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Chapitre 1

Introduction

ou Ils pelent sur leurs graphes, et vont méme explorer des hectometres.

Dans cette introduction, nous commengons par présenter la théorie des cartes planaires
aléatoires, en mettant ’accent sur les différentes limites de grandes triangulations uniformes et
sur leurs propriétés. Nous décrivons ensuite les outils les plus couramment utilisés pour étudier
ces limites, et présentons une application & un modéle de triangulations aléatoires dynamiques
[44]. Nous abordons ensuite les triangulations aléatoires hyperboliques, qui constituent I'objet
d’étude central de cette thése. Les articles [45] et [46] leur sont consacrés, ainsi que les Appendices
[Al B] et [C] Enfin, nous introduisons un autre modeéle naturel de cartes aléatoires hyperboliques,
les cartes causales surcritiques, qui fait 'objet de [47]. Les contributions originales de cette these
sont les résultats encadrés.
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Index des notations

La liste qui suit récapitule les notations les plus utilisées dans I'introduction de cette thése.
Ces notations sont pour la plupart cohérentes avec celles des articles qui suivent.

p : racine d’un graphe,

dq : distance de graphe dans le graphe G,

v : désigne une géodésique,

B, : boule de rayon r,

B? : enveloppe de rayon r, vue comme un graphe ou une carte,

B, : enveloppe de rayon r, munie de la distance induite,

9, : ensemble des triangulations de la sphére & n sommets,

Ty, T (00) : triangulation aléatoire uniforme de la sphére & n sommets,
T, Ty, : la triangulation uniforme infinie du plan, ou UIPT,

H,, : les triangulations markoviennes du demi-plan,

T : les triangulations markoviennes hyperboliques du plan, ou PSHIT,
Ae @ vaut ﬁ,

m : la carte brownienne,

‘P : le plan brownien,

P" : le plan brownien hyperbolique,

T : désigne un arbre,

T : désigne un arbre de Galton-Watson,

= loi de reproduction (une mesure sur N),

GW,, : loi d'un arbre de Galton-Watson de loi de reproduction p,

T‘?\ . arbre des géodésiques infinies les plus & gauche de Ty,

Ot : ensemble des branches infinies d'un arbre 7,

Ot : 07, ol on a identifié les paires de branches voisines,

C(7) : carte causale associée a l'arbre T,

M (7,(s;)) : carte obtenue en remplissant les faces de 'arbre 7 par les bandes s;.



F1GURE 1.1 — Un exemple de carte planaire. La carte & gauche et celle au centre sont les mémes.
La carte & droite a le méme graphe sous-jacent, mais c’est une carte différente. Par exemple, elle
a une face de degré 8, tandis que les deux autres cartes n’ont que des faces de degré au plus 6.

1.1 Limites de cartes aléatoires

1.1.1 Définitions et combinatoire

Cartes planaires. On commence par définir les cartes planaires, qui sont I’objet d’étude
principal de cette thése. Rappelons qu’un graphe est une paire (V, E), ot V est un ensemble de
sommets, et E un ensemble d’arétes, chaque aréte ayant deux extrémités dans V. On autorise
les arétes multiples (plusieurs arétes reliant la méme paire de sommets) et les boucles (une aréte
reliant un sommet & lui-méme).

Définition 1.1. Une carte planaire finie est un plongement propre d’un graphe fini et connexe
dans la sphére S?, considéré & homéomorphisme préservant I’orientation prés.

Par plongement propre, on entend que les images des arétes ne s’intersectent pas, sauf éven-
tuellement en une extrémité commune. De plus, on considére que deux cartes sont les mémes
g1l existe un homéomorphisme de S? dans S? préservant 1’orientation qui envoie 1'une sur lautre
(voir Figure . Les composantes connexes du complémentaire du plongement sont appelées
faces de la carte, et le degré d’une face est le nombre d’arétes qu’on doit longer pour faire le
tour de la face (si on doit longer deux fois la méme aréte, elle est comptée deux fois).

Une définition combinatoire. Un inconvénient de la définition "topologique" donnée ci-
dessus est qu’il n’est pas immédiat qu’il n’y a qu'un nombre fini de cartes avec, par exemple,
un nombre fixé d’arétes. Pour remédier a ce probléme, on donne une autre définition, plus
combinatoire, d’une carte planaire. Cette définition est équivalente a la premiére (voir Figure

12).

Définition 1.2. Une carte planaire est un ensemble de polygones dont les arétes ont été collées
deux & deux, de maniére a obtenir topologiquement une sphére.

En particulier, étant donné un ensemble de polygones, il n’y a qu'un nombre fini de maniéres
de recoller leurs arétes deux & deux, donc il n’y a qu’un nombre fini de cartes dont les faces ont
des degrés fixés.

Triangulations enracinées. On se restreindra la plupart du temps a certaines classes parti-
culiéres de cartes planaires.



AR &

FIGURE 1.2 — Une carte planaire vue comme un recollement de polygones.

FIGURE 1.3 — Une triangulation de la sphére enracinée & 14 faces. L’aréte racine est en rouge.

Définition 1.3. Soit p > 3. Une p-angulation de la sphére est une carte planaire dont toutes
les faces sont de degré p.

En particulier, une carte dont toutes les faces sont de degré 3 est appelée triangulation, et
une carte dont toutes les faces sont de degré 4 est appelée quadrangulation. Plus précisément,
une triangulation de type I est une triangulation pouvant contenir des arétes multiples et des
boucles. Une triangulation de type II est une triangulation pouvant contenir des arétes multiples,
mais pas de boucle. Finalement, les cartes qu’on considére seront généralement enracinées, c’est-
a-dire munies d’une aréte orientée distinguée. Cette convention permet d’éliminer d’éventuels
problémes de symétrie.

Triangulations du p-gone et triangulations avec un trou. Une partie d’une triangulation
de la sphére n’est pas une triangulation de la sphére. Pour cette raison, il est souvent nécessaire,
pour décomposer des triangulations en parties plus petites, d’introduire une notion plus générale
de triangulations a bord. Plus précisément, soit p > 1. Une triangulation du p-gone est une carte
planaire enracinée ou la face située a droite de I’aréte racine est de degré p et a un bord simple
(c’est-a-dire que son bord ne passe pas deux fois par le méme sommet), et ou toutes les autres
faces sont de degré 3. Une triangulation avec un trou de périmeétre p est une triangulation ot
toutes les faces sont de degré 3 sauf une, qui a un bord simple et est de degré p. Dans les deux
cas, la face de degré p est appelée face externe.

La seule différence entre ces deux définitions réside dans la position de I'aréte racine : dans
la premicére, elle doit étre adjacente & la face externe, tandis que dans la seconde, elle peut se
trouver n’importe otll. Les cartes avec un trou seront en général utilisées pour décrire un voisinage
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de la racine dans une triangulation de la sphére, et les triangulations du p-gone pour décrire une
partie ne contenant pas la racine.

Quelques résultats généraux. L’un des résultats les plus simples et les plus anciens concer-
nant les cartes est la célébre formule d’Euler : soit m une carte planaire, et soit V' (m) (resp.
E(m), F(m)) 'ensemble de ses sommets (resp. arétes, faces). Alors on a

[V (m)| + |F(m)] - [E(m)] = 2.

En particulier; si m est une triangulation a n sommets, il est facile de montrer qu’elle a 2n — 4
faces et 3n — 6 arétes. Si m est une triangulation d’'un p-gone avec n sommets internes, elle
contient 2n + p — 2 faces triangulaires (sans compter la face externe), et 3n + 2p — 3 arétes au
total.

Par ailleurs, un résultat tout aussi simple a énoncer, mais beaucoup (beaucoup) plus difficile &
prouver est le non moins célébre théoréme des quatre couleurs : il est toujours possible de colorier
les sommets d’une carte planaire (sans boucle) avec quatre couleurs, de telle maniére que deux
sommets reliés par une aréte sont toujours de couleurs différentes. Ce résultat a longtemps été
la principale motivation pour I'étude des cartes planaires, et a finalement été démontré par
Kenneth Appel et Wolfgang Haken en 1976.

Enumération. Avant d’intéresser les probabilistes, les cartes ont d’abord fait 'objet d’études
combinatoires dans les années 60. Motivé par le théoréme des quatre couleurs, William Tutte a
obtenu de nombreux résultats d’énumération [132] 133, 134] [135], 136]. Par exemple, le nombre
de quadrangulations de la sphére enracinées a n faces vaut

0T n) w2 (1)

tandis que le nombre de triangulations (de type I) de la sphére enracinées & n sommets vaut

_9 (3n—06)! 1 no_
2 x 4" 2 Bn -6 12 5/2, 1.2
. (n — D!'n!! n—to0 72/67 < \/§> " (12)

La seconde formule, sous cette forme, est due & Krikun [95].

Notons que la motivation initiale de Tutte était de démontrer le théoréme des quatre couleurs
en dénombrant d’une part les cartes planaires, et d’autre part les cartes planaires 4-coloriables.
De plus, ces résultats ont été démontrés par des méthodes calculatoires : en utilisant une dé-
composition récursive des cartes, Tutte obtient une équation sur une fonction génératrice a deux
variables, puis développe une nouvelle méthode, la méthode quadratique, pour résoudre cette
équation.

D’autres méthodes ont depuis été développées pour dénombrer des cartes : des liens avec des
intégrales de matrices ont été mis en évidence par des physiciens théoriciens dans les années 70
[131]. Enfin, dans les années 80, Robert Cori et Bernard Vauquelin on établi une bijection entre
des arbres étiquetés et des cartes, qui donne une interprétation combinatoire de (1.1 (I'appari-
tion des nombres de Catalan dans rend naturel de chercher une telle interprétation). On
reviendra sur cette bijection et ses multiples généralisations dans la Section [1.2.3

Genre supérieur. Notons finalement que la notion de carte planaire peut se généraliser, en
remplagant la sphére par des surfaces de genre supérieur (tores a g trous). Il est alors important
de demander dans la définition que chaque face soit homéomorphe a un disque. Les résultats
combinatoires connus sont alors moins précis : des relations de récurrence a deux indices (la
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FIGURE 1.4 — Une triangulation uniforme de la sphére, avec environ 40000 sommets.

taille n et le genre g) sont connues [80], mais il ne semble pas possible d’en extraire des formules
explicites. Les asymptotiques sont alors bien comprises quand n — +00 a g fixé, mais pas quand
n et g tendent vers I'infini simultanément.

1.1.2 Motivations

A quoi ressemble géométriquement une grande carte typique ? La principale question
que se posent les probabilistes sur les cartes est la suivante : que peut-on dire des propriétés d’une
grande carte typique ? Plus précisément, notons .7, I'ensemble des triangulations enracinées de
la sphére & n sommets, et T, une variable aléatoire uniforme sur ;. On peut faire de T,, un
espace métrique en munissant l’ensemble de ses sommets de la distance de graphe : pour tous
sommets u et v, on note drp, (u,v) le nombre d’arétes du plus court chemin dans 7;, reliant u & v.
Phillippe Chassaing et Gilles Schaeffer ont montré que les distances dans T, sont typiquement

de Pordre de n'/* |54].

Surfaces aléatoires. Un des buts de la théorie des cartes aléatoires est de construire, par
une approche discréte, des surfaces continues. En effet, les physiciens voient dans les cartes un
modeéle discret de gravité quantique bi-dimensionnelle, et un moyen de construire un analogue
des intégrales de chemin de Feynman, mais qui porterait sur des surfaces (voir par exemple [9]).

Signalons également que d’autres approches mathématiques, purement continues, ont été
développées pour construire ces objets, sous le nom de gravité quantique de Liouville [T4]. Ces
approches sont basées sur le champ libre gaussien, analogue naturel du mouvement brownien
pour les fonctions de R? dans R. L’approche discréte et 'approche continue sont censées donner
les mémes objets. Les liens entre les deux ont fait ’objet de travaux récents par Jason Miller et

Scott Sheffield [118, 119, [120], mais sont encore assez mal compris.
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Relations KPZ. Une autre motivation, peut-étre plus "terre-a-terre", pour s’intéresser aux
cartes aléatoires, est ’étude de modéles de physique statistique, comme la percolation ou le
modéle d’Ising. Comme on le verra un peu plus loin (Section , les cartes aléatoires possédent
une trés agréable propriété de Markov spatiale, qui rend parfois I’étude de modéles de physique
statistique plus facile sur des cartes aléatoires que sur des réseaux réguliers comme Z2. Certains
exposants critiques peuvent ainsi étre facilement obtenus sur des cartes aléatoires. De plus,
d’aprés les physiciens, les exposants critiques sur des réseaux aléatoires et euclidiens sont liés
par les relations KPZ [90], qui permettent donc en théorie de retrouver les exposants euclidiens.
Pour cette raison, les cartes aléatoires couplées & des modéles de physique statistique ont elles
aussi été beaucoup étudiées ces derniéres années. Voir par exemple [39] pour le modéle O(n) ou
[128] pour la FK-percolation. Cependant, un grand nombre de questions dans cette direction
restent encore ouvertes.

1.1.3 Limites locales

On rappelle que T;, est choisie uniformément parmi les triangulations de la sphére a n som-
mets. Une maniére d’étudier les propriétés de T}, quand n est grand est de construire une "limite"
de T,, quand n tend vers l'infini. Il existe deux maniéres naturelles de définir une telle limite :
la limite locale (on T), est "vue de prés"), et la limite d’échelle (on T,, est "vue de loin"). On
commence par décrire la limite locale. Intuitivement, si n est trés grand et si un observateur se
place & la racine de T,,, il ne voit plus que T}, vit sur la sphére, mais voit plutét un plan autour
de lui. La limite locale de T,, est donc une triangulation infinie du plan.

Distance locale. Pour parler de limite locale, on commence par définir la topologie locale sur
I’ensemble des cartes. Cette topologie a été introduite par Itai Benjamini et Oded Schramm [31]
(voir aussi article [8] de David Aldous et John Steele).

Soit m une carte planaire finie enracinée, et soit 7 > 0. La boule de rayon r de m, notée
B,.(m), est la carte formée par les sommets de m a distance de graphe au plus r de 'origine de
I’aréte racine, ainsi que les arétes reliant ces sommets entre euxE|. On définit alors la distance
locale entre deux cartes m et m’ par

dioc(m,m") = (1 + max{r > 0|B,(m) = B,(m')})"".
Autrement dit, deux cartes sont proches si elles coincident sur un grand voisinage de la racine.
On peut alors vérifier que djo. est une distance, et que le complété pour dj,. de 'ensemble des
cartes finies est un espace polonais. Les éléments de ce complété qui ne sont pas des cartes finies
sont appelés cartes infinies, et peuvent effectivement étre vus comme des cartes possédant une
infinité de sommets et d’arétes (mais o tout sommet n’a qu’un nombre fini de voisins).

Enfin, on dit qu’une carte infinie m n’a qu’un bout si pour tout ensemble fini K de sommets de
m, le complémentaire de K dans m n’a qu’une seule composante connexe infinie. C’est équivalent
& ce qu’on puisse plonger m dans le plan de telle maniére que chaque compact n’intersecte qu’un
nombre fini de sommets, arétes et faces.

L’UIPT. Le théoréme suivant est le point de départ de la théorie des cartes aléatoires infinies.
Il a été démontré par Omer Angel et Oded Schramm en 2003.

Théoréme 1.1 (Angel-Schramm, [20]). Quand n — +o0, les cartes T;, convergent en loi pour
la distance locale vers une triangulation infinie T, & un seul bout.

1. Pour étre tout a fait exact, la définition des boules qu’on utilise en pratique pour les triangulations est
légérement différente : c’est ’ensemble des faces adjacentes & au moins un sommet & distance au plus r — 1 de la
racine, ainsi que toutes leurs arétes et tous leurs sommets.
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F1GURE 1.5 — Une simulation de I'UIPT. Le plongement a été calculé par le logiciel CirclePack
de Ken StephensonEI, puis on a effacé les cercles pour ne plus voir que les arétes.

La triangulation Ty, est appelée UIPT, pour Uniform Infinite Planar Triangulation. La
preuve de ce résultat repose essentiellement sur les résultats d’énumération de Tutte cités plus
haut. De plus, Angel et Schramm décrivent explicitement la loi de 'UIPT au sens o1, pour toute
triangulation ¢ avec un trou de périmétre p, la probabilité d’observer ¢ autour de la racine de
T est calculée explicitement.

Propriétés de PUIPT. De nombreuses propriétés de 'UIPT ont depuis été étudiées. Cer-
taines de ces propriétés la rapprochent des réseaux euclidiens classiques, tandis que d’autres I’en
éloignent fortement.

Commencgons par un tour d’horizon des propriétés métriques connues de 'UIPT. On rappelle
que la boule de rayon r d’une carte m, notée B,(m), est ’ensemble des sommets & distance de
graphe au plus r de la racine. Notons que dans ’UIPT, les boules ne sont en général pas
simplement connexes (voir Figure [1.6) : le complémentaire d’une boule a en fait de nombreuses
composantes. On appelle enveloppel’| de rayon r d'une carte infinie m I'union de B,(m) et de
toutes les composantes connexes finies de son complémentaire (en violet sur la Figure . On la
note B?(m). Le fait que 'UIPT n’ait qu’un bout garantit que le complémentaire des enveloppes
est bien connexe.

Omer Angel a montré [12] que les volumes de B,(m) et de By (m) pour r grand sont de I'ordre
de r*, a corrections logarithmiques prés. De plus, le bord de 'enveloppe de rayon r (en bleu sur
la Figure est de longueur d’ordre r2. En particulier, 'union des bords de ces enveloppes est
d’ordre 7® et non pas r*, ce qui montre que la grande majorité des sommets se trouvent dans
les "tentacules" de la Figure [I.6] Ces résultats ont depuis été précisés par Nicolas Curien et
Jean-Francois Le Gall [64]. Par ailleurs, Maxim Krikun a montré que le plus petit cycle séparant
la boule de rayon r de linfini (en rouge sur la Figure est de longueur d’ordre r [94], et
Jean-Frangois Le Gall et Thomas Lehéricy ont établi des inégalités isopérimétriques précises

3. Téléchargeable sur cette page : http://www.circlepack.com/software.html
4. hull en anglais
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FIGURE 1.6 — L’UIPT représentée en "cactus" (la hauteur représente la distance a la racine).

[101]. Enfin, un phénomeéne de coalescence des géodésiques a été observé dans I'UIPQ (analogue
de 'UIPT pour les quadrangulations) par Nicolas Curien, Laurent Ménard et Grégory Miermont
[68], puis dans PUIPT [67]. Cela signifie par exemple que deux géodésiques infinies ont toujours
une infinité de points d’intersection.

Pour les raisons évoquées dans la Section la percolation sur T, a elle aussi été étudiée :
Omer Angel a montré [12] que la probabilité critique pour la percolation par sites vaut % Notons
que c’est I'un des premiers résultats sur 'UIPT qui a été montré aprés son introduction, alors
que la méme question pour le réseau triangulaire est restée ouverte pendant 20 ans! Plusieurs
exposants critiques ont également été obtenus par Matthias Gorny, Edouard Maurel-Ségala et
Arvind Singh [78]. La géométrie des clusters de percolation critique est également assez bien
comprise, grace notamment & des travaux de Nicolas Curien et Igor Kortchemski [61], et d’Olivier
Bernardi, Nicolas Curien et Grégory Miermont [33]. A chaque fois, les méthodes utilisées sont
complétement différentes de celles utilisées dans les réseaux euclidiens, et les preuves sont souvent
plus faciles.

Enfin, une autre maniére d’étudier la géométrie de T, est de s’intéresser au comportement
de la marche aléatoire simple (X,,) sur ce graphe : un marcheur démarre du sommet racine
et, & chaque instant, saute sur un sommet choisi uniformément parmi les voisins de celui ot il
se trouve. Ori Gurel-Gurevich et Asaf Nachmias ont montré [82] que 'UIPT était récurrente
(le marcheur revisite une infinité de fois la racine), tranchant une question qui était restée
ouverte pendant une dizaine d’année. Leur résultat montre en fait que toute limite locale de
graphe uniformément enracinés est récurrente, a condition que le degré de la racine ait une
queue exponentielle. Itai Benjamini et Nicolas Curien ont également montré [28| que la marche
aléatoire est sous-diffusive : la distance entre X, et la racine est au plus d’ordre n!/3. Cet
exposant % a été légerement amélioré par Nicolas Curien et Cyril Marzouk [66]. L’exposant
exact conjecturé est i, et fait I'objet d’un travail en cours d’Ewain Gwynne et Tom Hutchcroft.

Quelques variantes. A la suite de 'UIPT, plusieurs autres modéles de cartes infinies ont été
introduits et étudiés, tels I'UIPQ, analogue pour les quadrangulations, introduite par Maxim
Krikun [92]. Ses propriétés a grande échelle sont généralement les mémes que celles de 'UIPT,
mais les outils utilisés pour étudier les deux peuvent différer. Des modéles plus généraux de cartes
infinies (cartes de Boltzmann infinies o1, pour tout p > 1, les faces de degré p apparaissent avec
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une fréquence fixée) ont été construits par Jakob Bjornberg et Sigurdur Orn Stefansson dans le
cas biparti [38] (ou toutes les faces sont de degré pair), puis par Robin Stephenson dans le cas
général [129]. Tous ces modéles peuvent étre vus comme les limites locales de modeéles de cartes
aléatoires finies. Enfin, tous ces modéles ont des analogues dans le demi-plan, qui ont également
été étudiés (voir [LI] pour les triangulations, [69] pour les quadrangulations, et [42] [57] pour les
cartes de Boltzmann biparties générales). Ces modeéles sont les limites locales de cartes aléatoires
a bord, vues depuis un sommet du bord (par exemple de triangulations uniformes du p-gone
avec n sommets internes, olt on a fait tendre successivement n puis p vers I'infini).

1.1.4 Limites d’échelle

Une autre maniére de définir une limite de cartes est de regarder la carte "de loin" : de méme
que la marche aléatoire sur Z, une fois renormalisée, converge vers un mouvement brownien, on
espére obtenir un objet compact, mais continu : ¢’est une limite d’échelle.

Distance de Gromov—Hausdorff. Les cartes seront vues comme des espaces métriques dis-
crets. Il est donc d’abord nécessaire de préciser ce que signifie la convergence d’espaces métriques.
On commence par définir la distance de Hausdorff sur 'ensemble des parties compactes d’un
espace métrique (X, d). Soient K1, Ko C X compacts. On pose

dy(Ki, K9) = max ( max d(z1, K2), max d(l‘Q,Kl)> .
T1€K1 T2€K>o

Si (X1, dy) et (X2, ds) sont deux espaces métriques compacts, on définit leur distance de Gromov-
Hausdorff par

dou (X1, X2) = (piflig dp (p1(X1), 2(X2)),

ol l'infimum porte sur toutes les paires de plongements isométriques ;1 et po de X; et Xo
dans un méme espace métrique X. On peut vérifier que dgg définit une distance sur ’ensemble
des (classes d’isométrie d’) espaces métriques compacts, et en fait un espace polonais (voir
[48] pour plus de détails). Signalons également qu’il existe une variante permettant de prendre
également en compte une mesure borélienne sur les espaces métriques. C’est la distance de
Gromov-Hausdorff-Prokhorov, dont on ne détaillera pas la définition ici (voir par exemple [2]).

Signalons au passage que les chapitres [3] et [4] de cette thése contiennent des résultats tech-
niques sur ces topologies, qui pourraient étre utiles dans d’autres contextes. Nous montrons dans
Pappendice du chapitre |3 que, si 7 > 0 et si une suite d’espaces pointés (X, pr) Convergeﬂ vers
(X, p), alors sous certaines hypotheéses, I’enveloppe de rayon r et de centre p,, dans X,, converge
vers 'enveloppe de rayon 7 et de centre p dans X. Dans 'appendice du chapitre [l nous mon-
trons la fermeture pour la distance de Gromov—Hausdorff de nombreuses propriétés liées aux
géodésiques des espaces métriques.

La carte brownienne. On rappelle que T}, est une triangulation uniforme de la sphére a n
sommets. La question de la convergence de T, vers un objet continu a été posée pour la premiére
fois par Oded Schramm en 2003. Les premiers résultats dans cette direction sont ceux de Philippe
Chassaing et Gilles Schaeffer [54], qui montrent que les distances entre les sommets sont de I'ordre
de n'/4. Plus précisément, le profil des distances a la racines, renormalisées par n'/*, converge
vers une certaine mesure aléatoire. La tension pour la distance de Gromov—Hausdorff de T,
(en divisant les distances par n'/%) a ensuite été montrée par Jean-Frangois Le Gall [97], puis

5. 11 faut pour cela étendre la distance de Gromov—Hausdorff aux espace pointés ou bipointés, voir Chapitre

B

16



l'unicité de la limite indépendamment par Grégory Miermont (pour les quadrangulations, [116])
et Jean-Francois Le Gall [99).

Théoréme 1.2 (Le Gall, [99]). On a la convergence en loi suivante pour la distance de Gromov—

Hausdorfl-Prokhorov :
31/4 (l0f)
<Tn’ n1/4 dTn) n—-+4o0o m,

oll m est un espace métrique mesuré compact aléatoire appelé carte brownienne, ou sphére
brownienne.

Notons que [99] démontre que le résultat reste vrai en remplagant T,, par une p-angulation
uniforme pour p pair. L’objet limite reste le méme, seule la constante 3'/* différe alors. Un
certain nombre de résultats d’universalité, démontrant la convergence de nombreux modéles de
cartes aléatoires vers la carte brownienne, ont depuis été établis (voir par exemple [I12]). La
Figure bien que discréte, donne une idée de ce & quoi ressemble cet objet.

Propriétés de la carte brownienne. La géométrie de la carte brownienne a également été
étudiée en détail : on sait qu’elle est presque siirement homéomorphe a la sphére [103], 115],
mais de dimension de Hausdorff 4 [97]. La structure des géodésiques dans la carte brownienne a
également été étudiée [16][08]. Ces géodésiques possédent des propriétés de coalescence : presque
stirement, deux géodésiques issues de la racine vers deux points différents coincident sur un
segment initial.

Le plan brownien. Une variante non-compacte de la carte brownienne, appelée plan brownien,
a été introduite par Nicolas Curien et Jean-Frangois Le Gall [62]. Le plan brownien P posséde les
mémes propriétés locales que la carte brownienne, mais est homéomorphe au plan. Il peut étre
vu & la fois comme ’espace obtenu en "zoomant a 'infini" vers la racine de la carte brownienne,
ou comme la limite d’échelle de PUIPT[]

Contrairement a la carte brownienne, le plan brownien a l'avantage d’étre invariant par
changement d’échelle : pour tout a > 0, la loi de P est la méme que celle de a’P, espace obtenu
en multipliant par « les distances et par a? la mesure. Gréace a cette invariance, certains calculs
sont plus faciles & effectuer sur P que sur la carte brownienne. Par exemple, Nicolas Curien et
Jean-Francois Le Gall ont donné un sens au périmétre P, et au volume V,. de 'enveloppe de rayon
r dans le plan brownien|’| Ils ont alors caractérisé complétement la loi du processus (P, V),
[63]. En particulier, le processus (P,) a la loi d'un processus de branchement (analogue continu
d’un processus de Galton—Watson) avec un mécanisme de branchement stable d’indice 3/2, ou
le temps a été "retourné". Les processus (F,) et (V) jouent un réle important dans le chapitre

Bl

Quelques autres variantes. Des surfaces browniennes avec d’autres topologies ont égale-
ment été construites. Les disques browniens [37] et le demi-plan brownien [22] sont ainsi des
limites d’échelle de cartes & bord. Citons également les surfaces browniennes de genre supérieur
[35]. Enfin, signalons l'existence d’autres modéles continus appelés cartes stables [102], plus fon-
damentalement différents de la carte brownienne. Elles sont censées étre les limites d’échelles de
cartes oul les degrés des faces ont une queue lourde, et ot des faces macroscopiques apparaissent.

6. Pour étre exact, Curien et Le Gall montrent que P est la limite d’échelle de I'UIPQ. L’adaptation de la
preuve pour 'UIPT figure dans le chapitre

7. C’est loin d’étre évident pour le périmétre car le bord d’une enveloppe est une courbe de dimension fractale
2.
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Leur géomeétrie reste cependant assez mal comprise (voir par exemple [125] pour une étude du
bord des grandes faces)

1.2 Boite a outils

Le but de cette section est de présenter la "boite a outil" de la théorie des cartes aléatoires.
La plupart des résultats cités dans la section précédente ont été montrés en utilisant ces outilslﬂ

1.2.1 Epluchage

L’épluchage, ou peeling, est une méthode d’exploration des cartes introduite par le physicien
Yoshiyuki Watabiki [I39], et développée rigoureusement pour 'UIPT par Omer Angel [12].

Propriété de Markov spatiale. Le point de départ de cette idée est la propriété de Markov
spatiale de PUIPT Ty, : si t est une triangulation finie avec un trou de périmétre p, condition-
nellement & t C T, la loi de T\t ne dépend que de p. Cette propriété est un analogue de la
propriété de Markov "temporelle" usuelle au sens ou le passé correspond a la triangulation t,
le présent au périmétre p (c’est-a-dire au bord du passé), et le futur a la partie restante T'\¢t.
Une propriété similaire apparait également dans d’autres objets aléatoires planaires, comme les
processus SLE ou le champ libre gaussien.

Epluchage. L’idée est alors d’explorer Ty, par "petits morceaux", en utilisant de maniére
répétée la propriété de Markov spatiale. Plus précisément, soit ¢ une triangulation finie avec un
trou de périmétre p, et supposons qu’on sache que t C T,,. On choisit une aréte e sur le bord de
t et on note f la face adjacente & e a 'extérieur de t. On peut alors distinguer trois cas décrivant
la forme de f, comme sur la Figure :

(a) le troisiéme sommet de f n’est pas sur le bord de ¢,

(b) la face f sépare de l'infini un segment de 9t de longueur i situé sur sa droite, avec

(c) la face f sépare de l'infini un segment de Ot de longueur i situé sur sa gauche, avec
0<i<p-—1.

D’apres la propriété de Markov spatiale, la probabilité de chacun de ces cas conditionnellement
at C Ty ne dépend que de p.

Le processus d’épluchage consiste & découvrir progressivement T, de la maniére suivante :
on démarre avec une simple face et, & chaque étape, on choisit une aréte e sur le bord de la partie
explorée. On découvre alors la face qui se trouve de 'autre cété de e. On dit qu'on a épluché
l'aréte e. Si cette face sépare une zone finie de l'infini (en vert sur la Figure , on découvre
également cette zone. On note peel, (T ) la triangulation finie découverte aprés n étapes. La
propriété de Markov spatiale implique que le périmeétre de peel,, (7o) est une chaine de Markov
a valeurs dans N, dont on peut calculer explicitement les transitions. De plus, chaque fois qu’on
est dans un des cas (b) et (c) de la Figure la loi de la triangulation qui remplit la zone verte
est connue explicitement.

Applications. La puissance de cette technique réside dans le fait qu’on peut choisir & chaque
étape laréte a éplucherﬂ Par conséquent, il est possible d’adapter l'algorithme d’épluchage
(c’est-a-dire la maniére de choisir e sur le bord a chaque étape) au type de propriétés de T

8. Signalons dés maintenant une exception majeure : la preuve de la récurrence de V'UIPT [82] repose sur la
treés jolie théorie des empilements de cercles, qu’on n’abordera pas ici. Voir par exemple [126] pour un apergu.
9. Du moment que ce choix ne dépend pas de la partie inexplorée de T.
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(@) (b) (©)

FIGURE 1.7 — Les trois formes possibles de la face f (avec i = 2 dans le cas (b), et i = 3 dans le

cas (c)).

auxquelles on s’intéresse. L’épluchage a donc été utilisé pour étudier les propriétés de croissance
[12, [64], la percolation [12 [61], la marche aléatoire simple [28] ou encore la structure conforme
[56] de Tw. Signalons également un joli résultat de Nicolas Curien et Jean-Frangois Le Gall [64]
Corollaire 6] : quel que soit 1’algorithme d’épluchage choisi, presque stiirement, toute I'UIPT sera
découverte (c’est-a-dire que J,,~qpeel, (7o) = Too D-5.).

Robustesse. La version du peeling "a la Angel" présentée ici peut également étre utilisée pour
explorer les quadrangulations, mais le nombre de cas & traiter explose rapidement avec les degrés
des faces. Pour traiter des modéles de cartes beaucoup plus généraux, une variante plus robuste a
été développée par Timothy Budd [42]. Cette variante permet d’étendre certains résultats connus
pour 'UIPT & de nombreux autres modéles, voir [57] pour de nombreuses applications. Enfin,
signalons que I’épluchage est particuliérement simple pour les cartes du demi-plan, puisque le
bord de la partie restant & explorer est toujours le méme (il est toujours infini), ce qui permet
de se débarasser de la dépendance en p des probabilités de transitions.

1.2.2 Décomposition de Krikun

Un autre outil trés utile pour étudier 'UIPT est la décomposition de Krikun, dont l'idée
est de coder T, par un arbre & l’envers, qu’on appelle son squelette, et ol les hauteurs des
sommets dans I’arbre correspondent & leur distance a la racine dans T. Cette décomposition a
été introduite par Maxim Krikun pour les triangulations de type II [94], et décrite par Nicolas
Curien et Jean-Frangois Le Gall pour les triangulations de type I [65].

Squelette d’une triangulation infinie. Plus précisément, considérons une triangulation
infinie du plan 7" et, pour tout r > 0, tragons le bord 9By de 'enveloppe de rayon r (en bleu
sur la Figure . Les faces a l'intérieur de By adjacentes & des arétes de 0B; sont appelées
triangles pointant vers le bas & hauteur r.

La construction du squelette de Krikun est alors la suivante : on place un sommet au milieu
de chaque aréte de OBy, pour tout » > 0. Ces sommets seront ceux du squelette. De plus,
soit e une aréte d'un cycle 9B;. On suit 0B, vers la droite en partant du milieu de e, jusqu’a
rencontrer un triangle pointant vers le bas a hauteur r + 1. Alors le parent de e est l'aréte
de 0By, adjacente a ce triangle. Le squelette Skel(T") de T' est alors la forét qui décrit cette

généalogie (voir Figure [1.8).
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FIGURE 1.8 — La décomposition de Krikun de Ti. En bleu, les cycles 0B, pour r = 1,2, 3,4.
En blanc, les triangles pointant vers le bas. En violet, les branches du squelette qui descendent
a hauteur 3 ou moins. En orange, les géodésiques les plus & gauche reliant les sommets de 0B}
a la racine.
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Décomposition de Krikun de T,,. La loi du squelette de T, peut étre calculée explicite-
ment. Cette forét ne contient presque siirement qu’'un seul arbre. De plus, sa loi est essentielle-
ment celle d’'un arbre de Galton—Watson & ’envers, dont la racine serait a U'infini, et conditionné
a s’éteindre exactement a la hauteur 0. En particulier, (|0B}[),~, peut étre vu comme un pro-
cessus de Galton—Watson a l'envers, ce qui permet d’obtenir des informations précises sur ce
processus (voir [94] 122]). De plus, conditionnellement au squelette, les "trous" (en vert sur la
Figure sont remplis par des triangulations indépendantes, de lois connues explicitement.

Enfin, cette décomposition code des informations sur les géodésiques issues de la racine :
les chemins "zigzaguant" entre les branches du squelette (en orange sur la Figure sont les
géodésiques les plus a gauche reliant les sommets de By a la racine p. Le fait que Skel(T') soit
connexe implique par exemple qu’il n’existe pas deux géodésiques infinies oranges disjointes. La
décomposition de Krikun permet donc d’obtenir des propriétés de confluence des géodésiques
(voir [67], ainsi que [93] sur les quadrangulations).

1.2.3 Bijection de Cori—Vauquelin—Schaeffer

Terminons l'inventaire de cette "boite a outils" par une rapide description de la bijection
de Cori—Vauquelin—Schaeffer. Méme si cette bijection ne sera pas explicitement utilisés dans les
travaux qui suivent, elle est le point de départ de tous les résultats connus actuellement sur les li-
mites d’échelle de cartes aléatoires. Il s’agit d’une bijection entre d’une part les quadrangulations
de la sphére a n faces, et d’autre part les arbres étiquetés & n + 1 sommets.

Arbres bien étiquetés. Un arbre plan est une carte planaire (finie ou infinie) sans cycle ou, si
I’on préfére, un arbre enraciné muni, pour chaque sommet v, d’'un ordre cyclique sur ’ensemble
des voisins de v. Si 7 est un arbre plan & n 4+ 1 sommets, on peut faire le tour de 7 dans le sens
horaire, en longeant ses arétes et en commencant par 1’aréte racine. On note alors (vg, v1, . .., voy)
la liste des sommets rencontrés, de sorte que vg = wo, et v; sont respectivement les sommets
de départ et d’arrivée de 'aréte racine. Un méme sommet peut apparaitre plusieurs fois dans la
liste (voir la partie gauche de la Figure . La suite (vg,v1,...,v,) peut étre étendue a Z par
2n-périodicité, et est appelée liste de contour de T.
Un arbre étiqueté est un couple (7,¢) ot 7 est un arbre plan et ¢ une fonction d’étiquetage

associant a chaque sommet de 7 un entier relatif. Enfin, on dit que (7, /) est bien étiqueté si :

e l'étiquette £(p) de la racine vaut 0,

e pour tous sommets voisins v et w de 7, on a ¢(w) — (v) € {—1,0,1}.

La bijection. Soit (7,¢) un arbre bien étiqueté a n+ 1 sommets, et (v;);ez sa liste de contour.
On ajoute également un sommet v, portant I’étiquette min(¢) — 1. Pour tout indice 7, on définit
le successeur de i, noté s(i), comme le plus petit indice j > i tel que £(v;) = ¢(v;) — 1. Notons
que si £(v;) = min(¢), alors s(i) = co. Pour tout 0 < i < 2n — 1, on trace alors une aréte reliant
v; & vy(;). Il est possible de tracer ces arétes de maniére a ce qu'elles ne se recoupent pas et
n’intersectent pas les arétes de 7. En effagant ensuite les arétes de 7, on obtient ainsi une carte
planaire, qu’on enracine sur l'aréte reliant vo a vyg) et qu’on note ®(7,¢). On peut alors vérifier
que ®(7,¢) est une quadrangulation a n faces, et que cette construction définit une bijection
entre 'ensemble des arbres bien étiquetés & n + 1 sommets et ’ensemble des quadrangulations
de la sphére enracinées a n facesm Notons également que la bijection réciproque ®~! peut étre
explicitée.

10. Pour étre plus précis, la bijection prend en paramétre un arbre bien étiqueté et un bit e € {—1,+1} (qui
indique dans quel sens on oriente l'aréte racine), et donne une quadrangulation enracinée et pointée (munie d’un
sommet distingué, en plus de l’aréte racine, qui correspond au sommet v ).
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FIGURE 1.9 — La bijection de Cori-Vauquelin-Schaeffer sur un exemple avec n = 7. A gauche,
un arbre bien étiqueté (7, £) et sa liste de contour. A droite, la quadrangulation ®(r,¢).

Bijection CVS et distances. La bijection a été introduite par Robert Cori et Bernard
Vauquelin [55] dans le but d’obtenir une preuve bijective du dénombrement des quadrangulations
de la sphére de taille fixée . Gilles Schaeffer a remarqué [127] qu’elle n’avait pas seulement
un intérét combinatoire, mais codait également des informations métriques. En effet, si (7, ¢) est
un arbre bien étiqueté et v; est un sommet de 7, alors la distance dans ®(7, ¢) entre v; et v est
égale a

0(v;) — (Vo).

En particulier, les distances de graphe dans ®(7,¢) sont du méme ordre de grandeur que les
étiquettes de (7,¢). Si (7,¢) est choisi uniformément parmi les arbres bien étiquetés a n + 1
sommets, alors les branches de 7 ont une longueur d’ordre \/n, et les étiquettes le long d’une
branche décrivent une marche aléatoire. L’ordre de grandeur des étiquettes est donc de \/ﬁ, ce
qui donne lorigine de I'exposant 1/4 dans les résultats de limites d’échelle comme le Théoréme
L2

Variantes. De nombreuses variantes de la bijection CVS ont depuis été introduites. En parti-
culier, une version trés robuste a été développée par Jérémie Bouttier, Philippe di Francesco et
Emmanuel Guitter [40], et permet de traiter des contraintes arbitraires sur les degrés des facesE
D’autres versions ont été utilisées pour étudier des quadrangulations infinies du plan [53] 68|
ou du demi-plan [22] [50], ou encore de genre supérieur [52|. Enfin, la plupart des construc-
tions connues de la carte brownienne et d’autres limites d’échelles de cartes sont des variantes
continues de la bijection CVS.

1.2.4 Flips sur des triangulations de la sphére (Chapitre 2, ou [44])

Comment réaliser des simulations ? Pour réaliser de jolies images comme celle de la Figure
il est nécessaire de savoir tirer uniformément au hasard une triangulation de la sphére avec n
sommets. Or, d’aprés la formule (|1.2)), le nombre de ces triangulations croit exponentiellement en

11. Pour des triangulations, elle est cependant assez lourde & utiliser, car elle les code par des arbres de Galton—
Watson a 4 types. C’est pour cette raison qu’on ne ’a décrite que pour des quadrangulations, bien que le reste
de cette introduction se concentre principalement sur les triangulations.
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t f[ip(t, 61)

F1GURE 1.10 — Un exemple de flip d’une aréte. Il est impossible de flipper I'aréte orange es.

n. Il n’est donc pas envisageable de lister toutes les triangulations une par une pour en tirer une
au hasard. Les outils décrits précédemment fournissent des méthodes permettant de construire
des triangulations uniformes. Cependant, quand les physiciens ont commencé & s’intéresser aux
cartes aléatoires dans les années 80, aucun de ces outils n’était disponible.

Une méthode de Monte-Carlo. Les physiciens ont donc utilisé des méthodes dites de
Monte-Carlo. Commencons par rappeler le principe général de ces méthodes. On se donne une
mesure g sur un ensemble fini F, et on cherche & simuler une variable aléatoire sur E de loi
w. Pour cela, on considére une chaine de Markov (X,,) irréductible sur E dont p est la mesure
stationnaire. Pour n suffisamment grand, la loi de X,, sera alors trés proche de celle de p. Dans
notre cas, F est 'ensemble .7, des triangulations (de type I) de la sphére & n sommets, et p est
la mesure uniforme sur .7,.

Pour qu’une telle méthode soit facile & implémenter, on souhaite que chaque étape de notre
chaine de Markov ne change qu'une petite partie de la triangulation. Une transformation locale
semble alors trés naturelle : les flips. Soit ¢ une triangulation de la sphére, et soit e une aréte
de t. Si on efface I'aréte e, les deux faces qu’elle séparait fusionnent, et forment une face de
degré 4 dont on vient de supprimer une diagonale. On peut alors remettre 'autre diagonale de
cette face. On dit qu’on a flippé 'aréte e, et on note flip(¢, e) la nouvelle triangulation obtenue
(voir Figure . Si jamais les deux cotés de e sont adjacents au méme triangle (aréte eg sur
la Figure , on pose flip(t,e) = t.

La chaine de Markov qu’on considére est alors la suivante : on se donne une triangulation
initiale tg puis, & chaque étape, on choisit uniformément au hasard une des 3n — 6 arétes de
la triangulation courante et on flippe cette aréte. On note T, (k) la triangulation obtenue apres
k flips. Il est alors facile de vérifier que (75, (k));~, est bien une chaine de Markov sur .7, et
qu’elle admet la mesure uniforme comme mesure stationnaire (et méme réversible). Elle est de
plus irréductible d’aprés un résultat de Klaus Wagner [ISS]E et apériodique, ce qui garantit
qu’elle converge bien vers la mesure uniforme. La plupart des simulations présentées dans cette
introduction ont été réalisées de cette maniére.

Temps de mélange. En pratique, la convergence de T),(k) vers la mesure uniforme n’est
cependant pas suffisante : il faut s’assurer que cette convergence est suffisamment rapide pour que
les simulations puissent étre effectuées en temps raisonnable. La quantité utilisée habituellement
pour décrire cette vitesse de convergence est le temps de mélange. Notons T,,(0c0) une variable

12. Pour 'anecdote, I'article de Wagner s’intitule Bemerkungen zum Vierfarbenproblem, soit Remarques sur le
théoréme des quatre couleurs. On peut donc supposer que son but était d’utiliser le fait que certaines triangulations
sont 4-coloriables, puis de "propager" cette propriété vers toutes les triangulations en utilisant des flips.
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aléatoire uniforme sur .7,. Etant donnés n et 0 < £ < 1, on note tyic(g,n) le plus petit k tel que

max max |P (T, (k) € A) — P (Th(x) € A)| <&, 1.3
max max [P (T(k) € 4) — P (To(oc) € 4)] < (1.3
et on nomme cette quantité temps de mélange de T), au niveau €. Autrement dit, tyix(e, n) est le
premier temps k pour lequel quel que soit la condition initiale ¢y choisie, la loi de T}, (k) approche
la mesure uniforme & ¢ prés pour la distance en variation totale.

Théoréme 1

Soit € > 0. Il existe une constante ¢ > 0 telle que, pour tout n, on ait tyix(e,n) > en®/4.

Nous n’avons réussi qu’a obtenir une borne inférieure sur ce temps de mélange, ce qui est
en général plus facile que d’obtenir une borne supérieure : pour minorer un temps de mélange,
il suffit de trouver une propriété qui est lente & mélanger, tandis que pour le majorer, il faut
prouver que toutes les propriétés possibles se mélangent bien. Il ne semble méme pas évident
que tmix(e,n) soit polynomial en n. Cependant, on conjecture que ce temps de mélange est bien
d’ordre n/4,

Idée de la démonstration. La propriété a laquelle on s’intéresse est 'existence de petits
cycles séparants, c’est-a-dire de cycles de longueur o(nl/ 4) qui séparent une triangulation en
deux parties macroscopiques. Jean-Francois Le Gall et Frédéric Paulin ont montré [103] qu’avec
grande probabilité, de tels cycles n’existent pas dans une triangulation uniforme[r_gl. On montre
alors que si la condition initiale posséde un petit cycle séparant, elle ne pourra pas s’en débar-
rasser en 0(n5/ 4) flips, ce qui montre qu’on est alors loin de la mesure uniforme. La preuve de la
"persistance" de ces petits cycles repose sur une méthode d’épluchage : on explore notre trian-
gulation en méme temps qu’elle est transformée par les flips. Notons que le résultat de Le Gall et
Paulin repose sur des bijections de type CVS, et qu’on utilise & la fin un résultat de Krikun sur
les cycles séparants, montré grace a la décomposition de Krikun [94]. La démonstration combine
donc en quelque sorte les trois outils vus précédemment !

1.3 Cartes aléatoires hyperboliques

1.3.1 Définitions

Triangulations markoviennes du demi-plan. La puissance et la souplesse de la propriété
de Markov spatiale de 'UIPT (voir Section ameénent naturellement & se poser la question
suivante : quelles sont les triangulations infinies aléatoires vérifiant une propriété similaire ?
Cette question a dans un premier temps été étudiée par Omer Angel et Gourab Ray [I8], pour
les triangulations du demi-plan (de type II).

Théoréme 1.3 ([I8]). Les triangulations du demi-plan vérifiant une propriété de Markov spa-
tiale forment une famille & un parameétre (Hg)o<a<1-

La construction des triangulations H,, repose sur des algorithmes d’épluchage, comme ceux
évoqués précédemment. De plus, le paramétre « a une interprétation probabiliste assez simple :
fixons une aréte du bord 0H, de H,, et soit fy la face triangulaire de H, adjacente a cette aréte.
Alors « est la probabilité que le troisiéme sommet de fj ne soit pas sur OH,, . Intuitivement, plus
« est grand, plus H, contient de sommets en dehors de son bord. Il semble donc naturel que

13. Pour étre exact, le résultat énoncé par Le Gall et Paulin porte sur les quadrangulations. Cependant, il
repose sur la convergence vers la carte brownienne, qui est vraie également pour les triangulations.
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plus « est grand, plus la croissance de H,, est rapide. Angel et Ray mettent en effet en évidence
une transition de phase en @ = % :

— pour a < %, la triangulation H, ressemble de loin & un arbre, et peut aussi étre vue comme
la limite locale de triangulations & bord ot la longueur du bord est proportionnelle au
nombre de total de sommets,

— pour o = %, la triangulation H, n’est autre que 'UTHPT, version semi-planaire de 'UIPT,
et avec laquelle elle partage de nombreuses propriétés,

— pour « > %, la triangulation H, est un graphe "hyperbolique".

