The distance between x and y changes ~ kn—3/* times before
time k.
o If d(x,y) evolves roughly like a random walk, it varies of

~ Vkn=3/% = nt/* for k = n®/*.
o For triangulations of a convex polygon (no inner vertices), the
lower bound n3/2 is believed to be sharp but the best known
upper bound is n® [McShine—Tetali].

3/4.

o Prove that the mixing time is polynomial ?
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THANK YyOoU !
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