Les propriétés de ces trois régimes seront précisées dans la Section [I.3.2]

Triangulations markoviennes du plan. Par la suite, Nicolas Curien a généralisé ces ré-
sultats aux triangulations du plan complet [58]. Pour étre exact, l'article [58] se concentre sur
les triangulations de type II, c’est-a-dire sans boucles. Cependant, toutes les preuves s’adaptent
au type I qui, pour des raisons techniques, est celui dont on aura besoin dans la suite. On se
contentera donc dans cette introduction du type I. Le lien entre les triangulations markoviennes
de type I et de type II est clarifié dans ’Appendice [A] de cette these.

La définition choisie de la propriété de Markov spatiale est cette fois légérement plus forte.
Soit A > 0. On dit qu’une triangulation aléatoire du plan T est A-markovienne s’il existe des
constantes (C’p)p>1 telles que, pour toute triangulation finie ¢ avec un trou de périmétre p, on a

P(t CT) = CpAll,

ot |t| est le nombre total de sommets de t. Commengons par expliquer le lien entre cette propriété
de Markov spatiale et celle énoncée plus haut (Section . Soient t et ¢’ deux triangulations
avec des trous de périmétres respectivement p et p’, et vérifiant ¢ C t. Soit aussi T une triangu-
lation aléatoire A-markovienne. Alors on a

P(t'cT) _ CyAl _ Gy

P CcT|tcT)= = —
(FcTcT) =g CNT G,

Si on fixe t et fait varier ¢/, cette formule caractérise entiérement la loi de T\¢ conditionnellement
at C T. Or, la seule dépendance en t est en fait en le périmétre de ¢, donc la loi de T\¢
conditionnellement & ¢t C T ne dépend que du périmétre de ¢.

Une famille & un paramétre. De maniére analogue & ce qui se passe dans le demi-plan,
Curien obtient le résultat suivant. Dans toute la suite, on notera A\, = #\/g

Théoréme 1.4. Si 0 < X\ < )., alors il existe une unique (en loi) triangulation aléatoire \-
markovienne du plan, notée Ty. Si A > A, il n’en existe pas. De plus, la triangulation T, est
en fait 'UIPT.

Comme pour les triangulations du demi-plan, la preuve repose sur des arguments d’épluchage.
Notons que le régime sous-critique (a < %) disparait dans le plan complet. De plus, si0 < A < A,
il existe % < «a < 1 pour lequel on peut coupler Ty avec H, de telle maniére que H, C TAE
Les triangulations Ty pour 0 < A < A, ont donc elles aussi un comportement "hyperbolique".
Elles sont appelées PSHIT (Planar Stochastic Hyperbolic Infinite Triangulations), et constituent
lobjet d’étude central de cette thése. La Figure donne une idée de ce a quoi ressemblent

ces cartes.

14. Ici aussi, on triche un peu : en toute rigueur, il faudrait remplacer les H, par un analogue de type I.
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FIGURE 1.11 — Une simulation de PSHIT. Comme pour la Figure[I.5] le plongement a été calculé
par le logiciel CirclePack, et on a effacé les cercles pour ne garder que les arétes. Elle est ici
représentée dans le disque unité, ce qui est plus naturel pour des objets de nature hyperbolique.
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Une conjecture. De nombreux modéles naturels de cartes aléatoires infinies peuvent étre vus
comme des limites locales de cartes planaires aléatoires finies dont la taille tend vers l’infini.
Pour les PSHIT, ce n’est pas possible. En effet, le degré moyen des sommets dans les PSHIT est
strictement supérieur a six|E|. En revanche, dans une triangulation de la sphére a n sommets, la
formule d’Euler montre que le nombre d’arétes vaut 3n — 6, donc le degré moyen d’un sommet
choisi uniformément vaut 6 — % Par conséquent, dans une limite locale de triangulations de
la sphére, le degré moyen vaudra au plus 6. Pour voir les PSHIT comme une limite locale
de cartes finies, d’aprés la formule d’Euler, il est donc nécessaire de considérer des cartes de
genre supérieur. Plus précisément, il faut que le genre soit linéaire en le nombre de faces de
la triangulation. Pour tous n et g, soit T}, ;, une variable aléatoire uniforme sur I’ensemble des
triangulations enracinées & n sommets du tore de genre g. La conjecture suivante est posée dans
[58], et est une des motivations pour l'introduction des PSHIT.

Conjecture 1.4. Soit 0 < 6 < +o0. Alors il existe 0 < A < A. tel que T}, |9, converge en loi
pour la topologie locale vers Ty quand n — +oc.

Il peut paraitre surprenant que des graphes hautement non-planaires convergent vers une
triangulation du plan. Ce phénoméne peut cependant étre facilement observé, par exemple chez
les graphes aléatoires : la limite locale de graphes 3-réguliers uniformes, objets trés loin d’étre
planaires, est 'arbre binaire complet. Ici, cela signifie que le genre ne se voit pas au voisinage
de la racine dans T}, |gy,)-

Etablir la Conjecture exigerait des résultats trés précis sur les asymptotiques du nombre
de triangulations & n sommets du tore de genre g quand n et g tendent simultanément vers I’infini.
De tels résultats ne sont pour l'instant pas disponibles. Signalons cependant qu'un résultat
similaire a été établi par Omer Angel, Guillaume Chapuy, Nicolas Curien et Gourab Ray pour
des cartes unicellulaires (c’est-a-dire ne possédant qu’une seule face) de genre grand [13]. La
limite locale est alors un arbre de Galton—Watson surcritique conditionné & survivre.

Enfin, par la formule d’Euler, on connait le degré moyen des sommets dans T3, |9, |- Un moyen
d’établir un lien entre les paramétres 6 et A est donc de comprendre le "degré moyen" dans les
triangulations infinies T). Dans I’Appendice [B| de cette thése, nous effectuons des calculs sur le
degré de la racine dans les PSHIT, et nous proposons une version plus précise (Conjecture
de la Conjecture

Au-dela des triangulations. Comme pour 'UIPT, il est naturel de se demander s’il existe
des analogues des PSHIT chez les quadrangulations, ou bien chez des cartes plus générales.
Nous traitons partiellement cette question dans I’Appendice [C] de cette thése : on peut définir
des analogues des PSHIT pour les 2p-angulations pour tout p > 2, ainsi que des modéles de cartes
plus généraux ou les degrés des faces sont bornés. On peut également énoncer des analogues de
la Conjecture pour ces modéles. En revanche, I'existence ou non de cartes hyperboliques avec
des faces de degrés a queue lourde reste ouverte.

1.3.2 Propriétés d’hyperbolicité

Le terme "hyperbolique" pour un graphe peut recouvrir des propriétés de natures trés variées.
Le but de cette section est de préciser ce qu'on entend par "hyperbolicité", et de résumer les
propriétés connues des triangulations hyperboliques définies ci-dessus. On se concentre sur le cas
surcritique a > % pour les H, et A < A, pour les T).

15. Ceci est a rapprocher du fait que le degré des sommets vaut 6 dans le réseau triangulaire euclidien, et au
moins 7 dans les triangulations réguliéres hyperboliques.
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Croissance. Une premiére maniére de définir ’hyperbolicité pour un graphe est par sa crois-
sance, c’est-a-dire la maniére dont la taille de la boule de rayon r varie en fonction de r. Un
graphe hyperbolique se doit d’avoir une croissance trés rapide.

Gourab Ray a montré [124] que le volume et le périmétre des enveloppes de rayon r dans
H,, croit exponentiellement en r. Nicolas Curien a obtenu des résultats de croissance plus précis
dans les PSHIT [58] : on a les convergences

B (T 8. B (T 8
OBITI o, BT

14
= OB (TY)] oo (14)

ou Il est une variable aléatoire strictement positive, et ay, my > 0 sont des constantes calcu-
lables explicitement en fonction de A.

Expansion enracinée. Les PSHIT vérifient également une propriété d’expansion enraci-
néelE : 1l existe une constante ¢ > 0 telle que presque stirement, pour tout ensemble A de
sommets fini, assez grand, connexe et contenant la racine, on a

04| = c|Al, (1.5)

ot |0A]| est le nombre d’arétes de Ty dont exactement une extrémité est dans A. Cette propriété a
été montrée dans [124] pour les triangulations du demi-plan, puis dans [58] pour les T}. La notion
d’expansion enracinée est trés proche de celle de non-moyennabilité, trés utilisée pour étudier
des graphes plus réguliers (graphes de Cayley de groupes infinis par exemple) : un graphe est dit
non-moyennable s’il vérifie une inégalité isopérimétrique du méme type que , uniformément
pour tous les ensembles finis de sommets. Cependant, cette notion n’est pas adaptée a 1’étude
de graphes aléatoires : comme T contient presque stirement toutes les triangulations finies, il
est en fait moyennable.

Marche aléatoire simple. Soit (X,,) la marche aléatoire simple sur T). Par un résultat de
Balint Virag [137], 'expansion enracinée implique que (X)) est transiente, c’est-a-dire qu’elle
ne visite la racine qu’un nombre fini de fois. Une question naturelle est alors celle de la vitesse a

laquelle la marche simple s’éloigne de la racine. Cette vitesse est strictement positive [58], c’est-

. dr, (X0,Xn . o .
a-~dire que dr, (Xo.Xn) converge vers une constante strictement positive (dépendant de A) quand

n — +o0o. La preuve de ce résultat mélange des arguments d’épluchage et de théorie ergodique.
Notons qu’Omer Angel, Asaf Nachmias et Gourab Ray ont également établi un résultat de
vitesse positive pour les triangulations du demi-plan H, [17], et ce par des méthodes différentes
(utilisation plus précise de I'expansion enracinée). Ils ont également montré que la probabilité
de retour a 'origine au temps n était d’ordre exp(—n1/3).

Frontiére de Poisson. Les PSHIT étant transientes, une autre question naturelle est la sui-
vante : la marche aléatoire peut-elle tendre vers I'infini dans plusieurs directions différentes ? La
notion naturelle pour formuler cette question plus précisément est celle de frontiére de Poisson.
Considérons une compactification G d'un graphe transient G, c’est-a-dire un espace topologique
compact dans lequel G est dense, et notons oG = a\G (par exemple, cela peut étre le bord du
disque unité sur la Figure . Supposons que presque stirement, la marche aléatoire simple
(X,) sur G converge dans G vers un point (aléatoire) Xoo de OG. Alors pour toute fonction
mesurable bornée f sur 8@, on peut définir sur G la fonction suivante :

h(fL’) =E,; [f(Xoo)] )

16. anchored expansion en anglais, la traduction n’est pas canonique.
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ou E; est la loi de la marche aléatoire simple issue de x. Il est alors facile de vérifier que h
est toujours harmonique et bornée. Si de plus toutes les fonctions harmoniques bornées sur G
peuvent étre construites de la sorte, on dit que OG est une réalisation de la frontiére de Poisson de
G. On dit également que G vérifie la propriété de Liouville si sa frontiére de Poisson est réduite
a un point, c’est-a-dire que toutes les fonctions harmoniques bornées sur G sont constantes.
Notons que tous les graphes récurrents vérifient la propriété de Liouville. De plus, Z¢, bien que
transient pour d > 3, vérifie aussi toujours cette propriété. La non-propriété de Liouville est
donc plus forte que la transience, et peut-étre vue comme une propriété d’hyperbolicité.

Nicolas Curien a prouvé que les PSHIT ne vérifient pas la propriété de Liouville [58], puis
Omer Angel, Tom Hutchcroft, Asaf Nachmias et Gourab Ray ont construit une réalisation de
leur frontiére de Poisson en utilisant la théorie des empilements de cercles [14]. Cette réalisation
est homéomorphe au cercle. Les résultats de [I4] sont en fait valides pour n’importe quelle
triangulation infinie unimodulaire, ¢’est-a-dire ou "le sommet racine a été choisi uniformément"
(voir par exemple [I10, Chapitre 8] pour une définition précise).

1.3.3 Limite d’échelle quasi-critique (Chapitre 3, ou [45])

Limite quasi-critique. On a vu dans la Section que 'UIPT admet une limite d’échelle
continue, le plan brownien P. Les PSHIT admettent-elles également une limite d’échelle 7 Une
premiére tentative naturelle serait de fixer 0 < A < A, de multiplier les distances dans T) par
« > 0, puis de faire tendre « vers 0. Cependant, cette tentative est vouée a ’échec car les objets
& croissance exponentielle se comportent trés mal vis-a-vis des limites d’échelle. Par exemple,
quand r est grand, le volume de la boule de rayon 2r croit beaucoup plus vite que celui de la
boule de rayon r. Dans une éventuelle limite continue, la masse de la boule de rayon 2 devrait
donc étre infiniment plus grande que la masse de la boule de rayon 1.

Pour obtenir une limite d’échelle non-dégénérée, il faut donc ruser en "amortissant" cette
croissance trop rapide. Nous proposons une approche quasi-critique : en méme temps qu’on
renormalise les distances, on fait tendre le parameétre \ vers sa valeur critique A.. Il est alors
important trouver la bonne vitesse a laquelle faire tendre A vers A. : si la convergence est trop
lente, on retrouve le méme probléme que précédemment, et si elle est trop rapide, on ne voit
plus la différence avec le cas critique et on obtient une convergence vers le plan brownien.

Le plan brownien hyperbolique. On peut voir T) comme un espace métrique mesuré,
muni de la distance de graphe et de la mesure de comptage sur les sommets. Si X est un espace
métrique mesuré et o > 0, on note donc X 'espace métrique mesuré obtenu en multipliant les

distances par o et la mesure par o.

Théoréme 2

Soit (\,,) une suite de nombres dans |0, A.] vérifiant

2 1

Alors on a la convergence suivante pour la distance de Gromov-Hausdorff~Prokhorov :

(lot)
——— P,
n—-+oo

1
—T),
n

ott PP est un espace métrique mesuré aléatoire localement compact appelé plan brownien
hyperbolique.
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Absolue continuité entre P et P". La preuve de ce résultat repose sur la convergence
de 'UIPT vers le plan brownien et sur les relations d’absolue continuité entre les enveloppes
dans 'UIPT et dans les PSHIT. Plus précisément, pour tout r, ’enveloppe By (T)) est absolu-
ment continue par rapport & Br(T)y,.). De plus, la dérivée de Radon-Nikodym ne dépend que
du périmétre et du volume de ’enveloppe, et peut étre calculée explicitement. Il n’est alors pas
surprenant que de telles relations d’absolue continuité existent également entre P* et P. Plus
précisément, si X est un espace métrique mesuré, on note B,(X) 1'enveloppe de rayon 7 de X,
c’est-a-dire 'union de la boule de rayon r et des composante connexes bornées de son complé-
mentaire. Muni de la restriction de la distance et de la mesure sur X, c’est un espace métrique
mesuré Notons P, le périmétre de B,(P) comme défini dans [63], et V;. son volume.

Théoréme 3

Pour tout » > 0, 'espace métrique mesuré E(Ph) est absolument continu par rapport a
B, (P), et la dérivée de Radon—Nikodym est donnée par

1
— _ 2
e 2VQ’“ePQ’“/ e 3P g, (1.6)
0

Notons que la densité dépend du périmétre et du volume de ’enveloppe de rayon 2r, et non
pas r. C’est lié au fait que des "raccourcis" entre deux points de B, (P) peuvent exister en-dehors
de B,(P), mais ces raccourcis ne peuvent pas sortir de Bo,(P). Signalons aussi que le facteur
% dans le Théoréme [2| a été choisi pour que 'expression de la densité soit la plus simple
possible.

Propriétés de P". Les propriétés de P" peuvent grossiérement se résumer de la maniére
suivante :

e localement, P" ressemble a P,

e & une échelle r fixée, P est absolument continu par rapport a P,

e & grande échelle, P" a un comportement hyperbolique.
En particulier, les propriétés locales de confluence des géodésiques dans la carte brownienne et
le plan brownien restent vraies dans P". Nous montrons également que P” est presque stirement
homéomorphe au plan, et vérifie une propriété d’"invariance par réenraeinement"[ﬂ

Périmétres et volumes dans P". Par absolue continuité, on peut également définir le péri-
métre et le volume de enveloppe de rayon r dans P, qu’on note respectivement Prh et VTh. Le
Théoréme |3 combiné aux résultats de Nicolas Curien et Jean-Frangois le Gall [63] sur la loi de
(P, V) sont en théorie suffisants pour caractériser entiérement la loi de (P*, V"*). Nous donnons
cependant une description plus directe et plus explicite de cette loi, similaire & celle donnée dans
[63]. Pour tout § > 0, on définit la mesure de probabilité vs sur RY comme suit :

3,20 7£72m
0°e’ e 2

vs(de) = o5t

]]-I>0 dx.

17. La notation B, est différente de la notation B; utilisée dans le cadre discret. Ce changement de notation
souligne le fait que B, n’est pas muni de sa distance intrinséque, mais de la distance induite. En particulier, si X
est un graphe, la distance entre deux sommets de B,.(X) ne dépend pas seulement de B (X).

18. Pour étre plus précis, il s’agit d’un analogue continu de la propriété d’unimodularité, qui est elle-méme la
généralisation naturelle aux graphes infinis de 'invariance par réenracinement uniforme.
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Théoréme 4

e Le processus P" est un processus de branchement sous-critique démarré de +o0o
au temps —oo et conditionné & atteindre 0 au temps 0, ot le temps a été inversé.
e De plus, conditionnellement & P" la loi de V" est celle du processus

( Z glh)rzo’

s <r

oil (s;) est une énumération des sauts de P", les variables £ sont indépendantes,
et glh a pour loi Viaph| pour tout 7.

En particulier, le processus P" est donc un processus discontinu, dont tous les sauts sont
négatifs. De plus, le processus des volumes V" est croissant, et ne progresse que par sauts :
chaque fois que P" effectue un saut négatif, le volume V" effectue un saut positif. Ces instants
ol le périmétre diminue et le volume augmente correspondent aux hauteurs ot I’enveloppe avale
une des "tentacules" de la Figure[I.6] Cette description est trés proche de celle de P et V' donnée
dans [63].

Les deux seules différences sont la nature du processus de branchement (critique pour P,
sous-critique pour P"), et les lois v4. Il est logique que le processus de branchement soit sous-
critique : on s’attend a une croissance rapide de Pf, donc & une décroissance rapide une fois le
temps inversé. Plus précisément, le Théoréme {] nous permet d’obtenir des asymptotiques trés
précises sur les processus P et V' analogues continus des résultats obtenus dans [58] sur les
PSHIT . Dans le cas continu, on peut méme calculer la loi de la variable limite qui apparait.

Corollaire 5

On a les convergences

BE o [T
3 S E et Dh — —¢
e T n—-+oo PT n—+oo 4

ou & est une variable exponentielle de paramétre 12.

Signalons enfin que des résultats de limite d’échelle ont été montrés pour des analogues
du cas sous-critique chez les quadrangulations du demi-plan par Erich Baur et Loic Richier
[23], et par Erich Baur, Grégory Miermont et Gourab Ray [22]. D’une part, la limite d’échelle
de ces quadrangulations infinies sous-critiques (& paramétre fixé) est un arbre continu non-
compact (version infinie de I’arbre brownien d’Aldous). D’autre part, il existe aussi une limite
d’échelle quasi-critique, qui ressemble localement au demi-plan brownien mais asymptotiquement
a l’arbre brownien infini. Les méthodes utilisées sont alors complétement différentes (utilisation
de bijections du type CVS).

1.3.4 Géodésiques infinies (Chapitre 4, ou [46])

Géodésiques. Considérons une triangulation Ty avec 0 < A < A.. Dans [46], on s’intéresse
principalement aux géodésiques infinies de T) issues de la racine. L’étude des géodésiques (ou
chemins les plus courts) d’un espace métrique ou d’un graphe est généralement un bon moyen
d’acquérir des informations sur sa géométrie.

Définition 1.5. Soit I un intervalle de N. Une géodésique dans un graphe G est une famille
(7(2));e; de sommets de G telle que pour tous 4,5 € I, la distance de graphe entre (i) et v(j)
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vaut |i — j|. Si I = N et y(0) = p, on dit que v est une géodésique infinie issue de p.

En particulier, un chemin de longueur minimale entre deux sommets est toujours une géo-
désique finie. Rappelons que dans I'UIPT, des propriétés de confluence des géodésiques assez
fortes ont été établies par Nicolas Curien et Laurent Ménard [67] : presque siirement, il existe
une infinité de sommets distincts (v;);en tels que toute géodésique infinie issue de la racine passe
par tous les v;. Le méme résultat avait été montré auparavant par les mémes auteurs et Grégory
Miermont pour 'UIPQ [68]. A D'inverse, dans un graphe de nature hyperbolique, on s’attend a
ce qu'il existe de nombreuses géodésiques infinies qui s’éloignent trés vite les unes des autres.

Géodésiques les plus a gauche. On s’intéresse plus spécifiquement & une classe de géodé-
siques particuliére : les géodésiques les plus a gauche.

Définition 1.6. e Etant donnés une carte planaire M dessinée dans le plan et deux som-
mets x,y de M, on dit qu'une géodésique finie v de = vers y est une géodésique la plus a
gauche si pour toute géodésique v’ de x vers y, le chemin v reste a gauche de 7.

e On dit qu’'une géodésique infinie v est une géodésique infinie la plus a gauche si pour tous
i et 7, la portion de ~y reliant v(z) a y(j) est une géodésique la plus a gauche de (7) vers
v(4)-

Il est assez facile de voir qu’il existe toujours une unique géodésique la plus a gauche d’un
sommet vers un autre, et un argument de compacité montre qu’il existe toujours au moins une
géodésique infinie la plus & gauche issue d’un sommet. De plus, une fois que deux géodésiques
infinies les plus & gauche sont séparées, elles ne peuvent plus se réintersecter (car alors une des
deux serait forcément a droite de l'autre). Les géodésiques infinies les plus & gauche issues de
la racine forment donc un arbre infini sans feuille, qu’on note ’T‘()]\. Cet arbre sépare de plus T),
en triangulations infinies qu’on appelle des bandes, et qui sont bordées par deux géodésiques

infinies (voir Figure [1.12]).

Arbres de Galton—Watson. Afin d’énoncer un résultat précis, nous avons besoin de définir
les arbres de Galton—Watson, qui sont certainement le modéle le plus naturel et le plus étudié
d’arbres aléatoires. Ces arbres, finis ou infinis, sont des arbres plans comme ceux définis dans la
Section[I.2.3] Un tel arbre peut toujours étre vu comme un arbre généalogique, ou le début p de
I’aréte racine est ’ancétre commun & tous les sommets, et le parent d’un sommet est son unique
voisin qui le rapproche de p. Soit p une mesure de probabilité sur N. On dit qu'un arbre aléatoire
(fini ou infini) 7 est un arbre de Galton—Watson de loi de reproduction p si les nombres d’enfants
de chacun de ses sommets sont i.i.d. de loi . On note alors sa loi GW . Cela revient a dire que le
nombre d’enfants de la racine a pour loi p et que, conditionnellement & ce nombre d’enfants, les
arbres des descendants de ces enfants sont i.i.d. de loi GW . Soit 7 un arbre de Galton-Watson
de loi de reproduction i, et notons m = ) .- iu(7) le nombre moyen d’enfants par sommet. On
dit que T est sous-critique si m < 1, critique si m = 1 et surcritique si m > 1. Il est alors bien
connu que T est presque siirement fini si et seulement si il est critique ou sous-critique (sauf dans
le cas trivial p(1) = 1, ou Parbre est infini). De plus, si 7 est surcritique et survit, le nombre de
sommets & la génération r croit exponentiellement en r.

Décomposition en bandes de T,. La description que nous donnons fait intervenir un pa-
ramétre my, qui est une fonction explicite de A\ vérifiant m) < 1, avec égalité si et seulement si
A = Ac. Il coincide avec le taux de croissance exponentielle des PSHIT ([1.4)).
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FIGURE 1.12 — La décomposition en bandes de T. L’arbre T“l)]\ est en rouge, et sépare T en une
infinité de bandes.

Théoréme 6

e L’arbre ‘ri un arbre de Galton—Watson surcritique de loi de reproduction ), ot
12 (0) = 0 et
pa(k) = ma(1 —my)*!
pour tout k£ > 1.
o Il existe deux bandes aléatoires 5’2 et S/l\ telles que, conditionnellement & 7'5)7\ :
— les bandes délimitées par Ti sont indépendantes,
— la bande adjacente & 'aréte racine a la méme loi que S1,
— toutes les autres bandes ont la méme loi que Sg.

En particulier, pour A = A, Parbre 75 consiste en une seule géodésique infinie, et on retrouve
une conséquence du résultat de Curien et Ménard sur 'UIPT [67]. En revanche, dés que A < A,
I’arbre Ti est surcritique : il existe une infinité de géodésiques infinies les plus & gauche, et leur
nombre & hauteur r est exponentiel en r.

Décomposition de Krikun de T,. L’outil principal pour prouver le Théoréme [0] est la
décomposition de Krikun (voir Section [1.2.2). En adaptant les calculs effectués dans [65] pour
I'UIPT, on calcule la loi du squelette de Ty. Rappelons que le squelette de P'UIPT peut étre vu
comme un arbre de Galton—Watson critique a ’envers, conditionné & s’éteindre exactement a la
hauteur 0. Le squelette de Ty pour A < A, présente deux différences notables :

e la loi de reproduction est maintenant sous-critique,

e le squelette n’est plus un arbre, mais une forét composée d’une infinité d’arbres infinis.
Les branches infinies de ’T“(/]\ sont alors les chemins passant entre les arbres du squelette. De plus,
chacun de ces arbres correspond & une des bandes de la Figure L’indépendance des bandes
dans le Théoréme [6] vient alors de I'indépendance des arbres du squelette. Enfin, comme la loi
de reproduction est sous-critique, les arbres ont tendance a rester trés "fins" (largeur constante
quand la hauteur tend vers l'infini). Les bandes S et S} seront donc également "fines".

Hyperbolicité métrique. Signalons également dés maintenant que, grace a des résultats
que nous montrons dans le chapitre I'existence d’un arbre de Galton—Watson surcritique
a lintérieur de T, permet d’établir des propriétés d’hyperbolicité métrique plus fortes que la
croissance exponentielle (voir Théoréme [9] plus loin).
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Frontiére de Poisson. On se restreint ici au cas A < A.. La construction de Ty & partir de
I’arbre Ti permet de munir T) d’une notion assez naturelle de bord. Plus précisément, étant
donné un arbre infini T, on note 9T 'ensemble des rayons de T, c’est-a-dire des chemins auto-
évitants infinis issus de la racine. Dans Ty, si 1,72 € 87‘?\ sont respectivement le bord gauche et
le bord droit d’'une méme bande, ils ne correspondent pas vraiment & deux directions différentes
(par exemple, on s’attend a ce qu’ils tendent vers le méme point du bord sur la Figure .
On note donc 9T le bord de T, ot on a identifié¢ deux rayons & chaque fois qu’il n’y a aucun
autre rayon entre les deux. On peut alors munir Ty U 57'? d’une topologie qui en fait un espace
métrique compact, et pour laquelle 57'?\ est homéomorphe au cercle

Par conséquent, on peut voir 57'?\ comme un bord de T}. Il est alors assez naturel de comparer
cette notion de bord avec d’autres, comme la frontiére de Poisson définie dans la Section [1.3.2]

Théoréme 7

Le bord 57“;7\ est une réalisation de la frontiére de Poisson de T\.

D’aprés un résultat de Tom Hutchcroft et Yuval Peres [83], la démonstration de ce résultat
se raméne & montrer que la marche aléatoire simple (X,,) sur T converge presque stirement vers
un point X, de 57'{{, et que la loi de X, conditionnellement a T est p.s. non-atomique. La
preuve utilise des arguments d’épluchage. Plus précisément, on adapte un argument de [58] pour
montrer que deux marches aléatoires indépendantes sont toujours séparées par plusieurs rayons
de Ti.

Géodésiques infinies dans le plan brownien hyperbolique. Enfin, nous nous intéressons
aux géodésiques infinies dans le plan brownien hyperbolique P". Les résultats montrés par Jean-
Francois Le Gall sur la confluence des géodésiques dans la carte brownienne [98] permettent de
montrer que les géodésiques infinies (pas forcément les plus a gauche!) dans P” forment un arbre
continu, qu’on note 79(P"). Dans le plan brownien, cet arbre consiste en une unique géodésique
infinie [62]. Dans le cas hyperbolique, la situation est une nouvelle fois bien différente. D’apreés
le Théoréme , on peut s’attendre a ce que 79(P") soit une limite d’échelle quasi-critique des
arbres T‘()]\. Nous montrons que c’est effectivement le cas. Plus précisément, soit B 1'arbre infini
otll tous les sommets ont exactement deux enfants, sauf la racine qui n’en a qu’un.

Théoréme 8

L’arbre 79(P") a la loi de I'arbre B oil les longueurs des arétes sont des variables expo-
nentielles i.i.d. de paramétre 2v/2.

La démonstration de ce résultat repose sur les Théorémes 2] et [6] Soit (A,) une suite vérifiant
les hypothéses du Théoréme [2 c’est-a-dire

2 1

Il est alors assez facile de vérifier que les arbres %T‘K convergent vers l'arbre continu voulu.
n

Cependant, ce n’est pas suffisant pour établir le Théoréme [8] En effet, il faut s’assurer que deux
cas problématiques ne se produisent pas :
(i) deux géodésiques infinies distinctes pourraient étre trop proches, et fusionner dans la
limite d’échelle,

19. 1l est assez facile de définir une telle topologie sur 75 U 87, qui donne a 975 la topologie d’un ensemble de
Cantor. Le quotientage transforme alors ’ensemble de Cantor en cercle en "fermant les trous", ce qui est assez
naturel.
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T C(7)

FI1GURE 1.13 — De gauche a droite : un arbre plan 7, la carte causale associée a 7, et la triangu-
lation causale associée a 7.

(ii) des chemins discrets proches d’étre des géodésiques pourraient donner lieu, dans la limite
d’échelle, & des géodésiques qui n’apparaissent pas au niveau discret.

1.4 Cartes causales

1.4.1 Définitions et motivations

Les triangulations causales ont été introduites par les physiciens théoriciens Jan Ambjgrn et
Renate Loll [TI0] pour décrire un espace-temps a deux dimensions ou le temps et 1'espace jouent
des roles asymétriques, contrairement aux triangulations usuelles de la sphére, ot aucune des
deux dimensions ne joue un role privilégié. Les triangulations causales sont des triangulations
de la sphére particuliéres o les sommets sont répartis en couches successives, de telle maniére
que les sommets de chaque couche forment un cycle, et que tous les sommets de la i-éme couche
se trouvent & distance exactement i de la racine.

Les triangulations causales & n 4+ 1 sommets sont alors en bijection avec les arbres plans &
n sommets, et peuvent étre construites de la maniére suivante (voir aussi Figure . Etant
donné un arbre plan 7, on ajoute a chaque hauteur un cycle reliant entre eux les sommets voisins.
On obtient une carte planaire finie, qu’on appelle carte causale associée a T, et qu’on note C(7).
Puis on triangule les faces de C(7) en reliant, pour chaque face, le sommet en haut a droite de
la face & tous les sommets de la face qui ne lui sont pas déja adjacents. Enfin, on ajoute un
sommet (en rouge sur la Figure qu’on relie & tous les sommets de la derniére génération.
La triangulation obtenue est appelée triangulation causale associée ¢ 7. On s’attend a ce que la
carte causale C(7) et la triangulation causale 7 (7) associées & un arbre 7 aient des propriétés
similaires. Dans la suite, on s’intéressera donc généralement a C(7), méme si les preuves d’une
bonne partie des résultats énoncés s’étendent aux triangulations causales.

Vers des dimensions supérieures 7 Un autre intérét des triangulations causales par rapport
aux triangulations générales réside dans leur généralisation possible & des dimensions supérieures
(le but final étant de modéliser un espace-temps de dimension autre que 2). L’analogue le plus
naturel des triangulations aléatoires en dimension 3 serait de considérer des recollements de
tétraédres homéomorphes a la sphére de dimension 3. Un analogue des triangulations causales
serait un modéle découpé en couches de dimension 2, ol chaque couche est une triangulation
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d’une surface et ot des tétraédres sont collés entre ces couches. Les simulations numériques
réalisées par les physiciens semblent montrer que le premier modéle n’a pas de limite d’échelle
intéressante : soit les distances entre les sommets sont d’ordre constant quand la taille tend vers
I'infini (" crumpled phase"), soit objet obtenu ressemble a un arbre ("branched polymer phase").
Les limites d’échelle du second modéle semblent plus prometteuses. Voir par exemple la thése de
Timothy Budd [41] Introduction et Chapitre 4] pour plus de détails et de nombreuses références.

1.4.2 Propriétés des cartes causales critiques

Avant méme de s’intéresser a des objets aléatoires, notons que la géométrie des cartes cau-
sales est trés différente de celle des triangulations aléatoires uniformes. Par exemple, les boules
de centre p et de rayon r dans C(7) et dans 7 coincident, donc le complémentaire des boules est
connexe. Par conséquent, les "tentacules" (voir Figure , qui contenaient dans les triangula-
tions uniformes l’essentiel de la masse, n’existent maintenant plus!

Cartes causales critiques infinies. On se fixe une loi de reproduction critique . Pour tout
n, soit 7, un arbre de Galton—Watson critique de loi de reproduction u, conditionné a avoir n
sommets. A quoi ressemble la carte causale C(7,) quand n tend vers I'infini ? Comme pour les
cartes aléatoires uniformes, une maniére de répondre & cette question est d’étudier leur limite
locale quand n tend vers Uinfini. Cette limite locale est la carte C(7T), 00 Too €st un arbre
aléatoire infini appelé l'arbre de Galton—Watson de loi de reproduction p conditionné a survivre,
introduit par Harry Kesten [88]. Cet arbre consiste essentiellement en une épine dorsale infinie,
sur laquelle on a "branché" des arbres de Galton—Watson ﬁnislﬂ. Deux exemples de telles cartes
causales sont visibles sur la Figure [1.14]

Propriétés métriques. Bien que les cartes causales aient été étudiées de maniére numérique
par les physiciens, leur étude rigoureuse est trés récente. On se concentrera dans la suite sur le
cas oil p est & variance finie, soit Y5, i?u(i) < +o00. Certaines propriétés de C(T) peuvent
alors étre déduites directement de celles de Too. Par exemple, le nombre de sommets & hauteur r
dans 7, est de 'ordre de r, ce qui implique que la boule de rayon r dans C(7T) contient environ
r2 sommets. On peut ensuite se demander quel est 'ordre de grandeur des distances horizontales,
c’est-a-dire entre sommets de la méme hauteur r. Notons que ces distances valent au plus 2r, car
on peut redescendre a la racine et remonter. Nicolas Curien, Tom Hutchcroft et Asaf Nachmias
ont montré [60] que ces distances horizontales sont en fait d’ordre o(r), mais ' ~°(1). Cela signifie
qu’ajouter des cycles & chaque hauteur réduit beaucoup les distances horizontales, méme si les
distances verticales restent inchangés. La géométrie de C(T o) est donc trés différente de celle de
T - En particulier, si on renormalise toutes les distances par 7, tous les sommets & hauteur r sont
a distance o(1) les uns des autres, donc la limite d’échelle de C(7T ) est une simple demi-droite.

Marche aléatoire simple. On peut également se demander quel est le comportement de
la marche aléatoire simple sur C(T). Pour tout » > 1, 'ensemble E, des arétes reliant un
des sommets de hauteur r & son parent sépare la racine de l'infini. De plus, les ensembles FE,.
sont disjoints. Comme |E,| a pour ordre de grandeur r, on peut montrer que Zrzl ﬁ = 400
p.s.. D’apreés le critére de Nash-Williams, ceci implique que C(T) est p.s. récurrente. Curien,
Hutchcroft et Nachmias ont également montré que la marche aléatoire simple est diffusive, c’est-
a~dire qu’elle se trouve a hauteur d’ordre \/n aprés n pas. Du point de vue de la marche aléatoire,
C(T) est donc assez proche des réseaux réguliers comme le réseau carré. Une nouvelle fois, son

20. En particulier il n’a qu'une branche infinie, et a donc une géométrie trés différente des arbres de Galton—
Watson surcritiques.
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FIGURE 1.14 — Deux cartes causales obtenues & partir d’arbres de Galton—Watson critiques

conditionnés a survivre. Dans celle de gauche, la loi de reproduction est & variance finie. Dans
celle de droite, c’est une loi critique a queue lourde (dans le domaine d’attraction d’une loi
stable d’indice 3/2). Les couleurs représentent les couches, c’est-a-dire les distances a la racine.
Les deux cartes sont représentées par des empilements de cercles : chaque cercle représente un
sommet, et deux cercles sont tangents si et seulement si les sommets correspondants sont reliés
par une aréte.

comportement est différe de celui de 7 ou la marche aléatoire, piégée dans de grands arbres
finis, n’avance qu’a vitesse d’ordre n'/3 [88].

Modéle a queue lourde. Enfin, certains résultats de [60] portent sur le cas critique & queue
lourde, c’est-a-~dire ou p est d’espérance 1 mais de variance infinie (cas de droite sur la Figure
. Dans ce cas, la distance entre deux sommets typiques de hauteur r est d’ordre r : pour se
déplacer horizontalement, la meilleure chose a faire est en quelque sorte de se déplacer verticale-
ment. L’étude de ce modéle a queue lourde est motivée par la décomposition de Krikun de ’'UIPT
(voir Section : le squelette de 'UIPT est essentiellement un arbre de Galton-Watson de
loi de reproduction critique p, avec (i) ~ ¢i~®/2. L’UIPT ressemble donc en quelque sorte a une
carte causale, mais oll on aurait inséré entre les branches de I'arbre plus que de simples arétes
(remplissages verts sur la Figure . Le fait que les branches de ’arbre soient les chemins
les plus efficaces méme pour se déplacer horizontalement évoque alors certaines propriétés des
géodésiques dans la carte brownienne.

1.4.3 Cartes causales surcritiques (Chapitre 5, ou [47])

De méme que pour les triangulations aléatoires uniformes, nous avons étudié un analogue
hyperbolique de ces cartes causales. Le modéle est alors assez naturel : on considére un arbre
de Galton—Watson surcritique conditionné a survivreEL et on étudie les propriétés de la carte
causale associée (voir Figure pour un exemple). Pour toute cette section, on se fixe donc
une loi de reproduction surcritique p, et on note 7 un arbre de loi GW ,, conditionné a survivre.

Motivations. Les arbres de Galton—Watson surcritiques sont aujourd’hui trés bien compris,
mais les preuves de nombreux résultats (en particulier sur la marche aléatoire, voir un peu plus

21. Cette fois, le conditionnement & survivre est non-dégénéré.
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FIGURE 1.15 — La triangulation causale associée & un arbre de Galton—Watson surcritique,
représentée par un empilement de cercles comme sur la Figure [1.14

loin) reposent de maniére trés importante sur la structure d’arbre. Comme on va le voir, la carte
C(7) partage de nombreuses propriétés avec 'arbre 7, ce qui montre que ces propriétés de T
sont "robustes", et ne dépendent pas de la structure d’arbre.

Une autre motivation pour étudier des cartes causales est le fait qu’elles constituent un
modéle-jouet de carte contenant un certain arbre. Ainsi, certains des résultats énoncés ci-dessous
se généralisent & des modéles plus généraux, qui incluent les PSHIT étudiées dans la partie
précédente. Plus précisément, rappelons qu’on appelle bande une carte planaire avec un bord
infini (et une racine sur ce bord), et soit (s;) une suite de telles bandes. Si on dessine un arbre
infini 7 dans le plan, il délimite des faces infinies. On note M(7, (s;)) la carte planaire obtenue
en remplissant ces faces par les bandes s;. Certains des résultats qui suivent porteront sur des
cartes de la forme M(7,(s;)), ot on rappelle que 7T est un arbre de Galton—Watson surcritique.
Le Théoréme [8| montre alors que les PSHIT sont de cette forme, ot les s; sont indépendantes,
et bordées par deux géodésiques infinies. La carte C(7) est également de cette forme, les bandes
s; étant déterministes et toutes égales.

Hyperbolicité métrique. Il est immédiat que toutes les cartes étudiées ont une croissance
exponentielle. On va donc s’intéresser & des propriétés métriques plus fines. Une telle propriété
est I'hyperbolicité de Gromov : on dit qu’un graphe G est Gromov-hyperbolique s’il existe une
constante k£ > 0 telle que tous les triangles sont k-fins au sens suivant. Pour tous sommets ,
y et z et toutes géodésiques 7y, vy. et V., reliant ces trois sommets deux a deux, pour tout
sommet, v Sur .z, on a

dg(’U, Yxy U 'sz) < k.
En particulier, tout arbre est 0-hyperbolique. En revanche, Z¢ pour d > 2 ne l'est pas. Comme

c’est souvent le cas (voir par exemple la discussion sur l’expansion enracinée dans la Section
1.3.2)), cette notion n’est pas adaptée a I'étude de graphes aléatoireslﬂ Nous proposons donc

22. Par exemple, si u(1) > 0, alors C(7) contient des portions arbitrairement grandes de réseau carré, donc
n’est pas Gromov-hyperbolique.
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une notion plus faible.

Définition 1.7. On dit qu’une carte planaire M enracinée en p est faiblement hyperbolique s’il
existe une constante k£ > 0 telle que, pour tous sommets x, y et z et toutes géodésiques vy, Vy-
et ., reliant ces trois sommets deux a deux, si le triangle formé par 7.y, vy. et 7., entoure la
racine, alors on a
d]W(pa Yy U Yyz U sz) <k.
Une autre propriété a laquelle on s’est intéressé est 1'existence de géodésiques bi-infinies.

Définition 1.8. Une géodésique bi-infinie dans un graphe G est une famille (v(i));ez telle que
de (v(i),7(7)) = |i — j| pour tous i,j € Z.

Contrairement aux géodésiques infinies, les géodésiques bi-infinies n’existent pas dans tous
les graphes. Par exemple, les résultats de confluence des géodésiques de [67] impliquent qu’elles
n’existent pas dans 'UIPT. De maniére plus générale, méme si de telles géodésiques peuvent exis-
ter dans des graphes non-hyperboliques comme Z?2, on s’attend a ce qu’elles soient "instables", et
disparaissent si la métrique est perturbée. A I'inverse, dans les graphes Gromov-hyperboliques,
un résultat d’Itai Benjamini et Romain Tessera montre que ces géodésiques existent et sont trés
stables [32].

Théoréme 9

Toute carte de la forme M (7, (s;)) est presque sirement faiblement hyperbolique, et
admet des géodésiques bi-infinies.

En particulier, ces deux propriétés sont vérifiées par les PSHIT. Signalons enfin qu’un résultat
intermédiaire important dans notre démonstration est le suivant. Considérons deux rayons infinis
(distincts et non-voisins) 71 et v2 de 7. Alors il existe k tel que pour tout i > 0, toute géodésique
de 71(7) vers y2(7) passe & hauteur au plus k. Cela montre que la distance typique entre deux
sommets de hauteur r est non seulement d’ordre r, mais méme 2r — O(1), ce qui peut étre vu
comme une version forte des résultats de [60] pour le cas surcritique.

Frontiére de Poisson. De méme que pour les PSHIT, on s’est également intéressé a la marche
aléatoire simple sur des cartes causales. Le fait que I'arbre 7 soit transient (c’est un résultat
de Russell Lyons [106]) implique que toute carte planaire contenant 7 est transiente. On s’est
donc intéressé a la frontiere de Poisson des cartes causales (voir Section pour la définition).
Rappelons que 07 est 'ensemble des rayons infinis de 7, quotienté par la relation d’équivalence
"étre le bord gauche et le bord droit d’une méme bande". Ici aussi, on peut munir C(7) U or
d’une topologie qui en fait un espace compact et rend or homéomorphe au cercle.

Théoréme 10

e Presque stirement, &7 est une réalisation de la frontiére de Poisson de C (7).
e Soient (.5;) des bandes i.i.d.. Alors presque stirement, la carte M (7, (S;)) ne vérifie
pas la propriété de Liouville.

Par ailleurs, il est faux en général que si les (.S;) sont i.i.d., alors O1 est une réalisation de la
frontiére de Poisson de M (7, (.5;)) : siles S; ont elles-méme une frontiére de Poisson non-triviale,
alors celle de M (7, (S;)) sera "plus grande" que dt. Par conséquent, ce résultat ne donne pas la
frontiére de Poisson des PSHIT. C’est pourquoi nous avons utilisé des arguments différents dans
le chapitre [l Enfin, signalons que la démonstration du Théoréme [0 repose sur des estimées de
résistances électriques, qui peuvent également étre intéressantes en tant que telles.

23. C’est un probléme important et toujours ouvert en percolation de premier passage, voir par exemple [87].
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Vitesse positive. En général, on s’attend dans un graphe hyperbolique a ce que la marche
aléatoire simple s’éloigne trés vite de l'origine. Par exemple, dans le cas u(0) = 0 (arbre de
Galton—Watson sans feuille), Russell Lyons, Robin Pemantle et Yuval Peres ont montré [I08]
que la marche aléatoire (X,,) sur 'arbre 7 vérifie

dr(p. Xn) pos. i—1
n n——+00 Zi—l-lu(z) > 0.

i>0
En particulier, la distance de X, & la racine croit linéairement en n : on dit que la marche aléatoire
simple sur 7 a une wvitesse positive. Cependant, la preuve repose de maniére trés importante sur
la structure d’arbre, et ne se généralise pas du tout aux cartes causales. On note maintenant X,
la marche aléatoire simple sur C(7).

Théoréme 11

Supposons £(0) = 0. Alors il existe une constante v, > 0 telle que

dC(T) (p>Xn) p.s.

n n—-+oo

V-

Contrairement a certains des résultats précédents, ce résultat n’est pas du tout robuste :
nous n’avons pu le montrer que pour la carte C(7), dans le cas ou I’arbre sous-jacent n’a pas de
feuille. Les preuves de vitesse positive pour les arbres de Galton-Watson [108] ou les PSHIT [58)]
utilisaient des outils de théorie ergodique reposant sur la stationnarité de la marche aléatoire (le
graphe vu depuis X,, a la méme loi que le graphe vu depuis Xj). Les cartes causales n’étant pas
stationnaires, notre preuve utilise des méthodes assez différentes. Les deux principaux ingrédients
sont les suivants.

e Une méthode d’exploration de C(7) simultanément avec la marche aléatoire permet de
montrer que (X,) ne visite pas de grande région ou tous les sommets n’ont quun seul
enfant chacun.

e On conclut en étudiant les temps de renouvellement, c’est-a-dire les instants ot la marche
aléatoire atteint une certaine hauteur pour la premiére fois, pour ne plus jamais re-
descendre en-dessous. Ces temps permettent de découper la marche aléatoire en blocs
indépendants, et d’appliquer une loi des grands nombres. Ils ont été utilisés pour étudier
plusieurs modéles comme la marche aléatoire en milieu aléatoire [130)].

1.5 Perspectives

1.5.1 Sur les flips

La premiére question laissée ouverte sur les flips est bien str de trouver une borne supérieure
sur le temps de mélange. Une borne supérieure polynomiale en n a trés récemment été obtenue
par Alessandra Caraceni et Alexandre Stauffer [5I]. Plus précisément, la borne obtenue est
d’ordre n'3/2. Trouver le bon exposant reste donc ouvert.

Par ailleurs, il est également possible de définir une dynamique de flips sur des triangulations
infinies en munissant chaque aréte d’un processus de Poisson, et en la flippant chaque fois que
le processus saute. On peut montrer que 'UIPT ainsi que les PSHIT sont stationnaires pour
cette dynamique. Il est alors naturel de se demander si les mélanges de PSHIT sont les seules
triangulations stationnaires pour cette dynamique.

Cette dynamique sur des triangulations infinies souléve par ailleurs d’autres interrogations.
Par exemple, peut-on trouver des propriétés presque siires de I’'UIPT pour lesquelles il existe des
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temps exceptionnels auxquels la propriété n’est plus vérifiée ? La croissance en 74 semble assez

rigide, mais on peut penser par exemple & ’absence de composante infinie pour la percolation
critique.

1.5.2 Sur les PSHIT

La principale question restant ouverte sur les PSHIT est la Conjecture (dont la Conjecture
est une version plus précise). Comme pour 'UIPT, une preuve de cette conjecture devrait
reposer sur des résultats précis sur ’énumération des cartes de genre grand. Des relations de
récurrence existent pour compter ces cartes [80], et il faudrait en extraire des asymptotiques
quand la taille et le genre tendent simultanément vers I'infini.

Une autre question naturelle est la suivante : les PSHIT et le plan brownien hyperbolique
admettent-ils, & I'instar de 'UIPT et du plan brownien, des constructions "a la Schaeffer" & partir
d’arbres étiquetés 7 Notons qu’avant U'introduction des PSHIT, une telle construction partant
d’un arbre de Galton—Watson surcritique avait été proposée par Itai Benjamini [25], mais I'objet
obtenu semble différent. Il y a des raisons de penser que de telles constructions n’existent pas
forcément@ En revanche, nous pensons que les bandes délimitées par les géodésiques infinies que
nous étudions dans le chapitre [f] peuvent étre vues comme des limites de cartes browniennes,
conditionnées & avoir un diamétre proportionnel & leur volume, puis découpées le long d’une
géodésique.

Les modeéles du demi-plan ne sont pas abordés dans le chapitre [3l On pourrait cependant
renormaliser les triangulations du demi-plan Hy, de [I8] avec a > 2 tout en faisant tendre o vers
sa valeur critique %, et se demander si elles admettent une limite d’échelle quasi-critique qu’on
appellerait le demi-plan brownien hyperboliqgue. Une approche naturelle serait alors d’adapter
les arguments du chapitre |3| en utilisant le demi-plan brownien [22] au lieu du plan brownien.
Cependant, cela nécessiterait une meilleure compréhension des périmétres et volumes des enve-
loppes dans le demi-plan brownien (analogue des résultats de [63]). Ces questions sont 'objet
d’un travail en cours avec Armand Riera. L’outil naturel pour les étudier est la construction du
demi-plan brownien proposée par Nicolas Curien et Alessandra Caraceni [50].

Enfin, une étude plus compléte des cartes markoviennes biparties du plan serait trés intéres-
sante. En particulier, comme noté dans I’Appendice [C] il est possible qu’il existe des analogues
hyperboliques des cartes stables, c’est-a-dire des cartes hyperboliques possédant de grandes faces,
et peut-étre une géométrie différente des PSHIT.

1.5.3 Sur les cartes causales

Nous laissons dans le chapitre [ un certain nombre de questions ouvertes sur les cartes
causales surcritiques. Ces questions sont majoritairement liées au comportement de la marche
aléatoire simple. La plus naturelle est de chercher & supprimer I’hypothése ©(0) = 0 dans le
Théoréme m De méme que sur les arbres de Galton—Watson [109], on pourrait également
étudier la marche biaisée sur ces cartes, ol la probabilité d’aller vers le parent du sommet courant
est différente de la probabilité d’aller vers un de ses enfants. En particulier, sur les arbres, si
1(0) > 0, un drift trop fort vers le haut peut paradoxalement ralentir la marche en la "coingant"
dans de petits arbres finis. Nous pensons que ce phénoméne disparait dans les cartes causales.

Une étude plus précise de la mesure harmonique sur les cartes causales serait aussi inté-
ressante. Par exemple, on peut la comparer a la mesure limite quand n — 400 de la mesure

24. Dans les bijections entre arbres et cartes, I’arbre correspond usuellement au cut-locus de la carte, c’est-a-dire
a 'ensemble des points admettant plusieurs géodésiques vers la racine (qui peut étre a l'infini). Pour "remplir"
la carte, ce cut-locus devrait croiser les géodésiques infinies que nous étudions dans le chapitre ce qui est
impossible d’aprés les résultats de [98)].
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uniforme sur 'ensemble des sommets de la génération n. Il est montré dans [108] que pour la
marche sur 'arbre, ces deux mesures sont singuliéres, ce qui signifie que la marche aléatoire se
concentre en fait sur une "petite" partie de 'arbre. Nous nous attendons & ce que ce phénomeéne
se produise également dans les cartes causales.

Une autre quantité liée a la marche aléatoire qu’il peut étre intéressant d’étudier est la vitesse
de décroissance de la probabilité p, de retour en 0 au temps n. Cette quantité décroit comme
exp (fnl/ 3) dans les arbres de Galton—Watson surcritiques et dans les versions semi-planaires des
PSHIT [I7]. On s’attend & un comportement similaire dans les cartes causales surcritiques (voir
la derniére section du chapitre |5)). Nos arguments dans la preuve du Théoréme m permettent
au mieux de montrer que p, tend vers 0 plus vite que n’importe quel polynéme, ce qui reste un
résultat assez faible. Les preuves pour les modéles précédents utilisent la propriété d’expansion
enracinée, qui ne semble cependant pas évidente & montrer chez les cartes causales.
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Chapter 2

On the mixing time of the flip walk on
triangulations of the sphere

ou Une suite de flips.

This chapter is adapted from [{4l], published in Comptes-Rendus Mathématiques de I’Académie
des Sciences.

A simple way to sample a uniform triangulation of the sphere with a fixed number n of
vertices is a Monte-Carlo method: we start from an arbitrary triangulation and flip repeatedly a

uniformly chosen edge. We give a lower bound of order n%/4 on the mixing time of this Markov
chain.
Contents
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[2.2  Combinatorial preliminaries and couplings| . . . ... ... ... ... 45
23 Proofof TheoremT2Z.Tl . . . . . . v v v v v ittt it e e 49

[2.A  Appendix: Connectedness of the flip graph for type-I triangulations| 51
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t f[ip(t, 61)

Figure 2.1 — An example of flip of an edge. The orange edge eo is not flippable.

2.1 Introduction

Much attention has been given recently to the study of large uniform triangulations of the
sphere. Historically, these triangulations have been first considered by physicists as a discrete
model for quantum gravity. Before the introduction of more direct tools (bijection with trees or
peeling process), the first simulations [84], 86] were made using a Monte-Carlo method based on
flips of triangulations.

More precisely, for all n > 3, let .7, be the set of rooted type-I triangulations of the sphere
with n vertices (that is, triangulations that may contain loops and multiple edges, equipped
with a distinguished oriented edge). If ¢ is a triangulation we write V(¢) for the set of its vertices
and E(t) for the set of its edges. If t € .7, and e € E(t), we write flip(¢, e) for the triangulation
obtained by removing the edge e from ¢ and drawing the other diagonal of the face of degree 4
that appears. We say that flip(¢, ) is obtained from t by flipping the edge e (cf. Figure. Note
that it is possible to flip a loop and to flip the root edge. The only case in which an edge cannot
be flipped is if both of its sides are adjacent to the same face like the edge es on Figure 2]
In this case flip(¢,e) = t. Note that there is a natural bijection between E(t) and E (flip(t,e)).
When there is no ambiguity, we shall sometimes treat an element of one of these two sets as if
it belonged to the other.

The graph of triangulations of the sphere in which two triangulations are related if one
can pass from one to the other by flipping an edge has already been studied in the type-III
setting (that is, triangulations with neither loops nor multiple edges): it is connected [I38] and
its diameter is linear in n [91]. We extend these results to our setup in Lemma

We define a Markov chain (7),(k))r>0 on 7, as follows: conditionally on (7},(0), ..., T, (k)),
let eg be a uniformly chosen edge of T, (k). We take T,,(k + 1) = flip(T,,(k), e). It is easy to see
that the uniform measure on .7, is reversible, thus stationary for (77, (k));~, so this Markov chain
will converge to the uniform distribution (the irreducibility is guaranteed by the connectedness
results described above and the aperiodicity by the possible existence of non flippable edges). It
is then natural to estimate the mixing time of (7},(k)),~, (see Chapter 4.5 of [104] for a proper
definition of the mixing time). Our theorem provides a lower bound.

Theorem 2.1. There is a constant ¢ > 0 such that for all n > 3 the mixing time of the Markov
chain (T, (k))g>0 is at least cn®4.

Mixing times for other types of flip chains have also been investigated. For triangulations
of a convex m-gon without inner vertices it is known that the mixing time is polynomial and
at least of order n%/2 (see [I13, 121]). In particular, our proof was partly inspired by the proof
of the lower bound in [121]. Finally, see [49] for estimates on the mixing time of the flip walk
on lattice triangulations, that is, triangulations whose vertices are points on a lattice and with
Boltzmann weights depending on the total length of their edges.
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The strategy of our proof is as follows: we start with two independent uniform triangulations
with a boundary of length 1 and 5 inner vertices and glue them together along their boundaries.
We obtain a triangulation of the sphere with a cycle of length 1 such that half of the vertices lie
on each side of this cycle. We then start our Markov chain from this triangulation and discover
one of the two sides of the cycle gradually by a peeling procedure. By using the estimates of
Curien and Le Gall [64] and a result of Krikun about separating cycles in the UIPT [94], we
show that after 0(n5/ 4) flips, with high probability, the triangulation still has a cycle of length
o(nl/ 4), on each side of which lie a proportion at least % of the vertices. But by a result of Le Gall
and Paulin [I03], this is not the case in a uniform triangulation (this is the discrete counterpart
of the homeomorphicity of the Brownian map to the sphere), which shows that a time o(n/*)
is not enough to approach the uniform distribution.

Acknowledgements: [ thank Nicolas Curien for carefully reading earlier versions of this
manuscript. I also thank the anonymous referee for his useful comments. I acknowledge the

support of ANR Liouville (ANR-15-CE40-0013) and ANR GRAAL (ANR-14-CE25-0014).

2.2 Combinatorial preliminaries and couplings

For all n > 3, we recall that .7, is the set of rooted type-I triangulations of the sphere with
n vertices. For n > 0 and p > 1 we also write .7, ,, for the set of triangulations with a boundary
of length p and n inner vertices, that is, planar maps with n + p vertices in which all faces are
triangles except one called the outer face whose boundary is a simple cycle of length p, equipped
with a root edge such that the outer face touches the root edge on its right. We will sometimes
refer to n and p as the volume and the perimeter of the triangulation.

The number of triangulations with fixed volume and perimeter can be computed by a result
of Krikun. Here is a special case of the main theorem of [95] (the full theorem deals with
triangulations with r + 1 boundaries but we only use the case r = 0):

p(2p)! 4"~ 1(2p + 3n — 5)!!

_ -~ —-n, —5/2 21
#700 = T alEp t D aiee C@ 21)

= _1_ _ 377%p(2p)! : : : .
where Ac = 7 and C(p) = V()2 In particular, a triangulation of the sphere with n
vertices is equivalent after a root transformation to a triangulation with a boundary of length 1
and n — 1 inner vertices (more precisely we need to duplicate the root edge, add a loop inbetween

and root the map at this new loop, see for example Figure 2 in [65]), so

472 (3n — 6)!!

H# T =#Tp-11 =2 (= 1)l

(2.2)

For n > 0 and p > 1 we write T}, , for a uniform triangulation with a boundary of length
p and n inner vertices, and T, for a uniform triangulation of the sphere with n vertices. We
also recall that the UIPT, that we write T, is an infinite rooted planar triangulation whose
distribution is characterized by the following equality. For any rooted triangulation ¢ with a hole
of perimeter p,

P(t C Too) = C(p)A, (2.3)

where A, and the C(p) are as above, |t| is the total number of vertices of ¢t and by ¢ C T
we mean that T, can be obtained by filling the hole of ¢ with an infinite triangulation with a
boundary of length p.

In what follows we will use several times peeling explorations of random triangulations, see
section 4.1 of [64] for a general definition. Let ¢ be a triangulation and .2/ be a peeling algorithm,
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Figure 2.2 — Illustration of Lemma With high probability, there are two cycles 7/ and 7 such
that the two green parts coincide.

that is, a way to assign to every finite triangulation with one hole an edge on the boundary of
the hole. We write tfi (t) for the part of ¢ discovered after j steps of filled-in peeling following
algorithm .o/. By "filled-in" we mean that everytime the peeled face separates the unknown
part of the map in two connected components we reveal the one with fewer vertices (if the two
components have the same number of vertices we reveal one component picked deterministically).
If the map is infinite and one-ended, we reveal the bounded component.

From the enumeration formulas it is possible to deduce precise coupling results between finite
and infinite maps. The result we will need is similar to Proposition 12 of Chapter [3| but a bit
more general since it deals with triangulations with a boundary. We recall that in a triangulation
t of the sphere or the plane, the ball of radius r, that we write B,.(t), is the triangulation with
holes formed by those faces adjacent to at least one vertex lying at distance at most r — 1 from
the root, along with all their edges and vertices. If ¢ is infinite, the hull of radius r, that we write
B2(t), is the union of B,(t) and all the bounded connected components of its complement. If
t is finite, it is the union of B,.(t) and all the connected components of its complement except
the one that contains the most vertices (if there is a tie, we pick deterministically a component
among those which contain the most vertices). If 7" is a triangulation with a boundary, we adopt
the same definitions but we replace the distance to the root by the distance to the boundary.

Lemma 2.1. Let p, = o(y/n) and r, = o(n'/*) with p, = o(r2). Then there are !, = o(r,) and
couplings between T, p,, and T, such that

P (B2, (To)\BY, (To) € B}, (Thyp,)) ———> 1.
n n—+o0o
The above lemma follows from the following. There is a cycle 7/ of length p,, around the root
of T, that lies inside of its hull of radius 7], and a cycle v in T}, ,,, that stays at distance at most
r, from its boundary, such that the part of the hull of radius r, of T, that lies outside of 7/ is
isomorphic to the part of T, ,,, that lies between its boundary and v (see Figure .

Proof. We start by describing a coupling between the UIPT and the UIPT with a boundary of
length p,,, that we write T p,,. We consider the peeling by layers .2 of the UIPT (see section
4.1 of [64]) and we write 7, for the first time at which the perimeter of the discovered region is
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equal to p,, (note that this time is always finite since the perimeter can increase by at most 1 at
each peeling step). By the spatial Markov property of the UIPT, the part that is still unknown at
time 7,, has the distribution of T p,,. Moreover, by the results of Curien and Le Gall (Theorem
1 of [64]), since p, = o(r2), we have 7, = o(r3). By using Proposition 9 of [64] (more precisely
the convergence of H), we obtain that the smallest hull of T, containing t;(fn (T'x) has radius
o(ry) in probability. Hence, our result holds if we replace T, ,,, by Too p,,-
Hence, it is enough to prove that there are couplings between 7% ,, and T}, ,, such that
P (B;n (Tn,pn) = B;n (Too,pn)) m L.

The proof relies on asymptotic enumeration results and is essentially the same as that of Propo-
sition 12 of Chapter [3} by using the above coupling of Ti ;, and T, we can show that

1o 1. (P)
(21082, (T 1B (Tl ) 2 0.0

Moreover, if ¢, = o(y/n) and v, = o(n) and if ¢, is a triangulation with two holes of perimeters
pn and gy, (rooted on the boundary of the p,-gon) and v,, vertices that is a possible value of
By (Two,p,) for all n > 0, then

BB () =)
P (B?, (Toop,) = tn) notos
by the enumeration results, and we can conclude as in Proposition 12 of Chapter [3 O

We will also need another coupling lemma where we do not compare hulls of a fixed radius,
but rather the parts of triangulations that have been discover after a fixed number of peeling
steps.

Lemma 2.2. Let j, = o(n®*), and let &/ be a peeling algorithm. Then there are couplings
between T, and T, such that

P (t;{(Tn) - t;.{(TOO)) E—

n—-+0o00

Proof. We write Py, (j) and Vo (j) for respectively the perimeter and volume of t‘f (Tx). By the
results of [64] we have the convergences

1 1
— P.,(j) ——0 d - V() —— 0 2.4
\/ﬁogs?gn oo () — an nogs]u%vjn () — (2.4)

in probability, so there are p, = o(y/n) and v, = o(n) such that
P (Pso(jn) < pp and Vo (jn) < vy) — 1.

But by the enumeration results (2.1), (2.2) and by (2.3)), if ¢, is a rooted triangulation with
perimeter at most p,, and volume at most v,,, we have

P(t2(Tn) =t)  B(t, C T,)

N 1.
P <t3‘?’Z(TOO) = tn) P(t, C Tny) n—r+oo

As in Proposition 12 of Chapter [3] this proves that the total variation distance between the
distributions of t‘;i (T},) and t‘;i (Ts) goes to 0 as n — +o00, which proves our claim and the
lemma. O
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By combining this last lemma and the estimates (2.4]), we immediately obtain estimates
about the peeling process on finite uniform triangulations. We write P,(j) and V,(j) for the
perimeter and volume of tj-y (T}).

Corollary 2.3. Let j, = 0(n3/ 4). Then we have the following convergences in probability:

1 1
sup Po(j) —— 0 and = sup Vi, (j) —— 0.
V7 0234 G " 0<ios, ) e

Finally, we show a result about small cycles surrounding the boundary in uniform triangu-
lations with a perimeter small enough compared to their volume.

Lemma 2.4. Let p, = o(y/n) and 7, = o(n'/*) be such that p, = o(r2). Then for all € > 0, the
probability of the event

"there is a cycle v in T}, 5, of length at most r,, such that the part of T, ,, lying between
0T, p, and v contains at most en vertices"

goes to 1 as n — +o0.

This result is not surprising. In the context of quadrangulations with a non-simple boundary,
it is a consequence of the convergence of quadrangulations with boundaries to Brownian disks,
see [37]. However, no scaling limit result is known yet for triangulations with boundaries. Hence,
we will rely on a result of Krikun about small cycles in the UIPT, that we will combine with
Lemma Here is a restatement of Theorem 6 of [94].

Theorem 2.2 (Krikun). For all ¢ > 0, there is a constant C' such that for all r, with probability
at least 1 — ¢ there is a cycle of length at most Cr surrounding By (Tw,) and lying in B, (Tx).

Note that Krikun deals with type-II triangulations, i.e. with multiple edges but no loops,
but the decomposition used in [94] is still valid and even a bit simpler in the type-I setting, see
[65]. The fact that the cycle stays in B3, (Tw) is not in the statement of the theorem in [94] but
it is immediate from its proof.

Proof of Lemma[2.4. By Lemma [2.1]it is possible to couple Ti, and Ty, 5, in such a way that

P (B2, (To)\BY, (T) € BY, (Tup,)) ——— 1, (2.5)

n—-+o0o

where 77, = o(r,,). On the other hand, by Theorem we have

P (there is a cycle v of length < r, in BS , (Tx) that surrounds B}, (TOO)) — 1.

n—-+o0o

For n large enough we have r, > 21}, so if such a 7 exists in then it must stay in By (7). Since
Th = o(nl/ 4), the probability that the number of vertices lying inside of v is greater than en
goes to 0 by Theorem 2 of [64]. But if the event of holds and if such a cycle exists in T,
then in 75, ,, there is a cycle v of length at most 7, such that the part of 75, ,, lying between
0T, p, and v contains at most en vertices. O
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2.3  Proof of Theorem [2.1]

Our main task will be to prove the following proposition.

Proposition 2.5. Let k, = 0(n5/4). Then there are ¢, € %, and ¢, = 0(n1/4) such that
conditionally on 7,,(0) = t,, the probability that there is a cycle of length at most ¢, that
separates Ty, (ky) in two parts of volume at least % goes to 1 as n — +o0.

We first define the initial triangulation 7},(0) we will be interested in: let 7.} (0) and 7.2(0)
be two independent uniform triangulations with a boundary of length 1 and with respectively
L"T_lj and [”T_W inner vertices. We write 7,,(0) for the triangulation obtained by gluing together
the boundaries of T,}(0) and T2(0).

We will now perform an exploration of the triangulation while it gets flipped: the part T)}
will be considered as the "discovered" part and 77 as the "unknown" part of the map. More
precisely, we define by induction T} (k) and T??(k) such that T}, (k) is obtained by gluing together
the boundaries of T} (k) and T??(k). The two triangulations for k¥ = 0 are defined above. Now
assume we have constructed T} (k) and T22(k). Then:

— if ey, lies inside of T} (k) then T} (k + 1) = flip(Tt(k), ex) and T2(k + 1) = T2(k),

— if ey lies inside of T2(k) then T} (k+ 1) = TX(k) and T2(k + 1) = flip(T?(k), ex),

— if ey, € 0T} (k), we write f;, for the face of T2(k) that is adjacent to ey, and we let T2(k+1)
be the connected component of T22(k)\fr with the largest volume and T}(k + 1) =
flip (Tn (K)\T2(k + 1), ex,).

We now set Py (k) = [0TL(k)| and V;,(k) = |V (T (k)| — |V (T;}(0))] + 1. Note that V;,(k)

is nondecreasing in k.

For k > 0, we define a random variable e} € E(T;}(k)) U {*}, where * is an additional state
corresponding to all the edges not in E(T!(k)), as follows: if e, lies inside or on the boundary
of T!(k) then e} = ey, and if not then e} = . We also define F, as the o-algebra generated by
the variables (7 (i))0<2.<k and (€])o<i<k—1-

Lemma 2.6. For all k, conditionally on Fj, the triangulation T2(k) is a uniform triangulation
with a boundary of length ]Bn(k) and (”THW — Vn(k:) inner vertices.

Proof. We prove the lemma by induction on k. For k = 0 it is obvious by the definition of 7:2(0).
Let k& > 0 be such that the lemma holds for k.

o If ¢} lies inside T} (k), the result follows from the fact that T2(k) = T2(k + 1) and that
conditionally on Fy, the triangulation 72(k) is independent of ej.

o If ef = x, it follows from the invariance of the uniform measure on .7, ; under flipping of
a uniform edge among those which do not lie on the boundary.

o Ifef € OT}(k), this is a standard peeling step: by invariance under rerooting of a uniform
triangulation with fixed perimeter and volume, conditionally on Fj, and eg, the triangu-
lation T2(k) rooted at e is uniform. Hence, if the third vertex of the face fi of T2(k)
adjacent to ey, lies inside of T72(k), the remaining part of T (k) is a uniform triangulation
with a boundary of length P,(k) + 1 and [21] — V,(k) — 1 inner vertices. If the third
vertex of fi lies on 9T2(k), then the face fj separates T2(k) in two independent uniform
triangulations with fixed perimeters and volumes, and the lemma follows.

O

We now define the stopping times 7; as the times at which the flipped edge lies on the
boundary of the unknown part of the map, that is, the times k& at which we discover new
parts of T2(k): we set 79 = 0 and 7j41 = inf{k > 7;lex € 0T} (k)} for j > 0. We also write
Po(j) = Po(1j + 1) and V,,(j) = V(75 + 1).
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Then Lemma shows that (P,,V,) is a Markov chain with the same transitions as the
perimeter and volume processes associated to the peeling process of a uniform triangulation with
a boundary of length 1 and (%‘11 inner vertices. Hence, Corollary provides estimates for
this process. Our next lemma will allow us to estimate the times 7;.

Lemma 2.7. Let k, = o(n°/*). Then for all € > 0 we have

P (1.4 > kn) — 1.

n—-+o0o

Proof. Conditionally on P, the variables 7;;1 — 7; are independent geometric variables with re-
spective parameters Pu(3) 3/44
with parameter @ = 7 maxXy < ,3/2 Pn (7). We have

7) . Hence, 7_,,3/4 dominates the sum S, of en®/® i.i.d. geometric variables

E[S,|P,] = en®/4Q, = en®/* x max F,(7).
[Sn| Pn] Qn \F0<]<5n3/4 ()
By the results of [64], the factor fmaxo<]<5n3/4 P,(j) converges in distribution, so ES;';Z”}

[S IPn}

converges in distribution so — 400 in probability. By the weak law of large numbers we

get 2 S" — 400 in probability so 5" / — 400 in probability. O
By combining Corollary and Lemma [2.7] we get the following result.

Lemma 2.8. Let k,, = o(n%*). Then we have the convergences

~ 1~
T Palkn) 2 0 and - SValkn) T2 0

in probability.

Proof. By Lemma [2.7|there is a deterministic sequence j,, = o(n*/*) such that P (7;, > k) — 1.
This means that with probability going to 1 as n — 400 thereis J < j, such that 7; < k,, < 7511
S0

Po(ky) =Py(J) < sup Po(j) and Vip(kn) = Va(J) < sup Vi(j).
0<j<jn 0<5<jn

But we know from Corollary that

1 N , (P)
— sup FPn(j),— sup V, —— 0,
(x/ﬁ 0<%n "0 0<i%n n(])) n—+o0
which proves Lemma O

So T2(ky) has the distribution of T

1) 2— T (), B (k) 20 there is py = o(y/n) such that

P (ﬁn(kn) < pp and n/2 — Viy(kn) > = 1.

)
3/ n—+oo

Let 7, be such that r, = o(n'/*) and p, = o(r2) (take for example r, = nl/gp,ll/él). By Lemma
with probability going to 1 as n — +oo0, there is a cycle v in T2(k,) of length at most 7,
such that the part of T2 (ky) lying between 872 (k,,) and 7 has volume at most %. Moreover we
have V,,(k,) = o(n) in probability by Lemma m, so the two parts of T),(k,) separated by ~y

both have volume at least %, which proves Proposition .
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The proof of our main theorem is now easy: let .7 be the set of the triangulations ¢ of the
sphere with n vertices in which there is a cycle of length at most ¢,, that separates ¢ in two parts
of volume at least 7. Let also k,, = o(n®/*). By Proposition ﬁ we have

B (T(ka) € T — 1,

n——+oo

whereas by Corollary 1.2 of [103], if 7;,(c0) denotes a uniform variable on .7, we have

P (T, (00) € I¥) —— 0.
n——+00
Hence, the total variation distance between the distributions of T}, (k,) and T),(c0) goes to 1 as
n — 400 so the mixing time is greater than k, for n large enough. Since this is true for any
kn = o(n°/*), the mixing time must be at least ¢n®* with ¢ > 0.
We end this paper by a few remarks about our lower bound and an open question.

Remark 2.9. We proved a lower bound on the mixing time in the worst case, but our proof
still holds for the mixing time from a typical starting point. We just need to fix € > 0 small,

take as initial condition a uniform triangulation 7),(0) conditioned on (0B?,,(T,(0))| < ey/n

and 3 < |B*%,, (Tn(O))‘ < 20 and let T)1(0) = B*,,i(Tn(0)). The event on which we condition

has probability bounded away from 0 (by the results of [64] and coupling arguments) and after
time o(n°/*) there is still a seperating cycle of length O(/2n!/4).

Remark 2.10. Here is a back-of-the-enveloppe computation that leads us to believe the lower
bound we give is sharp if we start from a typical triangulation. The lengths of the geodesics
in a uniform triangulation of volume n are of order n'/4, so if we fix two vertices z and y the
probability that a flip hits the geodesic from z to y is roughly n—3/4
about n'/2 of them will affect the distance between z and y. If we believe that this distance
evolves roughly like a random walk, it will vary of about vV'nl/2 = n/4, which shows we are at
the right scale. Of course, there are many reasons why this computation seems hard to be made
rigourous, but it does not seem to be contradicted by numerical simulations.

. Hence, if we do n°/* flips,

Finally, note that even in the simpler case of triangulations of a polygon, the lower bound
n3/2 is believed to be sharp but the best known upper bound [113] is only n5t°) In our case
we were not even able to prove the following.

Conjecture 2.11. The mixing time of (7, (k))x>0 is polynomial in n.

2.A Appendix: Connectedness of the flip graph for type-I trian-
gulations

In this appendix, we show that the Markov chain we study is indeed irreducible.

Lemma 2.12. Let ¢, be the graph whose vertex set is .7, and where two triangulations are
related if one can pass from one to the other by a flip. Then ¥, is connected and its diameter is
linear in n.

Proof. Tt is proved in [I38] that the flip graph for type-III triangulations is connected, and in [91]
that its diameter is linear in n. Hence, it is enough to show that any triangulation is connected
to a type-III triangulation in ¥, by a linear number of edges. If ¢ is a finite triangulation with
loops, it contains a minimal loop, that is, a loop dividing the sphere in two parts, one of which
contains no loop. By flipping a minimal loop we delete a loop without to create any new one, so
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we make the number of loops decrease and we can delete all loops in a linear number of flips.
Moreover, if t contains no loop and there are two edges e, es between the same pair of vertices,
then flipping e; does not create any loop or additional multiple edges, so we can also delete all
multiple edges in a linear number of flips. O
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Chapter 3

The hyperbolic Brownian plane

ou Un plan bien engraissé.

This chapter is adapted from [45], published in Probability Theory and Related Fields.

We introduce and study a new random surface, which we call the hyperbolic Brownian plane
and which is the near-critical scaling limit of the hyperbolic triangulations constructed in [58].
The law of the hyperbolic Brownian plane is obtained after biasing the law of the Brownian plane
[62] by an explicit martingale depending on its perimeter and volume processes studied in [63].
Although the hyperbolic Brownian plane has the same local properties as those of the Brownian
plane, its large scale structure is much different since we prove e.g. that is has exponential volume
growth.
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3.1 Introduction

The construction and the study of random surfaces as scaling limits of random planar maps
has been a very active field of research in the last years, see [96, [114] for survey. The first such
random surface that was built is the Brownian map [99, [116], which is now known to be the
scaling limit of a wide class of finite planar maps conditioned to be large [I], [3, 24 36l [65].
Curien & Le Gall introduced the Brownian plane in [62], which can be seen as a non-compact
version of the Brownian map. They showed that it is the scaling limit of the Uniform Infinite
Planar Quadrangulation (UIPQ). They also conjectured it to be the scaling limit of several other
random infinite lattices such as the Uniform Infinite Planar Triangulation (UIPT) of Angel &
Schramm [20] (we verify this fact below for type-I triangulations). The goal of this paper is to
introduce and to study a new random surface which we call the hyperbolic Brownian plane. This
surface is obtained as a near-critical scaling limit of the hyperbolic triangulations of [5§].

The Brownian plane as the near-critical limit of the PSHIT. The spatial Markov
property of random maps is a key feature of random lattices like the UIPT and UIPQ and has
been used a lot in recent years to study their geometric structure, see e.g. [12, [43] [64]. Recently,
Angel & Ray characterized all the triangulations of the half-plane enjoying a spatial Markov
property and discovered a new family of triangulations of the half-plane having hyperbolic
flavor [18]. This has been extended to cover the case of the full-plane in [58]. More precisely,
[58] constructs a one-parameter family (Tyx)o<x<x, of Markovian random triangulations of the
plane, where the value k. is equal to 2% The triangulations T, for Kk < k. are called type-II
Planar Stochastic Hyperbolic Triangulations (PSHIT). At the critical value k = k., the random
triangulation T, is the UIPT of Angel & Schramm, whereas T, has hyperbolic features when
K < ke Note that if kK < k. is fixed, then it is impossible to rescale Ty to get a scaling limit in
the Gromov—Hausdorff sense[ﬂ Hence, in order to get a proper scaling limit, it is necessary to
let the parameter k — k. at the right speed as we renormalize the distances. If we let Kk — K,
too slow, then there is no scaling limit as above and if kK — k. too fast, then the scaling limit is
just the Brownian plane: our approach is near-critical.

Our main tool for proving such a convergence will be the absolute continuity relations between
the hyperbolic triangulations and the UIPT. These relations allow us to deduce convergence
results for hyperbolic maps from the analogous results for the UIPT. The above works [20), 58]
deal with type-II triangulations where loops are forbidden. Unfortunately, as of today, no scaling
limit result is available in the literature for type-II triangulations. This forces us to work with
type-I triangulations (i.e. where loops are allowed), for which the convergence to the Brownian
map has been established [99]. Our first (easy) task is then to generalize the results of [58] and
to introduce the type-I PSHIT, which we denote by

1
(Thocrgr where A= 1o

As above, in the critical case A = \., the random lattice T}, is just the type-I UIPT [65], 129].
We denote by P the Brownian plane of [62]. We recall that it is equipped with a volume
measure jp. For r > 0, we write B, (P) for the closed ball of radius 7 centered at the origin point
of P. We also write B,.(P) for the hull of radius r, that is, the union of B,(P) together with
all the bounded connected components of its complementary. We equip B,.(P) with the induced
metric (i.e. the restriction of the metric on P), and the restriction of pup. We will therefore
consider B,(P) as a measured metric space. The last ingredients we need before stating our

1. we can find in the ball of radius r of T, a number of points at distance at least -~ from each other that

10
goes to 400 as 7 — +00, so the sequence (%BT(TN)) is not tight for the Gromov—Hausdorff topology

r>1
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main theorem are the perimeter and volume processes of P introduced by Curien & Le Gall [63].
If AC P, we will write [A] = pp(A) for the measure of A. For r > 0, the volume of the hull of
radius r of P is |B,(P)|. Moreover, Proposition 1.1 of [63] states that the limit

1 -
ig% ? |BT+E(P)\BT(P)| (3'1)
is a.s well-defined and positive. We call it the perimeter of B.(P) and denote it by |0B,(P)|.
Our main theorem is the following.

Theorem 3.1 (P" as a near-critical scaling limit of the PSHIT). For n > 0, consider Ty, the
type-I planar stochastic hyperbolic triangulation of parameter A,, — A; in such a way that

(12 o (). o

Then we have the following convergence for the local Gromov-Hausdorff-Prokhorov distance:

where P" is a random locally compact metric space that we call the hyperbolic Brownian plane.
Its distribution is characterized by the fact that for every r > 0, the random measured metric
space B,.(P") has density

_ __ 1 __
o—2/Bar(P)]| |0Bar (P)| / o—310B2(P)[a? g, (3.3)
0

with respect to B,.(P).

The choice of the constant % in was made so that the expression looks as simple
as possible. Of course another choice woud have resulted in a scaling limit just obtained by
dilating P". The fact that we need to bias B,.(P) by a function of the perimeter and volume of
the hull of radius 2r instead of r may seem surprising. It is due to the fact that we equip B,.(P)
with the induced distance. Hence, the distance between two points in the hull of radius r of a
map may depend on the part of the map that lies outside of this hull (but not outside of the
hull of radius 2r). In order to obtain a similar result with |0B,.(P)| and |B,.(P)|, we would need
to equip B, (P) with its intrinsic distance instead of the induced one (see Section 2.1 for more
details about this distinction). We would also need to prove an analog of Proposition for
the intrinsic distance, which we have not been able to do.

In the study of a one-parameter family of models exhibiting a critical behavior, it has become
quite usual to study near-critical (scaling) limits. By near-critical, we mean that the parameter
converges to its critical value at the right speed as the distances in the graph or the mesh of
the lattice are going to zero. Understanding the near-critical limit usually sheds some light on
the critical model because of the existence of scaling relations between near-critical and critical
exponents. See for example the works on near-critical percolation [77), 89, [123], on the Ising
model [73] or on the Erdés-Rényi random graph [4] [5].

Techniques. As said above, the idea of the proof of Theorem [3.1]is to use the absolute con-
tinuity relations between the hulls of the type-I UIPT and of the hyperbolic triangulations T).
Our main technical tool is a reinforcement of the convergence of the UIPT towards the Brownian
plane. In the result below, |B,(Ty,)| and |0B,(T,,)| respectively stand for the volume (number
of vertices) and perimeter of the hull of radius 7 in the UIPT.
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Theorem 3.2 (Extended convergence towards the Brownian plane). We have the joint conver-
gences

(iT)\C’ (%|Bim(T>\c)’>r>o (n2|aBrn(TAC)|) >O> n:%) (P’ (3|E(P)|>r20’ (2|aBT(P)|)r>O>

in the local Gromov-Hausdorff-Prokhorov sense for the first marginal and in the Skorokhod
sense for the last two.

The convergence of the first marginal has been established in the case of quadrangulations in
[62] and we extend the proof to cover our case. On the other hand, the joint convergence of the
last two marginals follows from the work [64] (both in the case of quadrangulations and type-I
triangulations). But it is important in our Theorem that those convergences hold jointly,
which requires some additional work. The convergence of near-critical PSHIT towards the hy-
perbolic Brownian plane then follows from Theorem [3.2]and a couple of asymptotic enumeration
results gathered in Section 1.

Properties of P". We also establish some properties of the hyperbolic Brownian plane. Since
the density goes to 1 as r goes to 0, the hyperbolic Brownian plane is "locally isometric" to
the Brownian plane (and hence also to the Brownian map). More precisely, for all € > 0, there
is a 6 > 0 and a coupling between P and P" such that, with probability at least 1 — ¢, they have
the same ball of radius § around the origin. We also prove that P" almost surely has Hausdorff
dimension 4 and is homeomorphic to the plane.

The Brownian map is known to be invariant under uniform re-rooting. This means that, if
we resample its root uniformly according to its volume measure, the rooted metric space we
obtain has the same distribution as the Brownian map. This property has played an important
role in the proof of universality results in [T} [3, 24} [36] [99], and in the axiomatic characterization
of the Brownian map given by [I17]. Unfortunately, it makes no sense anymore when the volume
measure is infinite. However, we prove the following property of P": for every measurable,
nonnegative function f we have

/ f(P py)uph(dy / fF(P"y, p)uph(dy)}

where p is the origin of P and ppn its volume measure. This property is a continuous analog of
the discrete property of unimodularity, which is a natural substitute for infinite random graphs
to invariance under uniform rerooting (see for example [7] for the discrete case). More precisely,
the two properties are equivalent for finite random graphs. Our result shows that the hyperbolic
Brownian plane is a natural surface to look at even from the purely continuum point of view.

Also, since the hyperbolic Brownian plane is a biased version of the Brownian plane, it is
possible to define the perimeter P and the volume V" of its hull of radius r as Curien and Le
Gall did for the Brownian plane in [63]. We identify the joint distribution of these two processes
in a similar way as in [63]. Let Z" be the subcritical continuous-state branching process with
branching mechanism

P(A) = \/g)\\/)\ 3,  A>0.

Moreover, for all § > 0, let vs be the following measure on R*:

vs(de) =



Theorem 3.3 (Perimeter and_yoluyme processes of
3 The perlgneter process P % 1%thephypelr%ohc rownlan plane has the same distribution as

the time-reversal of Z”, started from +o0o at time —oo, and conditioned to die at time 0.

2) Conditionally on P" the process V" has the same distribution as the process
h
(Xe),.p
s <r

where (s;) is a measurable enumeration of the jumps of P the random variables ¢? are
independent and & has distribution viapn for all .

This allows us to compute the asymptotics of these processes as in the discrete case in [58].

Corollary 3.1 (Exponential growth). We have the convergences

ph N |7ACN |
r_ %% €& and —Th N
e2V2r r—too P r—too 4

where £ is an exponential variable of parameter 12.

The structure of the paper is as follows. In Section 1 we introduce the type-I analog of the
PSHIT, and show they are the only type-I triangulations enjoying a similar domain Markov
property as that defined by Curien in [58]. We also gather a few enumeration results. Section
2 is devoted to the proof of Theorem and and Section 3 to the study of the perimeter
and volume processes. Appendix A contains a technical result about the Gromov-Hausdorff—
Prokhorov convergence. It shows that under some technical assumptions, if a sequence (X,,) of
metric spaces converges to X, then the hulls B,.(X,,) converge to B,(X).

Acknowledgments: [ thank Nicolas Curien for suggesting me to study this object, and for
carefully reading many earlier versions of this manuscript. I also thank the anonymous referee
for his useful comments. I acknowledge the support of ANR Liouville (ANR-15-CE40-0013) and
ANR GRAAL (ANR-14-CE25-0014).

3.2 Prerequisites: enumeration and type-I PSHIT

3.2.1 Combinatorial preliminaries

A type-I triangulation of a p-gon is a planar map equipped with a distinguished oriented
edge called the root, in which the face to the right of the root has a simple boundary of length
p and every other face has degree 3. It may contain multiple edges and self-loops. In this whole
work we will make repeated use of the results of Krikun [95] about the enumeration of type-I
triangulations. For p > 1 and n > 0, we write .7, , for the set of type-I triangulations of a p-gon
with n inner vertices, and #.7, ;, for its cardinal. By Euler’s formula, a triangulation of a p-gon
with n inner vertices has 3n + 2p — 3 edges. Hence, the main theorem of [95] in the case r = 0
(that is, triangulations with only one hole) can be rewritten

p(2p)! 47~ 1(2p + 3n — H)!!

o o G 3.4
#0p = o0 i@y DI neee C AT (3.4)
where we recall that A\, = ﬁ’ and where
37" %p(2p)! 1
)= )2 v 12°Vp. 35
) 427 (pl)? p=too 36my/2 VP (3.5)
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A triangulation of the sphere with n vertices can be seen after a root transformation as a
triangulation of a 1-gon with n — 1 inner vertices (see Figure 2 in [65]). Hence, the number of
triangulations of the sphere with n vertices is

1
#H#Tp11  ~

A 5/2, 3.6
n—+00 724/6m ¢ ( )

We also write Z,(A) = >, > #InpA". Note that, by the asymptotics (3.4), we have Z,()\) < +o0

iff A < Ac. We finally write Gi(z) = >~ Zp(A)2?. Formula (4) of [95] computes G\ after a
simple change of variables:

G,\(x)—;\<<1— 128hx>\/m—1+i), (3.7)

where h € (0, ﬂ is such that
h

Note that our h corresponds to the h3 of [95]. From (3.7) we easily get

1 14+2h
Zi\) == — — "= 3.9
1Y) 2 2V1+ 3% (39)

and, for p > 2,
»(2p =51 (1 —4h)p + 6h‘
p! 4(1 4 8h)3/2

Z,(\) = (2 + 16h) (3.10)

We now prove a combinatorial estimate that we will use later in the proof of the convergence
of the type-I UIPT to the Brownian plane.

Lemma 3.2. When n,p — 400 with p = O(y/n), we have

1 —n,, —5/219p ( 2]92)
#Tnp 3677\@>\c n~ /<12, /p exp 2 )

Proof. This follows from developping asymptotically using the Stirling formula. The same
estimate for type-II triangulations can be found in the proof of Proposition 8 of [64]. Only some
constants differ, and these constants for type-I triangulations are given in Section 6.1 of [64].
We omit the details here. O

3.2.2 Definition of the type-I1 PSHIT

The goal of this section is to construct the analog of the hyperbolic triangulations of [58] in
the case of type-I triangulations. Since the construction is roughly the same, we only stress the
differences. If ¢ is a finite, rooted triangulation with a simple hole of perimeter p, we write |¢| for
its number of vertices. By ¢t C T', we mean that 7" may be obtained by filling the hole of ¢ with
an infinite triangulation of perimeter p.

Definition 3.3. Let A > 0. A random (rooted) infinite type-I triangulation of the plane T is
A-Markovian if there are constants (C’p()\)) such that, for all finite rooted triangulations ¢

p=1
with a hole of perimeter p, we have

P(t C T) = Cp(A)AI.
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Remark 3.4. Like Curien [58], we choose a stronger definition of the Markov property than that
of Angel & Ray [18]. Although these two definitions should coincide for type-II triangulations,
this is important in the context of type-I triangulations. Indeed, a weaker definition would allow
a much larger class of Markovian triangulations (see [18], Section 3.4 for a precise discussion in
the half-planar case).

Proposition 3.5. If A > A, there is no A-Markovian type-I triangulation. If A < \., there is a
unique one (in distribution). Besides we have

p-1271

Cy(\) = %(8 + %) 3 <2qq> he, (3.11)

q=0

where h is like in (3.8). We will write Ty for this triangulation and T = T)_, which coincides
with the type-1 UIPT [65] 129].

Proof. The uniqueness can be proved along the same lines as in Section 1 of [58]. The analog of
relation (5) in [58] is, for all p > 1,

p—1
Cp(N) = ACp11(N) +2) " Cpi(N) Zisa1 (V). (3.12)
=0

Note that in our case, the sum starts at 0 and ends at p — 1 (instead of 1 and p — 2 in [58])
because of the possible presence of loops. Hence, the A < A, condition comes from the fact that

the radius of convergence of Z, is A. by (3.4). If we write F)\(z) = szo Cp(N)aP, then (3.12)

becomes

Fy(z) = %(F)\(JT) — 01(/\)$) + %G)\(l')F,\(l‘),
F(z) = A_fi(;é"; o (3.13)
By combining and we get
Fi(z) = GV (3.14)

(1 - %x)m'

Finally, for all p > 1,

B 148N\ (—1/2Y, ,
o = aw 3 (5 ) (") o sn
p—1

~ amy (1+h8h>p1q(—1)q <2qq)(_4)Q(1 + 8k

49
q=0

= am(se ) S ()

q=0

To prove the uniqueness and obtain the desired formula, it only remains to prove that we
must have C1(\) = % Let tg be the map consisting of a single loop. Since any triangulation of
the sphere can be seen as a triangulation of a 1-gon (see Figure 2 in [65]), we must have ¢ty C T
with probability 1. Hence, C1(\) = %
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The proof of the existence is essentially the same as in [58]: consider the sequence (Cp()\))p>1
given by (3.11)) with C,(X) > 0 for all p. It verifies (3.12)), so for all p > 1, we have -

The last display can be interpreted as transition probabilities for the peeling process of T). This
allows us to construct a random triangulation by peeling like in [58]. The same arguments as in
[58] prove that we get a triangulation T of the plane, that the distribution of T} is independent
of the peeling algorithm used for the construction, and that T) is A-Markovian. O

We note that in the critical case, we have a more explicit expression of Cp,(\): we have h = i,
SO

—1
C(A)—A—1x12p—1p§ji 20) _ 93 x 3P20)! (3.15)
p\Ac) = Ae 04q q = pl2 ) .
q:

as easily proved by induction.
We will later need precise asymptotics of the numbers Cp(\). For that purpose, we already
state the following estimate.

Lemma 3.6. Let (p)n>0 be a sequence of positive integers such that % — %p where p > 0.

Let also (hy)n>0 be a sequence of numbers in (0, ﬂ such that

1 1 1
=3 =52 +o(52)

Then we have

1 pil 2q hq 2 /1 —3p:r;2d
—_— —— e xZ.
VPn q) " notee T o

q=0

Proof. Note that if ¢ = [zn?] with o € (0, %p), then

VP \q ) "notoon?y/mr\ 2p

The Riemann sums are easily seen to converge to

[9 3p/2 1
YR / ei2ydy7
3p Jo VY

which is equal to the desired integral after the change of variables y = 37”962. The details are left
to the reader. O

3.3 Convergence to the hyperbolic Brownian plane

3.3.1 About the Gromov—Hausdorff-Prokhorov convergence

We first recall from [2] the definition of the (bipointed) Gromov-Hausdorff-Prokhorov dis-
tance.
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Definition 3.7. Let ((Xl, dv), 1,1, ,ul) and ((Xg, d2), 2, Y2, ug) be two compact bipointed
measured metric spaces. We assume the measures p and pg are finite (but they do not have to
be probability measures). The Gromov-Hausdorff-Prokhorov distance (we will sometimes write
GHP distance and denote it by dggp) between X; and Xs is the infimum of all £ > 0 for which
there are isometrical embeddings ¥; and Wy of X; and X5 in the same metric space (Z, d) such
that:

a) Wi(z1) = Wa(w2),
b) d(V1(y1), Ya(y2)) <e,
c¢) the Hausdorff distance between ¥ (X;) and \IIQ(XQ) is not greater than ¢,

d) the Lévy-Prokhorov distance between pq o \Ifl and pg o \112 is not greater than e.
The same definition holds for pointed measured compact metric spaces. We just need to withdraw
condition b).

If ((X, d),x, u) is a pointed measured metric space and r > 0, we write B, (X) for the closed
ball of radius r centered at z in X, equipped with the restrictions of the distance d and of the
measure .

Definition 3.8. Let ((Xl,dl),:nl,,ul) and ((Xg,dg),ajg,,ug) be two locally compact pointed
measured metric spaces. The local Gromov—Hausdorff-Prokhorov distance between X1 and Xo,
which we will denote by drgpp(Xi1, X2), is the sum

S i (Lo (B, (1), B (X))

r>1

Definition 3.9. Let ((X, d),m,y,u) be a locally compact bi-pointed measured metric space.
The hull of center x and radius r with respect to y is the union of the closed ball of radius r
centered at x and all the connected components of its complementary that do not contain y. It
is denoted by B,.(X,z,y). We will write B,.(X) when there is no ambiguity. Equipped with the
restrictions of d and p, it is a compact measured metric space.

If ((X ,d), :v) is unbounded and one-ended we will omit the second distinguished point: the
hull will be the union of the ball of radius r centered at x and all the bounded connected
components of its complementary. It means that y is at infinity.

Recall that there are two natural ways to equip a part A of (X, d) with a metric: the induced
metric, i.e. the restriction of d to A, and the intrisic one, which makes A a geodesic space when
it is well-defined (see [48], Chapter 2.3). In order to avoid further confusions, we insist that
B,.(X) is equipped with the induced distance. If m is a map, we will also write B,(m) for the
map consisting of all the faces of m having at least one vertex at distance at most » — 1 from
the root vertex, along with all their vertices and edges. We write By (m) for the map that is the
union of B,(m) and all the bounded connected components of its complement. When m is seen
as a metric space, the hull B,.(m) has the same set of vertices as Bf(m). However, the distances
inherited from m are not the same as those in Bf(m). We will always see B,(m) as a metric
space and By (m) as a map.

We will need several times to deduce properties of one of these distances from properties of
the other. To this end, we point out that if m is a map, then B,(m) is a measurable function of
B3.(m) for all » > 0. Indeed, any geodesic in m between two vertices  and y of B,(m) must
stay in B3.(m), so the distances between x and y in m and in B3 .(m) coincide.

We will also need the following technical result that is proved in Appendix A.

Proposition 3.10. Let ((Xn, dp), Tn, un) be a sequence of unbounded, locally compact, pointed
measured metric spaces. Assume that ((Xn, dp), Tn, ,un) converges for the local GHP distance
to a measured metric space ((X, d),z, ). Let > 0. We assume that:
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(i) X and the X,, are one-ended length spaces,

(ii) every non-empty open subset of X has positive measure,

(i) the function V : s — p(By(X)) is continuous at 7.
Then:

1) B.(X,) converge for the GHP distance to B,(X),

2) in particular, we have the convergence

fin (Br(Xn)) — p(Br(X)).

Moreover, the proposition also holds for bipointed, compact spaces ((Xn,dn),xn,yn, ,un) and

((X,d),w,y,u).

3.3.2 Convergence of the type-I UIPT to the Brownian plane

If (X,d) is a metric space and a > 0, we will write X for the metric space (X, ad). We
recall that T = T, is the type-I UIPT. If ¢ is a (possibly infinite) triangulation, recall that B, (t)
denotes its ball of radius 7 around the origin of its root edge and B, (t) its hull, endowed with
the induced metric. We denote by P the Brownian plane defined in [62]. Our goal in this section
is to prove Theorem We start with the first two marginals, whereas the convergence of the
third one will be the content of Section 2.3.

Proposition 3.11. Let pur be the measure on T giving mass 1 to each vertex, and let up be
the volume measure on P [62, [63]. We have the convergence

1 1 (d)
(WT’ ?Tnlﬂr) —_— (Pvﬂp)

n—-+o0o

for the local GHP distance.

We note that this result has been proved for quadrangulations in [62] for the Gromov—
Hausdorff distance and in [I40] for the (stronger) GHP convergence. Our main tool will be the
following theorem by Curien and Le Gall. It is a refinement of the convergence of uniform type-I
triangulations proved by Le Gall in [99].

Theorem 3.4 ([65], Appendix A1, Theorem 6). Let T}, be a uniform type-I triangulation of the
sphere with n vertices and p7, the counting measure on the set of its vertices. Let also my be

the Brownian map and g, its volume measure ([99]). The following convergence holds for the
GHP distance:

L] (@ 1
(n1/4 n’n'uTn) n——+o0o <31/4moo”um°°>'

To prove Proposition we need to invert the local and the scaling limit. Hence, we need
the local convergence T,, — T to be "uniform in the scale", which is the point of the next lemma.
It parallels Proposition 1 of [62] in the case of type-I triangulations.

Proposition 3.12. Let n > 1. Let also T, = (T,,y) be a uniform type-I triangulation of the
sphere with n vertices, equipped with a uniform distinguished vertex y. We write By (7)) for
the hull of radius r of T},, centered at the root, with respect to y. Then, for all € > 0, there is a
constant A > 0 such that if n > Ar?, there is a coupling between T* and T in which

P(B(T;) = Br(T)) > 1—e.
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Proof. The proof of Proposition 1 in [62] uses the Schaeffer bijection between maps and trees.
Although a similar bijection exists for triangulations, it is more complicated. Hence, we do the
computations directly on maps instead of trees as in Section 6 of [65].

Let 6 > 0. We know from Section 6.1 of [64] that X |Bp(T)| and -5|8Bg(T)| converge in
distribution to a.s. positive random variables. Hence, there are positive constants ¢s and Cy such
that, for r large enough, we have

P (csr* < |0B2(T)| < Csr? and csr < |B2(T)| < C5T4) >1-0.

Now take m and p such that c572 < p < Csr? and c5r* < m < Csr*. Let t be a triangulation of
a p-gon with m vertices (including the boundary) such that ¢ is a possible value of B2(T). On
the one hand, we have

e = = m = pp(2p)' . m ~ & m P
P(B:(T) = t) Defme()\c))\c = 2v/3 x 3 e N ﬁAC x 12P\/p.

On the other hand, we fix A > Cs and we take n > Ar®. There are n# Ip—1,1 pointed
triangulations of the sphere with n vertices. Moreover, if Br(T) = t, there are #.7,_r, , ways
to fill the p-gon to complete 7)F and n — m ways to choose the distinguished vertex in it (the
distinguished vertex cannot lie in B, (7)), since then B? (7)) would be the full 7). Hence,

n

we have P(Bp(Ty) = t) = % When we let r — 400, we have n — m,p — 400

with p = O(\/n — m) By Lemma , when r goes to 400, the probability IP)(B;(T;) = t) is
equivalent to

2\>/7§)\7c” x 12P/pexp ( - 3(712pi2m)) Y eXD ( - 3(n2p12m)>P(B;(T) =1t).

Hence, if we have chosen A large enough, the following holds:
(1—8)B(BI(T) = t) < B(BI(T}) =) < (1+8)B(BAT) =),

as soon as csr? < |0t] < Csr? and csrt < |t| < Csr. But we know that B®(T) satisfies these
assumptions with probability at least 1 — §. Hence, we can easily prove that, for n > Ar? and
any set B of finite maps, we have

IP(By(T) € B) —P(Br(T};) € B)| < 40.

This shows that, for r large enough and n > Ar?, the total variation distance between the
distributions of B?(T) and By (7)) is less than 44, which proves the proposition. O

Proof of Proposition[3.11. We use Proposition [3.12] with 2r instead of r. The metric spaces
B, (T}) and B,(T) (equipped with the induced distance) are measurable functions of respectively
B (T}) and B$,.(T). Hence, Proposition still holds if we replace the maps By by the
metric spaces B,. The proof is now the same as the proof of Theorem 2 in [62], with two small
modifications:

— we deal with Gromov—Hausdorff-Prokhorov convergence and not only Gromov—Hausdorff,

but this does not change anything in the details of the proof, see [140] for details,
— the constant factors are not the same: because of the factor 31% in Theorem the

measured spaces (#T, %MT) converge to (31%77, up). This has the same distribution

as (73, 3;@) by the scaling property of the Brownian plane.
O
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We can now prove the joint convergence of the first two marginals in Theorem

Proposition 3.13. We have the joint convergence

(;'H" (711413,%(11*)000) s (73, (3|B7«(7>)|)T>0>,

where the convergence of the first marginal is for the local GHP distance, and the second one
for the Skorokhod topology.

We will deduce Proposition from Proposition thanks to the second point of Propo-
sition [3.10] Let us check this carefully.

Proof of Proposition[3.15. By the Skorokhod representation theorem, we may assume the con-
vergence in Proposit is almost sure. Theorem 1.4 of [63] computes E[e"BT(P)‘]. In par-
ticular, it is a continuous function of r. Since the process (|E(P)])T>O has only positive jumps,
it means that for all » > 0, it is almost surely continuous at r. Finally, the Brownian plane
is defined in [62] as a quotient of R. This means that there is a continuous surjection from R
to P, and the volume measure on P is the push-forward of the Lebesgue measure under this
surjection. The inverse-image of a non-empty open subset of P is a non-empty open subset of R.
Hence, it has positive measure, which means that any non-empty open subset of P has positive
measure.

Instead of T, we can consider the metric space T¢, which is the union of all the vertices and
edges of T. It is equipped with the metric that makes it a geodesic space in which all edges have
length 1. We also equip this space with the counting measure put on the set of vertices. We have

derp(By(T), B.(T¢)) < 1 for all r, so dLGHp<<n1—1/4T, %mr), (#TC, %mﬂ) < #. Hence,

Proposition [3.11| still holds if we replace T by T¢. The sequence (%TE, %,U/]f) . satisfies the
n>

assumptions of Proposition , so for all (r1,...,7) € (R+)k we have

Vi € 1A, 5 3un (Bron(T)) =2 jup (B, (P)).

n—-+00

This gives the joint convergence of %"JI‘ and of the finite-dimensional marginals of the process of
volumes.

Hence, to complete the proof of Proposition [3.13] we only need tightness. The tightness of
the first marginal is given by Proposition [3.11] On the other hand, Theorem 2 of [64] shows that
the volume process converges. In particular, it is tight. This concludes the proof. ]

3.3.3 Joint convergence of the perimeter process

The goal of this subsection is to prove the joint convergence of the last marginal in Theorem
0.2

Proof of Theorem[3.2 By Proposition the first two marginal converge in distribution to
(77, (BW)T>O)7 where V, = |B,.(P)|. We also know by Theorem 2 of [64] that the processes

((n%\aBim(’]I‘)\) >0) Lo Comverge, so they are tight, so the triplet in Theorem is tight.
r= n=

Hence, it is enough to prove uniqueness of the limit. Let (ng) be a subsequence along which it
converges in distribution to a triplet

(73’ (3VT)TZO’ (gﬁT>'r>0) ’
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where P = (Pr)
P=P.

On the one hand, Theorem 1.3 of [63] describes the joint distribution of P and V. There is
a measurable enumeration (s;) of the jumps of P and an i.i.d. sequence (;) of variables with

. . . e 1/23:
distribution v(dx) = Vorr

>0 18 a cadlag process. We also write P, = |0B,(P)|, and we want to show

1,-¢dz such that, for all » > 0, we have

V. =) (AP,

s <r

On the other hand, Theorem 2 of [64] shows that the second and third marginals of Theorem
converge, and identifies the limit. Hence, it gives the distribution of the couple (P, V;),>0
(see Section 6.1 of [64] for the computation of the constants for type-I triangulations). We get

~ d
(P, Vi)r>0 @ (Pr, Vi)r>0.

To prove that P = P,, we show that it is possible to "track back" P, from the process (V.),>0,
which is done in the following lemma. We will need the following notation: for a nondecreasing
function f and a,b,h € RY with a < b, we write N2(f, h) for the number of jumps of f in [a, b]
of height at least h.

Lemma 3.14. For all » > 0, we have

lim 6! lim 34 NTH(V, &) = ¢P,

6—0 e—0

. 21/4 3
almost surely, where ¢ = = \/gF(Z)'

Once this lemma is proved, Theorem |3.2] follows easily. Indeed, since (P,V) £ @ (P,V), for
any 7 > 0 the variables P, and P, are both the a.s. limits of the same quantity. Hence, almost
surely, P = P, for every r € Q. Since P and P are cadlag we have P = P a.s. Hence, the
sequence of triplets has only one subsequential limit, which proves the theorem. O

Remark 3.15. Note that Proposition 1.1 of [63] provides another way to "read" P on the
measured metric space P. However, it involves the volumes of the balls B,,., which are not
given by the process V. Our lemma is also quite similar to the main theorem of [I00], although
much easier to prove.

+ . P . 3
Proof of Lemma[3.14] Let ST be the stable spectrally negative Lévy process of index 3 con-
ditioned to stay positive. We normalize it in such a way that its characteristic exponent is
Y(\) = /8/3 %2, Let also (t;) be a measurable enumeration of the jumps of S*, and let (&)
be a sequence of i.i.d. random variables with distribution v. We write

=) _g(Aas)h)?
t;i<r

We first show that almost surely, for any 0 < a < b, we have

lim e*4N2(Q*,¢) = ¢(b — a). (3.16)

e—0

By monotonicity, it is enough to prove it for a,b € Q. Hence, it is enough to prove it for
fixed a and b. Let Q be the same process as QT but constructed from a non-conditioned stable
Lévy process S instead of ST. Then @ is a subordinator whose Lévy measure o is the image of
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p ® v under (x,y) — x?y, where u is the Lévy measure of S. An easy computation shows that
o([e, +00[) = ce=3/* for all e. Hence, equation for Q instead of QT follows from a law of
large numbers. But since ST is absolutely continuous with respect to S on [a, b], equation
also holds for Q.

We now recall the law of (P, V') as described in Section 4.4 of [64]. It has the same distribution
as (S7,QF )r>0, where 7, = inf{s > 0| [ g—g > r} for every r > 0. Hence, we have N/ T9(V,¢) =

Tr

N7T(QT,¢). By (3.16), for any r and § we have (since a.s. (3.16)) holds for any 0 < a < b, we
can take a and b random)

lim /N QY 2) = ey — 7).
Now, it is easy to see, by the right-continuity of S* at 7., that 6! (7.,15 — 7») fio—) St =P,.
%
This finishes the proof. O

3.3.4 The hyperbolic Brownian plane
The goal of this section is to prove Theorem [3.1] We will write

1
o(p,v) = e_gvep/ e3P dg
0

in the whole proof of the theorem. Moreover, if ¢ is a triangulation with a simple hole of perimeter
p’ and with v’ vertices in total and A € (0, \.], we write

P (t C T)\n)

BT (3.17)

ex(p', V') =

Since T, and T are Markovian, this only depends on p’ and v" and not on ¢.

Proposition 3.16. Let (),) be a sequence of numbers in (0, \;] that satisfies (3.2)). Let r > 0
and let (p,) and (v],) be two sequences of positive integers such that % — %p and Z—lﬁ — 3.
Then

/

P (P V) = (P, ).

Proof. This is just a matter of gathering our estimates in Section 1.1 and 1.2 together. Let us

proceed: for every n, let h,, € (0, ﬂ be such that A, = W' It is easy to check that
1 1 1

We know from ({3.11)) that

Derd AC,, (M)

—1
An\Vn pn!? 1 ( 1 \pn—122 <2q)
= (& —(8+--) he
(3-15) ()\C) 2v/3 x 3Pn P (2p0)! An hy, qzo q

(An>3vn4+o<n4)<2+ 1 )pn—lﬁ rp? =2,
N 37 120/ Aa2pa(pa)l g \g )"
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The first factor converges to e~2" because /)\\—" =1- ﬁ + o(%). The second factor is also easy

2 1 \pn—1 ) 2 1 3Ln2+o(n?) »
< _ - .
(3 + 12hn) ( ta +0(n2)> notoo ©

to estimate:

The third one converges to one. By the Stirling formula, we have 2?;7&5! ~ 2‘{}%. Finally,

Lemma [3.6] gives an asymptotic equivalent of the last factor and we are done. O

The last proposition is more or less equivalent to vague convergence. We now need to show
that no mass "escapes" at infinity, i.e. that the total mass of the limit measure is 1.

Lemma 3.17. Recall that P, = |0B,(P)| and V, = |B,.(P)|. For every r > 0, we have
Elp(V;, )] =1.

Proof. We use the expression of the Laplace transform of (P,, V;) that is computed in [63]. First,
Theorem 1.4 of [63] computes E [e‘“VT]PT = E] for pu, £ > 0. We apply it with u = 2:

P, = 4 = 2\/57’3% exp ( — £(3coth2(\/§r) -2- %))

We now apply Fubini’s theorem, and use the Laplace transform of P, given by Theorem 1.2

of [63]:

E| exp(~2V;)

1
E[p(V, ;)] = E[E[exp(-2V;)|P] exp(PT)/O exp (— 3Pa?)da

exp ( — P, (3 coth?(v/2r) — 2 — %)) exp ((1 - 33;2)]37«) dz

22

—3/2
= 2\/§T3M /1 <2r2 coth?(V2r) — 2r% + 27‘21'2) dz
0
_ cosh(v2r) [!
~ sinh®(V2r) / ( V2r)
= cosh(v/2r) /1 (1 + Sinh2(\/§’r‘)g§2>73/2dl‘
0
1
1 + sinh?(v/2r)

—3/2
2 2
1+ %(BCothQ(\fQT) o3 gy 3:1:2)) da

+ x2> _3/2daz

= cosh(v/2r)

= 1,

3 2\-3/2 ; ot x
where at the end we used the fact that (1 + az*) is the derivative of Niswk O

Our main theorem is now easy to prove.
Proof of Theorem[3.1] In this proof, if X is a measured metric space, we will write %X for the
metric space obtained from X by multiplying all distances by % and the measure by 3%

Let r > 0 and let T be a type-I UIPT. Almost surely, the processes P and V have no jump at
r and at 2r, so we have convergence of the one-dimensional marginal at 2r in Theorem For
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alln > 1, let P! =10Bs,,(T)| and V;, = |BS,, (T)|. By the Skorokhod representation theorem,
we may assume, as n — 400, the convergences
l’]:[\ a.s.
" LGHP
Lp 25 3, (3.19)
LV 25 3Vh,.
We have already verified in the proof of Theor that the assumptions of Proposition [3.10]
0

are satisfied. By the first point of Proposition [3.10, the convergence of %']T to P implies
17 a.s. >
ﬁBrn(T) G?) BT‘(P) (3'20)

Let ¢ denote the GHP space and let f be a bounded, continuous function from ¢ to RT.
We recall that the space B,,(T) is a measurable function of the map BS,,(T). Hence, there
is a function f (that depends on n) from the set of finite triangulations to R™ such that

f %m(t)) = f(Bgm(t)) for any one-ended, infinite triangulation ¢. Hence, by the definition
(13.17) of vy, we can write

E[f(-Bn(T)] = E[f(BE(T2)]
E [, (P, Vi) F(B3n(D)]
= B[, (P V) £ Bo(m) .

By the convergences (3.19) and (3.20]), Proposition and the continuity of f, the expression
inside the expectation converges a.s. to cp(Pgr, VQT) f (E(P)) By Fatou, we have

1— _
limninfE[f(ﬁBm(T)\n)ﬂ > B[ (Por. Var) £ (Br(P))]. (3.21)
Let M € R be such that f < M. By Lemma we have
E[MSD(PQM VQ’I‘):| = M,

so by applying (3.21)) to M — f we get the reverse inequality. This shows that %BM(TAH)
converges in distribution to the random metric space having density ga(Pgr, VQT) with respect to

B,-(P). We denote this space by B
Moreover, let 0 < s < r. We can take points y,, on the boundary of %E(TAn and y € Eh

such that (%E(TAn), yn> converges in distribution to (Eh, y) By Proposition |3.10, we have

B Bu(m) 2 BB,

n——+0o00
where the hulls are taken with respect to y, and y respectively. More precisely, we use here
Proposition |3.10| in the compact, bipointed case. But E(le(T,\n)> = %Bsn('ﬂ‘kn), which

n

. .. . —h
converges in distribution to B . Hence, we have

B.(3") Y B/,

. —h . . . .
i.e. the B, are "consistent". By the Kolmogorov extension theorem, there is a random metric

space, that we write P", such that B, (P") @ Eh for all » > 0, and we have

o1, L P

n—-+o0o

for the local GHP distance. O
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3.4 Properties of the hyperbolic Brownian plane

3.4.1 Local properties of the hyperbolic Brownian plane

The absolute continuity relation between the Brownian plane P and the hyperbolic Brownian
plane P" implies that they have the same almost sure "local" properties. This gives us the two
following properties of PP,

Proposition 3.18. Almost surely, P” has Hausdorff dimension 4 and is homeomorphic to R2.

Proof. First, by the absolute continuity relation with the Brownian plane, for all » > 0, the
space B, (P") has a.s. Hausdorff dimension 4 and so does P".

If (X, d, p) is a pointed metric space and r > 0, we write Up(X) = J.oq Br—<(X). Let r > 0.
The set U,.(P) is a connected, open subset of P, and it is quite easy to prove that P\U,(P) is
connected. Indeed, B,11(P)\U,(P) is connected because it is the decreasing intersection of the
B,11(P)\B,_:(P), which are compact, connected subsets.

The set U,(P) is a connected, open subset of the plane whose complement is connected, so it
is homeomorphic to the open unit disk (this is a consequence of the Riemann mapping theorem).
In particular, almost surely, the two following hold:

1. for all z € U,(P), there is a neighbourhood of x that is homeomorphic to the unit disk,

2. any loop in U,(P) is contractible in U, (P).

By absolute continuity and since U, is always a subset of B,, the two above items a.s. hold
for U,(P"). Almost surely, they hold for any r € N*. Hence, P" is a noncompact, simply
connected topological surface. Therefore, it is homeomorphic to the plane (for example, it is a
consequence of the Riemann uniformization theorem and the fact that any topological surface
may be equipped with a Riemann surface structure). O

Note that in this proof, it was important to consider U,(P) and not B,(P). Indeed, a metric
space may not be homeomorphic to the plane, even if all its hulls are homeomorphic to the
closed unit disk (for exemple a closed half-plane, rooted at an interior point).

For the same reason as above, the results about the local confluence of geodesics in the
Brownian map and the Brownian plane also hold for the hyperbolic Brownian plane.

Proposition 3.19. A.s., for any € > 0, there is a § > 0 such that the following holds. All the
geodesics in P from the root to a point at distance at least e from the root share a common
initial segment of length at least 4.

Finally, the Brownian map, the Brownian plane and the hyperbolic Brownian plane are
locally isometric in the following sense.

Proposition 3.20. For any € > 0, there is a § > 0 such that the following holds. It is possible
to couple the Brownian map, the Brownian plane and the hyperbolic Brownian plane in such a
way that their hulls of radius § coincide with probability at least 1 — e.

Proof. The result for the Brownian map and the Brownian plane is Theorem 1 of [62], so we
only need to prove it for P and P". Let § > 0, and let A be a mesurable subset of the Gromov—
Hausdorff-Prokhorov space. Then

P(Bs(P") € A) —P(Bs(P) € A)| = [E[o(P5, Vo) lgypyea] —P(Bo(P) € 4)|
E[|e(Ps, Vs) — 1],

which goes to 0 as § — 0. Hence, the total variation distance between the distributions of Bs(P")
and Bs(P) goes to 0 as § — 0. This proves the result by the maximal coupling theorem (see e.g.
Section 2 of [70]). O

IA
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3.4.2 Unimodularity

The goal of this section is to prove that P" satisfies a property that is the continuum analog
of unimodularity for random graphs.

Proposition 3.21. Let p be the root of P and ppn its volume measure. Let f be a measurable
function from the space of locally compact, bipointed measured metric spaces to R*. We have

/f Py )uph(dy /f Y, p) pepr (dy) |-

To prove this result, we will need the following lemma. It roughly means that the degree of
the root is independent of the large-scale geometry of the map.

Lemma 3.22. As earlier, we write %T,\n for the set of the vertices of T), , equipped with %
times its graph distance and the measure giving mass 3% to each vertex. Let p, be the origin
of the root edge of Ty ,. We have the convergence

d

( ) (D, Ph) ,

n—-+o0o

(deg(on). T,

where D has the same distribution as the degree of the root in the UIPT and is independent of
Ph.

Proof. The convergence of the first marginal is obvious. Hence, it is enough to prove that for
all d > 1, the spaces %T,\n conditioned on deg(p,) = d converge in distribution to P*. More
generally, we prove that for each finite triangulation ¢ that is a possible value of B} (T), the spaces
1T,, conditioned on Bf(T,,) = t converge to P". For all s > 0, the GHP distance between
By(Ty, ) and Bg(Ty,)\Bf(Ty,) is tight (it is bounded by |B$(T),)|). Hence, for all » > 0,

the GHP distance between BT<%T,\H) and B, (%(TM\BI(TM)» goes to 0 in probability as

n — +oo. Hence, it is enough to prove the lemma for 1 (T, \B{(T.,)) instead of 1T, . But by
the spatial Markov property of T, the distribution of Ty, \B}(T},, ) conditionally on Bj(T),)
only depends on |0B5(Ty,,)|.

We recall that a peeling algorithm <f is a way to assign, to every finite triangulation ¢ with a
hole, an edge 7 (t) on the boundary of the hole. Informally, 7(t) is the next edge to be explored
once the explored part of the map is equal to ¢. See [12] or [64] for more details. We now fix a
deterministic peeling algorithm, and we explore T} using this algorithm. For every p > 1, we
write 7, for the first time at which the perimeter of the discovered map is equal to p. Note that,
since Ty, may be identified with an infinite triangulation of a 1-gon, the times 7, are a.s. finite
even for p =1 or p = 2. We also write D,(T),) for the triangulation discovered at time 7,. By
the spatial Markov property, the map Ty, \B$(T),) conditionally on |0B$(T),)| = p has the
same distribution as Ty, \D,(T,, ). Hence, it is enough to prove that for any p > 0, we have

—_

_@ . ph

n—-+4o0o

—(Tr\D,(T,)

This easily follows from Theorem [3.1] and the fact that, for all » > 0, the GHP distance between
By(Ty,) and B.(T»,)\Dp(T),) is at most |D,(Ty, )|, O

We now move on to the proof of Proposition |[3.21

Proof. We claim that it is enough to prove the result for functions f such that:
(i) there is an r > 0 such that, if the distance between x and y is greater than r, then

f(X,%,y) =0,
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(i) there is a v > 0 such that, if one of the balls of radius r centered at x or y has a volume
greater than v, then f(X,z,y) =0,
(iii) there is an s > r such that f(X,z,y) only depends on the intersection of the balls of
radius s around x and y in X, bipointed at = and v,
(iv) f is bounded and uniformly continuous for the (bipointed) GHP distance.
Note that assumption (iv) makes sense even if we consider the GHP (and not local GHP)
distance. Indeed, by assumption (iii), we may see f(X,z,y) as a function of By(X,z), so we
do not need the local GHP distance. To show our claim, assume the theorem is true for any f
satisfying (i), (ii), (iii) and (iv). By the monotone convergence theorem, it is true for all indicator
functions of open events satisfying (i), (ii) and (iii). By the monotone class theorem, it is true
for the indicator functions of any event satisfying (i), (ii) and (iii). Now let A be an event whose
indicator function satisfies (i) and (ii). By the monotone class theorem again, the event A can
be approximated by events whose indicator function satisfies (i), (ii) and (iii). More precisely,
for any € > 0, there is an event B whose indicator function satisfies (i), (ii) and (iii), and such
that

E{/ Laags(P™, p,y) ppr(dy)
7)h

Hence, we can get rid of assumption (iii). We can then get rid of assumptions (i) and (ii) by
monotone convergence. Therefore, the result is true for any indicator function, and finally for
any nonnegative measurable function.

We now prove the theorem for a function f satisfying (i), (ii), (iii) and (iv). The idea is to
use the unimodularity of (a variant of) T}, , and take the scaling limit. Let (A,) be a sequence
satisfying the assumptions of Theorem [3.I We first remark that the triangulations Ty, are
invariant by rerooting along the simple random walk. This is the type-I analog of (a part of)
Proposition 9 in [58], and the proof is exactly the same. Moreover, invariance along the simple
random walk and unimodularity are closely related by Proposition 2.5 of [27]. More precisely,
we write ’]I‘An for the map T, biased by the inverse of the degree of its root p,. Then T)\ is
unimodular. Hence, we have

Z f( T)\nvpna ) =K # Z f(%:]fknvyapn) ’

ye’]I‘,\n y€Ty,

where p,, is the root vertex of ’TI\‘,\n/.\ We may restrict ourselves to y € Bm(’f‘,\n) thanks to
assumption (i). By the definition of T}, , the last equation can be rewritten

1 1 1 1 1 1
El—— (*T s Py ) =K |— - (*T Yo n)
deg(py) 3nt Z / APl deg(py) 3nt Z / n A Y P

yEBrn(TAn) yeBrn(Tkn)

Hence, in order to prove the proposition, it is enough to prove that the left-hand side con-
verges as n — +o0o to the left-hand side in the statement of the proposition, multiplied by
E[%] The proof of the same fact for the right-hand side will be similar. By the Skorokhod
representation theorem, we may assume the convergence in Lemma is almost sure. By the
dominated convergence theorem (the domination follows from assumption (ii) and the fact that
f is bounded), it is enough to prove

1 1 a.s.
a9 41 f *T)\nap’rhy ? f(Phapv y):u”Ph(dy) (322)
s’ yeBg(:TAn) <n ) e B

This follows from assumptions (i) and (iv) and the GHP convergence of 1B 4,(Ty,) to
B, s(Ph). O
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Remark 3.23. The same result is true for the Brownian plane. The proof is essentially the
same, the only change is that we need to use Proposition instead of Theorem [3.1]

3.4.3 Identification of the perimeter and volume processes

We first explain what we mean by biasing a process by a martingale, which will be used a
lot in what follows. Let X be an adapted process, and let M be a martingale for the underlying
filtration with E [MO] = 1. We say that a process Y is the process X biased by M if for all ro > 0,
the process (Y;)o<r<r, has the same distribution as (X, )o<y<r, biased by M,,. The martingale
property of M shows the consistency for different values of rg.

The hyperbolic Brownian plane is a biased version of the Brownian plane. Hence, it is nat-
urally equipped with a perimeter and a volume process inherited from those of the Brownian
plane. We denote by (Pﬁ)r>0 and (V;"h)oo the perimeter and volume processes of P". More
precisely, the proof of Theorem [3.1] gives the following joint convergences in distribution:

%T}m —_— Pha
n—-+00

(#‘837.%(’]1‘)\71)})7"20 m (%Pf)rzo’

(%\Bﬁn(%n)\)@o — BV

As previously, the first convergence is for the local GHP distance and the other two for the
Skorokhod topology. Moreover, for all rqg > 0, the triplet (Bim(Ph), (qu‘) v

has the same distribution as (?M(P), (PT)Oéréro’ (VT’)Oérgro) biased by ¢©(Payry, Var,)-

This description implies that these two triplets have the same a.s. properties as for the
Brownian plane. In particular, P* and V" are both cadlag processes and can be expressed as
measurable functions of P". Indeed, we have V" = |B,(P")] for all » > 0, and Proposition 1.1
of [63] (already recalled in (3.1))) gives the convergence

0<r<ro’ ( Oﬁréro)

1 N
ﬁ’Brﬁ-a(Ph)\Br(Ph” - Pva
9 e—0

in probability.

On the other hand, the perimeter and volume of the map By, (T}, ) only depend on By, (T, ).
B
instead of the triplet, we only need to bias by ¢ (P, V;,) instead of ¢(Pay,, Var,). We obtain the
following result.

Hence, if we apply the proof of Theorem to the pair (#‘8B;n(’]l‘)\n)

Lemma 3.24. The pair of processes (P, V") has the same distribution as (P, V') biased by
p(P,V).

The goal of this section is to identify the two processes P" and V" in a more convenient
way as expressed in Theorem Before moving on to the proof of Theorem [3.3] we recall the
description of (P,V') given by [63]. Let Z be the critical continuous-state branching process

with branching mechanism \/§A3/ 2 for A > 0. We also recall that the measure v is defined by

v(dz) = %ﬂzw dz. Then we can restate some results of [63] as follows.

Theorem 3.5 ([63], Proposition 1.2 (ii) and Theorem 1.3).
1) The perimeter process P of the Brownian plane has the same distribution as the time-
reversal of Z, started from +oo at time —oo, and conditioned to die at time 0.
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2) Conditionally on P, the process V has the same distribution as the process
ARG
(; ( tl) gz >0

where (t;) is a measurable enumeration of the jumps of P, and the variables &; are i.i.d.
with distribution v.

We will first prove the second part of Theorem that is, we determine the distribution of
V" conditionally on P". We recall that for all § > 0, the measure v5 on R is defined by

52
53625 e—ﬂ—2x
vs(de) = Iy>ode.

1425 \2ra5

If £7(8) is a random variable with distribution vs, we have, for all 5 > 0,

]E[e_ﬁgh((s)] _ (1 + 5\/4 + 25)6*5\/44*2,8 .
(14 28)e=20

(3.23)

Notice for further use that £"(§) has the same distribution as 62¢ biased by 6_2525, where £ is a
random variable with density v.

Proof of Theorem[3.3. We fix ro > 0. We write D([0, r]) for the Skorokhod space on [0, ro]. We
write g(p) = eP fol e=32°Pd . Let t1,t,... (resp. t7 ¢4 ...) be the (random) jump times of the
process P (resp. P") up to time rg, ordered by decreasing size of jumps |AP;,|. Let f be any
measurable function f : D([0,79]) — RT and let uy, ug,--- > 0. Since V is a pure jump process
and only jumps at jump times of P, by Lemma we have

E[£((PPosrsr) exp (= S wlAVE) | = E[F((P)osrere)g(P) exp (= D (ui +2)|AV, )]
i>0 ' i>0

(3.24)

By Theorem conditionally on P, the jumps AV}, are independent and are distributed as

(APti)Qf , where £ has law v. Hence, the last display can be rewritten as

E[e- (AP E|A P, ] } (3.25)

8 [f ((Prosrsr)g(Pro) [T B[ |AR, ] E[c?CP AR,
1 t'L

i>0
From the distribution of £ we compute easily, for o > 0,
E[e_zo‘%] = (14 2a)e 2.
By combining this with Equation , becomes

E[f((Posrere)9(Pr) [T(1 + 21, e 287l TTE[eme 047D AP, ],
i>0 i>0

where £"(5) has law v;.
This expression shows two things. First, it proves point 2) of Theorem that is, condi-
tionally on (Prh)ogrgm, the jumps AVt}h‘ are independent and of law VIAPh | Second, by setting
i th

u; = 0 for every ¢, it proves that the density of the process (Pf)ggrgro with respect to (Pr)o<r<r,
is given by
9(Pry) [T+ 2|AP, e 2Pl (3.26)
i>0
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We now move on to characterizing the law of P in a nicer way. Since we know by Theorem

that P is a reversed branching process with mechanism \/§u3/ 2 it seems natural to first

study the effect of the density (3.26) on its associated Lévy process. So let S be the spectrally
positive %—stable Lévy process. We normalize it in such a way that, for all ¢,u > 0, we have

#le) o ()5) =owo 1 vaien)

where p(dz) = 1/%x_5/2]lx>0 dz.
For every t > 0, let M; = e~ [l <1+ 2|AS;.[)e 225! where (t;) is a measurable
enumeration of the jumps of S.

Lemma 3.25. The process M is a martingale with respect to the natural filtration associated
to S.

Proof. In the whole proof we will write f(z) = (14 2z)e~2*. To prove the lemma, we first note
that f(z) < 1 for all x > 0, so the product defining M is always well-defined, and E[Mt] <
E[e_st] < +oo for all ¢. Let (:#)¢>0 be the natural filtration associated to S. Since S is a Lévy
process, it is easy to see that, if s < ¢, then E[MA?S] = MS]E[Mt_S]. Hence, it is enough to
prove that E[Mt] =1forallt>0.

We claim that, for all v > 0 and t > 0, we have

E[e—ust I1 f(Asti)} = W), (3.27)

t; <t

where ¢(u) = O+°°(e*""”f(x) — 1 4+ ux)p(de) = \/g% Once this is proved, we have in

particular ¢(1) = 0 and the lemma follows. To prove (3.27)), for £ > 0, we write

+oo
Si = Z ASy, — t/ x p(de).
3

t; <t
ASy, >e

We know that S; is the a.s. limit of S} as € — 0. Moreover, for every ¢, we have
£ +Oo
E[e*%St] = exp (t/ (e72u 1+ 2ux)u(dx)> < E[e*%st].

Hence, since f < 1, the variables e~ [] t,.<t f(AS) are bounded in L? as ¢ — 0. Therefore,
AStZZE

they are uniformly integrable, so the left-hand side of (3.27) is equal to

I —uSs | ] it [ zp(da) [ —uAS, _ ]
65%1@[6 P II fas,)] =tme E[ T] ¢ F(AS:)
t;<t t;<t
ASy >e ASy >e

By the exponential formula for Poisson point processes, the expectation in the right-hand side
is equal to

—+00
exp ([ (7 f () - Da(do)).
which proves (3.27)) by letting & — 0. O
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Since M is a martingale with My = e~%0, we may consider the process S biased by e%0 M.
We denote it by S”. From the form of M it is easy to prove that S” is a Lévy process. Moreover,
by (3.27)), it holds for all w > 0 that

E[e_usth} _ E[Mte_ust} — etl/)(u-i-l) = exp (\/gu\/u + 3) . (328)

We can also compute the jump measure of S, which is given by

_ 3 1+2r _
p(dx) = (14 2z)e 2 p(dz) = “%T/;e 2] pso de. (3.29)

In order to study the continuous-state branching process (CSBP) associated to S via the
Lamperti transform, we consider the process S” started from x > 0 and write 7 = inf{t|S} = 0}.

Note that 7 is a.s. finite since S drifts to —oco and has only positive jumps. We claim that
(Sh . )i>0 under P, has density e® M, with respect to (Syar)i>0 under P,. To prove it, we write

Tn = [Q;nﬂ . For all t1,...,t; > 0 and f: R¥ — R bounded, we have
E[f(Sprs -y St ar)] = nETOOE[f(SﬁATn, e S )]
o
- nll)r_ir_loo E[f(sthl/\Tn’ M SZ;/\TH)]]‘Tn:Z'/Qn}
i=1
[e.e]
= nl])l}_]oo Z E[exMi/2"f(St1/\Tn7 ey Stk/\Tn)]]‘Tn:’L'/2n]
i=1

= lim E[efonf(Stl/\Trm cees Stk/\Tn)]

n—-+oo

= E[egCMTf(Stl/\n sy Stk/\T)]’

which proves the claim.

We now introduce Z", the CSBP with branching mechanism " (u) = \/gu\/u + 3 that is

associated with S” via the Lamperti transform. We also recall that Z is the CSBP with branching

mechanism %u3/ 2. Since the Lamperti transform is a measurable function of the Lévy process,

the process Z" started from z has density

e” [ (1 +2|Az,|)e 212 %] (3.30)

ti

with respect to Z started from =x.
We will now do the same construction as Curien and Le Gall in Section 2.1 of [63] with this
new branching mechanism. The semigroup of Z” is characterized as follows: for all A > 0 and

x,t > 0 we have
E, [ef/\Zth} — emrui (V)

Y

where ,
duéi)\) =— gug()\) ul(A\)+3  and  wup(A) = A (3.31)
The solution of this equation is

3
sinh? (argsh \/g + ﬂt) .
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This gives

3
E, [B_AZP] = exp ( - i >
sinh? (argsh \/g + \/§t>

and, by differentiating with respect to A,

3
hoazh 33z cosh <argsh\g+ \/§t) 3z
E.[Zpe ) = exp | — :
AVA+3 ginp3 (argsh \/g + \/§t> sinh? (argsh \/g + ﬂt)

Let 7/ = inf{t > 0|Z}* = 0} be the extinction time of Z". By the above calculation, we have

(3.32)

, _ ho s v/ _3737
Po(r' <t) =P(Z) = 0) = lim E[e™""] —exp< sinh2<ﬂt>>'

Hence, 7/ has density

cosh(v/2t)

h —
ile) = 6\/§$sinh3(\/§t)

exp < - smhg(x\[%)) (3.33)

with respect to the Lebesgue measure.

We now introduce the process Z" conditioned on extinction at a fixed time p. We denote by
qt(z,dy) the transition kernels of Z h_The process Z" conditioned on extinction at time p is the
time-inhomogeneous Markov process indexed by [0, p] whose transition kernel between times s
and t is

)
o2, dy) = ——q—s(z,dy)

forz>0and 0 <s <t <p,and
s p(x,dy) = do(dy).

As in [63], this interpretation can be justified by the fact that, for all 0 < s; < -+ < s, the
conditional distribution of (Z! ..., ka) on P, (- |p <7 <p+e) converges to

T0,s1 (x7 dyl)WShSz (y1, dy?) T Tsp_1,8k (ykfla dyk‘)

as e — 0T,

We also recall that the extinction time of Z has density ®;(z) = 3% exp (— 2%) (see Section
2.1 of [63]). By combining this with the density for the nonconditioned processes, we get
an absolute continuity relation for conditioned versions of Z and Z". The process Z" started

from x and conditioned to die at time p has density

LiiJ
e ,’j(x) [T +21aZ,|)e 2187 (3.34)
(@) ;5

with respect to Z started from x and conditioned to die at time p. To prove this properly, we
just need to condition on p < 7/ < p+ ¢ and let € go to 0.

We finally define X", which is a version of Z", starting from +oo at time —oo, and conditioned
to die exactly at time 0. We can construct a process (Xf)tgo with cadlag paths and no negative
jumps such that:

(i) X} >0forallt<0and X! =0 as.,

(ii) X} — 400 almost surely as t — —o0,
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(iii) for all z, if T, = inf{t < 0|X; < x}, the process (X
as the process Z" started from z.
Note that [63] describes a process X that is obtained from Z in the same way X h is obtained
from Z". Our Z corresponds to the X of [63], whereas our X corresponds to X. As in [63], we
can get an explicit construction of X" by concatenating independent copies of Z" started from
n + 1 and killed when hitting n for every n € N.

Proposition 4.4 of [63] states that for any p,x > 0, the process (X;—,)o<i<, conditioned on
X_, = z has the same distribution as Z started from x and conditioned to die exactly at time p.
By the same proof, this also holds for X" and Z". Hence, (X",)o<t<, conditioned on Xﬁp =z
has the density - ) with respect to (X_;)o<¢<, conditioned on X_, = x. Therefore, by the
ﬁrst pomt of Theorem E the process (X",)o<t<, conditioned on X" p = « has the density

with respect to (P)o<,<, conditioned on P, = x. But by (3.26), the process (P")o<,<,
conditioned on P;L = z has a density of the form

?Tz +1)n0)t=0 has the same distribution

Fl,p) T]( + 21aZ,,[)e2A%:]

ti

with respect to (P)o<r<, conditioned on P, = z. Since the density must have expectation one,

we must have f(z,p) = e iggg.

Hence, in order to prove that P" has the same distribution as (X",);>0, we only need to
prove that these two processes have the same one-dimensional marginals. To this end, we will
now compute the Laplace transform of the one-dimensional marginals of X"

Lemma 3.26. For all ¢t > 0 and A > 0, we have

E[e_)‘Xﬁt] = <1 + % sinhz(\@t)) - (1 + ;)\tanhZ(\@t)>_1/2.

Proof. Once again, the same computation for X is performed in [63]. By the exact same proof
as in the beginning of the proof of Proposition 1.2 (ii) (section 4.1) in [63], we have

Ele %] = lim E {/WeAZ?@’L(Zh)ds} —m [ E e @) (2] ds
- T 0 t s - T t .

T—+00 T—r+00 0

By (3.33)) and (3.32)), one can compute E, [e*)‘Z?CI)?(ZSh)] exactly:

e alal)] = ovESmG R e (- (vt ot 1)

18V/6x cosh(v/2t)
(A * m)> \/ A + 3coth?(y/2t) Sinh* (V2)

cosh (argsh _3sinh*(v2t) + \fs)

Asinh?(v/2t)43
X
. 1.3 3sinh? (\ft
sinh (argsh N emh® (V1) 13 + fs)
X exp| —
.12 3 sinh? \ft)
sinh (argsh N sinh® (V20) 13 + \fs)
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We can now integrate over s > 0 to get

/JrOOIE:C[ —)‘thbh(Zh)]ds _ 3V3 cosh(v/2t)
0

()‘ + smh2 (V2t) )\/A + 3coth?(y/2t) Sinh 3(V2t)
X 1 —ex — )\ s 2 .
( P ( ( sinhQ(\/it)»)
As x — 400, the last factor goes to 1 and we get the claimed result. 0

In remains to check that Pth has indeed the same Laplace transform. This is obtained by
combining Lemma[3.24] and the Laplace transforms of the variables P, and V; that are computed
in Proposition 1.2 and 1.4 of [63]. The computation is essentially the same as the proof of Lemma
[3:17] and we omit it here. This completes the proof of Theorem [3.3] O

3.4.4 Asymptotics for the perimeter and volume processes

Proof of Corollary[3.1. Section 4.4 of [64] gives another construction of the process (P, V) via
the Lamperti transform. We mimic this construction for (P?, V*). We consider the Lévy process
Sh described by (3.28), started from 2 > 0. We write  for the first time at which S" hits 0. For

every t > 0, we also set
*d
Tt:inf{szO‘/ Zzt}.
0 Su

Finally, let T' = f'y di The process (Sft)o<t<T

distribution as the branching process Z" started from x. We now introduce the time-reversal @,
of S" (the notation 2 is the mirror of S). It is the Lévy process with no positive jumps whose
distribution is characterized by

is the Lamperti transform of S, and has the same

E[e“at} = exp (t\/gux/u + 3) for u > 0.

Let also 27 be the process @ conditionned to stay positive. We recall a classical time-reversal
theorem (e.g. Theorem VII.18 of [34]). The process S” started from x > 0 and killed when
hitting 0 is the time-reversal of the process 21 stopped when hitting = for the last time. By
applying the Lamperti tranform, the time reversal of X", between its first passage at = and 0,
is the Lamperti transform of 2%, stopped when hitting z for the last time. But by item 1) of
Theorem the time-reversal of X" is P". Hence, the process P" is the Lamperti transform

of 2%, More precisely, for every t > 0, let
/ Tdu t}
o %y )

Moreover, let (s;) be a measurable enumeration

:inf{sz()

Then P" has the same distribution as ('&+ )t>0

of the jumps of 2. Conditionally on 2, let (glh) be independent variables such that, for all 4, the
variable §Z-h has distribution ZINE We write

h
=24
SiSt

Let also LT be the process obtained by performing the exact same operation on 27 instead of
?.. Since the construction of L from 2% is the same as the construction of V* from P", we get

(
(Ph Vh)r>0 = (%;ﬁlﬁ)po

=
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It is now easy to obtain an asymptotic estimation of (P, ") through the study of 2 and its
conditioned version @1. For all ¢ > 0, we have

d uot
E[e] = —-| Ele o]
8
= Tl exp <t\/;ux/u + 3)

= 2V2t.

Moreover, it holds that E[e”af] < 4oo for all t > 0 and u > —3 (this follows easily from the
definition of S* as S biased by an explicit martingale and the fact that '& is its time-reversal).

Hence, by a classic moderate deviation argument, we have almost surely =2v/2+0(n -1/ 4
as n — +oo for n € N. Moreover, let ¢ > 0 be such that IP’(\'&A < c) > for all 0 <t < 1. By
the strong Markov property, we have P([2;]| > = — ¢) > %]P’(supte[o,l] |Et| > z) for all z > 0.
Hence, the random variable sup;¢g 1] \Bt\ has exponential tails on both sides, so for n € N large

enough and 0 < t < 1, we have |2y,4; — 2| < n'/%. Hence, we have Yet‘t t—%i 2v/2 + Ot~ /4.

But the distribution of (2,7 ; — 2] )= is just that of 2, conditioned on an event of positive
probability (2 drifts to +00 so it has a positive probability never to hit 0 after time 1). Hence,
we deduce from above that

% as “1/4 I as 1 £—5/4
e 2v/2 + O(t~1/*) | and so '&j trtoo 231 + Ot

The integral of the error term converges, so there is a random variable X, such that f sdu _

e

2“\1; + X +0(1) as. It follows that ln\?i =t — Xoo +0(1), 50 17 ~ e~ 2V2X0e2V2l a5 We finally
get

E.;; ~ 2V2m ~ 21/2¢™2V2Xo00 2V2

a.s. when ¢ — 400, so there is a random variable 0 < £ < 400 such that e*2fTPh —+> E.
r—-+00

h
To prove that % converges a.s. to a deterministic constant, we first notice that L is a
T
nondecreasing Lévy process. By construction, we have

+oo
Bl] = [ Bl @] (),

where p” is the Lévy measure of S” that is computed in , and £ (x ) has distribution v,.
By derivating (3.23) at S = 0, one can compute E[{h(x)} TagT - Olnce p integrates 2 near 0
and has exponential tail, the last display is finite. By the law of large numbers, we get

Lt a.s.

C?
t t—+oo

where ¢ = E[Ll]. By absolute continuity on [1, +00[, the same holds for L™ instead of L.

In order to complete the proof of Corollary we only need to find the distribution of £
and the constant ¢. We will do this with Laplace transforms. We know that, for all A, u > 0, we
have

E[e*)‘g*cug] = lim E{exp( )\672\/57“]3# - e*ZﬁTVTh)].

r—-+00
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But we can compute these Laplace transforms thanks to Lemma and Proposition 1.2 and
1.4 of |63]:

1
_APh—puvh _ _ _ a2
E[e AP “VT] = E[e ABre=iVrePre 2VT/ e 3 Pde]
0

_ /1 . [e(l—A—3x2)PTE [e=+2V2|p,] } da
0

<1+2)\—2—|—\/2u+4
3vV2p+4
><(1+ ENoTES tanh” (2 + 4) 'r)) .

This gives the value of E[exp ( — e‘QﬁTAPf‘ — e_QﬁruVrhﬂ. When we let r go to +oo, the
second factor goes to 1. We also have

2)\672\@r 24 /2M€—2\/§T‘ +4 (2)\ + M/2)6—2\/§r
31/ 2ue=2V2r 4 4 6

2r

2 —1
and sinh? ((2ue‘2\/§r + 4)1/4r) ~ (e\g ) , so the first factor goes to (1 + % + f—8> . This is

sinh? ((2p + 4)1/47~)) o

the Laplace transform of the couple (X , %X ), where X is an exponential variable of parameter
12. This ends the proof. O

3.A Appendix: Proof of Proposition [3.10

The goal of this appendix is to prove Proposition We note that similar ideas to those
below appear in Section 2 of [I17], and more precisely in the proofs of Proposition 2.17 and
2.18. In particular, Lemma [3.30] is essentially proved in the proof of Proposition 2.18 there. If A
is a subset of a metric space X and ¢ > 0, we will write A% for the union of all the open balls
of radius ¢ centered at an element of A. Note that this is an open subset of X. We also recall
that B,(X) and B,.(X) are respectively the closed ball and the hull centered at the root of X.
In particular, they are both closed subsets of X. To prove Proposition [3:10] we will also need
several times the following definition.

Definition 3.27. Let (X, d) be a metric space, z,y € X and € > 0. An e-chain from x to y is
a finite sequence of points (z;)o<i<k of X such that zp = x, 2z = y and d(z;, ziy1) < € for all
0<i<k-1

Lemma 3.28. Under the assumptions of Proposition the application s — Bs(X) is con-
tinuous at r for the Hausdorff distance on the set of the compact subsets of B,41(X).

Proof. Let 6 > 0. It is enough to show that, for some ¢ > 0, we have:
a) Byro(X) C Br(X)P,
b) B,(X) C B,—o(X)°.
We start with the first point. Let A = <ﬂ€>0m(X)>\E(X). If € A, then there

is a geodesic from x to a point y € X\B,11(X) that stays outside B,.(X). However, v has to
intersect B,4.(X) for all € > 0. This is clearly impossible, so A = {). In particular, the decreasing
intersection of the compact sets B, 1/, (X N\B,(X)? is empty, so one of these compact sets is
empty, which proves item a).
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Figure 3.1 — Illustration of the proof of Lemma [3:30]

For item b), let A’ = (B*T(X)\BT(X))\(UDO BT_E(X)). By assumption (#4i) we have

u(A’) = 0 and A’ is open, so by assumption (ii) we get A’ = (). This implies B,.(X)\B,(X) C
U0 m(X)‘s. Moreover, we have B,(X) C Br_l/n(X)‘s for L < 6. Hence, the increasing
family of open sets B,_y/,(X )® covers the compact space B,.(X), so there is an £ > 0 such that
B (X) C Br—(X)°. O

Remark 3.29. Note that the first point is true even without assumptions (i7) and (4i7).

Lemma 3.30. Let ¢ > 0. Let (X, p,a) and (Y, p, b) be two bipointed connected, compact subsets
of a locally compact metric space (Z,d). Assume that the Hausdorff distance between X and Y
is less than e and that d(a,b) < e. Then, for all r such that r + 4 < d(p,b), we have

1) B.(X)*NY C B4 (Y),

2) B (X) C Byya:(Y)".

Proof. We first notice that the connectedness of X implies that, for any two points z and z’ in
X, there is an e-chain in X from z to 2’. The same is true for Y.

Let y be a point in B,.(X)°NY. We want to show that y € B, 4:(Y). We can assume d(p,y) >
r+4e (if it is not the case, then y € B, 4.(Y") is obvious). Let (2;)o<i<k be an e-chain from y to
bin Y. We know that d(a,b) < € and that there is a point = € X such that d(z,y) < . We write
wy = x, wg, = a and, for all 1 <1i < k—1, we take w; € X such that d(wj, z;) < € (see Figure
for an illustration). For all i, we have d(w;, w;1+1) < d(w;, 2;) + d(z;, zi+1) + d(zi41, wit1) < 3¢,
so (w;) is a 3e-chain from z to a in X. Since z € B,(X), there must be at least one i such
that d(p,w;) < r + 3e, which implies d(p, z;) < r + 4¢. Hence, every e-chain from y to b has
at least one point at distance from the root less than r + 4¢, so there is no e-chain from y to
b in Y\B;44:(Y). This implies that y and b do not lie in the same connected component of
Y\By14:(Y), so y € Br14-(Y), which proves the first point of the lemma.

The second point is easily obtained from the first one: if z € B,(X), then there is a y € Y
such that d(z,y) < e. By the first point, we have y € By44.(Y), so x € Bry4-(Y)". O

Proof of Proposition[3.10. First, we need to prove that the radii of the B,(X,) are bounded.
Let R = max{d(p,x)|z € By4+4(X)} be the radius of B,;4(X). For n large enough, we have

dar(Br+3(Xy), Bris(X)) < 1.
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We write X’ = Bry3(X) and X| = Bry3(X,). The above inequality means that we can embed
X’ and X] isometrically in the same space (Z, d) in such a way that X, C (X’)! and p,, = p.

Let b € X]\Bprt2(X,) and a € X’ such that d(a,b) < 1. We have d(a,p) > R+ 1, so
a ¢ B.(X) and B.(X) = B,(X') is the hull of radius r with center p with respect to a in X'.
By item 2) of Lemma for e = 1, we have B,(X!) C B, 4(X’)!. In particular, the radius
of B,(X]) is less than R + 1. This means that only one connected component of X'\ B,.(X/)
contains points at distance greater than R + 1 from the root. In other words, the radius of
B.(X,) is at most R+ 1.

We now move on to the proof of our proposition. Let 6 > 0. By Lemma [3.28] there is
e > 0 such that B,;4.(X) C B.(X)? and B,(X) C B,_4.(X)°. For n large enough, we have
daup(X', X)) < e. This means that we can embed X’ and X/, in the same space Z in such a
way that

a) p = pn,

b) X, C (X',

c) X' C(X5)7,

d) for every A C X that is measurable we have p,(A4) < u(A®) + ¢,

e) for every B C X' that is measurable we have pu(B) < u,(B°) + ¢.
This embedding provides a natural way to embed the measured metric spaces B, (X,,) and B,(X)
in Z. We will deduce an upper bound for the GHP distance between these two hulls.

For all y € B,(X,) there is an z € X’ such that d(z,y) < e. By Lemma we have
x € Byia:(X), so by Lemma and our choice of ¢, we have 2 € B,(X)%. This proves
B.(X,) C B.(X)*=.

Similarly, let 2 € B,.(X). We have 2 € B,_4.(X)° by Lemma and our choice of e. Let
z € By_4:(X) be such that d(z,z) < §. There is a y € X, such that d(y,z) < e. By Lemma
we have y € B, _4-14:(Xy) and d(x,y) < 0 + €, which proves B,(X) C B,(X,)%*. Hence,
in our embedding, the Hausdorff distance between B,.(X) and B,(X,,) is less than ¢ + 6.

For all A C B,(X,) measurable, we have y,(A) < u(A°) + € = p(A° N X') + &. By Lemma
3.30| we have the inclusion A° N X' C A° N By14:(X), so we get

Mn(A) < e+ H(AE N BT’+46(X))
< e+ p(A°NB(X)) + V(r+4e) = V(r),

where we recall that V(s) = u(Bs(X)) for all s.

Similarly, for all B C B, (X) measurable, we have

p(B) < p(BNBr—ae(X)) +V(r) = V(r—4e)
< et pn((BNB—2(X))F N X))+ V(r) = V(r— 4e)
< e+ un(BENB_ae(X)F N X))+ V(r) = V(r — 4e)
< e+ pn (BN B (Xy)) + V(r) = V(r — 4de),

where the last inequality uses Lemma [3.30
Hence, our embedding of B,(X) and B, (X)) gives the following bound for n large enough:

danp(Br(X), Br(X,)) < max (g YOt V(rtde) = V() e+ V() — V(r— 45)).

By assumption (7i7) in the statement of the proposition, the right-hand side can be made
arbitrarily small, which proves the first point of Proposition|3.10} The second point is an obvious
consequence of the first one.

Finally, we note that in the case of compact, bipointed metric spaces ((Xn, dpn)y Ty Yns ,un)
and ((X, d),m,y,u) with r < d(z,y), the above proof still works. The first part of the proof

82



(i.e. proving that the radii of the (E(Xn))n>0 are bounded) is not necessary anymore. We may
apply the second part of the proof directly to X and Xy, instead of the compact subsets X " and
X, . Note that if » > d(z,y), then B,(X) = X and B,(X,,) = X,, for n large enough, so the
O

conclusion is immediate.
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Chapter 4

Infinite geodesics in random hyperbolic
triangulations

ou Ou l'on se branche a la sortie d’une boule.

This chapter is adapted from the preprint [40)].

We study the structure of infinite geodesics in the Planar Stochastic Hyperbolic Triangula-
tions T introduced in [58]. We prove that these geodesics form a supercritical Galton—Watson
tree with geometric offspring distribution. The tree of infinite geodesics in T) provides a new
notion of boundary, which is a realization of the Poisson boundary. By scaling limits arguments,
we also obtain a description of the tree of infinite geodesics in the hyperbolic Brownian plane.
Finally, by combining our main theorem with results from Chapter 5| we obtain new hyperbol-
icity properties of T): they satisfy a weaker form of Gromov-hyperbolicity and admit bi-infinite
geodesics.
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4.1 Introduction

The construction and study of random infinite triangulations has been a very active field
of reasearch in the last years. The first such triangulation that was built is the UIPT [20] [12].
A key feature in the study of this object is its spatial Markov property, which motivated the
introduction of a one-parameter family (T))o<a<x, of triangulations with A\, = ﬁ, satisfying
a similar property [58, 45] (see also [I8] for similar constructions in the halfplanar case). The
case A = A, corresponds to the UIPT, whereas for A < A. the triangulation T has a hyperbolic
behaviour. For example, it was proved that T, has a.s. exponential volume growth and that
the simple random walk on it has positive speed [58]. The goal of this work is to establish

hyperbolicity properties of these maps related to their geodesics.

Leftmost geodesic rays. Our first goal in this work is to describe precisely the structure of
infinite geodesics in the triangulations T). More precisely, all the triangulations considered here
are rooted, that is, equipped with a distinguished oriented edge called the root edge. The root
vertex, that we write p, is the starting point of the root edge. For any vertices x and y in T),
we call a geodesic v from x to y leftmost if for any geodesic 7/ from z to y, the union of v and
~" cuts T, in two parts, and the part on the left of « is infinite. A leftmost geodesic ray is a
sequence of vertices (y(n)),,~o such that v(0) = p and for any n > 0, the path (7(7))y<,;<, is a
leftmost geodesic from p to v(n). We denote by T the union of all the leftmost geodesic rays of
Ty. We can see this set of vertices as a graph by relating two vertices if they are consecutive on
a same geodesic ray. By uniqueness of the leftmost geodesic between two points, the graph T¥ is
an infinite tree with no leaf. Moreover, the tree Tf{ divides T into infinite maps with geodesic
boundaries, that we call strips (see the left part of Figure . Our first main result describes
the distribution of T and of these strips. Let 0 < A < A.. Let h € (O, ﬂ be such that

h

A= W, (4.1)

and let
iy = 1—2h—2h\/1—4h§1. (4.2)
Theorem 4.1. — The tree Tg is a Galton—-Watson tree with offspring distribution puy,

where 11 (0) = 0 and gy (k) = mx(1 —my)*~! for k > 1.

— There are two random infinite strips Sg and S)l\ such that the following holds. Condition-
ally on Ti:
1. the strips delimited by Ti are independent,

2. the strip containing the root edge has the same distribution as S1,

3. all the other strips have the same distribution as 5’2.

Note that for A = A\., we have h = % so my, = 1 and py, (1) = 1, so the tree T‘f\c consists
of a single ray. This is reminiscent from geodesics confluence properties already observed in [68]
for the UIPQ (the natural analog of T)_ for quadrangulations): there are infinitely many points
that lie on every geodesic ray. See also [67] for similar results in the UIPT. However, our result
for A = A, does not obviously imply those of [68] since we only deal with leftmost geodesic rays
and not general geodesic rays. On the other hand, for A < A, we have m) < 1, so the offspring
distribution w) is supercritical and there are infinitely many leftmost geodesic rays. Moreover,
the rate of exponential growth le of T?\ is the same as the rate of exponential volume growth
of T/\.
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S0 s S0 | S Y

Figure 4.1 — The strip decomposition of Ty. On the left, the tree Tf]\ is in red. On the right
Sx = S[p] is colored in yellow. The part S[z] of Sy that is shaded in green has the same distribution
as Sy.

We will also describe the distributions of S and S} explicitely in terms of reverse Galton-
Watson trees. For A < A, these strips should be thought of as "thin", in the sense that their
width is of constant order as the distance from the root goes to +o0.

We also state right now a consequence of Theorem that will be useful later. Let v, (resp.
) be the leftmost (resp. rightmost) path in T. We write Sy for the part of T) lying between
v¢ and 7., including the initial segment that 7, and «, have in common (cf. Figure . Then Sy
can be seen as a gluing of infinitely many independent copies of S())\ along T?\. This implies that
S, has an interesting self-similarity property. Indeed, let » > 0. We condition on B, (Tf)]\), the
finite subtree of T formed by those vertices lying at distance at most 7 from p. Let x be a vertex
of TY such that d(p,x) = r. Let 77 (resp. 77) be the leftmost (resp. rightmost) infinite path in
Ti started from p and passing through x. Then the part of Ty lying between ~; and 7, above
x has the same distribution as Sy (see the right part of Figure . Indeed, it is also a gluing
of independent copies of Sg and the tree of descendants of x in T"i has the same distribution as
TS. We will denote this part of Ty by S[z]. In all the rest of this work, "thin" maps such as 5’2
and S/l\ will be refered to as strips, and "thick" maps like Sy as slices.

Hyperbolicity properties related to geodesics. By Theorem [41] for A < A., the map
T contains a supercritical Galton—Watson tree. By combining this with the results of Chapter
Bl we obtain that T satisfies two metric hyperbolicity properties: a weak form of Gromov-
hyperbolicity, and the existence of bi-infinite geodesics.

More precisely, we recall that a graph G is hyperbolic in the sense of Gromov if there is a
constant k£ > 0 such that all the triangles are k-thin in the following sense. Let z, y and z be
vertices of G and gy, Vyz, V22 be geodesics from x to y, from y to z and from z to x. Then for
any vertex v on 7y, the graph distance between v and ~,. U 7., is at most k. As usual, such a
strong, uniform statement cannot hold for T since any finite triangulation appears somewhere
in Ty. Therefore, we need to study an "anchored" version.

Definition 4.1. Let M be a planar map. We say that M is weakly anchored hyperbolic if there
is k > 0 such that the following holds. Let x, y and z be three vertices of M, and let vy, (resp.
Yyz» Vzz) be a geodesic from z to y (resp. y to z, z to x). Assume the triangle formed by vy,
Vy> and v, surrounds the root vertex p. Then

d(p, Yoy U Yyz U Vo) < k.

Another property studied in Chapter [5] is the existence of bi-infinite geodesics, i.e. paths
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(7(i))iez such that for any ¢ and j, the graph distance between (i) and ~(j) is exactly |i — j|.
This is not strictly speaking a hyperbolicity property, since such geodesics exist e.g. in Z2.
However, they are expected to disappear after perturbations of the metric like first-passage
percolation (see for example [87]). On the other hand, bi-infinite geodesics are much more stable
in hyperbolic graphs [32]. In Chapte we prove that any random planar map containing a
supercritical Galton—Watson tree with no leaf is a.s. weakly anchored hyperbolic, and contains
bi-infinite geodesics. In particular, the following result follows from Theorem [£.1]

Corollary 4.2. Let 0 < A < A.. Almost surely, the map T) is weakly anchored hyperbolic and
admits bi-infinite geodesics.

The existence of bi-infinite geodesics answers a question of Benjamini and Tessera [32]. Once
again, there is a sharp contrast between the hyperbolic setting and "usual" random planar maps.
For example, the results of [68] imply that such bi-infinite geodesics do not exist in the UIPQ.

Poisson boundary. Another goal of this work is to give a new description of the Poisson
boundary of T for 0 < A < A. in terms of the tree T%. Let G be an infinite, locally finite graph,
and let G U G be a compactification of G, i.e. a compact metric space in which G is dense.
Let also (X,,) be the simple random walk on G. We say that G is a realization of the Poisson
boundary of G if the following two properties hold:

— (X,,) converges a.s. to a point X, € G,

— every bounded harmonic function A on G can be written in the form

h(l’) =E,; [g(Xoo)] )

where g is a bounded measurable function from 90G to R.
A first realization of the Poisson boundary of T is given by a work of Angel, Hutchcroft,
Nachmias and Ray [I4]: let dcpT)y be the boundary of the circle packing of T in the unit disk.
We may equip Ty U dcpT)y with the topology induced by the usual topology on the unit disk.
Then almost surely, dopT) is a realization of the Poisson boundary of T). Moreover, almost
surely, the distribution of the limit point X, has full support and no atoms in dopT).

We write 9T for the space of infinite rays of TS. If v,/ € 9T, we write y ~ ~ if vy =~/
or if v and 4 are the left and right boundaries of the same strip. Then ~ is a.s. an equivalence
relation in which countably many equivalence classes have cardinal 2, and all the others have
cardinal 1. We write OTY = OT$ /~. There is a natural way to equip Ty U B\T*‘)]\Awith a topology
that makes it a compact space, see Section 3.1 for more details. Hence, T U 8T‘;’\ can be seen
as a compactification of the infinite graph T),. We show that é\Ti is also a realization of the
Poisson boundary.

Theorem 4.2. Let 0 < A < A.. Then almost surely:

1. the limit lim X,, = X exists, and its distribution has full support and no atoms in T ,

2. ;9\T§\ is a realization of the Poisson boundary of T}.

Note that, by a result of Hutchcroft and Peres [83], the second point will follow from the
first one. Finally, we show in Chapter [5| that the existence of the limit X, and the fact that
it has full support are true in the more general setting of planar maps obtained by "filling the
faces" of a supercritical Galton—Watson tree with i.i.d. strips. However, we did not manage to
prove non-atomicity and to obtain a precise description of the Poisson boundary in this general
setting. Our proof of non-atomicity here uses an argument specific to T), based on its peeling
process.
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Geodesic rays in the hyperbolic Brownian plane. Finally, the last goal of this work is
to take the scaling limit of Theorem [4.1] to obtain results about geodesics in continuum objects.
Indeed, another purpose of the theory of random planar maps is to build continuum random
surfaces. The first such surface that was introduced is the Brownian map [99, [116], which is
now known to be the scaling limit of a wide class of finite planar maps conditioned to be large
[1, B, 24], 36} 65, 112]. A noncompact version P called the Brownian plane was introduced in
[62] and is the scaling limit of the UIPQ and also of the UIPT (see Chapter . Finally, it was
shown in Chapter [3| that the hyperbolic random triangulations have a near-critical scaling limit
called the hyperbolic Brownian plane and denoted P". More precisely, let (\,) be a sequence of

numbers in (0, A.] satisfying
2 1

Then %’]I‘;m converges for the local Gromov-Hausdorff distance to P". By taking the scaling
limit of Theorem and checking that the tree of infinite leftmost geodesics behaves well in the
scaling limit, we obtain a precise description of the geodesic rays in P". Let B be the infinite
tree in which every vertex has exactly two children, except the root which has only one.

Theorem 4.3. The infinite geodesic rays of P" form a tree T9(P") that is distributed as a Yule
tree with parameter 2v/2, i.e. the tree B in which the lengths of the edges are i.i.d. exponential
variables with parameter 2v/2.

Once again, this behaviour is very different from the non-hyperbolic setting: in the Brownian
plane, there is only one geodesic ray (this is Proposition 15 of [62], and an easy consequence of
the local confluence of geodesics proved in [98] for the Brownian map). We also note that the
rate 2v/2 of exponential growth of T9(P") is the same as the rate of exponential growth of the
perimeters and volumes of the hulls of P" [45, Corollary 1.

The skeleton decomposition. Our main tool for proving these results will be the skeleton
decomposition of planar triangulations introduced by Krikun [94] for the type-II UIPT. See
also [65] for the adaptation to the (slightly easier) type-I case. This decomposition encodes a
triangulation by a reverse forest, where leftmost geodesics from the root pass between the trees
and between their branches. The infinite forest describing the UIPT consists of a single tree,
which can be seen as a reverse Galton—Watson tree with critical offspring distribution, started
at time —oo, and conditioned to have exactly 1 vertex at time 0 and to die at time 1. We obtain
a similar description for the infinite forest encoding Ty for 0 < A < A, but here the offspring
distribution is subcritical. A key feature is that the forest now contains infinitely many infinite
trees. The parts of Ty described by each of these trees are the strips delimited by the leftmost
geodesic rays.

Structure of the paper. The structure of the paper is as follows. In Section 1, we recall some
combinatorial results about planar triangulations, and we recall the definition and some basic
properties of the maps T, and their halfplanar analogs. In Section 2, we prove Theorem by
computing the skeleton decomposition of T). Section 3 is devoted to the proof of Theorem [4.2]
and Section 4 to the proof of Theorem In Appendix A, we prove a technical result needed
in Section 4, which shows that a wide class of events related to geodesics are closed for the
Gromov—Hausdorff distance.
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4.2 Combinatorics and preliminaries

4.2.1 Combinatorics

For n > 0 and p > 1, a triangulation of the p-gon with n inner vertices is a planar map with
n + p vertices in which all faces are triangles except one called the outer face, such that the
boundary of the outer face is a simple cycle of length p. It is equipped with a root edge such
that the outer face touches the root edge on its right. We consider type-I triangulations, which
means we allow triangulations containing loops and multiple edges. We denote by .7, , the set
of triangulations of the p-gon with n inner vertices.

The number of triangulations with fixed volume and perimeter can be computed by a result
of Krikun, as a special case of the main theorem of [95]:

p(2p)! 4" 1(2p + 3n — 5)!! Cn. 52
# S = )2 nl2p+n—1DI notoo c(p)Ac 0, (4.3)

1

m and

where A\, =
37 ~p(2p)! 1

cp)=———">=— ~ 127, /p. 4.4

®) 44/27(p!)2 p—+oo 36m/2 VP (44

For p > 1 and A > 0, we write wx(p) = }_,,50 #InpA". Note that by the asymptotics (4.3), we

have wy(p) < +oo if and only if A < A\.. We ﬁnally write Wy(z) = >_ 51 wa(p)aP. Formula (4)
of [95] computes W), after a simple change of variables:

Wi (z) = ;((1 L) T s -1t i), (4.5)

where h € ( , 4} is glvenl by - From this formula, we easily get

1 142k
=2 _1Hen A
wl) =3~ A (46)

and, for p > 2,

(2p —5)!1 (1 —4h)p + 6h
p! 4(1 4 8h)3/2

We also define a Boltzmann triangulation of the p-gon with parameter A as a random triangulation

T such that P(T' =t) = ﬁ?p) for every n > 0 and t € 7, ,,.

wyx(p) = (2 + 16h)P

(4.7)

4.2.2 Planar and halfplanar hyperbolic type-I triangulations

We recall from Chapter [3] the definition of the random triangulations Ty for 0 < A < A.. A
finite triangulation with a hole of perimeter p is a rooted map in which all the faces are triangles,
except one whose boundary is a simple cycle of length p (the difference with a triangulation of
the p-gon is that we do not require the root to lie on the boundary). Let ¢ be a finite triangulation
with a hole of perimeter p and let T' be an infinite, one-ended triangulation of the plane. We
write ¢ C T if T can be obtained by filling the hole of ¢ with an infinite triangulation of the
p-gon. For 0 < A < )., the distribution of T) can be characterized as follows. For any finite
triangulation ¢ with a hole of perimeter p, we have

P(t C Ty) = ex(p)A,

1. Note that our h corresponds to the k3 of Krikun.
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where [t] is the total number of vertices of ¢ and

o) = ~(3+ 1) 5 (2, (48)

q=0

where h is as in (4.1)). Equivalently, we can compute the generating function

Cy(z) = ax(p)a? = '
\(@) ; \P) ML= 58a) T 4L+ 8h)e

Note that the numbers ¢, (p) are equal to the ¢(p) defined by and T, corresponds to the
type-1 UIPT [65] [129]. As in the type-II case [58], the triangulations T exhibit a spatial Markov
property similar to that of the UIPT: if ¢ is a finite triangulation with a hole of perimeter p,
conditionally on ¢t C T), the distribution of the infinite triangulation that fills the hole of ¢
only depends on p. We denote by T4 a triangulation with this distribution. By a simple root
transformation (more precisely duplicating the root edge, adding a loop inbetween and rooting
the map at this new loop, see Figure 2 of [65]), triangulations of the plane are equivalent to
infinite triangulations of the 1-gon. In particular, the image of T under this root transformation
is T}, so studying one or the other are equivalent. In particular, the root transformation does
not affect leftmost geodesics from the root, so all the results we will first obtain about geodesic
rays in ']I'%\ are immediate to transfer to T).

We also define the halfplanar analog of Ty, that we will denote by Hy. This will only be
used in Section 3 to study the random walk on Ty, so all the rest of Section 1 can be skipped in
first reading. A triangulation of the halfplane is an infinite planar map in which all the faces are
triangles except one called the outer face, whose boundary is simple and infinite. Triangulations
of the halfplane are rooted in such a way that the root edge touches the outer face on its right.
We note that Angel and Ray build in [I8] a family (HL), /3<a<1 of hyperbolic triangulations
of the halfplane in the type-II setting and explain in Section 3.4 how to "add loops" to obtain
type-1I triangulations. The triangulations H) we define are a particular case of their construction.
However, as in Chapter [3| and in order to limit the computations, we prefer to construct the
maps H) directly instead of relying on the type-II case.

The law of H is characterized by the following. Let ¢ be a triangulation of the p-gon with
a marked segment of edges Oyutt on its boundary, such that Oyt contains the root edge. Such
triangulations will be called marked triangulations. Let Ot = Ot\Oout. We write |t[;, for the
number of vertices of ¢ that do not lie on 9yytt. We also write [9int| (resp. |Ooutt|) for the number
of edges on Oyt (resp. Ooutt). We write ¢ C Hy if H) can be obtained by gluing a triangulation
of the halfplane H to t in such a way that 0t N 0H = Oit.

X

(4.9)

Proposition 4.3. For any 0 < A < A, there is a random triangulation H of the halfplane such
that for every marked triangulation ¢, we have

1 |aint|7|aoutt|
P(t C Hy) = <8 + h> Altlin

Proof. We construct this triangulation by peeling along the same lines as in [I8]. If H exists, let
fo be its triangular face that is adjacent to the root. Then fy has one of the three forms described

by Figure Moreover, we have P (Case I occurs) = A (8 + %) = \/ﬁw. By summing over all

possible ways to fill the green zone, we also have

1 —1
P (Case I1; occurs) = P (Case I1I; occurs) = (8 + h> wyr(i+1)
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Case I Case I1I; with ¢ = 2 Case I1I; withi=1

Figure 4.2 — The three cases of peeling. In the two last cases, the parameter ¢ > 0 corresponds
to the number of edges of OH, that fy separates from infinity.

for all 4 > 0. If we sum up these probabilities, we obtain

1 1\ 1 1 h
— 42 8+ — 1) = ———+2(8+— | W =1 (410
VI+8h ; < h> i+ = = ( h) A (1 ¥ 8h> (4.10)

by . Since these probabilities sum up to 1, we can construct H by peeling with the tran-
sitions described above. Everytime case I1I; or I11; occurs, we fill the green bounded region
with a Boltzmann triangulation of the (i + 1)-gon with parameter \. As in [I8] (see also [58]
in the planar case), we can check that we indeed obtain a triangulation of the halfplane, that
its distribution does not depend on the choice of the peeling algorithm, and that the random
triangulation we obtain has the right distribution. O

We now state a coupling result between T, and H) similar to the one stated in [I7] and
(implicitly) [58] in the type-II case. We recall that a peeling algorithm is a way to assign to every
triangulation with a hole an edge on its boundary (see e.g. |58, Section 1.3]). To any peeling
algorithm is naturally associated a filled-in exploration of Ty. By filled-in, we mean that every
time the face just explored separates a finite region from infinity, the interior of the finite region
is entirely discovered.

Lemma 4.4. (i) For 0 < XA < A, the triangulation H is the local limit as p — 400 of T%.
(ii) For 0 < A < A, consider a filled-in peeling algorithm ¢/ with infinitely many peeling
steps, and let T" be the part of Ty that is discovered by /. Then conditionally on T, the
infinite connected components of Ty\T (rooted on their boundary according to a rooting
convention depending only on T") are independent copies of H.

Proof. (i) If p > 1 and t is a marked triangulation with |Joust| < p, let g be a triangulation
with a hole of perimeter p and let ¢ty + ¢ be a triangulation obtained by gluing dyu:t to a
segment of dty. Then by the definition of T}, we have

P(to+t C Ty) ex(p + 19mt] = 18outt]) 11t
P(tcT;)=—""-""2 = Altlin
( )‘) P (t() (- T)\) C)\(p)
1 ‘8int‘_‘8outt|
- <8 + ) Altlin
p—+o0 h
= P (t - Hx\) )

which is enough to conclude.
(ii) We first note that there are infinitely many peeling steps and all the finite holes are
filled-in, so every connected component of T)\T is halfplanar. The second point then
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follows from the first one since the perimeter of the region discovered after n peeling
steps a.s. goes to +00 as n — +o00. See the proof of Lemma 2.16 in [I7] for the same
result in the type-II case. Note that for A = \., we have T' = T a.s. by Corollary 7 of
[64], so the statement (ii) is irrelevant.

O

4.3 The skeleton decomposition of hyperbolic triangulations

The aim of this section is to prove Theorem [4.1] It is organized as follows. In Section 2.1, we
describe the finite skeleton decomposition, which associates to every finite triangulation a finite
forest, and its infinite counterpart. In Section 2.2, we compute the distribution of the skeletons of
the hulls of T). This characterizes the skeleton of T entirely, but in a form that is not convenient
for the proof of Theorem [£.1] In Section 2.3, we explain why the infinite skeleton of T} is related
to infinite leftmost geodesics in the triangulation. Section 2.4 contains a description of the strips
Sg and S}\ by the distribution of their hulls, without a proof of their existence. In Section 2.5, we
use all that precedes to prove Theorem Finally, Section 2.6 is devoted to the construction
of 59\ and S/l\.

4.3.1 The skeleton decomposition of finite and infinite triangulations

The finite setting: skeleton decomposition of triangulations of the cylinder. We first
recall the skeleton decomposition of triangulations introduced by Krikun [94, 92] for type-II
triangulations and quadrangulations, and described in [65] for type-I triangulations (see also
[19, [122]). This decomposition applies to so-called triangulations of the cylinder. Most of the
presentation here is adapted from [65].

Definition 4.5. Let » > 1. A triangulation of the cylinder of height r is a rooted planar map in
which all faces are triangles except two distinguished faces called the top and the bottom faces,
such that the following properties hold. The boundaries of the top and bottom faces are simple
cycles. The bottom face lies on the right of the root edge. Finally, every vertex incident to the
top face is at distance r from the boundary of the bottom face, and every edge adjacent to the
top face is also adjacent to a face whose third vertex is at distance r — 1 from the boundary of
the bottom face.

If A is a triangulation of the cylinder of height r, we write A and 9, A for the boundaries of
the bottom and top faces. Let p = |0A| and g = |0+ A|. The skeleton decomposition encodes A
by a forest of ¢ plane trees and a family of triangulations of polygons indexed by the vertices of
this forest. For 1 < j <7 — 1, we define the ball B;(A) as the map formed by all the faces of A
having at least one vertex at distance at most j —1 from dA, along with their vertices and edges.
We also define the hull B?(A) as the union of B;(A) and all the connected components of its
complementary, except the one that contains 9, A. It is easy to see that B;(A) is a triangulation
of the cylinder of height j. We denote by ;A the top boundary of BJ'-(A), with the conventions
O A = OA and 9, A = 0, A.

If 1 < j <r, every edge of 9;A is incident to exactly one triangle whose third vertex belongs
to 9;_1A. Such triangles are called downward triangles at height j. We can define a genealogy on
ngo 0;A by saying that e € 0;A for j > 1 is the parent of ¢/ € 9;_1 A if the downward triangle
adjacent to e is the first one that one encounters when moving along 9;_1A in clockwise order
starting from the middle of the edge €’ (see Figure . We obtain ¢ trees rooted on 0,A. Let
(t1,...,tq) be the forest obtained by listing these trees in clockwise order in such a way that the
root edge of A lies in ¢;. This forest is called the skeleton of A and we denote it by Skel(A).
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Figure 4.3 — A triangulation of the cylinder A and its skeleton Skel(A) € %, g 5 in purple. The
cycles 0;A are in blue, and the root edge is in red. The leftmost geodesics from the vertices of
0+A to OA are in orange. The green holes must be filled by triangulations of polygons.

Note that t; has a distinguished vertex at height r. The set of possible values of Skel(A) is called
the set of (p, q,r)-admissible forests and is described by the next definition.

Definition 4.6. Let p,q,r > 1: a (p, ¢, 7)-pre-admissible plane forest is a sequence of plane trees
f=(t1,...,ty), equipped with a distinguished vertex p, such that:

— the maximal height of the trees ¢; is r,

— the total number of vertices at height r in the trees ¢; is p,

— p lies at height 7.
We write %), for the set of (p, ¢, 7)-pre-admissible forests. If furthermore p € t;, we say that

[ is (p, ¢, r)-admissible, and we write .7, , . for the set of (p, g, r)-admissible forests.

Let f = (t1,...,tp) € Fpqr. Most of the time, we will represent f with the roots of the trees
t; on the top. Hence, if x € ¢; is a vertex of f, we define the reverse height of x in f as r minus
the height of = in t;, and we write it h;?"(v). In particular, the roots of the trees t; have reverse
height r and p has reverse height 0. Although quite unusual, this convention is natural because
the reverse heights in Skel(A) match the distances to the root in the triangulation A. It will
also be more convenient when we will deal with reverse forests with infinite height.

The forest Skel(A) is not enough to completely describe A: if we consider all the downward
triangles of A, there is a family of holes, each of which is naturally associated to an edge of
U;:() 0;A. If e € 9;A with 1 < j < r, the associated hole is bounded by the edges of 9;_1A
that are children of e and by two vertical edges connecting the initial vertex of e to two vertices
of 9;_1A. This hole has perimeter c. 4 2, where ¢, is the number of children of e, so it must be
filled by a triangulation of a (c. + 2)-gon. If ¢, = 0, it is possible that the hole of perimeter 2
is filled by the triangulation of the 2-gon consisting of a single edge, which means that the two
vertical edges are simply glued together.

If fis a (p, ¢, r)-admissible forest, let f* be the set of those vertices v of f such that h}ev(v) >
0. The decomposition we just described is a bijection between triangulations of the cylinder A
with height r such that 9A = p and 9,A = ¢, and pairs consisting of a (p, g, r)-admissible forest
f and a family (M,),cp+ of maps such that M, is a finite triangulation of a (¢, + 2)-gon for
every v.

94



!/

S

Figure 4.4 — A forest f of height 4 and the forests Ba(f) and Bj(f). The ancestors lie on the
top and the distinguished vertex is in red.

Moreover, this decomposition encodes informations about leftmost geodesics from the vertices
of 0,A to OA: these geodesics (in orange on Figure are the paths going between the trees of
Skel(A). These geodesics cut A into ¢ slices, each of which contains an edge of 9,A. Moreover,
the slice containing the i-th edge of d,A can be completely described by the i-th tree t; of
Skel(A) and the maps M, for v € t;.

The infinite setting: infinite reverse forests. If f € %, ., and 0 < j <7, let x{, . ,a:?.,;
be the vertices of f lying at reverse height j in f, from left to right. For every 1 < i < s, let tZ be
the tree of descendants of :1:? . Let also 7g be the index such that the distinguished vertex belongs
to t{o. We define B;(f) as the forest (t,...,t]), with the same distinguished vertex as f (see

Figure 4. D and B}(f) as the forest (tf ,tm_H, ot tgo_l). Note that B;(f) € %, and
Bi(f) € )5 but it is not always the case that Bj(f) € 7, ;- Note also that if v is a vertex

of Bi(f), then RSy

B, (%) = Mgy

Bi(f )( T) = hrev(fc)~

Definition 4.7. Let p > 1. A p-pre-admissible infinite forest is a sequence f = (f,),>1 of plane
forests such that

(i) for every r > 1, there is ¢ > 1 such that the forest f, is (p, ¢, )-pre-admissible,

(i) for every s > r > 1, we have B,(fs) = f.
We write ), o, for the set of p-pre-admissible infinite forests. We will also write B,.(f) = f,
for r > 1.

Note that f € %)~ o can also be seen as an increasing sequence of finite graphs, and
therefore as an infinite graph. We call infinite reverse trees the connected components of f. If v
is a vertex of f, we have v € f,. for r large enough. Note that hiﬁ‘"( v) does not depend on r as
long as v € f,. We call it the reverse height of v in f and denote it by h*¥(v). We also write f*
for the set of vertices of f that do not lie at reverse height 0.

Definition 4.8. A p-pre-admissible forest f is called p-admissible if the distinguished vertex
lies in the leftmost infinite tree of f, i.e. if for every r > 0, the leftmost Vertex of f at reverse
height 7 is in the same infinite tree as the distinguished vertex. We write .7, ., , for the set of
p-admissible infinite forests.

Skeleton decomposition of infinite triangulations of the p-gon. We now introduce the
skeleton decomposition of infinite triangulations of the p-gon. Let T be an infinite, one-ended
triangulation of the p-gon. For every r > 1, the hull B2(T") is a triangulation of the cylinder of
height r, so we can define its skeleton f; = Skel (B2(T)) € %, , . for some g. It is also easy to see
that the forests f/ are consistent in the sense that B..(f!) = f/ for every s > r > 1. We claim that
such a family (f]) always defines an infinite p-admissible forest. More precisely, if f € 9’7; 50,00

and r > 1, let B.(f) be the reordered ball of radius r in f (that is, the ball B,.(f) in which the
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trees have been cyclically permutated so that the distinguished vertex lies in the first tree). Then
there is a unique f € .7, . ., such that B;.(f) = f; for every r > 1. We do not prove this formally,
but explain how to build f from (f]): for any s > r, the forest B,(f!) is a cyclic permutation
of f/, and this cyclic permutation does not depend on s for s large enough. Hence, we can set

» = By(fl) for s large enough and f = (f,),>1. Therefore, there is a unique p-admissible forest,
that we denote by Skel(T') and call the skeleton of T', such that Bl (Skel(T")) = Skel (B2 (T')) for
every r > 1. As in the finite case, the skeleton decomposition establishes a bijection between
one-ended infinite triangulations of the p-gon and pairs consisting of a p-admissible infinite forest
f and a family (M, )yee+ of maps such that M, is a finite triangulation of a (¢, + 2)-gon for every
.

Remark 4.9. In order to define the skeleton decomposition, it would have been more convenient
to define an infinite reverse forest f as the sequence (B..(f)) instead of (B, (f)). The reason why
we chose this definition is that it will later make the decomposition of an infinite forest in infinite
reverse trees much more convenient to define.

4.3.2 Computation of the skeleton decomposition of the hulls of T

We now compute the law of the skeletons of the hulls of T%. The map T can be seen
as a triangulation of the cylinder with infinite height. For every r > 1, the map By (T’;\) is a
triangulation of the cylinder of height r with bottom boundary length equal to p.

Lemma 4.10. Let 0 < A < A.. Let A be a triangulation of the cylinder of height r. We write p

(resp. q) for the length of its bottom (resp. top) boundary. Let f = Skel(A) € % .. Then

My

qhx(q)
pha(p) 1L o) 11 wa(ey +2)’

ve f* ve f*

P (B2(T) = A) =

— ¢y is the number of children of v in f,
— h € (0,1] is given by (£.1),

— ) =3 B+3) "),
— 0), is the offspring distribution whose generating function gy is given by

() = Dyt = L LD VIZ ), (4.11)

. x
>0

Proof. The proof is exactly the same as in the case A = . (Lemma 2 in [65]), up to changes
of notation (the p of [65] corresponds to our A and the a corresponds to 8 + ). The same
computations yield

0 (i) = \/ﬁ(lfg}) wy (i + 2), (4.12)

and the computation of gy follows from (4.5)). O]

Let p,q,r > L and f € %, .. We sum the formula of Lemma over all families (M, )ye p+

such that M, is a triangulation of a (¢, + 2)-gon for every v. By the definition of wy (i + 2), we

have ano #Tivon wkf‘i:% =1 for every i > 0, so we get
P (Skel (BS(T2)) = f) = al(9) IT 6x(cw)- (4.13)
pha(p)

ve f*

96



Note that describes explicitly the distribution of B, (Skel(']I"/{)), so we completely know
the law of Skel(T%). As we will see in Section 2.3, this is in theory enough to prove Theorem
However, infinite leftmost geodesics are not very tractable in this characterization. Hence,
we will need to find another construction of the Skel (’]I‘I)’\) and prove it is equivalent to (4.13)).
This will be the main goal of the rest of Section 2. Before moving on to the proof of Theorem
[4.1] we end this subsection with a few remarks about the perimeter process of T}.

We notice that can be used to study the perimeter process of Ty in the same way as
the perimeter process of T}, is studied in [94] and [122]. More precisely, by the same computation
as in the proof of Lemma 3 in [65], by summing over all (p,q,r)-admissible forests, we

obtain L
P(|0B; (T2)| = q) = 2@

h)\(p)]P)q (XA(T) = p) )

where X is the Galton—Watson process with offspring distribution 6. Since we know that
(|10B2(Tz)]),>¢ is @ Markov chain (by the spatial Markov property) and has the same distribution
as the perimeter process of T}, we even get, for every p,q > 1 and s > r > 0,

RONC)
ha(p)

Let my = >,5(%0x(i) be the mean number of children. By (4.11)), we can compute my =
g4 (1) and obtain _. In particular, we have m) < 1, with equality if and only if A = ..
Hence, the Galton—Watson process X is subcritical for A < A.. We can therefore see the
perimeter process of Ty for A < A. as a time-reversed subcritical branching process. Note that
the perimeters and volumes of the hulls in Ty are already quite well-known. Sharp exponential
growth for a fixed A < A, is proved in Section 2 of [58], whereas the near-critical scaling limit
as A — A, is studied in Section 3 of Chapter . Equation together with Lemma can
give explicit formulas for the generating function of the perimeters of the hull, so it should be
possible to recover these results by using the same techniques as in [122], but we do not do this
in this work.

P (10B (T») | = q||0B} (TA) | = p) Py (Xa(s =7) =p). (4.14)

4.3.3 Slicing the skeleton

The goal of this subsection is twofold. First, we explain the link between the skeleton de-
composition and the infinite leftmost geodesics of an infinite triangulation. Second, we introduce
some formalism, that will later allow us to obtain a construction of Skel(T}) that is more suitable

for our purpose than (4.13]).

Decomposition of a 1-admissible forest in reverse trees. An infinite 1-admissible forest
f may contain several infinite reversed trees, and we will need to study the way these trees are
placed with respect to each other. This can be encoded by a genealogical structure (see Figure
[L.8)). If t is one of the infinite trees of £, let hI%Y, (t) be the reverse height of the lowest vertex of t.

We consider the set of pairs (t,7) where t is an infinite tree of f and ¢ > hSY (t). If i > ALY (t),
the parent of (t,4) is (t,i — 1). If i = ALY (t) > 0, let t’ be the first infinite tree on the left of t

such that Y (t') < i —1 (note that t’ always exists because f is admissible). Then the parent
of (t,7) is (t',4 — 1). Finally, if ¢ = 0, then (t,4) has no parent. This genealogy is encoded in an
infinite plane tree with no leaf that we denote by U(f) (see Figure . Note that the genealogy
in U(f) is "reversed" compared to the genealogy in f: the parent of a vertex x of U(f) lies below
x, whereas in the forest f, the parent of a vertex lies above it. Therefore, the heights in U(f)
match the reverse heights in f. We also write B, (U(f)) for the subtree of U(f) whose vertices
are the (t,7) with ¢ < r. Note that the tree B,(U(f)) is not a measurable function of B, (f)
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Figure 4.5 — An infinite 1-admissible forest f in which 4 trees 1, to, t3 and t4 reach reverse height
4. In red, the tree U(f) and the names of some of its vertices. In the proof of Proposition
for r = 4, the pg are equal to 2, 1, 2 and 1 and the h(f;) are equal to 4, 0, 3 and 2.

(it is impossible by looking at B,(f) to know if two vertices belong to the same infinite tree).
Finally, it is easy to see that a 1-admissible forest is completely described by the tree U(f) and
the infinite trees it contains.

Leftmost infinite geodesics and decomposition of the skeleton in reverse trees. Let
T be an infinite triangulation of a 1-gon, let p be its root vertex (i.e. the unique point on its
boundary), and let f = Skel(7"). We have seen that for every r > 0, the paths going between the
trees of B, (f) correspond to the leftmost geodesics from p to the vertices of OBy (T) (cf. Figure
. Therefore, infinite paths started from p in U(f) correspond to leftmost geodesic rays in T,
so the tree of leftmost infinite geodesics in T is isomorphic to U(f).

The skeleton decomposition of infinite strips. We will also need to describe the skeleton
decomposition of strips, which are infinite triangulations with two infinite geodesic boundaries.
They correspond to the S° and S' appearing in Theorem |4.1

Definition 4.11. An infinite strip is a one-ended planar triangulation bounded by two infinite
geodesics v, (on its left) and 7, (on its right), and equipped with a root vertex p, such that:

(i) p is the only common point of 7, and ~,,

(ii) for every i,j > 0, the path ~, is the only geodesic from ~,(7) to v,(4),

(iii) 7, and 7, are the only leftmost geodesic rays in S.

Exactly as for infinite triangulations of the p-gon, if S is an infinite strip, we define its ball
B,.(S) of radius r as the union of all its faces containing a vertex at distance at most r — 1 from
p. We also define its hull B (S) of radius r as the union of B,(S) and all the finite connected
components of its complement. To define the skeleton of an infinite strip .S, we note that there
is a simple transformation that associates to S an infinite triangulation of the p-gon, where p
is the number of edges on 9B} (S). More precisely, we write S for the map obtained by rooting
S\B3(S) at the leftmost edge of 0B} (S) and gluing v, and ~, together. We define the skeleton
of S as the skeleton of S (see Figure . Here again, the skeleton decomposition is a bijection
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Figure 4.6 — An infinite strip S and its skeleton.

between infinite strips and pairs consisting on the one hand of an infinite reverse tree t that
is rooted at its leftmost vertex of reverse height 0, and on the other hand of a family of maps
(My)yet such that M, is a triangulation of a (¢, + 2)-gon for every v. The fact that t must be
connected follows from the uniqueness of the leftmost geodesic rays 7, and -, in a strip. Note
that this time, the triangulations filling the holes are indexed by t and not t* since the M, for
v at reverse height 0 are used to encode B3 (S) (see Figure [4.6).

Finally, let T" be an infinite triangulation of a 1-gon, and let f be its skeleton. As we have
seen above, the tree U(f) can be seen as the tree of leftmost infinite geodesics of T'. Moreover,
U(f) cuts T into strips, whose skeletons are the infinite reverse trees of f. This reduces the proof
of Theorem 4.1 to the study of Skel(T3).

4.3.4 The distribution of S{ and S}

The goal of this subsection is to describe (without building them explicitely) the strips S
and 5’)1\ in a way that will allow us to prove Theorem This description will involve the
quasi-stationary distribution of the branching process X,. Hence, we start with two explicit
computations about X). First, we give an explicit formula for the iterates of the generating
function g). We define g3" by gio = Id and gi(rﬂ) = grogy for every r > 0. Note that g3" is

explicitely computed in [65]: we have
1 -2
4.15

for every x € [0, 1]. The iterates of gy in the subcritical case are also computed in [122], with
different notations. Note that when A — A. in the formula below, we recover (4.15)).

B =1- (r+

Lemma 4.12. Let 0 < A < A.. For every r > 0, we have
1—4h

gy (z) =1— :
4h sinh? (argsh 4,%(_174_};) + rb)\>
where by = argch\/% = —%lnm,\, and h is as in (4.1)).

Proof. This computation is already done in Section 3.1 of [122], with different notation. In [122],
the function ¢ (u) for 0 <t <1 is defined by

S ; ) ;
ei(w) = = D (0 wou(i-+ 20
(=
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where a = 12, p = W = A. and s = ty/3 —2t. For t = 11+25};th we have s = %, so by -,
ps

we have 22 (at) ws(i 4+ 2) = 05(i) for every i > 0, and our function g corresponds to the ¢; of
[122] for t = llfgh. Our formula follows then immediately from Lemma 3 of [122]. Finally, using
([@-2), it is easy to check that e=20x = m. O

Remark 4.13. It is also possible to prove the last lemma directly by using (4.14)). Indeed, the
probability must add up to 1 when we sum them over ¢, which shows that (hy(p)) is an invariant
measure for X,. If we write Hy(z) = >~ ha(p)zP, this easily gives

Hy(gx(x)) = Hx(z) + Hx(9x(0)),

s0 g5 (z) = Hy ' (Hx(x) + rHy(g1(0))). Since Hy, can be explicitly computed, this also gives the
result.

Our second computation deals with the quasi-stationary measure of X,. We first recall a few
facts about quasi-stationary measures of Galton—Watson processes (see for example Chapter 7 of
[21]). For every p > 1, the ratio % is nondecreasing in n and converges to my(p) < +0o0.
Moreover, let Iy be the generating function of (mx(p)),>1- In our case, it is explicit:

Lemma 4.14. For 0 < A < A, we have

We also have

1
II =2 -1].
Mo =2 (=)
In particular, we have ITy(6y(0)) = ITy(1 — h) = 1=1=4h w.

Proof. By the definition of 7 (p), we have

@ - g
)= I o)

Hence, by using Lemma the computation of II(z) is straightforward. Note that the case
A = A already appears in [65] (in the proof of Lemma 3). O

We can now describe the distribution of S())\ and S)l\. We will first admit the existence of
reverse trees with a certain distribution (described by the next lemma), and later (Section 2.6)
build these trees by a spine decomposition approach.

Lemma 4.15. There are two infinite reverse trees T())\ and ’T}\ whose distributions are charac-
terized as follows. For every r > 0 and every forest (t1,...,t,) of height exactly r, we have

-r P

P (B.(79) = (t1,...,t,)) = g%ﬁ% TT11 0:(c) (4.16)
i=1v€t;

and, if f has only one vertex at height r,

P (B.(r}) = (t1,...,t,)) = “ mp)my” HH@A co), (4.17)

A(0)
=1 v€Et;

where ¢, is the number of children of v for every vertex v.
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Moreover, let T}\’* be the tree T%\ in which we have cut the only vertex at reverse height 0.
The reverse heights in 71* are shifted by 1, so that the minimal reverse height in 7* is 0. This
allows us to define the two strips that appear in Theorem [4.1]

Definition 4.16. We denote by S9 (resp. Si) the random infinite strip whose skeleton is 7
(resp. T}\*) and where conditionally on the skeleton, all the holes are filled with independent
Boltzmann triangulations with parameter .

The reason why we need to replace T%\ by T}\’* in this last definition is linked to the root
transformation between T and ’JI&, and will be explained in details in the end of Subsection 2.5

(see Figure [4.7).

4.3.5 Proof of Theorem [4.1]

The goal of this subsection is to prove Theorem For this, we build a random infinite
l-admissible forest F'y directly in terms of its decomposition in reverse infinite trees, and we
show that it has the same distribution as Skel(T}).

We recall that py(0) = 0 and uy(k) = ma(l — my)*~! for & > 1. We have seen that an
infinite 1-admissible forest f is completely described by the tree U(f) and the infinite trees that
f contains. Therefore, there is a unique (in distribution) random 1-admissible forest ') such that
U(F)) is a Galton-Watson tree with offspring distribution p) and, conditionally on U(F'}):

(i) the trees of F) are independent,

(ii) the unique tree that reaches reverse height 0 has the same distribution as 7},

(iii) all the other trees have the same distribution as 79 described above.

A more rigorous (but heavier) way to define F would be to build explicitly B,(F) by concate-
nating independent forests of the form B;(7%) and B;(71).

In order to prove that F) has indeed the same distribution as Skel(Ti), we need to introduce
one last notation. Let f be a 1-admissible forest, and let » > 1. Let £ be the number of infinite
reverse trees of f that intersect B, (f), and let ti,...,t} be these trees, from left to right. For
every 1 < j < {, we denote by p’(f) the number of vertices of t7 whose reverse height in f is
exactly 7 (see Figure 4.5/ for an example). If we already know B, (f), knowing the values p}(f) is
equivalent to knowing which of the trees of B, (f) lie in the same infinite reverse tree of f. We
write B, (f) for the pair (B,(f), (p(£),... ,0p(£))). The reason why we introduce this object is
that its distribution for f = F'y will be easier to compute.

The key result is the next proposition. As explained in Section 2.1, a 1-admissible forest f
is characterized by its reordered balls B.(f), so the distribution of Skel(T}) is characterized by
the distribution of its reordered balls. Therefore, the next proposition will imply that F) and
Skel(T}) have the same distribution, which implies Theorem

Proposition 4.17. For every r > 0, the forests Bj.(F)) and Skel (B2(T})) have the same
distribution.

Proof. In all this proof, we will fix 0 < A < A. and omit the parameter A in the notation. The
idea of the proof is the following: we will first compute the law of B,(F), then that of B,(F)
and finally that of B.(F).

First, we know that B,(U(F)) is a tree with height r in which all the leaves lie at height r.
Moreover, if ¢ is such a tree, we have

P(B.(UF)) =t)= [[ m@—m)>" =ml<l@—m)li=t=lt<l (4.18)

where t ., is the set of vertices of ¢ at height strictly less than 7, and ¢, is the number of children
of a vertex v.
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Now let (f,(p1,...,pe¢)) be a possible value of B,(F), i.e. f = (t1,...,tp) is a forest of
height r, the positive integers pi,...,p¢ satisfy p1 + -+ + p¢ = p, and f has a unique vertex
at reverse height 0 which lies in one of the trees t¢1,...,%¢,,. For every 1 < j < £, we write
Ji = (tprttpj_1+15 -+ s tpy+-tp;) and h(f;) for the height of the forest f;. Each of these forests
corresponds to one of the infinite trees that reach reverse height r.

We now check that the tree B,(U(F)) is a measurable function of B,(F) (although not
of B.(F)). The reader may find helpful to look at Figure while reading what follows. We
consider the tree u whose vertices are the pairs (j,7) with 1 < j </ and r — h(f;) <i <r, and
in which:

(i) the pair (1,0) is the root vertex,

(ii) if ¢ > r — h(f;), then the parent of (j,7) is (j,7 — 1),

(iii) if ¢ = 7 — h(f;), then the parent of (j,4) is (k,i — 1), where k is the greatest integer such

that k < j and h(fx) >r—i+ 1.
This is the natural analog of U(f) for the finite forest f (cf. Figure [4.5)). Note that for every
1 < j </, there are exactly h(f;)+ 1 vertices of u of the form (7, 7), exactly one of which lies at

height r. Hence, we have
¢

> h(f) =l (4.19)

j=1

It is easy to see that if ET(F) = (f,(p1,...,pe)), then B.(U(F)) = u. It is also possible to
read the heights h(f;) on the tree w: first, we have h(f;) = r. Moreover, if 2 < j < /, let
xj be the j-th leaf in u starting from the left. Then h(f;) is the smallest h such that the
ancestor of x; at height » — h is not the leftmost child of its parent (cf. Figure . Hence,
conditionally on B,(U(F)) = u, the forest B,(F) is a concatenation of ¢ independent forests of
heights h(f1),...,h(fs). The first forest has the same distribution as B,(7!) and, for j > 2, the
J-th forest has the same distribution as By fj)(TO). By combining this observation with
and Lemma [£.15 we obtain

B (B,(F) = (1, (pihsize)) = ml=l(1 — m)lel-loerl 1 ”(pe)m 1 o(c)

mlu<rl =351 h(f; (1 — )\u| luer|—1 £
6(0) T1(6(0)) ! HW (py) He (cs)

vef

1 [(1-m \“ 1§
:9(0)<H(9(0))) prj x [ 6(c), (4.20)

vef

where in the end, we used . Moreover, by Lemma we can compute % =+/1—4h.

We now compute the distribution of B, (F): let f = (¢1,...,t,) be a possible value of B, (F),
and let ip be the index such that the only vertex of reverse height 0 belongs to t;,. We need to
sum over all the possible values of £ > 1 and p1,...,p, > 1 such that Z§:1 pj = p and
p1 > ig (by construction of F, the lowest vertex always belongs to the leftmost infinite tree). We

obtain
l
P =N =g (S0-mF ¥ [[ne) [Toe). a2

>1 p1t-+pe=p j=1 vef
p1>10
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Now let f" = (t1,...,tp) be a possible value of B.(F), i.e. a forest of height r in which the
only vertex of reverse height 0 lies in ¢;. To obtain P (B.(F) = f’), we need to sum Equation
(4.21)) over all the forests one may get by applying a cyclic permutation to the trees of f’. The
values of p and [[,c;0(cy) are the same for all these forests, but the value of ip ranges from 1
to p, so we have

4 J4
P(B.(F)=f) = 0(1(”(22(1—%)221 3 Hfr(pj)>H9<cu)

io=1¢>1 p1+-+pe=p j=1 vef
p12iQ
1 —1 ¢
S 103 RO SRS | ) )
£>1 pit-+pe=p  j=1 vef
By comparing this to (4.13]), we only need to prove that for every p > 1,
-1 ‘ phi(p)
=1 A
>1 prttpe=p  j=1 A

It is enough to show that the generating functions of both sides coincide. But the generating
function of the left-hand side is

L

Z(Zu—th)‘*? 3 plr[w(pj))yp = (4T I ()T

p>1 M e>1 p1+-+Dpe=p =1 >1
/
y1I'(y)

1—V1—4hIl(y)’

which is explicitly known by Lemma [£.14] On the other hand, we recall from Lemma [£.10] that
hy(p) = % (8 + %)71} cx(p). Hence, the generating function of the right-hand side of (4.22)) is

DR ot (e ()

where C), is given by (4.9)). Hence, it is easy to check that the generating functions of both sides
of (4.22)) coincide, which concludes the proof. O

End of the proof of Theorem[{.1. By Proposition the skeleton of ']I‘}\ has the same distribu-
tion as F'y. In particular, the infinite leftmost geodesics are the paths separating infinite trees in
F), so their union is isomorphic to U(F'). Moreover, consider the strips delimited by U(F}) in
’]I‘}\. Let e; be the root edge of ’]I‘i (i.e. the loop on its boundary). The skeletons of the strips that
are not adjacent to e; are independent copies of 7° and all the holes are filled with independent
Boltzmann triangulations with parameter A, so these strips are independent copies of S°.

The case of the strip containing e; needs to be handled more carefully because of the presence
of the bottom boundary (actually, this is not exactly a strip in the sense of Definition |4.11)).
More precisely, let St be the random strip obtained from 7' as on the left part of Figure
where all the green holes are filled with independent Boltzmann triangulations with parameter
A. Then the strip of T}\ adjacent to e; has skeleton 7! and its holes are filled with Boltzmann
triangulations, but it has a bottom boundary of length one, so it has the same distribution as
S,

Finally, we recall that T) is the image of T}\ by the following root transformation. Let f;
be the face of T}\ adjacent to its boundary loop e;. We obtain T) by contracting e; and gluing
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root transformation

el

Figure 4.7 — On the left, the strip SU* and its skeleton 7'. On the right, the strip S! and its
skeleton 7*. The root transformation contracting the face f; (whose sides are in red on the
left) sends the first strip to the second. The skeletons are in violet.

together the two other sides of f;. This transformation does not affect the tree of infinite leftmost
geodesics and the strips that are not adjacent to e. Its effect on the strip ST adjacent to e; is
described on Figure , and the strip we obtain is then S'. This proves Theorem

O

4.3.6 Construction of reverse Galton—Watson trees and infinite strips

For all this subsection, we fix 0 < A < A.. Most of the notation we use and introduce here
will depend on A, but the index A will be implicit when there is no ambiguity. Our goal here is
to construct the reverse subcritical trees 70 and 7! and to prove Lemma and a few useful
estimates. We will also show that 7Y is the local limit as n — 400 of a subcritical Galton—Watson
tree conditioned to die at generation n, seen from its last generation. This is different from the
more usual Galton—Watson tree conditioned to survive [88], where the tree is seen from its root.
Moreover, 7! is just 70, conditioned to have only one vertex at reverse height 0. Our trees will
be built by a spine decomposition approach, which will be useful to obtain geometric estimates
on these trees in Section 4.

We start with a vertical half-line which is infinite on the top side, that we call the spine. The
root of the tree will be the lowest point on the spine. For every r > 1, we sample a random pair
(Ly, Ry) of integers such that all these pairs are independent and, for every 7,7 > 0, we have

9°(0) — ¢°"~D(0)

P(L, =i,R, = j) =
( 7= ET0) = g7 (0)

0(i +j+1) g~ V(0)" g (0). (4.23)

Lemma 4.18. Equation (4.23)) defines a probability measure on N2, and E [L, + R,] is bounded
if A< A, and O(r) if A = A..

Proof. To show that (4.23)) defines a probability measure on N2, we just need to sum the right-
hand side over pairs (7, j) with a fixed value of k = i + j and then sum over k. Similarly, by a
straightforward computation, we obtain

9°"(0)g'(¢°"(0)) — g°" =1 (0)g' (g°"~1(0))
E[L +R] = ¢°r D (0) — gor(0) -1

This can be rewritten %, where z, = ¢°7(0), y, = ¢°"~Y(0) and g(z) = zg¢/(x) for

x € [0,1]. By convexity of g and g, we obtain

E[L, + R, < &= PR GO (4.24)

(mr - yr)g (
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Ly=1 R3 =2
Ly =0 Ry =1
Li=0 R =0

Figure 4.8 — Construction of the tree 7°. Every vertex lies below its parent.

If A < A¢, this converges to l,l(( )) so E[L, + R,] is bounded For A = X, this is not true since

gy.(1) = +oo. However by (4.15) we have z, = 1 — (TH)Q and yr = 1 — =5. Moreover, we

have g)\ (x) ~ 2 \/7 when z — 1, so the right-hand side of (| is equlvalent to 2r and
E[L, + Ry] = O(r). O

We call s, the vertex at height r in the spine. For all r > 2, let ¢, ...,?7 be L, independent
Galton—Watson trees with offspring distribution # conditioned on having height at most r — 2.
We graft L, edges to the left of the vertex s,, and the trees ¢7,...,¢7 to the other ends of
these edges. Similarly, for all 7 > 1, let uj,...,u}; be R, independent Galton-Watson trees
with offspring distribution # conditioned on having height at most r — 1. We graft R, edges to
the right of s, and the trees uj,...,uf to the other ends of these edges (see Figure .

We denote by 7° the infinite tree we obtain, and we define a genealogy on it: for every r > 1,
the children of s, are s,_1 and the roots of the trees t; and u;’ Inside the trees t] and ug, the
genealogy is the usual one in a Galton—Watson tree. We fix the reverse height of the root at 0
and declare that the parent of a vertex of reverse height r has reverse height 41 (it corresponds
to the height of the vertices on Figure . By the conditioning we have chosen for the trees ¢}
and uj, every vertex of the tree has a nonnegative reverse height, and the root is the leftmost
VerteX with reverse height 0.

Lemma 4.19. For every r > 0, the tree 7° has a finite number of vertices at height r.

Proof. We fix r > 0 and take 7’ > r, and we define A" as the event
{one of the trees grafted at s, reaches reverse height 7 in 7°}.

We want to show that }P’(A:/) decreases fast enough in /. Consider one of the trees tgl grafted on

the left of the spine at s,.. This is a Galton—Watson tree conditioned to have height at most 7’ —2,
e ’ . . ge =1 (gy—gotr'—r—1)

so the probability that ¢/ has height at least ' —r—1is £ ! g(ffgr, g 0) )

is larger than % for r’ large enough. Hence, the probability that one of the L, trees grafted on

the left of s,s reaches reverse height r is at most 2 (go(’"l_l)(()) — go(r/_’"_l)(O)) E [L,/]. Similarly,

. The denominator

the probability of the analog event on the right is at most 2 (gor/(O) — go(’"/_r_l)(O)> E[R,].

Therefore, for 7’ large enough, we have
]PJ (A:/> S 2 (g())\'r/ (0) o gO(rlf’r‘*l) (0)) E [LT’, + RT’] .
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If A\ < A, the first factor decreases exponentially fast in 7 (because ¢° (0) — O(TI*T*U <

1 — ¢°"="=1 which decreases exponentially fast). If A = A., we have q°" 0) =1— =57, 50

(1+ ")
the first factor is O ( 5). By combining this with Lemma |4.18] we obtain P (A;') =0 (772) In

all cases, we have >, P (A;) < +00, 50 a.s. A7 does not occur for 7’ large enough, which
proves the lemma. O

For r > 0, let d,.(7%) be the tree of descendants of the r-th vertex s, of the spine.

Lemma 4.20. The tree d,(7°) has the same distribution as a Galton—Watson tree with offspring
distribution 6, conditioned to have height exactly r.

Proof. Let t be a finite plane tree of height r. Let so(t) be its leftmost vertex of reverse height
0 and let s,(t) be its root. Let (so(t), s1(t), ..., s-(t)) be the unique geodesic path from sy(t) to
sp(t). For every 1 < i < r, let ¢;(t) (resp. r;(t)) be the number of children of s;(t) on the left

(resp. on the right) of s;,_1(¢), and let (U;(t)) <<t (resp. (wé(t)) 1<j<n~(t)) be those children.

Finally, for every i and j, let t;(t) (resp. u;(t))_b_e the tree of descendants of v;- (t) (resp. w;(t))
Then we have

P (d(v°) = t) = [ [P (Li = ti(t), Ry = ri(t xH HIP’ =10(1) x [P (uf = uj(t))

=1 i=1 \ j=1 j=1
(4.25)
Moreover, by definition of % and u*, we have
i i i i 1
P (tj = tj(t)) = O(r ) H 0(cy) and P (uj = uj(t)) = 77(0) H 0(cy).

vet’ (t) veus(t)
By combining this with (4.23]) and -, we obtain

0y _ —

P (d. (%) =t) = ) I;Ite o),

which concludes. O

Now let r > 0. By Lemma there is ' > r such that all the vertices of reverse height
at most 7 lie in d,(7°). Hence, 70 is the a.s. local limit as ' — +oco of d,v(7%) rooted at its
leftmost vertex of height 7. By Lemma this proves that 70 is the local limit (in distribution)
as v’ — 400 of Galton-Watson trees conditioned on extinction at time r’, seen from the last
generation.

In particular, for every r > 0, let Y (r) be the number of vertices of 70 at reverse height
r. Then (Y (—7)),~, is the limit in distribution as n — 400 of a Galton-Watson process with
offspring distribution 6, started from 1 at time —n and conditioned on extinction at time exactly
1. Hence, Y has the same distribution as the reverse Galton—Watson process described by Esty
in [76], started from 0 at time —1. In particular, by Equation 3 of [76], we obtain explicitly the
distribution of Y (r).

Lemma 4.21. For all » > 0 and p > 1, we have



We also define 71 as the tree 7°, conditioned on Y (0) = 1. We can now prove Lemmam

Proof of Lemma[{.15. We start with the first part of the lemma (i.e. the part related to 7°).

Let R be the smallest 7' such that s, is an ancestor of all the vertices at reverse height 7 in
79, For every r’ > r, the event {R < '} depends only on the trees té- and uz for ¢ > 7/, so it is
independent of the tree d,.(7°). We write Y (r, ') for the number of descendants of s,/ at reverse
height r, and Bff/ (TO) for the forest consisting of the trees of descendants of these vertices. We
have

P (B (%) = (t1,...,tp)) = lim P(R <7, Bo(7%) = (t1,...,1p))

r’'——+o0

= lim P <R <7, B (7% = (t,... ,tp))
r’ =400
— i P(R</)P(Y() =)

r/—+o00

X P (B:,’(TO) = (t1,-. . tp) |V (r,7) = p) .

But by Lemma the tree d,»(7°) has the same distribution as a Galton-Watson tree condi-
tioned to have height r’. From here, it is easy to show that the distribution of B,’:/(TO) conditioned
on Y (r,7’) = p is that of a Galton—Watson forest of p trees conditioned to have height r, i.e.

P(B(r") = (h1.... )Y () = p) = 1 (O)i — gy LT oteo

1=1v€Et;

On the other hand, by using again the independence of {R < '} and d,-(7°), we have

lim P(R<7)P(Y(r,r')= = lim P(R<.,Y(r,o)=
Jim P(REAPOO)=p) = Jim PRS00 =)
= lim P(R<7,Y(r) =
Jim P(R<rY(r)=p)
= P(Y(r)=p)
ﬂ-(p)m_r ( o(r+1) or
= ZPE_ (g0 — g (0))
11(6(0))
by Lemma which proves the first part of the lemma.
Given the definition of 7!, the proof of the second part is now easy. For every forest (t1, ... tp)

of height r with exactly one vertex at reverse height 0, we have

B(B(r') = (t1osty) = P(Bo(r®) = (tr,....1,)[¥(0) = 1)

By Lemma (4.21| we have P (Y (0) =1) = %, so the second part of the lemma follows from

the first one. O

We end up this subsection by showing that the strips S° and S' constructed from 79 and
7! are in some sense very close to each other. This will allow us in Section 4 to conclude a strip

verifies a property if the other does, and therefore to avoid annoying case distinctions.

Lemma 4.22. Let A\, — A, and let (A,,) be measurable events. Then the following two assertions
are equivalent:

(i) P(S5 € A,) ——0,

n—-+0o00
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(i) P(S), € A4n) —— 0.

n—-+0o

Proof. We recall that 75 is the tree 7! in which we have cut the only vertex at reverse height
0, and we have shifted the reverse heights by 1. The main part of the proof consists in showing
that the trees T&)n and T}\: are absolutely continuous with respect to each other, uniformly in
n. We claim that 71* has the same distribution as 70 biased by Y (0).

Indeed, for any forest f € %), ,, we have

P(B(r"")=f)= > P(Br(r")=1f)),
vESf\f*

where f\ f* is the set of vertices of f at reverse height 0, and f;" is the forest of .Z; 4,41 obtained
by adding a unique child to v in f. By the second part of Lemma we obtain

P (B,(r"*) = f) = Zg;gmq)m—’"—l T ).

vef

Combined with the first part of Lemma this yields

P(Br') = f) _ oI (w20
P(B(t9) =f) 0(0) m
In other words, the forest B,(71*) has the distribution of B,(7°), biased by Y (0). Since it is
true for all r, we can conclude that 71* has the distribution of 79 biased by Y (0).
From here, we can deduce a version of the lemma for the trees 70 and 71*. More precisely,
we claim that if (A],) are measurable events, the following two assertions are equivalent:
3 0 /
(1) IP)(T)\H GAn) m(),
i+ 1,% /
(i) P (TAR € An) ——0.
Indeed, for any n > 0, we have

IP’( e o g E [YAn(O)Lg Al (427
T € ) = N :

e o E[Y),(0)]

Moreover, (4.26]) shows that

9,\(0) my . 1—-nh 1—2h—\/1—4h
Ox(1) Iy (6x(0))  2h(1—h) 1—+1—4h

EYA(0)] =

which is continuous at A = A.. Therefore, the denominator in converges to a positive
limit, so it is enough to prove that P (7§ € A}) — 0 if and only if E [Y,\n (0)]1,.(; GAJ — 0.
The indirect implication is immediate since Y),(0) > 1. To prove the direct one, it is enough
to check the variables Y (0) are uniformly integrable. We know that they converge to Y)_(0)
in distribution. By the Skorokhod representation theorem, we may assume the convergence is
almost sure. Since we also have convergence of the expectations by , by Scheffé’s Lemma
we have Yy, (0) — Yy _(0) in L. In particular, the family (Yy,(0)) is uniformly integrable, which
proves the direct implication, and the equivalence of (i’) and (ii’).

The lemma now just follows from the fact that S}\n is constructed from Ti\’: in the exact
same way as Sgn is constructed from Tgn. Writing it properly would require to condition the
strip on its skeleton. ]
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4.4 The Poisson boundary of T)

The goal of this section is to prove Theorem We fix 0 < A < A; until the end of the
section and omit the parameter A in most of the notation.

4.4.1 Construction of the geodesic boundary

We start by defining precisely the compactification of T that we will afterwards prove to be
a realization of its Poisson boundary. We recall that 9TY is the set of ends of the tree TY. If
v,7 € OT9, we write v ~ " if v =+’ or if v and +/ are the left and right boundaries of one
of the copies of S° or S! (cf. left part of Figure . Note that a.s., every ray of TY branches
infinitely many times, so no ray is equivalent to two distinct other rays. It follows that ~ is a.s.
an equivalence relation, for which countably many equivalence classes have cardinal 2, and all
the others have cardinal 1. We write 0TY = 0T9/ ~, i.e. we identify two geodesic rays if they are
the left and right boundaries of the same strip. We also write v — ~ for the canonical projection
from OTY to OTY. If S is one the copies of S° or S! appearing in the strip decomposition, then
the two geodesics bounding S correspond to the same point of oTI , that we denote by 7s.

Our goal is now to define a topology on T U dTY. It should be possible to define it by an
explicit distance, but such a distance would be tedious to write down, so we prefer to give an
"abstract" construction. Let S and S” be two distinct strips appearing in the strip decomposition
of T (cf. left part of Figure[4.1)). Consider the smallest r such that S and S’ both intersect B (T).
Then T\ (B? (T) U S U S’) has two connected components, that we denote by (.5, 5") and (57, .5)
(the vertices on the geodesics bounding S and S” do not belong to (S,S5") and (57, S)). This
notation means that we see (5,5’) and (5’,5) as the two "open intervals" between S and S’
We also write

9y (S,8") = {7 7 is a ray of T9 such that y(i) € (S, 5’) for i large enough}

We define 9, (5, S) similarly. Note that 9, (S, S”) and 9, (S’, S) are disjoint, and their union is
OTI\{7s,7s'}-

Definition 4.23. The geodesic compactification of T is the set T U 5T9, equipped with the
topology generated by
— the singletons {x}, where x is a vertex of T,
— the sets (S,5") Uy, (S,5’), where S and S’ are two distinct strips appearing in the strip
decomposition of T.

This topology is separated (if 77 # 72, then there are two strips separating ; and 2) and has
a countable basis, so it is induced by a distance. Moreover, any open set of our basis intersects
T, so T is dense in T U OT9. The end of this subsection is devoted to the proof of two very
intuitive topological properties of the geodesic compactification.

Lemma 4.24. The space T U ITY is compact.

Proof. Let (x,) be a sequence with values in T U OT9. We first assume z,, € T for every n. We
may assume d(p, x,) — +00. If there is a strip S that contains infinitely many x,,, then 7g is a
subsequential limit of (z,,). We now assume it is not the case. We recall that for every vertex v
of T9, the slice S[v] is the part of T lying between the leftmost and the rightmost rays passing
through v, above v (see Figure . We will construct a ray v of TY step by step, in such a way
that for every k > 0, there are infinitely many points z,, in S[y(k)].

Assume we have already built v(0),...,v(k). If y(k) has only one child in TY, then v(k+ 1)
must be this child. If v(k) has d > 2 children, we call them y;, ..., yq. Then S[y(k)] is the union
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of the slices S[y;] for 1 < i < d and of the d — 1 strips whose lowest vertex is (k). We know that
S[y(k)] contains infinitely many of the vertices z,, but the d — 1 strips contain finitely many
of them. Therefore, there is an index 1 < ip < d such that S[y;,] contains infinitely many of
them. We choose v(k + 1) = y;,. We can check that the class 7 of the geodesic we built is a
subsequential limit of (z,,), which concludes the case where x,, € T for every n.

Finally, let 6 be a distance on T U OTI that generates its topology, and let (x,) be any
sequence in T U OTY. If x, € ITY, let y,, € T be such that 6(xp,yn) < % (it exists by density).
If 2, € T, we take y,, = x,,. By the first case (y,) has a subsequential limit, so (z,) also has
one. O

Lemma 4.25. The boundary JTY is homeomorphic to the circle.

Proof. We build an explicit homeomorphism. Consider a ray « of TY9. For every i > 0, let ¢, ()
be the number of children of (i) in T9. We denote these children by zo, ... s Ty (i)—1 and we
denote by j, (i) the index j € {0,1,...,¢cy(i) — 1} such that v(i + 1) = x;. We also define

V0T — R/Z
N — Zkzol-[’s:# (mod 1).

—o ¢ (2)

If v, and ~, are the left and right boundaries of a copy of S°, then there is iy such that:

— for i < ig, we have ¢, (i) = ¢,,(2) and j, (1) = j,(7),

— we have ¢y, (i9) = ¢, (i0) and j,, (i0) = j,(i0) + 1,

— for i > ig, we have j,,(i) = ¢,,(i) — 1 and j, (i) =0,
which implies W(vy) = ¥(~, ). Moreover, if v, and ~, are respectively the leftmost and rightmost
rays of TY, then U(v,) = ¥(~,) (the sum is equal to 0 for 7, and to 1 for ~,). Hence, we have
U(vy) = U(v') as soon as v ~ 7/, so ¥ defines an application from ITY to R/Z. The verification
that this application is a homeomorphism is easy and left to the reader. O

4.4.2 Proof of Theorem [4.2]

We first argue why the second point of Theorem [4:2]is an easy consequence of the first one.
Assume the first point is proved. Since 0TY is homeomorphic to the circle, we can embed TUOTY
in the unit disk D in such a way that JTI is sent to OD (we do not describe the embedding
explicitly). In this embedding, the simple random walk converges to a point of D and the law
of the limit point is a.s. non-atomic. Therefore, by Theorem 1.3 of [83], JTY is a realization of
the Poisson boundary of T.

The idea of the proof of the first point is to first show that two independent random walks
are quite well separated in terms of 9TY. Let X' and X? be two independent simple random
walks started from p. By Proposition 11 of [58] we know that T is transient and does not have
the intersection property (although [58] deals with type-II triangulations, all the arguments of
the proof still hold in our case). Hence, the complementary of {X}|n € N} U {X2|n € N} has
two infinite connected components with infinite boundaries. We denote them by [X LX 2] and
[Xz, Xl}. By point (ii) of Lemma applied to the peeling along X; and Xs (see also Section
3.2 of [58] for a similar argument), the halfplanar triangulations [X', X?] and [X? X!] are
independent copies of H = Hiy.

Therefore, we will need to study geodesics in halfplanar triangulations.

Definition 4.26. Let H be a halfplanar triangulation and OH its boundary. An infinite geodesic
away from the boundary is a sequence (y(n)),>o of vertices of H such that for any n > 0:

(i) the vertices y(n) and y(n + 1) are neighbours,

(ii) we have d(y(n),0H) = n.
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Remark 4.27. Contrary to geodesics away from a point, the existence of such geodesics is not
obvious. For example, they do not exist in the UIHPT Hy,.

Lemma 4.28. Almost surely, there is a geodesic away from the boundary in H.

Proof. We write P, = |0B2(T)| and L, = |0B2(T) NTY|. We recall that T9 is a Galton—Watson
tree with offspring distribution p given by Theorem . In particular, we have ) . iu(i) = m/(l
and ).~ (ilogi)u(i) < 400, so by the Kesten-Stigum Theorem m/ L, converges a.s. to a positive
random variable. On the other hand, as in Section 2 of [58], it holds that m% P, converges a.s. to
a positive random variable (|58] only deals with type-II triangulations but we can either apply
the same proof to the type-I case, or use the core decomposition of the Appendix A of this thesis
to deduce the type-I exponential growth rate from the type-II one). Hence, there is a constant
¢ > 0 such that, for r large enough,

P(Lr ZCP’I") >

N | =

Therefore, if z, is a random vertex chosen uniformly on 9Bp(T), for r large enough we have
P (2, € T9) > §. Hence, for any s > 0, with probability at least §, there is a point € By, ((T)
at distance exactly s from z;.

But H is the local limit as r — 400 of T\ B2 (T) (rooted at a uniform edge on its boundary),
so if p denotes the root vertex of H, for any s > 0, we have

P (there is € H such that d(z, p) = d(z, 0H) = s) >

N o

This event is nonincreasing in s, so with probability at least § it occurs for every s. By a
compactness argument, with probability at least §, there is an infinite geodesic away from the
boundary v with v(0) = p. Finally, we claim that H is invariant under root translation, and that
the root translation is ergodic, which is enough to conclude. Indeed, by local limit, the invariance
is a consequence of the invariance of T? for every p under re-rooting along the boundary. The
ergodicity is proved in the type-II case in [I8] (this is Proposition 1.3), and the proof adapts
well here. O

We can now show that X! and X? are a.s. separated by an infinite leftmost geodesic.

Lemma 4.29. Almost surely, there is a ray 7 of T9 such that for n large enough, we have
J(n) € [X', X?], and the same is true for [X?, X1].

Proof. In this proof, we will write H = [Xl,XQ] to avoid too heavy notations. Let v be an
infinite geodesic away from the boundary in H, which exists by Lemma [£.28 For n > 0, let
(1(#))o<i<d(p(ny) Pe the leftmost geodesic from p to y(n) (cf. Figure{d.9). For n > i > d(p,7(0)),
we have i <n =d(vy(n),0H) < d(y(n), p) so v,(i) is well defined, and

d(v(n), (7)) =d(p,y(n)) —1 (since 7 is a geodesic)
<n+d(p,v(0)) —i (by the triangular inequality)
<n
= d(v(n),0H),

so v, (i) € H. But by a compactness argument, there is an infinite path 4 in T such that for
any ¢, there are infinitely many n such that ¥(i) = 7, (7). It easy to check that 7 is an infinite
leftmost geodesic in T. Moreover, since 7, (i) € H for n > i > d(p,~(0)), we have ¥(i) € H for i
large enough, so there is an infinite leftmost geodesic of T that lies in H eventually. O
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7(0) OH

Figure 4.9 — From an infinite geodesic away from the boundary in H, we can build an infinite
leftmost geodesic in T, that lies in H eventually.

Proof of Theorem [4-3. We can now prove the convergence of the simple random walk to a point
of 9TY. If X is a simple random walk, we write Acc(X) for the set of accumulation points of
X on JTY. By Lemma it is enough to prove that Acc(X ) is reduced to a point. We first
claim that Acc(X) is a circle arc of 9TY. Indeed, assume 7; # 72 are two points of Acc(X).
Then OTY \{71,%2} has two connected components, that we denote by (71,72) and (72,71). To
oscillate between 7; and 75, the walk X must intersect infinitely many times either all the ~
such that 3 € (31,%2) or all the  such that 3 € (32,71) (see Figure[£.10). In both cases, Acc(X)
contains one of the two arcs from 7; to 2. Hence, Acc(X) is closed and connected, so it is a
circle arc. R

Now let v be a probability measure with no atom and full support on 9T9 (for example,
one can consider the exit measure of the nonbacktracking random walk on T9). Either Acc(X)
is a singleton, or it has positive measure, so it is enough to show that P (v (Acc(X)) > 0) = 0.
By Lemma we know that if X' and X? are two independent simple random walks started
from p, then there are two rays of TY lying respectively in [X;, X2] and [X2, X;] eventually,
so they separate X' and X?2. Therefore, Acc(X') N Acc(X?) contains at most two points, so
v (Ace(X1) NAcc(X?)) =0a.s.. Let X* for i € N be infinitely many independent simple random
walks started from p. We have

Z v (Acc(Xi)) =v U Acc(Xh) | <1.

i>0 i>0

But the v (Acc(X?)) are i.i.d. (conditionally on T), so they must be 0 a.s.. Therefore, Acc(X)
cannot have positive measure so it is a.s. a point.

Hence, the simple random walk a.s. converges to a point of oTI , 8o it defines an exit measure
on OTY , that we denote by vg. We now prove that vy is nonatomic. Once again, our main tool
is Lemma Assume vy has an atom with positive probability, and let (X i)lgig be four
independent SRW started from p. For every 1 <i < 4, let X! be the limit of X in OT9. Then
P (Xéo = Xgo = Xg’o = Xéo) > 0. If this happens, we can assume (up to a factor i) that they
lie in clockwise order, and that 5T9\{X;o} lies in the part between X* and X!. By Lemma
there are at least one ray of T9 between X! and X2, one between X? and X3 and one between
X3 and X* (cf. Figure . Hence, there are at least three rays of TY in the part between X!
and X4 that does not contain OTY \{XL1. In particular, two of them are not equivalent for ~
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v (72)

Figure 4.10 — Proof that Acc(X) is an arc circle: assume X oscillates between 1 and 7, and
there is v/ € (92,71) that X intersects only finitely many times. Then X intersects infinitely
many times every v with 7 € (71,72).

(we recall that the equivalence classes have cardinal at most 2). Hence, the part lying between
X! and X* containing X2 and X3 (the left part on Figure also contains a slice of the form
S[y] (see Figure , so XL # X4. We get a contradiction.

We finally show that vy has full support. Since vy is nonatomic, we have vy ({751 }) = 0 a.s..
Hence, a.s., we have X,, € S[p] =S for n large enough. Therefore, we also have

P(Vk > 0, Xy € S[p||Xo=p) >0 a.s.

Now fix 7 > 0, condition on By (T) and take z € TY such that d(p,x) = r. Since S[x] has the
same distribution as S[p] (see Figure [4.1)), we have

P(Vk >0, Xy € S[z]|Xo=2) >0 a.s..

Hence, we have P (X}, € S[xz] for k large enough|Xy = p) > 0 a.s.. If this occurs, then X is of
the form 7, where (k) € S[z] for k large enough. Therefore, we have

vy ({7]7 lie in S[z] eventually}) > 0 a.s..

Almost surely, this holds for every x € TY, which is enough to ensure that vy has full support.
This ends the proof of Theorem [4.2] O

Remark 4.30. We end this section with a remark about the Gromov boundary [81], which is
another natural notion of boundary for an infinite graph G = (V| E). Let C(G) be the space
of functions f : V — R equipped with the product topology. We say that two functions of
C(G) are equivalent if they are equal up to an additive constant. We quotient C(G) by this
equivalence relation to obtain the quotient space C(G)/R. If x € V', we define f, € C(G)/R by
fz(y) = dg(x,y) for any y € V. The Gromov compactification G of G is the closure of {falz €V}
in C(G)/R and the Gromov boundary 0c,G of G is the set G\{fz|z € V}.

It is easy to show that for any geodesic ray =, the sequence f.,,) converges in C(G)/R, so it
defines a point f, € dg,T. A natural question is to ask whether there is a natural correspondence
between OTY and O T. The answer is no.
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X4

X3

X2

Xl

Figure 4.11 — Sketch of the proof that v is nonatomic: if X', ..., X* are four independent simple
random walks, then there are three infinite leftmost geodesics (in red) between X! and X*, so
there is a slice S[y| there. The hulls of the four random walks are in green.

To prove it, we show that if v, and o are respectively the left and right boundary of the same
strip, then f,, # f,,. Indeed, let n be such that v(n) ¢ v2. We have fy, (71(n)) — fy.(p) = —n
by definition of f,,. But if we had f,,(71(n)) — fy,(p) = —n, this would mean that there is
m > n such that d(y2(m),v1(n)) — d(y2(m), p) = —n, i.e. d(y2(m),y1(n)) = m — n. Take such
an m minimal. Then by concatenating 7, from p to y1(n) and a geodesic from ~;(n) to y2(m),
we obtain a geodesic from p to y2(m) that lies strictly to the left of v5. This contradicts the fact
that 9 is a leftmost geodesic in T. This suggests that dg,-T should not be homeomorphic to the
circle, but rather to a Cantor set.

4.5 The tree of infinite geodesics in the hyperbolic Brownian
plane

4.5.1 The tree TY9(P")

The goal of this section is to take the scaling limit of Theorem and to prove Theorem
For all this section, we fix a sequence (\,) of numbers in (0, A¢] such that A, = Ac (1 — ﬁ) +
0 (#) We know, by the main result of Chapter (3 that %T ), converges for the local Gromov—
Hausdorff distance to P". Therefore, it seems reasonable that T9(P") should be the scaling
limit of the trees Tin. This scaling limit is easy to describe. We recall that B is the infinite tree
in which every vertex has exactly two children, except the root which has one. For a > 0, we
denote by Y, the Yule tree of parameter «, i.e. the tree B in which the lengths of the edges are
i.i.d. exponential variables with parameter a.

Lemma 4.31. The trees %Tg\n converge for the local Gromov-Hausdorfl distance to Y, s.

Sketch of proof. We recall that Tin is a Galton-Watson tree with offspring distribution puy,,,
where py, (k) = my, (1 — m>\n)k_1 for every k > 1, and my is explicitly given by (4.2). We
can compute my, = 1 — QT‘/Q + 0 (n%) Let 11 be the distribution defined by ux(1) = my and
x(2) = 1—my, and let ’i‘i be a Galton—Watson tree with offspring distribution ziy. Then 'i‘i is

a copy of B where the length of each edge is a geometric variable of parameter 1 —my, so %’i“')]\n
converges to Y, 5. Moreover, Tg can be obtained by adding children to some of the vertices of

'f‘g with two children. Since sy, ([3, +00[) = O (), the probability to affect a vertex is of order
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pQ—f pﬁd

Figure 4.12 — Proposition [£.32] : almost surely, for any z, none of these two cases occurs.

n—12. The number of vertices at height of order n in T?\n is of order n, so the difference bewteen
Tin and ’i‘in does not affect the scaling limit. O

However, taking the scaling limit of Tg\n is not enough to obtain a description of infinite
geodesics in P". Three different kinds of problems could prevent this:

(i) it is not completely clear that the infinite geodesics in P" form a tree,

(ii) two different discrete leftmost geodesics might be too close and collide in the scaling

limit,

(iii) discrete paths that are not infinite leftmost geodesics might become infinite geodesics

in the scaling limit.
We take care of item (i) right now, while the goal of Lemmas and will be to rule out
items (ii) and (iii).

The fact that the infinite geodesics of P" indeed form a tree is a quite strong result, that
follows from the confluence of geodesics properties in the Brownian map. More precisely, it will
be a consequence of [16, Proposition 28|, which we recall here. We write mq, for the Brownian
map, and denote its root by p.

Proposition 4.32. [16] Almost surely, for any = € my, if v and ' are two geodesics from p to
x that coincide on a neighbourhood of x, then v = 7.

We write T9(P") for the set of those points of P" that lie on an infinite geodesic of P started
from p. By local isometry of the Brownian plane and the Brownian map and scale invariance of
the Brownian plane [62], Proposition also holds for the Brownian plane. By the absolute
continuity relations of Chapter [3] it also holds for P"*. We claim that it implies that for every
x € TI(Ph), there is a unique geodesic from p to z in P". Indeed, let = € TI(P") and let v be
an infinite geodesic of P" passing through x. Let 4/ be a geodesic from p to . Finally, let y be
a point on the ray « such that d(p,y) > d(p,x). The concatenation 7" of 7' and the part of v
between x and y is a geodesic from p to y that coincides with v in a neighbourhood of y. By
Proposition [4.32] the path 4" must coincide with +y, so 7/ must coincide with 7, which proves
our claim.

We equip T9(P") with its natural tree metric: if z,y € T9(P"), the intersection of the
geodesics from p to x and y is compact so there is a unique point z on it that maximizes d(p, 2).
We write dpg(pny(z,y) = dpn(z,2) + dpn(z,y). Equipped with this distance TI(P") is a real
tree. However, it is not obvious that it is locally compact (for example it is not if P* is replaced
by R? equipped with the Euclidean norm).

4.5.2 Two lemmas about near-critical strips

We first show that two disjoint geodesics in Tg\ are quite well-separated, which rules out
problem (ii). We denote by 7, and -, the left and right boundaries of the infinite strip S’)l\n.

Lemma 4.33. Let b > a > 0 and € > 0. Then there is § > 0 such that, for n large enough, the
following holds:

P (W,j € [an, andsin(’Yz(i),’Yr(j)) > 5n) >1-—c
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Note that this lemma is very similar to Lemma 3.4 of [99]. However, the slices considered here
are not exactly the same, and the lemma of [99] only gives the result with positive probability.

Proof. The idea of the proof is as follows: assume that two points on 7, and 7, at height in
[a, b] are too close from each other. Then with positive probability S}\ is the only strip of Ty,
that reaches height 0. In this case, we have a small separating cycle in T) , which becomes a
pinch point in the scaling limit. This contradicts the homeomorphicity of P* to the plane (this
is Proposition 18 of Chapter |3, and a consequence of the homeomorphicity of the Brownian map
to the sphere [103]).

More precisely, assume the lemma is not true. Then up to extraction, for all § > 0 and for n
large enough, we have

P (Hi,j € [an, bn], dsy (i), 1 (5)) < 5n) > e

Note that if this happens, then by the triangle inequality we must have |i — j| < dn.
On the other hand, by Theorem , the probability that the tree Tg\n has only one vertex at

height (b+1)n is py, (1)EFD" = mg\l:rl)n —s e 2V2(+) Gince the tree TY is independent of the

strip S)l\n, for n large enough, the following event occurs with probability at least %e‘zﬁ(bﬂ)s:

{there are i, j € [an,bn]| with dsin (7e(3), v (J)) < on}
AND
{S}\n is the only strip of T, at height (b+ 1)n}.

If this event occurs, the hull of radius (b + 1)n in T}, is the hull of radius (b+ 1)n in Sln,
where the boundary geodesics ¢ and ~, have been glued together. Hence, by concatenating the
geodesic in S}\n between ~y,(i) and 7,(j) and a portion of v, = =, of length |i — j|, we get a cycle
of length not greater than 2dn, at height at least (a — d)n, and that separates p from infinity. In
other words, for all § > 0, with probability at least %e_Qﬂ(bH)s, the following event occurs:

{there is a point z € T, with a — 3 < %d(p, z) < b+ § such that for any continuous path p
from p to infinity, there is a point y of p such that %d(y, z) < 26}.

This last property is closed for the Gromov—Hausdorff topology. To prove it properly, we
would need to replace the path to infinity by a path to a point x at distance from p large enough
so that = cannot lie in B(.b+1)n(T>\n)’ and then to replace the continuous path by a d-chain. We
omit the details here, see Appendix of Chapter |3] for something very similar.

Hence, by the main Theorem of Chapter for any 6 > 0, with probability at least %6_2‘/5(1’“)5,
there is a point z € P" with a — 6 < d(p, z) < b+ ¢ such that any continuous path from p to
infinity contains a point at distance at most J from z. Since this event is nondecreasing in 6,
with probability at least %efzﬁ(b“)e it occurs for every § > 0. If it does, let z, be such a point
for § = L, and let z be a subsequential limit of (z,). Then we have a < d(p, z) < b and every
infinite path from p to infinity must contain z. Hence, there is a single point that separates the

origin from infinity in ", which is impossible by homeomorphicity of P* to the plane. O

The next lemma shows that for any x € T}, there is a geodesic from x to p that coincides
with a leftmost infinite geodesic on a quite long distance. Combined with the uniqueness of
geodesics between p and points of T9(P"), this will rule out problem (iii). We consider a strip
Sf\)n and we denote by 7y and ~, its left and right geodesic boundaries.

Definition 4.34. Let z € Sgn and a > 0. We say that x is a-close to the boundary if there is a
geodesic 7y from p to x that contains either (i) for every 0 < i < a, or 7,.(i) for every 0 < i < a.
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Lemma 4.35. Let ¢, > 0.

(i) There is C' > 0 such that for n large enough

P (every x € OBg,, (53 ) is (rn)-close to the boundary) > 1 —e.

(ii) There is C’ > 0 such that for n large enough

P (every = € SY \Bery (S3) is (rn)-close to the boundary) > 1 — 2e.

Note that we gave two quite similar versions of the lemma. The version (i) is the most natural
to prove, whereas (ii) passes more easily to the Gromov—Hausdorff limit and is the one we will
use later.

Proof. (i) We recall that 79 X, is the skeleton of SO We first argue that showing point (i)
of the lemma is equivalent to bounding the helghts of the trees grafted on the spine of
79, Let k > 0 (we will precise its value later). We denote by z7, ... , Tpy1 the vertices of
0B}, (Sgn) that lie on the right of the spine of 7°, from left to right. For 1 < i < p, let also
t; be the subtree of descendants of the edge {z;, z;+1} in 70. For 1 < i < p, let also v; be
the leftmost geodesic from z; to p. It is clear (see Figure that the distance between
x; and the point at which +; and ~, merge is equal to the maximum of the heights of the
trees starting between z; and ~,. Hence, we have ~;(j) € 7, as soon as j is greater than
the heights of all the trees t;,t;11,...,tp. Therefore, if we denote by H} (k) the height of
the forest (t1,...,t,), then for any i, there is a geodesic from z; to p that contains 7, (j)
for0<j<k-Hj} (k). We can do the same reasoning for vertices on the left of the spine.
We denote by H f{n (k) the height of the forest that is defined similarly on the left of the
spine, and write Hy, (k) = max (HS (k), H} (k)). It is then enough to find C' such that
for n large enough:

P(H),(Cn) < (C—=r)n)>1—c¢. (4.28)

We write Py, (Cn) = |0Bg,, (Sgn) | — 2 (this is the number of vertices of 79 at height Cn
that are not on the spine). Conditionally on Py, (Cn), all the trees of descendants of the
vertices x; are independent Galton—Watson trees conditioned on extinction before a finite
time |Cn], so we have

o[ (C—r)n| 0 p
P (Hy, (Cn) < (C — r)n| Py, (Cn) = p) = (W)
9, (0)

By Lemma [£.12] we get

ol (C—r)n| o 2 1 < 1 >
0)=1-— — tol|l =),
Iom (0) sinh? (\/ﬁ(C — r)) n? n?
o g;TLL(C_T)nJ 0)>1- =% for n large enough, where z = h2(\/%(0— ) Hence, we get

P (H,, (Cn) < (C—r)n) > E [(1 =z
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By using the distribution of Pg,, given by Lemma [4.21] we obtain

o (Cn) ~lon]
2[(0-2" - nw
< (m (- ) 0) - ((1- ) 2™ 0))
> M X m;ﬂLCnJ % (1 _ %) % (QESLLCnJH)(O) _ g;\han (0)>

<16, (1 52) 2 0).

by convexity of IIy,. We can now compute everything using Lemmas [£.12] and As

n — +oo, the first factor goes to %, the second one goes to 62\/50, the third one goes to 1.
Moreover, by Lemma we have

olCn) 2 1 ( 1 )
0)=1-—""— 10—
9, (0) sinh?(v/2C) n? n3

and, if v, =1— -5 +o0 (#), by (4.11]) we have
2cv/c+ 2

Dra(@n) —an  ~

n—-+oo ’n,3
. . cosh(\@C) 1 . . . .
so the fourth factor is equivalent to 4\/§W$ Finally, by taking the derivative of

Lemma {4.14] we get

(o (i) - T )

By putting all these estimates together we obtain

(1= 5)™ ) o eV (1 o (m))

This goes to 1 as C — +00o (remember that z =

-2

3 . . .
m with r ﬁxed), so if C 1S

chosen large enough, then E [(1 — %)PA”(CH)] > 1 — ¢ for n large enough. This proves
and the version (i) of the lemma.

(ii) This is quite easy using version (i). Let C' be given by point (i). Note that if any x €
OB, (83 ) is (rn)-close to the boundary, then so is any 2’ € SY \Bg,, (53 ). Indeed, any
geodesic 7 from 2z’ to p must contain a point x € 9Bg,, (Sgn), and we can replace the
portion of v between x and p by a geodesic that coincides with 7, or v, between height 0
and rn.

Hence, it is enough to find C’ such that with probability 1 — ¢, any point 2’ € Sgn such
that d(2/, p) > C'n is not in By, (Sgn). In other words, we want to prove that the radius
of %Bén (S?\n) from p is tight as n — +o0. Since Sgn can be embedded in T, in a way
that preserves the distances from p, this is a consequence of the local Gromov—Hausdorff
tightness of %T,\n.

O

Note that by Lemma Lemma holds if we replace S}\n by Sgn and Lemma also
holds if we replace Sgn by Sy . We will use these results for both S(A)n and S)l\n.
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4.5.3 Identification of the geodesic tree via Gromov—Hausdorff-closed events

The last two lemmas together with Lemma and the fact that TY9(P") is a tree are
basically enough to prove Theorem [{.3] However, to prove it properly, we need to express the
distribution of T9(P") in terms of closed events for the Gromov—Hausdorff topology, which turns
out to be a bit technical.

Let t be a (finite or infinite) plane tree with a root vertex p. If v € V(t)\{p}, we write p, for
its parent. Let (hy),cv(¢) be a family of nonnegative numbers satisfying h, = 0 and h, > hy,
for every v € V(t)\{p}. We write t[h] for the metric space obtained from t by giving, for every
v € V(t)\{p}, a length h, — hy, to the edge between p, and v. We also recall that B is the
infinite tree in which every vertex has two children, except the root which has only one.

We will now define a large family of events, whose probability will characterize the distribu-
tion of a random tree of the form B[H|. Let ¢ be a finite binary tree (that is, a tree in which
every vertex has 0 or 2 children, except the root which has exactly one). We write V*(¢) for the
set of vertices of ¢ that are not leaves and not p. Let © > 0, and let (ay)ycv+(); (bv)vev+) be
such that 0 < a, < b, < r for every v € V*(t). We write «!(a, b) for the set of unbounded trees
T (considered as metric spaces) such that B,(T) is of the form t[h], where h, = 0, h, = r if v
is a leaf of t and a,, < h, < by, for every v € V*(¢).

In order to prove Theorem , we will estimate the probability that T9(P") belongs to
! (a,b). Unfortunately, for the reasons listed in of Section 4.1, the events {T9(X) € #/!(a,b)}
are not closed for the Gromov-Hausdorff distance. To compute P (T9(P") € #!(a,b)) from our
discrete estimates, we need to approximate the event {T9(X) € #!(a,b)} by closed events. Since
such approximations are tedious to write down explicitly in the general case, we will focus on
the case where t = tg is the binary tree with two leaves and one vertex of degree 3. Note that
|[V*(to)| = 1, so @ and b are just two real numbers.

Let C >randlet R>C+1.If §,e > 0, we write ﬂfféﬂa, b) for the set of compact metric
spaces (X, d) satisfying the following property.

"There are points zg, 1 and x2 in X and geodesics 1 (resp. 72) from zg to x; (resp. to z2)
such that:

() d(p,20) = a,

(i) d(p,z1) = d(p,x0) + d(xg,x1) = r and d(p, z2) = d(p, x0) + d(xo,x2) =7,

(iii) for every x € X with d(p,z) > C, the distance d(p, z) is equal to d(p,x1) + d(x1,z) or
to d(p, x2) + d(x2,x) (it may be equal to both),

(iv) there are two points y,z € X with d(p,y) > R and d(p,z) > R such that d(p,y) =
d(p,x1) + d(z1,y) and d(p, z) = d(p, z2) + d(x2, 2),

(v) if uw € v and v € 75 with d(p,u) > b+ 2e and d(p,v) > b+ 2¢, then d(u,v) > 4."

We refer to the Appendix for the proof that this event is closed for the pointed Gromov—

Hausdorff topology. More precisely, it is easy to check that Jzif’é r(a,b) is simply generated by

geodesics as in Definition so by Proposition it is closed. By the convergence of %T)\n

to P", we have

1
P (BR(Ph) e % L(a, b)) > limsup P <nBRn (Ty,) € &5 pla, b)) . (4.29)
) bl n%+w k) ?
We now try to estimate the right-hand side. By Lemma [£.31] we have
1
lim P (T €a,b)) =P (Yy;€5ab)). 4
n-»too (n A\, € 0 (a, )> 2vz € 7" (a,b) (4.30)

Note that to deduce (4.30) from Lemma {4.31, we need to show P (Y2 V3 € fJAL (a,b)) =0,
where .47 (a, b) is the boundary of &/ (a,b) in the space of rooted metric trees, equipped with
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Figure 4.13 — If z ¢ S} U 5[], then any geodesic from z to p must cross the boundary of one
of the two strips S and S%[xg] above z1 or xo. Therefore, for every z with d(p,z) > Cn, we
have a geodesic (in red) from z to p that passes through z; or xs.

the local Gromov—Hausdorff distance. This is true because if T' € 0.4 (a,b), then T must have
a branching point at height exactly a, b or r, which a.s. does not happen.

If the event in the left-hand side of occurs, let zg be the unique point of Tin at height
an, and let x1 (resp. 22) be the vertex on the left (resp. right) branch of T at height 7. Then
the vertices xp, 1 and xo and the geodesics 1 and s joining x1 and x5 to zg in Tin satisfy
assumptions (i) and (ii) in the definition of Jaff’é r(a,b). Since the tree T is infinite, they also
satisfy assumption (iv) for any R > 0. o

We now fix ¢ > 0 and apply Lemma (version (ii)) to the two strips S} ~and S°[z] (the
strip whose lowest point is z(). Lemma shows that there is C' > 0 such that, with probability
at least 1 — 4e, for any x in one of the two strips S}\n and S%(z¢) such that d(z,p) > Cn, there
is a geodesic from p to x that coincides with +v; between p and z; or with 5 between p and
xo. We claim that this is also the case if x does not belong to one of these two strips. Indeed, a
geodesic from z to p must hit the boundary of one of the two strips above x; or xs (cf. Figure
. Therefore, the probability that %Tin € ' (a,b) but assumption (iii) is not satisfied for
C is at most 4e.

Finally, if %Tgn € ! (a,b) but assumption (v) is not satisfied for some 0 < § < ¢, there
are two vertices v; on y; and vy on 7, at distance from p between (b + 2¢)n and rn, such that
dr,, (v1,v2) < dn. A geodesic from vy to vz must cross either S}\n or S%[zg] and, since § < ¢,
it must stay at distance at least (b + €)n from p. Therefore, there are two vertices v] on 1
and v on 2, at distance from p between (b + ¢)n and (r + €)n, such that dsin (v}, vh) < on or

dgo[g) (V1,v3) < dn. By applying Lemma to S}\n between heights b 4+ ¢ and r + ¢, and to
SY[zg] between heights ¢ and 7 4 ¢, we can find § > 0 such that this occurs with probability at
most 2e. Hence, for every £ > 0, there is § > 0 such that the probability that %Tin € ' (a,b)
but assumption (v) is not satisfied is at most 2e.

Therefore, for all € > 0, there are C' > r and § > 0 such that, for any R > C' + 1,

. . 1 57 +
lim inf P (nBRn (Tr,) € 5 pla, b)) >P (Ym € o (a, b)) — 6e,

n—-+4o0o

o by (T2,
P (BR('Ph) e ’Q{?fg,R(a’b)) >P (Ygﬁ c %to(a’ b)) — 6e.
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Since the event {BR(X) € ngng(a, b)} is nonincreasing in R, we obtain that for any ¢ > 0, we
have

P(3C > 730> 0,YR > C+ 1, Bp(P") € 95 (a.)) = P (Y, 5 € #1(a,b)) — 6=.
Finally, the event above is increasing in € so

P (¥ >0,30>0,3C > 0,VR > C + 1, Br(P") € 95 y(a,0)) 2 P (Y5 € #(a,h))
(4.31)

Lemma 4.36. Almost surely, if
¥e > 0,36 >0,3C > 0,YR > C + 1, Bp(P") € @ ¢ n(a.b),
then TI(Ph) € &/ (a,b).

Proof. Fix C, ¢ and ¢ and assume that Br(P") € Mf’éR(a, b) for any R > C + 1. Let g, 21

and xo be given by the definition of Mfé r(a,b). We first check that these points do not depend
on the parameters J, e, C' and R. By assumption (iv), the points z; and xy lie on geodesics
of length C + 1 started from p. We claim they are the only two points at distance r from p
satisfying this property. Indeed, if y is a point with d(p,y) = C' + 1 and v a geodesic from p to
y, let z be the point of v such that d(p,z) = C. By assumption (iii) and the fact that P" is a
length space, there is a geodesic 7/ from z to p passing through z; or z5. By concatenating ~/
from p to z and « from z to y, we obtain a geodesic from p to y that coincides with v between z
and y. By Proposition this geodesic must be equal to v, so v must pass through x; or xs.

Hence, if Br(P") € %’5’1%(@, b), then 1 and 2 are the only two points at distance r from p
that lie on a geodesic of length C'+1 started from p. In particular, they do not depend on §, € and
R. Moreover, let C' > C, and assume that Br(P") € %?57R(a, b) and Br(P") € %‘?’é,ﬂ(a,b)
for all R > C’. Then the two points at distance r from p that lie on a geodesic of length C" 4 1
from p are the same as the two points that lie on a geodesic of length C' + 1 started from p, so
the points 1 and 2 do not depend on C'. Similarly, the point xg is the only point at distance a
from the root that lies on a geodesic of length C'+ 1, so it does not depend on 9, e, C, R. Hence,
we can find zg, 21 and x9 in P and 1, v2 such that:

— assumptions (i) and (ii) in the definition of 42/7,5’5 r(a,b) are satisfied,

— there is C' > 0 such that assumption (iii) is satisfied,

— for every R > C' + 1, assumption (iv) is satisfied,

— for every £ > 0, there is § > 0 such that assumption (v) is satisfied, which means that the

geodesics from p to x1 and x4 are disjoint between heights b (excluded) and r (included).

Since assumption (iv) is satisfied for any R large enough, there are arbitrarily large geodesics
started from p passing through z;. By a compactness argument, there are infinite geodesics
started from p and passing through z;, and the same is true for z5. By assumption (iii), the
points 1 and xg are the only ones with this property. By assumptions (i) and (v), the branching
point between the geodesics from p to 21 and x lies between heights a and b, so TY9(P") €
A (a,b). O

The end of the proof of Theorem is now easy. By Lemma and (4.31)), we get
P (Tg(Ph) € 4 (a, b)) > P (YM € 7(a,b)).

The general case for ¢ can be treated along the same lines. This shows that the distribution of
T9(P") dominates that of Y, /5. Since they are both probability measures, they are the same.
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4.A Appendix: A Gromov—-Hausdorff closedness result

The goal of this appendix is to prove Proposition [£.40] It shows that a wide class of events
related to geodesics are closed for the Gromov-Hausdorff distance. We believe it might be of
interest in other settings. We write ¢ for the space of pointed compact metric spaces, equipped
with the Gromov—Hausdorff distance. We will be interested in some events depending on a metric

space (X,d,p) € 9.

Definition 4.37. We say that a subset & of ¢ is simply generated by points if it has the following
form. Let £ > 1, and let F C R*+2) be closed. Then < is the set of those (X,d,p) € ¢ for
which there are (z;)p<;<r in X with zy = p such that, for any =541 € X, the matrix

(@i, 25))o<s j<r
lies in F'.
Lemma 4.38. Any subset of ¢ that is simply generated by points is closed.

Proof. Assume that o7 is simply generated by points and let k and F' be as above. Let (X,,, dy, pn)
converge to a space (X, d, p) with X,, € o for every n. By Gromov-Hausdorff convergence, we
can embed X and all the X, isometrically in a space (Z,dz) such that the Hausdorff distance
D,, between X,, and X goes to 0.

For every n, let z7,..., 2} € X, satisfy the condition given by Definition @ We take
Yg,- .-,y € X such that dz (7, y") < 2D,. For all 0 < i <k, let y; be a subsequential limit of
(y?)n>0 in X (which exists by compactness). To complete the proof that X € 7, all we need to
show is that yp = p and that for any yi+1 € X, we have

(d(Yi ¥5))o<ij<kir € F

The first point is easy because the distances dz(p, pr), dz(pn, yi) and d(yg, yo) all go to 0 along
some subsequence. Moreover, let yr11 € X. There is xZ_H € X, such that d (xﬁﬂ, Yrt1) < 2Dy,.
For every 0 < ,7 < k+ 1, we then have

d(yi,y;) = lim d(z},27)

n—-+0o vy

along some subsequence. But we know that for all n we have (d(x?, x"))
77 ) 0<i,j<k+1

can conclude. O

€ F', so we

Definition 4.39. We say that a subset o/ of ¢4 is simply generated by geodesics if it has the
following form. Let k > 1, and let F C R(*2” be closed. Then « is the set of those (X, d, p)EY
for which there are (z;)o<i< in X with g = p and geodesics (7;)1<i<k from p to z;, satisfying the
following property. For any (zj4i)1<i<k such that xzj; € 7; for every i, and for every xor+1 € X,
the matrix

(d(z, $j))ogi,j§2k+1

lies in F'.
Proposition 4.40. Any subset of & that is simply generated by geodesics is closed.
To go from Lemma to Proposition we will need the following definition.

Definition 4.41. Let ¢ > 0, and let x,y be two points of a metric space (X, d). An ¢-geodesic
chain from x to y is a finite sequence (x(i))y<;<o¢ of points of X such that
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(i) z(0) = x and z(2°) =y,
(ii) d(z(i),z(i +1)) = 2—1ed(:r,y) for any 0 < i <2/ — 1.

Proof of Proposition[{.40 Let <7 be a subset of ¢ that is simply generated by geodesics. For
¢ > 0, we write @7* for the subset of & we obtain if we replace continuous geodesics by /-geodesic
chains in Definition . Then o7 is simply generated by points (because the conditions in the
definition of an f-geodesic chain are closed), so 27" is closed by Lemma m Hence, to conclude,
it is enough to show
o ="
>0

The inclusion from left to right is immediate since any continuous geodesic contains an ¢-geodesic
chain. Now let (X,d,p) € (N> /. For every £ > 0 and 1 < i < k, let (zf) in X and let
(ny (j ))0 <j<at be ¢-geodesic chains from p to :L'f satisfying the assumptions of definition Up

to extraction, we may assume that for every 1 < ¢ < k, the points xf converge to a point z; € X.
Up to further extraction, by a diagonal argument, for every ¢ of the form % with 0 < j < 2™,

the sequence (7;7”6(24 j))g , converges to a point 7;(t). Moreover, for all such ¢,¢', we have
>

d(yi(t),vi(t)) = |t — t'|d(p, x;), so we can extend (7i(t))o<t<1,4=jjam to a continuous geodesic
from p to z;. It is then easy to check that the geodesics ~; satisfy the required hypothesis. O

123



124



Chapter 5

Supercritical causal maps

ou Méme sans tentacules !

This chapter is adapted from the preprint [47].

We study the random planar maps obtained from supercritical Galton—Watson trees by
adding the horizontal connections between successive vertices at each level. These are the hy-
perbolic analog of the maps studied by Curien, Hutchcroft and Nachmias in [60], and a natural
model of random hyperbolic geometry. We first establish metric hyperbolicity properties of
these maps: we show that they admit bi-infinite geodesics and satisfy a weak version of Gromov-
hyperbolicity. We also study the simple random walk on these maps: we identify their Poisson
boundary and, in the case where the underlying tree has no leaf, we prove that the random
walk has positive speed. Some of the methods used here are robust, and allow us to obtain more
general results about planar maps containing a supercritical Galton—Watson tree.
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Figure 5.1 — The circle packing of a causal triangulation constructed from a Galton—Watson tree
with geometric offspring distribution of mean 3/2. This was made with the help of the software
CirclePack by Ken Stephenson.

Introduction

Causal maps and random hyperbolic geometry. Causal triangulations were introduced
by theoretical physicists Ambjgrn and Loll [10], and have been the object of a lot of numerical
investigations. However, their rigorous study is quite recent [75], [60]. They are a discrete model
of Lorentzian quantum gravity with one time and one space dimension where, in contrast with
uniform random planar maps, time and space play asymetric roles.

Here is the definition of the model. For any (finite or infinite) plane tree t, we denote by
C(t) the planar map obtained from ¢ by adding at each level the horizontal connections between
consecutive vertices, as on Figure (this includes an horizontal connection between the leftmost
and rigtmost vertices at each level). Our goal here is to study the graph C(T'), where T is a
supercritical Galton—Watson tree conditioned to survive.

This defines a new model of random "hyperbolic" graph. Several other such models have been
investigated so far, such as supercritical Galton—Watson trees [I08], Poisson—Voronoi tesselations
of the hyperbolic plane [29], or the Planar Stochastic Hyperbolic Infinite Triangulations (PSHIT)
of [58]. Many notions appearing in the study of these models are adapted from the study of Cayley
graphs of nonamenable groups, and an important idea is to find more general versions of the
useful properties of these Cayley graphs. Let us mention two such tools.

e For example, the three aforementioned models are all stationary, which means their dis-
tribution is invariant under rerooting along the simple random Walkﬂ This property
generalizes the transitivity of Cayley graphs, and is a key tool to prove positive speed for
the simple random walk on supercritical Galton-Watson trees [108] [6] or on the PSHIT
[58]. More generally, in the context of stationary random graphs, general relations are
known between the exponential growth rate, the speed of the random walk, and its asymp-

1. This is not exactly true for Galton—Watson trees, but it is true for the closely related augmented Galton—
Watson trees.
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Figure 5.2 — An infinite plane tree ¢ and the associated causal map C(¢). The edge in red joins
the root vertex to its leftmost child.

totic entropy, which is itself related to the Poisson boundary and the Liouville property.
See [27, Proposition 3.6], which adapts classical results about Cayley graphs [85]. On
the other hand, supercritical causal maps are not stationary, and it seems hard to find
a stationary environment for the simple random walk. In absence of stationarity, we will
be forced to use other properties of our graphs such as the independence properties given
by the structure of Galton—Watson trees.

e Another important property in the study of random hyperbolic graphs is the anchored
expansion, which is a weaker version of nonamenability, and its natural generalization to
random graphs. It is known to imply positive speed and heat kernel decay bounds of the
form exp(—n'/3) for bounded-degree graphs [I37]. This property also played an important
role in the study of non-bounded-degree graphs such as Poisson-Voronoi tesselations of
the hyperbolic plane [29], and the half-planar versions of the PSHIT [I7]. However, we
have not been able to establish this property for causal maps, and need once again to use
other methods.

Supercritical causal maps. In all that follows, we fix an offspring distribution u with
> o2 iu(i) > 1. We denote by T' a Galton-Watson tree with offspring distribution p conditioned
to survive. The goal of this work is to study the maps C(7"). We will study both large-scale
metric properties of C(T"), and the simple random walk on this map. All the results that we will
prove show that C(7T') has a hyperbolic flavour, which is also true for the tree 7.

Metric hyperbolicity properties. The first goal of this work is to establish two metric
hyperbolicity properties of C(T"). We recall that a graph G is hyperbolic in the sense of Gromov
if there is a constant & > 0 such that all the triangles are k-thin in the following sense. Let
x, y and z be three vertices of G' and 7.y, Vyz, V22 be geodesics from z to y, from y to z and
from z to x. Then for any vertex v on ,,, the graph distance between v and ~,, U 7., is at
most k. However, such a strong, uniform statement usually cannot hold for random graphs. For
example, if (1) > 0, then C(T") contains arbitrarily large portions of the square lattice, which
is not hyperbolic. Therefore, we suggest a weaker, "anchored" deﬁnitionﬂ

2. The most natural definition would be to require that any geodesic triangle surrounding the root is k-thin,
but this is still too strong (consider the triangle formed by root vertex and two vertices z,y in a large portion of
square lattice).
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Definition 5.1. Let M be a rooted planar map. We say that M is weakly anchored hyperbolic
if there is a constant k£ > 0 such that the following holds. Let =, y and z be three vertices of M
and gy (resp. Vyz, Vz2) be a geodesic from x to y (resp. y to z, z to x). Assume the triangle
formed by 7.y, Vy- and 7., surrounds the root vertex p. Then

dn (P, Yoy U Yyz U 'sz) <k.

Theorem 5.1 (Metric hyperbolicity of C(T")). Let T' be a supercritical Galton-Watson tree
conditioned to survive, and let C(T") be the associated causal map.

1. The map C(T) is a.s. weakly anchored hyperbolic.

2. The map C(T) a.s. admits bi-infinite geodesics, i.e. paths (v(4));c; such that for any i and
Jj, the graph distance between (i) and ~(j) is exactly |i — j|.

These two results are very robust and hold in a much more general setting that includes
the PSHIT. In particular, the second point for the PSHIT answers a question of Benjamini and
Tessera [32]. More general results are discussed in the end of this introduction.

Poisson boundary. The second goal of this work is to study the simple random walk on
C(T) and to identify its Poisson boundary. First note that C(T") contains as a subgraph the
supercritical Galton—Watson tree T', which is transient, so C(T") is transient as well. We recall
the general definition of the Poisson boundary. Let G be an infinite, locally finite graph, and let
G U 0G be a compactification of G, i.e. a compact metric space in which G is dense. Let also
(X,) be the simple random walk on G started from p. We say that 0G is a realization of the
Poisson boundary of G if the following two properties hold:

— (X,) converges a.s. to a point X € 0G,

— every bounded harmonic function h on G can be written in the form

h(z) = Ez [9 (Xoo)]

where g is a bounded measurable function from 9G to R.

We denote by 0T the space of infinite rays of T'. If v, € 9T, we write v ~ v if v =+ or
if v and 4/ are two "consecutive" rays in the sense that there is no ray between them. Then ~
is a.s. an equivalence relation for which countably many equivalence classes have cardinal 2 and
all the others have cardinal 1. We write 9T = 0T/ ~. There is a natural way to equip C(7")U oT
with a topology that makes it a compact space. We refer to Section for the construction
of this topology, but we mention right now that oT is homeomorphic to the circle, whereas oT
is homeomorphic to a Cantor set. The space C(T') UOT can be seen as a compactification of the
infinite graph C(T"). We show that this is a realization of its Poisson boundary.

Theorem 5.2 (Poisson boundary of C(T")). Almost surely:
1. the limit lim(X,,) = X exists and its distribution has full support and no atoms in 5T,
2. OT is a realization of the Poisson boundary of C (T).

Note that, by a result of Hutchcroft and Peres [83], the second point will follow from the
first one.

Positive speed. A natural and strong property shared by many models of hyperbolic graphs
is the positive speed of the simple random walk. See for example [L08] for supercritical Galton—
Watson trees, and [58, (17| for the PSHIT or their half-planar analogs. The third goal of this
work is to prove that the simple random walk on C(7T') has a.s. positive speed. Unfortunately,
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we have only been able to prove it in the case where 1(0) = 0, i.e. when the tree T has no leaf.
We recall that (Xp,) is the simple random walk on C(T), and denote by d¢(r) the graph distance
on C(T).

Theorem 5.3 (Positive speed on C(T)). If 11(0) = 0 and (1) < 1, then there is v, > 0 such
that
dC(T) (pv XTL) a.s.

n n—-+4oo

V-

However, we expect to still have positive speed if 11(0) = 0. As mentioned above, this result
is not obvious because of the lack of stationarity (for stationary graphs, the results of [27] show
that positive speed is equivalent to being non-Liouville under some mild assumptions).

The critical case. We note that similar properties have been studied in the critical case in
[60]. The results of [60] show that the geometric properties of causal maps are closer to those
of uniform random maps than to those of the trees from which they were built. This contrasts
sharply with the supercritical case, where the properties of the causal map are very close to those
of the associated tree. More precisely, in the finite variance case, the distance between vertices
at some fixed height r is o(r), but r1=o(1) Moreover, the exponents describing the behaviour of
the simple random walk are the same as for the square lattice, and different from the exponents
we would obtain in a tree.

Robustness of the results and applications to other models. Another motivation to
study causal maps is that many other models of random planar maps can be obtained by adding
connections (and, in some cases, vertices) to a random tree. For example, the UIPT [20] or its
hyperbolic variants the PSHIT [58] can be constructed from a reverse Galton—-Watson tree or
forest via the Krikun decomposition [94] 65, [46]. Among all the maps that can be obtained
from a tree t without to add vertical "shortcuts", the causal map is the one with the "closest"
connections, which makes it a useful toy model. The causal map may even provide general
bounds for any map obtained from a fixed tree (we will see such applications in this paper, see
also [59] for applications to uniform planar maps via the Krikun decomposition).

Here, the causal maps C(7T') fit in a more general framework. We define a strip as an infinite,
one-ended planar map s with exactly one infinite face, such that the infinite face has a simple
boundary 0s, and equipped with a root vertex on the boundary on the infinite face. If ¢ is an
infinite tree with no leaf and (s;);en is a sequence of strips, let M (t, (s;)) be the map obtained by
filling the (infinite) faces of ¢ with the strips s; (see Section |5.1| for a more careful construction).
Some of our results can be generalized to random maps of the form M (T, (s;)), where T is a
supercritical Galton-Watson tree with no leaf, and the s; are (random or not) strips.

By the backbone decomposition for supercritical Galton-Watson trees (that we recall in
Section [5.1)), the maps of the form C(T'), where T is a supercritical Galton-Watson tree with
leaves, are a particular case of this construction. The results of Chapter [] prove that the PSHIT
T, can also be obtained by this construction: the tree T is then the tree of infinite leftmost
geodesics of Ty and has geometric offspring distribution.

We will show that Theorem [5.1]is very robust and applies to this general context, see Theorem
A particular case of interest are the PSHIT. In particular, point 2 of Theorem for
the PSHIT answers a question of Benjamini and Tessera [32].

As for causal maps, any map of the form M (T, (s;)) contains the transient graph T, so it
is transient itself. Most of our proof of Theorem [5.2] can also be adapted to the general setting
where the strips s; are i.i.d. and independent of T. However, Theorem cannot be true if the
strips s; are too large (for example if themselves have a non-trivial Poisson boundary). On the
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non-Liouville | T is the Poisson boundary | positive speed
T v v v
C(T) (if u(0) =0) v v v
C(T) (if u(0) > 0) v v ?
PSHIT v v v
M with (S;) i.i.d., recurrent v ? X
M with (5;) i.i.d. v X X
general M X X X

Figure 5.3 — The symbol v means that the property is proved in an earlier work or in this one.
The symbol ? indicates properties that we believe to be true but did not prove in this paper,
and the symbol X means the property is false in general. See Section for a quick description
of some counterexamples.

other hand, we can still show that the Poisson boundary is non-trivial. See Theorem for
a precise statement, and Figure [5.3] for a summary of the results proved in this paper and the
results left to prove.

As we will see later, Theorem [5.2]big| is not strictly speaking more general than Theorem
since the strips used to construct C(T") from the backbone of T are not completely independent.
On the other hand, once again, the PSHIT satisfy these assumptions (up to a root transforma-
tion, since the strip containing the root has a slightly different distribution). However, it was
already known that the PSHIT are non-Liouville (see [58], or [14] for another identification of
the Poisson boundary via circle packings). We also prove in Chapter , by a specific argument
based on the peeling process, that OT is indeed a realization of the Poisson boundary in the
case of the PSHIT.

Structure of the paper. The paper is structured as follows. In Section [5.1 we fix some
definitions and notations that will be used in all the rest of this work, and recall the backbone
decomposition of supercritical Galton—Watson trees. In Section [5.2] we investigate metric prop-
erties and establish Theorem [5.1] big|, of which Theorem [5.1] is a particular case. Section is
devoted to the study of the Poisson boundary and to the proof of Theorems and In
Section [5.4] we prove Theorem [5.3] about positive speed. Finally, in Section [5.5 we discuss some
counterexamples related to Figure 5.3 and state a few conjectures.

Acknowledgments: I thank Nicolas Curien for his comments on earlier versions of this work,
Arvind Singh for his explanations about renewal theory, and Itai Benjamini for providing the
reference [26]. I acknowledge the support of ANR Liouville (ANR-15-CE40-0013), ANR GRAAL
(ANR-14-CE25-0014) and ERC GeoBrown (740943).

5.1 General framework and the backbone decomposition

The goal of this first section is to give definitions and notations, and to make a few useful
remarks that will be needed in all the paper. All our constructions will be based on infinite,
locally finite plane trees. We insist that the plane tree structure is important to define the
associated causal map. We will use normal letters to denote general infinite trees, and bold
letters like t for trees with no leaf. All the trees will be rooted at a vertex p. If v is a vertex of a
tree t, we denote by h(v) its distance to the root, which we will sometimes call its height. A ray
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Figure 5.4 — The same infinite tree ¢ as on Figure and the associated causal slice S(t). Note
that two vertices have been deleted. On the left part, the backbone of ¢ is in red. We have
c(v) =4, cg(v) =2 and A, = {2,4}.

in a tree t is an infinite sequence (y(4)),~ of vertices such that v(0) = p, and (i + 1) is a child
of v(i) for every i > 0. If ¢ is an infinite tree, the backbone of t is the union of its rays, i.e. the
set of the vertices of ¢ that have infinitely many descendants. We will denote it by B(¢), and we
note that B(t) is always an infinite tree with no leaf.

We recall that if ¢ is an infinite plane tree, then C(t) is the map obtained from ¢ by adding
horizontal edges at every height between consecutive vertices. We also define the causal slice
S(t) associated to ¢, which will be used a lot in all that follows. Let ~, (resp. 7,) be the leftmost
(resp. rightmost) infinite ray of B(t). Then S(t) is the map obtained from ¢ by deleting all the
vertices on the left of 7, and on the right of ~,, and by adding the same horizontal edges as for
C(t) between the remaining vertices, except the edge between 7, and ~, at each level (cf. Figure
. The union of v; and ~, is the boundary of S, and is written 0S.

In all this work, p will denote a supercritical offspring distribution, i.e. satisfying » .. iu(i),
and T will be a Galton-Watson tree with offspring distribution p conditioned to survive. For
every n > 0, we will denote by Z, the number of vertices of T at height n. We will write C for
C(T) and S for S(T'), unless stated otherwise.

If v is a vertex of B(T'), we will denote by T'[v] the tree of descendants of v in T', and by S[v]
the causal slice associated to T[v]. An important consequence of the backbone decomposition
stated below is that for each v € T, conditionally on v € B(T), the slice S[v] has the same
distribution as S. Moreover, these slices are independent for base points that are not ancestors
of each other.

If G is a graph rooted at a vertex p, we will denote by d¢ its graph distance and by B,(G)
(resp. 0B, (G)) the set of vertices of G at distance at most  (resp. exactly r) from p. Note that
the vertices of B,(T') and of B,(C) are the same. For any vertex v of T', we also denote by ¢z (v)
(or by ¢(v) when there is no ambiguity) the number of children of v in T'. Note that the degree
of v in C is equal to ep(v) + 3 if v # p, and to cp(v) if v = p. For every graph G and every vertex
v of G, we will denote by Pg , the distribution of the simple random walk on G started from v.

We now recall the backbone decomposition for supercritical Galton—Watson trees condi-
tioned to survive, as it appears e.g. in [I07]. Let f be the generating function of u, i.e. f(z) =
> >0 m(i)z". Let also ¢ be the extinction probability of a Galton-Watson tree with offspring
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distribution y, i.e. the smallest fixed point of f in [0, 1]. We define f and fby

farQ-as)=a g Fg = 199 (5.1)

1—g¢q q

f(s) =

for s € [0,1]. Then f is the generating function of a supercritical offspring distribution p with
©(0) = 0, and f is the generating function of a subcritical offspring distribution . For every
vertex = of B(T'), we denote by A, the set of indices 1 < i < ¢(x) such that the i-th child of x
is in the backbone, and we write cg(z) = |A;|. Finally, let B/(T) be the set of vertices y of T
such that the parent of y is in B(7T'), but y is not. The following result characterizes entirely the
distribution of 7.

Theorem 5.4. 1. The tree B(T') is a Galton-Watson tree with offspring distribution p.

2. Conditionally on B(T'), the variables c¢(z) — cg(z) are independent, with distribution char-
acterized by

f(CB(m))(qs)
fles@)(q)
for every s € [0,1], where f*) stands for the k-th derivative of f.

3. Conditionally on B(T') and the variables ¢(z) for x € B(T'), the sets A, for z € B(T) are
independent and, for every x, the set A, is uniformly distributed among all the subsets of
{1,2,...,c(x)} with cg(x) elements.

4. Conditionally on everything above, the trees T'[y| for y € B/(T') are independent Galton—
Watson trees with offspring distribution .

E |50 =) [B(T)| =

In particular, this decomposition implies that, for every h > 1, conditionally on B, (T') and
on the set 9B, (T)NB(T), the trees T[x] for x € OB(T)NB(T) are i.i.d. copies of T. Therefore,
the slices S[z] for x € 0B, (T) UB(T) are i.i.d. copies of S. This "self-similarity" property of S
will be used a lot later on.

We end this section by adapting these notions to the more general setting of strips glued in
the faces of a tree with no leaf. We recall that a strip is an infinite, one-ended planar map with
an infinite, simple boundary, such that all the faces except the outer face have finite degree. A
strip is also rooted at a root vertex on its boundary. Let t be an infinite plane tree with no
leaf. We draw t in the plane in such a way that its edges do not intersect (except at a common
endpoint), and every compact subset of the plane intersects finitely many vertices and edges.
Then t separates the plane into a countable family (f;);>0 of faces, where fj is the face delimited
by the leftmost and the rightmost rays of t, and the other faces are enumerated in a deterministic
fashion. For every index ¢ > 0, we denote by p; the lowest vertex of t adjacent to f;, and by h;
its height. Note that this vertex is always unique. On the other hand, for every vertex v of t,
there are exactly c¢(v) — 1 faces f; such that p; = v.

Let (s;)i>0 be a family of random strips. We denote by M (t, (s;)i>0) the infinite planar map
obtained by gluing s; in the face f; for every ¢ > 0, in such a way that the root vertex of s;
coincides with p; for every i. We also denote by S (t, (s;)i>0) the map obtained by gluing s; in
the face f; for every i > 0 (this is a map with an infinite boundary analog to the slice S). If v
is a vertex of t, we also define the "slice of descendants" of v as the map enclosed between the
leftmost and the rightmost rays of t started from v. We denote it by S (t, (s;)) [v].

We note that causal maps are a particular case of this construction. This is trivial for super-
critical Galton—Watson trees with no leaf. Thanks to Theorem this can be extended to the
case 1(0) > 0, with B(T) playing the role of t. This time, however, the strips are random, but
they are not independent. Indeed, if v is a vertex of B(T') and w one of its children in B(T),
the children of v on the left of w and the children on the right of w belong to different strips.
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However, by points 2 and 3 of Theorem [5.4] the numbers of children on the left and on the right
are not independent, except in some very particular cases (for example if p is geometric).

In what follows, we will study maps of the form M (T, (s;)i>0), where T is a supercritical
Galton-Watson tree with no leaf. We notice right now that if the strips s; are random and
ii.d., then the slice S (T, (s;)) has the same self-similarity property as the causal slices of the
form S(T'). Let h > 0. We condition on Bj(T) and on all the strips s; such that h; < h — 1.
Then the trees T[v] for v € B (T) are independent copies of T, so the slices S (T, (s;)) [v] for
v € OBy(T) are i.i.d. copies of S (T, (s;)). This will be useful in Section [5.3]

5.2 Metric hyperbolicity properties

The goal of this section is to prove the following result, of which Theorem [5.1]is a particular
case. Note that we make no assumption about the strips s; below.

Theorem bis. Let T be a supercritical Galton-Watson tree with no leaf, and let (s;) be a
sequence of strips. Then:

1. the map M (T, (s;)) is a.s. weakly anchored hyperbolic,
2. the map M (T, (s;)) a.s. admits bi-infinite geodesics.

In all this section, we will only deal with the general case of M (T, (s;)) where T is a super-
critical Galton—Watson tree with no leaf and the s; are strips. We will write M for M (T, (s;))
and S for S (T, (s;)). Our main tool will be the forthcoming Proposition which roughly
shows that S is hard to cross horizontally at large heights.

5.2.1 A hyperbolicity result about slices

We call 7, and -, the left and right boundaries of S, and p its root (note that v, and ~, may
have an initial segment in common near p). Both points of Theorem will be consequences
of the following hyperbolicity result about S.

Proposition 5.2. There is a (random) K > 0 such that any geodesic in S from a point on
to a point on ~, contains a point at distance at most K from p.

We first give a very short proof of this proposition in the particular case of a causal slice of
the form S(T'). Let i,j > 0 and let v be a geodesic in S(T') from 74(i) to 7,(j). Let vy be the
lowest point of v, and let hy be the height of vy. By the structure of S(T), each step of v is
either horizontal or vertical. Since the height varies by at most 1 at each vertical step, we need
at least (i — hg) + (j — ho) vertical steps. Moreover, let ZP be the number of vertices of B(T)
at height h. Then «y needs to cross all the trees T'[x] for x € B(T') at height hg, so v contains at
least Z,?O horizontal steps. On the other hand, v is a geodesic so it is shorter than the "obvious"
path following ~y, from 7,(i) to p and then ~, until ~,(j). Therefore, we have

i+j—2ho+Zp > |y =i+,

SO Z,E‘) < 2hg. However, ZB has a.s. exponential growth, so this inequality only holds for finitely
many values of hg, so hg is bounded independently of ¢ and j.

To generalize this proof, there are two obstacles: first, 74 and ~, are no longer geodesics in
S in the general case. Second, an edge of S can play the role both of a vertical and a horizontal
step if it crosses a strip and joins two vertices of T at different heights. However, we can still
cross at most one strip per step in this way.
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Figure 5.5 — The sequences (y;)i>x and (2;);>%. Here we have taken u; = 1 for every i. The tree
T is in red.

In order to prove the general Proposition we first state a lemma showing roughly that if
a path in T with nondecreasing height stays at height h during a time subexponential in h, it
cannot cross S.

More precisely, we fix a sequence of positive integers (u;)i>o and a height & > 0. Let = €
0By, (T). We define by induction two sequences (y;)i>, and (2;);> of vertices of T with y;, z; €
0B;(T) as follows (see Figure [5.5] for an example):

(i) vk ==,

(ii) for every i > k, if there are at least u; vertices on the right of y; on 0B;(T) (y; excluded),

then z; is the u;-th such vertex,

(iii) if there are less than wu; vertices of 0B;(T) on the right of y;, the sequences (y;) and (z;)

are killed at time ¢,

(iv) for every i > k, if z; ¢ ~,, the vertex y;41 is the rightmost child of z; in T. If z; € ~,,

both sequences are killed.
We call (y;)i>r and (2;);>, the sequences escaping from x on the right. We say that x is u-far
from ~, if the sequences (y;) and (z;) survive, that is, y; and z; are well-defined and do not hit
~, for all i > k.

Note that being u-far from =, is a monotonic property: if we shift the point = to the left,
then the points y; and z; are also shifted to the left. Hence, if a point « € dB(T) is u-far from
v and a’ € By (T) lies on the left of z, then 2’ is also u-far from ~,. We can similarly define
the sequences escaping on the left, and a vertex u-far from ~,.

Lemma 5.3. Assume u is subexponential, i.e. u; = o(c!) for every ¢ > 1. Then there is a
(random) K such that for any k& > K, the vertex ~,(k) is u-far from -, and the vertex ~, (k) is
u-far from ~y.

Proof. The idea is to reduce the proof to the study of a supercritical Galton—Watson process
where u; individuals are killed at generation i. It is enough to show that ~,(k) is u-far from ~,
for k large enough. Note that if v,(k) is u-far from ~,, then some point at height k£ + 1 is also
u-far from 4, and, by monotonicity, so is v,(k + 1). Therefore, it is enough to show that there is
k > 0 such that (k) is u-far from ~,.
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Let £ > 0 and o = (k). Let (vi)i>x and (z;);>r be the sequences escaping from x on
the right. We also denote by ZF the number of vertices of B;(T) lying (strictly) on the right
of z;. We first remark that the evolution of the process Z* can be described explicitly. We
have Z,’j = Zj. Moreover, we recall that u is the offspring distribution of T. Conditionally on
(ZF, lefﬂ’ ..., ZF), the variable ZF, | has the same distribution as

k
Zi
E Xij | — wit1,
Jj=1

where the X;; are ii.d. with distribution p. To prove our lemma, it is enough to show that
P (Vz’ >k, Zf > 0) goes to 1 as k goes to +o0o. Since the process Z describing the number of
individuals at each generation is a supercritical Galton—Watson process, there is a constant ¢ > 1
such that

P <8Bk(T) > ck> Y

k——+o00

Therefore, by a monotonicity argument, it is enough to prove that

P(w >k, ZF > 0|28 = [c’ﬂ) ot

To prove this, we show that Z* dominates a supercritical Galton-Watson process. Let § > 0 be
such that (1 —0) > ;5iu(i) > 1. Let also Z* be the Markov chain defined by

z;
k
Zi =[] and Zfy =Y Xij | = Nita,
=1

where the X ; are i.i.d. with distribution p and, conditionally on (X ;)i j>0 and (N;)i1<j<i, the
variable N;;1 has binomial distribution with parameters 6 and > jil X j. In other words, Z* is
a Galton—Watson process in which at every generation, right after reproduction, every individual
is killed with probability §. By our choice of §, the process Z* is a supercritical Galton—Watson

process and, on survival, grows exponentially. By an easy large deviation argument, we have

P (W >k, N; > wi|Z) = [c’ﬂ) Y

k——+o0

If this occurs, then Z < Zf for every i > k (by an easy induction on i), so

P(Vigk,Zszj‘>O|Z,’§:k>—>1

k—+o0

and the lemma follows. O
The proof of Proposition [5.2] given Lemma [5.3] only relies on deterministic considerations.

Proof of Proposition[5.3 We note that for any a € T, the slice Sa] is of the form S (T[a], (s}))

1
where Tla] is a supercritical Galton—Watson tree with no leaf, so we can apply Lemma to

Slal.

Now let a,a’ be two vertices of T, neither of which is an ancestor of the other. Then S[d]
and S[a’] are disjoint. Without loss of generality, we may assume that S[a] lies on the right
of S[a’]. Let K (resp. K') be given by the conclusion of Lemma for S[a] (resp. S[a’]) and
u; = 2 (i +max(d(p,a),d(p,a’))) + 1. We take K" = max (d(p,a) + K +1,d(p,d’) + K’ +1).
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Ve / T

Figure 5.6 — Proof of Proposition the point b is u-far from 7, and b’ is u-far from ~y, so any
point on 0B (T) is u-far from either 4, or ~,. Here we have taken u; = 1.

We consider a geodesic v from a vertex ,(m) to a vertex v.(n) in S. Let k£ be the minimal
height of vy N'T. We assume k& > K”, and we will get a contradiction.

Let b be the leftmost vertex of S[a] N dBx(T), and let & be the rightmost vertex of S[a’] N
OBy (T) (cf. Figure . By Lemma and our choice of K", the point b is u-far from ~, in S
and b’ is u-far from 7, in S, where u; = 2i + 1 (the change of sequence u is due to the fact that
the distances to the root are not the same in Sfa] and S, so the sequence needs to be shifted).
But any vertex of 9By (T) lies either on the left of b or on the right of ¥/, so it is either u-far from
¢ or from 7, (see Figure . In particular, let = be the first point of v lying on T at height k.
We may assume that z is u-far from ~,., the other case can be treated in the same way.

Recall that n is the height of the endpoint of . For every k <1¢ < n, let

ji = max {j € [0, ]7[]|7(j) € T and h (v(j)) < i},

and let z; = v(j;). Note that we have h(z;) < i, but since the height can increase by more than
1 in one step, the inequality may be strict.

Let also (y;)i>k and (z;);>k be the sequences escaping from x on the right in S (for u; = 2i+1).
By our assumption that x is u-far from ~,., these sequences are well-defined and do not hit ~,.
Moreover, for every k < i < n, the vertices z; and zj,(,,) are both in T and at the same height
h(zi). We claim that for every i > k, the vertex w; lies strictly on the left of the vertex zj(,,).
This is enough to prove the proposition, since then z,, cannot lie on ~,.

We show this claim by induction on 4, and we start with the case i = k. The vertices z = v(jo)
and z = v(ji) both lie on dBy(T), so the distance in S between them is at most 2k. Hence,
since v is a geodesic, we have |ji — jo| < 2k. Now, we consider the slices S[v] for v € By (T).
These slices are disjoint and, by definition of k, the path (v;);,<j<j, does not cross T below
height k, so it cannot intersect more than 2k < g of these slices, which implies that xj lies on
the left on z.

We now move on to the induction step. We assume z; lies strictly on the left of z(,,), and
split the proof in two cases.

— If h(xi41) < i+ 1, then x;4; is the last point of v at height at most ¢ 4+ 1, so it is also

the last point of v at height at most i, so x;11 = x;. In particular, it is on the left of
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Z; Zh(w:)

Figure 5.7 — The induction step in the proof of Proposition The path v between x; and x;41
is in blue. Branches of T are in red. The dashed lines are not edges of S, but indicate the height.
We see that z” is on the left of 3’ which is on the left of y;,1, so ;11 is on the left of z; 1.

Ph(wit1) = “h(zi):

— If h(zi4+1) = i+ 1, we need to introduce some more notation that is summed up in Figure
We denote by 2’ the first point of 7 after x; that belongs to T (note that h(z’) >i+1
by definition of x;), and by 2" the ancestor of 2’ at height i+ 1. Let also ¢’ be the leftmost
descendant of zj(,,) at height ¢ + 1. Note that by construction of the sequences (y;) and
(z;), the vertex y' is on the left of y;11. We know that between z; and 2/, the path ~
does not cross T, so x; and 2’ must be adjacent to the same strip. Since x; is strictly
on the left of zj(,,), it implies that 2’ lies on the left of any descendant of 2’, so 2" is
on the left of ¢/, and therefore on the left of 1;.1. Moreover, by the definition of x;, all
the vertices of v between z; and z;; that belong to T have height at least ¢ + 1. By
the same argument as before, the length of the part of v between x; and ;41 is at most
h(z;) + h(zity1) < 2(i + 1) < U;41. Hence, this part cannot cross ;41 of the slices S[v]
with v € 0B;+1(T), so the distance between z” and z;11 along dB;+1(T) is less than
U;+1. Since x” is on the left of y;11 and z;41 is at distance ;11 on the right of y;41, it
follows that x;41 is strictly on the left of z;;1, which concludes the induction and the
proof of the proposition.

O

5.2.2 Weak anchored hyperbolicity and bi-infinite geodesics
We can now deduce Theorem [5.1] bis| from Proposition [5.2

Proof of point 1 of Theorem [5.1] bid. Let (a;)1<i<a be four points of T, neither of which is an
ancestor of another. The slices S[a;] are disjoint and satisfy the assumptions of Proposition
For every 1 < ¢ < 4, let K; be given by Proposition for S[a;]. Now consider three vertices
z, y, z of M and three geodesics vy (resp. Vyz, Vzz) from x to y (resp. y to z, z to z) that
surround p. There is an index 1 < ¢ < 4 such that S[a;] contains none of the points x, y and
z. Assume it is S[aq]. Since the triangle formed by 7.y, vy. and 7., surrounds p, one of these
three geodesics must either intersect the path in T from p to aj, or cross the slice S[a1], as on
Figure @ We assume this geodesic is 7,y. In the first case, 7,, contains a point at distance at
most h(a1) from p. In the second case, assume 7y, crosses S[ai] from left to right. Let v, and
be respectively the left and right boundaries of S[a1]. Let v be the last point of ~,, that lies on
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Figure 5.8 — Illustration of the proof of point 1 of Theorem Here S[a1] contains none of
the vertices x, y and z, so it is crossed by the geodesic from x to y, and contains a point v at
bounded distance from p.

7¢ and let w be the first point of 7,, after v that lies on «,. Then the portion of ~,, between v
and w is a geodesic in M so it is also a geodesic in S[ai] that crosses S[a1]. Hence, it contains
a point z such that d(z,a;) < K;j. This concludes the proof by taking

K = max, (K; + h(a;)) .

O

Proof of point 2 of Theorem [5.1] bid. Let a1, ay € T, neither of which is an ancestor of the other,
so that Sla;] and S[as] are disjoint. Let 74 and 7, be the left and right boundaries of S[a1]. The
idea of our construction is the following: we first "approximate" the paths v, and ~, by two
infinite geodesics 7, and 7, and we then try to connect 7, to %, in the shortest possible way.
Before expliciting this construction, we need to reinforce slightly Proposition [5.2]

By Proposition we know that any geodesic 7 in S[a;] between a point of 7, and a point
of 7, contains a vertex at bounded distance from p. We claim that this is also the case if we
consider geodesics in M instead of S[a1]. Indeed, let K (resp. K5 ) be given by Proposition
for S[a1] (resp. S[az]). Let 4,7 > 0 and let v be a geodesic from (i) to v.(j) in M. We are in
one of the three following cases (cf. Figure :

(1) v intersects the path in T from p to a; or from p to ag,
(ii)  crosses Sla1],
(iii) 7 crosses S|az].

In all three cases, v contains a point at distance at most K from p, where
K = max (h(al) + K, h(CLQ) + KQ) . (5.2)

We can now build our infinite geodesics 7, and 7,. For every n, let 7' be a geodesic from p
to v¢(n). By an easy compactness argument, there is an infinite geodesic 7 such that, for every
i > 0, there are infinitely many n such that 5,(7) = v (). We build an infinite geodesic 7, from
v in a similar way.

For every i,j > 0, we define

a; 5 = i+ J—dpm (ﬁf(z)vﬁr(])) :

This quantity measures "by how much" the concatenation of 7, and 7, between ,(i) and 7, (j)
is not a geodesic. We note that for any 7,7 > 0, we have

dm (Ve(i+1),70(4)) < dm (Ve(i +1),70(0)) + daa (e(2), 7 (5)) = 1+ daa (32(2), 7(5))
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Figure 5.9 — Reinforcement of Proposition[5.2] In blue, the geodesic 7. It must intersect a geodesic
from p to aj or ag, or cross S[a;] or Slas).

SO @j4+1,; => Q4 j, SO a;j is nondecreasing in ¢. Similarly, it is nondecreasing in j. We claim the
following.

Lemma 5.4. Almost surely, (a; ;)i j>0 is bounded.
Proof of Lemmal[5.4} Let i,j > 0. By the definition of 7, and 7,, there are two indices m and n
such that 7y(7) lies on a geodesic from p to v,(m) and 7,(j) lies on a geodesic from p to v.(n).
Therefore, we have
dp (ve(m), 7 (n)) < dag (ve(m), 7e(2) + dag (e(8), 30 (5)) + dag (e (5), e (1))
= dpm (p,ve(m)) — i+ dpm (3e(), 70 (7)) + dr (p, (1)) — j
= dm (p,ve(m)) + da (p, 70 (1)) = aij.

~— —

On the other hand, we know that for any m,n > 0, any geodesic from ~,(m) to 7,(n) contains
a vertex vg at distance at most K from p, where K is given by ([5.2]). Therefore, we have

At (Ye(m), vr(n)) d (Ye(m), vo) + da (vo, e (n))

> dam (ye(m), p) + da (7 (n), p) — 2d p(p, vo)
> dm (ve(m), p) + dm (yr(n), p) — 2K.
By combining the last two equations, we obtain a; ; < 2K for every 7,j > 0. O

The construction of a bi-infinite geodesic is now easy. Let ig, jo be two indices such that
@i jo = sup{a;;li,j > 0}, and let d = daq (Ye(i0), 7 (jo)). Let also 7 be a geodesic from 7y(io)
to ¥ (jo) in M. We define a bi-infinite path ~ as follows :

Ye(ip — 1) if 1 <0,
v(3) = ¢ 7(7) if 0 <4 <d,
V(i —d+jo) ifi>d.
We finally check that this is indeed a bi-infinite geodesic. Let i > igp and j > j5. We have
Q.5 = Qig,j9, SO
dpt (Ve(2),7r(5)) = d + (i —do) + (j — Jo),

sod(y(ip —1),v(d+ 7 — jo)) = (d+j —jo) — (ip — 7). Therefore, we have d (y(i'),~v(j')) =5 =i
for i < 0 small enough and j' > 0 large enough, so v is a bi-infinite geodesic. O
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5.3 Poisson boundary

5.3.1 General setting

The goal of this subsection is to build a compactification of maps that, as we will later
prove, is under some assumptions a realization of their Poisson boundary. We will perform this
construction directly in the general framework M = M (T, (s;)). This construction is exactly
the same as the construction performed for the PSHIT in Section 3.1 of Chapter [4]

We recall that 9T is the set of infinite rays from p in T. If 7,7 € 9T, we write v ~ 7/
if v =~ or if v and +/ are "consecutive" in the sense that there is no ray between them (in
particular, if v, and 4, are the leftmost and rightmost rays of T, then vy ~ ~,.). It is equivalent
to saying that v and + are the left and right boundaries of some strip s; in the map M. Note
that a.s., every ray of T contains infinitely many branching points, so no ray is equivalent to two
distinct other rays. It follows that ~ is a.s. an equivalence relation for which countably many
equivalence classes have cardinal 2, and all the others have cardinal 1. We write OT = 0T ] ~
and we denote by v — 4 the canonical projection from 9T to oT. Finally, for every strip s;, the
left and right boundaries of s; correspond to the same point of 5T, that we denote by 7;.

Our goal is now to define a topology on M U OT. It should be possible to define it by an
explicit distance, but such a distance would be tedious to write down, so we prefer to give an
"abstract" construction. Let s; and s; be two distinct strips of M, and fix h > 0 such that
both s; and s; both intersect By (T). Then M\ (Bp(M) U s; U s;) has two infinite connected
components, that we denote by (s;,s;) and (s, s;) (the vertices on the boundaries of s; and s;
do not belong to (s;,s;) and (sj,s;)). We also write

~

0 (si,s5) = {7] v is a ray of T such that y(k) € (s;, s;) for k large enough}.

We define g(sj, si) similarly. Note that 5(si, s;) and 5(sj, si) are disjoint subsets of dT, and
their union is OT\ {7, i}

We can now equip the set M U OT with the topology generated by the following open sets:

— the singletons {v}, where v is a vertex of M,

— the sets (s;,s5) U 5(si, s;j), where s; and s; are two distinct strips of M.

This topology is separated (if 41 # 72, then there are two strips separating 71 and 72) and has
a countable basis, so it is induced by a distance. Moreover, any open set of our basis intersects
M, so M is dense in M UOT. Finally, we state an intuitive result about the topology of M UOT.
Its proof in the particular case of the PSHIT can be found in Chapter [4, and adapts without
any change to the general case.

Lemma 5.5. The space MU AT is compact, and IT is homeomorphic to the unit circle.

5.3.2 Transience away from the boundary in causal slices

The goal of this section is to prove Proposition which is the main tool in the proof of
Theorem [5.2] We recall that S is the causal slice associated to a supercritical Galton—Watson
tree T, and OS is the boundary of S, i.e. the set of vertices of S that are either the leftmost or
the rightmost vertex of their generation. We also write 7ps = min{n > 0|X,, € S}, where (X,,)
is the simple random walk on S.

Proposition 5.6. Almost surely, there is a vertex x € S such that
ngx (7’33 = —i—OO) > 0.
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Note that if such a vertex x exists, then we have Ps,(X, ¢ 0S for n large enough) > 0 for
every vertex v € S. The proof of Proposition [5.6] is based on estimates of effective resistances.
We will use the following inequality, that holds for every graph and every vertex z:

Ry (2 < {98, 00}) < RE(x <+ 00)

Ps , < < < .
s (Tos <00) S =ps 08 S RS, (v o 09)

(5.3)

For example, this is a particular case of Exercise 2.36 of [110]. We will find a sequence (x,,) of
vertices satisfying the following two properties:

1. we have RS;(zy, <> 0S) — +00 a.s. when n — +0o0,

2. for every n > 0, the resistance R (w,, ¢+ 00) is stochastically dominated by RS (p <> o0).
In particular, a.s., (Rfﬂ (zp, < oo)) has a bounded subsequence.

By (.3), this will guarantee that

Pg,mn (7’33 < +OO) —0
n——+0o0o

along some subsequence, which is enough to prove Proposition [5.6

We choose for the sequence (x,) the nonbacktracking random walk on the backbone of T'.
More precisely, we take xg = p and, for every n > 0, conditionally on § and =z, ..., x,, the
vertex 41 is chosen uniformly among the children of z, in B(T). We can give a "spinal
decomposition" of B(T') along (x,). We recall that p is the offspring distribution of B(T), cf.
(5.1)). For every n > 0, let L,, (resp. R;) be the number of children of x, in B(T") on the left
(resp. on the right) of x,41. A vertex v of B(T') will be called a spine brother if the parent of
v is equal to x;, for some n but v # x,41. Then the pairs (L,, R,,) are i.i.d. with distribution v
given by

B (Lo = £ Ra=7) = v ({(67)]) = ——p—ghlr+ £+ 1) (5.4)

Moreover, conditionally on (L,) and (R,), the backbones of the trees of descendants of the
spine brothers are i.i.d. Galton—Watson trees with offspring distribution p. The distribution of
T conditionally on this backbone is then given by Theorem In particular, for every n > 0,
the tree of descendants of z,, has the same distribution as T', so S[z,] has the same distribution
as S.

Therefore, for every n, we have

Rip(wn ¢ 00) < ngn} (zn 4> 00),

where Rff[f"] (zn +» o0) has the same distribution as RS:(p ¢ o00). This proves the second
property that we wanted (z,) to satisfy. Hence, it only remains to prove that Rfﬁ(a:n < 0S)
almost surely goes to 400, which is the goal of the next lemma.

Lemma 5.7. There are disjoint vertex sets (Ay)x>0, satisfying the following properties:

(i) for any k > 1, the set Ay separates S from all the sets A; with ¢ > k, and from z,, for n
large enough,

(ii) the parts of S lying between Agy and Agg41 for £ > 0 are i.i.d.,

(iii) we have R;Sﬂ'(AQk < Agkr1) > 0 as. for every k > 0.

Proof of Proposition gwen Lemma[5.7 Fix k and choose n large enough, so that x,, is sepa-
rated from 0S by Ag, A1,..., Asr_1. Since Ay, ..., Asp_1 are disjoint cutsets separating z,, from
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Figure 5.10 — The slice S with the sequences of vertices (z,) (in red), and the separating sets
Ay (in blue). Here we have hg = 1, h{; = 3, hy =5 and h) = 6.

0S8, we have
2k—2
Réi(wn > 08) > R(0S > Ag) + Rep(wn > Agp_1) + Y RE(Ai <> Aiga)
=0

k—
> Y RG(Agi > Agipr).

—

~

Since the variables Rfﬂ(Agi < Agiy1) for 0 < ¢ < k — 1 are i.i.d. and a.s. positive, this goes
to +o00 as k — 400, so we have Rfﬁ(xn < Ag) — 400 a.s. when n — +oo, which ends the

proof. O

Remark 5.8. The law of large numbers even shows that there is a constant ¢ > 0 such that, for
n large enough, we have Re‘sﬁ(l‘n < 0S) > cn. This is quite similar to the resistance estimates
proved in [26] in the case where T is the complete binary tree, and it might be interesting to
apply our results to the study of the Gaussian free field on causal maps. Unfortunately, our
estimates only hold in "typical" directions, and not uniformly for all the vertices. We also note
that the idea to "cut" S along the sets Ay was inspired by the proof of Lemma 1 of [26].

We now build the subsets A;. We define by induction the heights hj and hj, for k > 0 by

ho = min{n > 0|L, > 0},
h, = min{n > hg|R, > 0},
hgs1 = min{n > h}|L, > 0}.

Note that the pairs (L, R,) are i.i.d. with P(L,, > 0) > 0 and P(R,, > 0) > 0, so h;, and hj, are
a.s. well-defined for every k. We define Ay, as the union of the leftmost ray of B(T) from zp,,
the rightmost ray of B(T) from Ty and the vertices z; with hy < i < hj, (see Figure [5.10)).

It is easy to see that the sets Ay are disjoint and that Ay separates S from A; for every
i > k, and from x,, for n large enough, so they satisfy property (i) of Lemma .
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For every k > 0, let Uy, be the sub-map of S whose vertices are the vertices between A and
Apy (the vertices of Ay and Ay are included), rooted at xj, . By using and the backbone
decomposition, it is quite straightforward to prove that the maps Uy for £ > 0 are i.i.d.. We
do not give a precise description of the distribution of Uy, the only property of U), that we will
need later is that it contains a copy of T' on each side of the spine.

Remark 5.9. It is still true that the U for £ > 0 are identically distributed. However, U
and Uy, are not independent. Indeed, for hyy1 < n < h} 41, the variables L;,, and R;, are not
independent, and L, affects Uj1, whereas R,, affects Uy. This is why we restrict ourselves to
even values of k.

It only remains to prove property (iii) in Lemma Let U be distributed as the U, and
let Ay (resp. A;) be its bottom (resp. top) boundary, playing the same role as Ay (resp. Agy1).
The proof that Rzg’ff (Ap <+ Ay) > 0 relies on a duality argument. We first recall a classical result
about duality of resistances in planar maps. Let M be a finite planar map drawn in the plane,
and let a and z be two vertices adjacent to its outer face. We draw two infinite half-lines from
a and z that split the outer face in two faces a* and z*. Now let M* be the dual planar map
whose vertices are a*, z* and the internal faces of M. Then we have

Rf(a o 2) = (BY (@ & z*)>_1 . (5.5)

In our case, the infinite graph U has two ends ooy (on the left of the spine) and oo, (on the
right). Informally, we would like to write

*

-1
Rl (Ay > Ar) = (R (oo} ¢ o07)) (5.6)

which would reduce the problem to the proof of RY; (0o} ++ 0or) < +o0. Our first job will be to
state and prove (a proper version of) (5.6)).

More precisely, we denote by Uy (resp. U,) the part of U lying on the left (resp. on the right)
of the spine. We also define U* as the dual map of I/ in the following sense: the vertices of U*
are the finite faces of U, and for every edge of U that does not link two vertices of A or two
vertices of Ay, we draw an edge e* between the two faces adjacent to e. Let 8* be a flow on U*
with no source. We assume that 6* is unitary in the sense that the mass of 8* crossing the spine
from left to right is equal to 1. We recall that the energy £(0*) of 6* is the sum over all edges
e* of U* of §*(e*)?. For every n > 0, let Ay(n) (resp. A;(n)) be the set of vertices of A, (resp.
A;) at height at most n. We consider the map U(n) obtained by cutting U above height n. The
restriction of 6 to the dual of this map becomes a unitary flow crossing U (n)* from left to right.
Therefore, the dual resistance from left to right in ¢ (n)* is at most £(6*) so, by (5.5)), we obtain

Rer(Ap(n) & Ae(n)) > €(6%) 7

and, by letting n — 400, we get RY4(Ap <> Ar) > £(0%)~L. In particular, if there is such a flow
0* with finite energy, then RY (A4, <+ A;) > 0 and Lemma is proved.

We now define Uy (resp. U,.) as the part of U lying on the left (resp. on the right) of the
spine. Let f, and f, be two faces of U lying respectively on the left and on the right of the same
edge of the spine. A simple way to construct a unitary flow 8* with no sources is to concatenate
a flow 0] from infinity to f, in U}, a flow of mass 1 in the dual edge from f; to f, and a flow
¢y from f, to infinity in ¢/. For this flow to have finite energy, we need ¢; and 0 to have finite
energy, so we need both U; and U to be transient.

We now define §* as the dual of the slice S (as above, the vertices of S* are the inner faces
of §). We note that, for every vertex vy € Uy N B(T') that does not belong to the spine, the tree

143



of descendants of vy has the same distribution as 7" and is entirely contained in Uy. Therefore,
Uy contains a copy of &, so U, contains a copy of §*, and the same is true for U,". Hence, we
have reduced the proof of Proposition to the next result.

Lemma 5.10. The dual slice S* is a.s. transient.

Proof. We will show that we can embed a transient tree in §*. The idea will be to follow the
branches of the tree T in the dual, to obtain a tree T™ that is similar to 1. However, vertices
of high degree become obstacles: if a vertex v of T has degree d in T, we need d dual edges to
"move around" v in §*. Therefore, it becomes difficult to control the ratio between resistances
in T* and in T. To circumvent this problem, we will use the fact that T" contains a supercritical
Galton—Watson tree with bounded degrees.

More precisely, we fix a constant cpax large enough to have

Cmax

> ip(i) > 1.

1=0

If ¢t is a (finite or infinite) tree, for every vertex v with more than ¢payx children, we remove all
the edges between v and its children, and we call t,,4q the connected component of the root. If T”
is a Galton-Watson tree with distribution g, then 77 i, is a Galton-Watson tree with offspring
distribution ppqq given by

0 if 7> cmax,
Pbda (i) = < (i) if 0 < i < cmax;
1(0) + 355 e (7)) i1 =0.

In particular, we have Y, ippqa(i) = Y ;=5 ip(i) > 1, so T} 44 is supercritical, and it survives
with positive probability. But T' is a Galton—Watson tree conditioned to survive, so it contains
infinitely many i.i.d. copies of T' (take for examples the trees of descendants of the children of
the right boundary). Therefore, there is a.s. a vertex vy € T that is not on the left boundary of
S, such that T'[vg]pgq is a Galton—Watson tree and survives. In particular, it is transient and,
for every v € T[vo]pad, the number of children of v in T" is bounded by ¢pax.

From here, can can build a tree 7™ in S* whose branches follow the branches of T'[vg]pqq on
their left, and which circumvents branching points of T'[vg]pqq by the top. See Figure for the
construction of this tree. The tree T™ is then a subgraph of §*. Therefore, it is enough to prove
that T* is transient. But since the vertex degrees in T'[vg]pqq are bounded, it is easy to see that
T[volpaq and T* are quasi-isometric, so T™* is also transient (by e.g. Section 2.4.4 of [72]). O

5.3.3 Consequences on the Poisson boundary

We recall that (X,,) is the simple random walk on C started from p. By a result of Hutchcroft
and Peres (Theorem 1.3 of [83]), the first point of Theorem [5.2 implies the second.

Proof of Theorem[5.3 We first show the almost sure convergence of (X,,). By compactness
(Lemma , it is enough to prove that (X,) a.s. has a unique subsequential limit in aT.
Note that if 71 # 75 are two distinct points of or , then there are two vertices v,v" € B(T) such
that the slices S[v] and S[v'] separate 1 from ~2. Therefore, if 41 and 2 are subsequential limits
of (X,,), by transience of C(T), the walk (X,,) crosses infinitely many times either S[v] or S[v/]
horizontally. Therefore, it is enough to prove that for every vy € B(T'), the walk (X,,) cannot
cross infinitely many times S[vp] horizontally.
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Figure 5.11 — The construction of the dual tree 7% (in blue) from the tree T[vg]paq (in red). Here,
we have taken cpax = 3. The vertices of T* are the faces adjacent to the vertices of T'[vp]paq at
their bottom-left corners.

For every v € S[vo], let f(v) = Psjyyl0 (Tag[vo] < 400). The function f is harmonic on
S[vo]\0S[vp]. Moreover, by Proposition there is a vertex v; € S[vp] such that f(v1) < 1.
Let (Y;) be a simple random walk started from v; and killed when it hits 0S[vg]. Then f(Y},)
is a martingale and, by the martingale convergence theorem, it converges a.s. to Ilfas[vo]<+oo. In
particular, it has limit zero with positive probability, so there is an infinite path (wy) going to
infinity in S[vg], such that f(wy) — 0.

We fix ko > 0. Everytime the walk (X,) crosses S[vg] horizontally at a large enough height,
it must cross the path (wg)g>0. Since C is transient, if X crosses S[vp| infinitely many times, it
must cross (wg) >k, and then hit dS[vp]. If this happens, let K be such that wg is the first of
the points (wg)g>k, to be hit by X (if none of these points is hit, we take K = +00). We have

P (X hits (wg)k>k, and then 0S[vg]) = E [1gxctoo f(wg)] <E
k>ko

Since f(wy) — 0, by dominated convergence, this goes to 0, which proves that X cannot cross
S[vo] infinitely many times. This implies the almost sure convergence of X to a point X, of oT.

The proof that X has full support is quite easy. Let vg € B(T). Then (X,,) has a positive
probability to visit the slice S[vg] and, by Proposition it a.s. has a positive probability to
stay there ever after. But if X,, € S[vg| for n large enough, then X, must correspond to a ray of
descendants of vy, so the distribution of X, gives a positive mass to rays that are descendants of
vo. This is almost surely true for any vy € B(T), so the distribution of X, has a.s. full support.

Finally, to prove the almost sure nonatomicity, it is enough to prove that if X and Y are two
independent simple random walks on C, then X, # Y, almost surely. The idea of the proof is
that everytime X and Y reach a new height for the first time, by Proposition [5.6] they have a
positive probability to get "swallowed" in two different slices of the form S[x] and S[y], so this
will almost surely happen at some height.

More precisely, in this proof and in this proof only, until the end of Section [5.3.3] we
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assume that 7' is a non-conditioned Galton-Watson tree with offspring distribution pu. We
recall that Zj, is the number of vertices of T" at height h. For every h > 0, let

¥ =min{n > 0|h(X,) =h} and 77 =min{n > 0[h(Y,) = h}.

Note that if T" survives, then T,f( , Tg/ < +oo for every h. Let also F, be the g-algebra generated
by By, (C(T)), (X )0<n<7-X and (Y, )0<n<7y and let Fo, be the o-algebra generated by ;o Fa-
We note right now that (]:h)hzo is nondecreasmg and that F., is the o-algebra generated by
(C, X,Y). Finally, for every h > 0, let A be the event

{There are four distinct vertices (x;)1<i<4 of T at height h such that:

— the vertices x1, x2, 3 and x4 lie in this cyclic order,

— the trees T'[xz;] all survive,

— for every n > 7;X, we have X,, € T[x1]

— for every n > 7Y + 2, we have Y;, € T[:Ug].}

Lemma 5.11. There is a constant § > 0 such that for every h, if Z, > 4, then
P(Ax|Frn) >0

Once this lemma is known, the end of the proof is quite easy: let A = | J h>0 Ap. If T survives,
then Z; > 4 for h large enough, so

§ < P(Ap|Fn) < P(A|F) # P(A|Foo) = 14,
——+o00

by the martingale convergence theorem and the fact that (C, X,Y) is Foo-measurable. Therefore,
almost surely, if 7" survives, there is an h such that A, occurs. But if it does, the slices S[z2]
and S[z4] separate X and Y eventually, so they separate X, from Yoo, so Xoo # Yoo, which
ends the proof of Theorem O

Remark 5.12. It is easy to show by using Proposition that P (Ap|Fp) > 0 a.s.. However,
this is not sufficient to prove Lemma and this is actually in the proof of Lemma that
our argument fails in a more general setting. More precisely, in the setting of a tree T filled
with i.i.d. strips, the lower degree of erf (i.e. the number of edges joining this vertex to a
lower vertex) is not constant but depends on F, and we might imagine that it goes to +oo as
h — +o0. In this case, we might have P(Ap|Fp,) — 0 (with high probability, X goes back down
right after 77 X). This problem does not occur in C(7T'), where the lower degree is always equal to
1, but it explains why the proof of Lemma [5.1T needs to be treated with some care.

Proof of Lemma[5.11] The proof will be split into three cases: the case where X_ X = =Y v, the
case where X_x and Y v are distinct but neighbours, and the case where they are not nelgh%ours
We treat care?ully the Rrst one, which is slightly more complicated than the others.

In the first case, we write x1 = Xr,jf = YT{. We also denote by xo and x3 the two vertices

at height h on the right of x1, and by x4 the left neighbour of x;. Let also A}, be the following
event:

{The trees T'[x;] for 1 < i < 4 survive. Moreover, we have X,, € T[z1] for every n > 7;X and
YT{H = T9, YT{JFQ = z3 and Y,, € T'[z3] for every n > 7'}2/ + 2.}.

If A} occurs, then so does Aj. Moreover, we claim that the probability for A} to occur is
independent of h and Fj. The reason why this is true is that for every vertex v in one of these
trees (say T'[z1]), the number of neighbours of v in C that are not in S[z1] is fixed: there are 3
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such neighbours if v = x1, there is 1 such neighbour if v # z; is on the boundary of S[z;] and 0
if it is not. Therefore, the probability given C that X stays in S[z1] after time 77° only depends
on T'[z1]. Similarly, the probability for Y to perform the right first two steps after time T]z/ only
depends on the numbers of children of z; and x5, and the probability to stay in T'[z3] ever after
only depends on T'[x3]. All this is independent of h and Fj, which proves our claim. If we write
61 = P(A}|Fp), we have §; > 0 by Proposition |5.6(and P (Ay|Fy) > 1 for every h in this first
case.

The other two cases can be treated similarly with minor adaptations in the choices of the
vertices x;, and the first two steps of Y after T}}L/ . While we needed to control exactly the first
two steps of Y in the first case, we only need one step for the second case and zero step for the
third one. The other two cases yield two constants do and d3, which proves the lemma by taking
d = min(dy, d2, d3).

O

5.3.4 Robustness of Proposition [5.6

The goal of this subsection is to explain why Proposition [5.6] still holds in a quite general
setting and to deduce the following result. We recall that a graph G is Liouwille if its Poisson
boundary is trivial, i.e. if every bounded harmonic function on G is constant.

Theorem bis. Let T be a supercritical Galton—Watson tree with offspring distribution u
such that 1(0) = 0, and let (S;)i>0 be an i.i.d. sequence of random strips. We assume that (.S;)
is also independent from T.

1. Proposition [5.6| holds if we replace S by S (T, (.S;)i>0)-
2. The map M (T, (S;)) is a.s. non-Liouville.

Note that we cannot expect that T is always the Poisson boundary of M (T, (S;)). For
example, if some strips 5; have a non-trivial Poisson boundary, then the Poisson boundary of
M (T, (S;)) is larger than OT. See Section |5.5| for a more developed discussion.

Proof of the first point. Most of the proof works exactly along the same lines as the proof of
Proposition [5.6, with T playing the same role as the backbone tree. In particular, we choose
for (z,) a nonbacktracking random walk on T, and the sets Ay are built in the same way as in
the original proof, but from T instead of B(T'). The proof of Proposition from Lemma
is very similar, as well as points (i) and (ii) of Lemma [5.7} The only difference is that the proof
of point (ii) of Lemma is easier in our new framework, because of the independence of the
strips, and we do not need anymore to restrict ourselves to even values of k.

Exactly as in the first proof, by using the "self-similarity" property of S (T, (S;)i>0), the
proof of point (iii) of Lemmal5.7 can be reduced to the proof that the dual map of S (T, (S;)i>0)
is transient (it is also important that the sets Ay do not touch each other, which is why we have
required that the boundaries of the strips are simple). The adaptation of the proof of Lemma
5.10| (transience of the dual slice), however, is not obvious.

More precisely, let S* be the graph whose vertices are the finite faces of S (T, (.S;)i>0) and
where, for every edge e of S (T, (S;)i>0) that is adjacent to two finite faces, we draw an edge e*
between these two faces. We note right now that, since all the strips have only finite faces, the
graph §* is a connected graph, and we need to prove that it is transient. The idea of the proof
is the following: we will build a genealogy on the set of strips, which contains a complete binary
tree. As in the proof of Lemma [5.10] we will then kill the strips whose root is "too far" from its
children, in order to preserve some quasi-isometry.

We first build a genealogy on the set of strips. We recall that the root of a strip 5; is the
lowest vertex of its boundary, and is denoted by p;. The height of S; is the height of p;. We
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Figure 5.12 — The tree T (in red), and the tree Ty, of descendants of the strip S; (in blue). Note
that the strip So has one parent on each side, but the right parent is not a descendant of .Sj.

call two strips adjacent if their respective boundaries share at least one edge. If \S; is a strip,
we consider the first vertex on the left boundary of S; (apart from p;) that is also a branching
point of T. This vertex is also the root of some strips, exactly one of which is adjacent to S;. We
call this strip the left child of S; (cf. Figure . We can similarly define its right child. Note
that almost surely, every branch of T branches eventually, so these childs always exist. We now
fix a strip S7. We claim that the restriction of this genealogy to the set of descendants of S is
encoded by a complete binary tree, which we denote by Ti,. Indeed, all the descendants of the
left child of a strip S lie on the left of S, whereas all the descendants of its right child lie on its
right. Therefore, it is not possible to obtain the same strip by two different genealogical lines
from S (see Figure[5.12).

We now kill some of the strips. We fix a constant £,,x > 0. For every strip S;, let ef (resp.
e} ) be the first edge on the left (resp. right) boundary of S; that is also adjacent to its left (resp.
right) child. We call a strip S; good if, for every face f of S; that is adjacent to p;, the dual of
S; contains a path of length at most £« from f to ef , and similarly for e].

Note that the fact that .S; is good or not only depends on the internal geometry of S;, and
on the numbers of children of the vertices on the part of 0.5; lying between ef and e}. These
parts for different values of ¢ € Ty, are disjoint. Hence, since the strips are i.i.d. and T is a

Galton—Watson tree, the events
{S; is good}

for ¢ € T, are independent, and have the same probability. Therefore, removing from T, all the
strips that are not good is equivalent to performing a Bernoulli site percolation on the complete
binary tree Tg,. Moreover, the probability for a strip to be good goes to 1 as fy,ax g0 to +00, so
we can find £y, such that this percolation is supercritical. We fix such an £, until the end of
the proof.

Let Ty, be an infinite connected component of Ty, containing only good strips. Then T, is
a supercritical Galton—Watson tree and survives, so it is transient. We can now define a submap
Siqq of S*. For every strip S; € T, let pf (resp. p}) be a dual path of length at most fmax
joining the face of S; that is adjacent to its parent to the face adjacent to ef (resp. ). Then the
edges of S 4 are the edges of these paths for all i such that S; € T, as well as the dual edges
of the edges ef and e] (cf. Figure . The vertices of Sf ;4 are simply the vertices adjacent
to these edges. Since the lengths of the paths pf and p! are bounded by /.y, it is easy to see
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Figure 5.13 — Construction of Sy, (in blue). The tree T is in red. The hatched strips do not
belong to Tg,. The green strips are the strips that are not good, and the yellow ones are the
descendants of the green ones, so they are not in 77,. For the sake of clarity, we have not drawn
the interiors of the strips that do not belong to T,

str-

that S} 4 is quasi-isometric to the tree T, so it is transient. This implies that S* is transient
as well, which concludes the proof of the first point.

O]

Proof of point 2 of Theorem[5.9 big We mimic the beginning of the proof of Theorem but
we use the first point of Theorem [5.2] bis| instead of Proposition [5.6] The proof of the first two
points is robust, and shows that almost surely, the simple random walk X on M (T, (S;)i>0)
converges a.s. surely to a point X, of T, and that the distribution of X, has a.s. full support.
In particular, for every € T, let 5T[y] be the set of the classes 7, where v is a ray passing
through y. Let y1,y2 be two vertices such that 0T [y;] NIT[ya] = 0. We define the function h on
M by
h(z) = Ppmg (Xoo € 0T [y1]) -

Then h is harmonic and bounded on M. Moreover, by the same argument as in the beginning
of the proof of Theorem there is a sequence (z,) of vertices in S[y;] such that h(z,) — 1.
On the other hand, by the first point of Theorem there is a positive probability that
X stays in S[ya] eventually, so h(z) < 1 for every x, so h is non-constant. It follows that M is
non-Liouville. O

5.4 Positive speed of the simple random walk

5.4.1 Sketch of the proof and definition of the half-plane model H

The goal of this section is to prove Theorem In all this section, we assume u(0) = 0.
We first give a quick sketch of the proof. Our main task will be to prove positive speed in a
half-planar model H, constructed from an infinite forest of supercritical Galton—Watson trees,
and where we have more vertical stationarity than in C. The results of Section [5.3] will allow us
to pass from H to C. Note that Theorem is very easy in the case where pu(0) = p(1) = 0,
since then the height of the simple random walk dominates a random walk on Z with positive
drift. Therefore, we need to make sure that the vertices with only one child do not slow down
the walk too much. Our proof in H relies on two ingredients:
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Figure 5.14 — On the left, an infinite forest (7});cz. On the right, the half-planar map H obtained
from this forest. The root vertex is in red.

— An exploration method of H will allow us to prove that the walk cannot be too far
away from a point with at least two children. This will guarantee that the walk spends
some time at vertices with at least two children. At these vertices, the height of the walk
accumulates a positive drift. This will give a "quasi-positive speed" result: the height at
time n is nt7oW.

— Thanks to the stationarity properties of H, we can study regeneration times, i.e. times
at which the walk reaches some height for the first time, and stays above this height
ever after. The estimates obtained in the first point are sufficient to prove that the first
regeneration time has finite expectation. As in many other models (like random walks in
random environments, see [I130]), this is enough to ensure positive speed.

We now define our half-plane model. Let (7;);cz be a family of i.i.d. Galton-Watson trees
with offspring distribution pu. We draw the trees T; with their roots on a horizontal line, and for
every h > 0, we add horizontal connections between successive vertices of height h. Finally, for
every vertex v of height 0, we add a parent of v at height —1, which is linked only to v. We root
the obtained map at the root of Ty (which has height 0), and denote it by H (see Figure .
As for C, if v is a vertex of H, the height h(v) of v in H is defined as its height in the forest (73).
We denote by 0H the set of vertices of H at height —1.

We first explain why it is enough to prove the result in # instead of C. We denote by X¢
the simple random walk on a graph G.

Lemma 5.13. If in # we have 2h(X*) — v, > 0 a.s. as n — +o0, then Theorem [5.3|is true.

Proof. For every i € Z, let S(T;) be the slice associated to the tree T;. Then almost surely, if the
walk (X,,) stays in S(7;) eventually, the distance between X,, and the root of T; is equivalent to
vyn. Since S(T;) has the same distribution as S, the simple random walk on S has a.s. speed v,
on the event that it does not hit 9S.

Back in C, by Theorem we know that X converges to a point X, € AT and that X is
a.s. not the point of T corresponding to the leftmost and rightmost rays of T'. Therefore, almost
surely, the walk X¢ only hits the boundary of S(T) finitely many times, so it has a.s. speed
vy > 0. O

5.4.2 An exploration method of H

Let k > 0 and let « be a vertex of H at height h > 0. We write zg = x. Let also xz_1,...,2_
be the k first neighbours at height h on the left of x, and let x1,. ..,z be the k first neighbours
of z on its right.
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Figure 5.15 — An example for Definition [5.14} the point = z( is 2-bad, but not 3-bad.

Definition 5.14. Let x be a vertex of H at height h > 0. We say that x is k-bad if all the
descendants of x_j,x_(,_1),..., Tk at heights h,h +1,..., h+ k have only one child (cf. Figure
5.15]).

The goal of this section is to show that the probability for the walk to visit a "very bad"
point in its first n steps is very small. More precisely, we will prove the following result.

Lemma 5.15. There is a constant ¢ > 0 such that for every k,n > 0, we have
[P (one of the points Xo, X1,..., X, is k-bad) < ck(n + 1)2,u(1)k2.

The presence of the factor ,u(l)kQ is not surprising. For example, the probability for the root
vertex Xg to be k-bad is exactly p(1)#+DEE+1) The idea of the proof is to explore # at the
same time as the random walk moves, in such a way that every time we discover a new vertex,
either its k& neighbours on the right or its k neighbours on the left have all their descendants
undiscovered. If this is the case, the probability for the discovered vertex to be k-bad is at most
u(l)kZ. The factor ck(n + 1)? means that our exploration method needs to explore at most
ck(n + 1)? vertices to discover {Xo, X1,..., X, }.

The rest of Section[5.4.2]is devoted to the proof of Lemmal5.15] We first define our exploration
method. We then state precisely the properties that we need this exploration to satisfy (Lemmas
[5.16] [5.17 and [5.18)), and explain how to conclude the proof from here. Finally, we prove these
properties.

Exploration methods. By an exploration method, we mean a nondecreasing sequence (E;);>o
of finite sets of vertices of H. For every ¢ > 0, the part of H discovered at time ¢ is the finite
map formed by:

e the vertices of E;,

e the edges of H whose two endpoints belong to FE;,

o for every edge of H with exactly one endpoint in Fj;, the half-edge adjacent to E;.
We denote this map by &; (see Figure . In particular, when we explore a vertex, we know
how many children it has, even if these children are yet undiscovered. Moreover, for every i, the
map &; will be equipped with an additional marked oriented edge or half-edge e; describing the
current position of the simple random walk. In all the explorations we will consider, we can pass
from &_1 to & by either adding one vertex to the explored set F;_1, or moving the marked
edge to a neighbour edge or half-edge. In the first case, we call i an exploration step and, in the
second, we call ¢ a walk step. In particular, the time of the exploration is not the same as the
time of the random walk.
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Figure 5.16 — On the left, the map H and the set of vertices E; (in red). On the right, the
explored map &;. The edge in orange means that at the current time, the random walk is leaving
the vertex x; towards its right child. The vertex x; is 2-free on the right, but not 3-free. The
vertex g is k-free on the right for every k > 0. It is also 5-free on the left, but not 6-free. By
only looking at &;, we can be sure that x; is 2-free on the right and xo is 4-free on the left, but
not that a9 is 5-free on the left.

We say that a vertex v € E; is k-free on the right in E; if none of the k first neighbours
on the right of the rightmost child of F; belongs to F;. We define similarly a k-free on the left
vertex. We would like to build an exploration of H such that at every exploration step i, the
unique vertex of F;11\FE; is either k-free on the left or on the right in ;1. Note that it is not
always possible by looking at &; to decide whether a vertex v € E; is k-free or not (cf. vertex vy
on Figure . However, as we will see later (proof of Lemma , it is sometimes possible to
be sure that a vertex is k-free.

Choice of the exploration method. The simplest exploration method coming into mind
is to explore a vertex when it is hit for the first time by the walk (X,,). However, this is not
suitable for our purpose. If for example we discover some descendants of a vertex v and explore
v afterwards, then we have some partial information about the descendance of v, so we cannot
control the probability for v to be k-bad. For this reason, we never want to discover a vertex
before discovering all its ancestors. We will therefore require that the sets E; are stable, which
means that for every vertex v € F;, all the ancestors of v lie in E; as well.

A second natural exploration method is now the following: everytime the walk (X,,) hits a
vertex v for the first time, we discover all the ancestors of v that are yet undiscovered (including
v), from the lowest to the highest. Although more convenient than the first one, this method is
not sufficient either. Indeed, assume that at some point we explore a vertex v such that the k
first neighbours on the left and on the right of v have already been discoverd, as well as many of
their descendants. Then we have accumulated some partial information about the descendances
of all the neighbours of v, so we cannot control the probability for v to be k-bad.

More generally, this problem occurs if we allow the formation of "narrow pits" in the explored
part of H. Therefore, the idea of our exploration is the following: everytime the walk (X,,) hits a
vertex v for the first time, we explore all the ancestors of v that are yet undiscovered (including
v), from the lowest to the highest. If by doing so we create a pit of width at most 2k, then we
explore completely the bottom of this pit, until it has width greater than 2k.

To define this exploration more precisely, we need to define precisely a pit. We assume that
the set F; is stable, which implies that &; is simply connected. Then there is a unique way to
move around the map &; from left to right by crossing all the half-edges exactly once, as on
Figure . A pit is a sequence of consecutive half-edges po, p1,...,pj+1 such that:
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Figure 5.17 — On the left, we move around &; by crossing all the half-edges. On the right, the
unique pit of &;. It has width 3 and height 0. In particular, the map &; is 1-flat, but not 2-flat.

— the half-edges p1,...,p; point upwards, and start from the same height A,

— the half-edge pg points to the right and lies at height h + 1,

— the half-edge p;11 points to the left and lies at height h + 1.

Note that all the pits are half-edge-disjoint. We call j and h the width and the height of the pit.
Finally, we say that & is k-flat if it has no pit of width j < 2k (see Figure .

If e is an oriented edge or half-edge, we will denote by e~ its starting point and e™ its
endpoint. We can now describe our exploration algorithm precisely. We take for Ey the set
formed by the root vertex p of ‘H and its parent at height —1, and pick ey uniformly among
all the edges and half-edges started from p. For every i« > 0, we recall that e; is the oriented
edge or half-edge of & marking the position of the simple random walk. For every i > 1, given
(Ei—1,€i—1), we construct (&;,e;) as follows.

(i) If the marked edge e;_1 is a full edge and &;_; is k-flat, we perform a walk step: we set
FE; = E;_1 and pick e; uniformly among all the edges and half-edges whose starting point
is e;r_l.

(i) If e;—; is a half-edge, we perform an exploration step: we denote by v; the lowest ancestor
of e;r_l that does not belong to E;_1. If v; lies at height —1, then E; is the union of E; 1,
the vertex v; and its child at height 0 (this is the only case where we explore two vertices
at once, to make sure that & remains connected). If not, then F; = F;_; U {v;}. Note that
if v; = e;:l, then the marked half-edge becomes a full edge.

(iii) If e;—; is a full edge but &_1 is not k-flat, let (po,p1,...,pj+1) be the leftmost pit of width
at most 2k. We then take E; = F;_1 U {p{r} This means that we explore the endpoint of
the leftmost vertical half-edge of the pit.

It is easy to check that the sets E; we just defined are all stable.

The exploration is Markovian. An important feature of our exploration that we need to
check is that it is Markovian. More precisely, for every i > 0, let OF; be the set of vertices
consisting of:

— the endpoints of the half-edges of &; pointing upwards,

— the vertices of H of height 0 that do not belong to E;.

Lemma 5.16. Conditionally on (&;, 6j)0<j<i’ the trees of descendants of the vertices of OF; are
independent Galton-Watson trees with offspring distribution pu.

Proof. Given the Markovian structure of supercritical Galton—-Watson tree, it is enough to check
that at every step, our exploration is independent of the part of H that has not yet been
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Figure 5.18 — The second case of our exploration algorithm. We move around the boundary of &;
towards the right: we encounter one horizontal half-edge, and then a vertical half-edge e,. This

e, has descendents at the same height as e;, and the leftmost such descendant is e;r.

discovered. This is easy in the case (i): conditionally on &;, the choice of e; is independent of the
rest of H. We claim that in the other two cases, the discovered vertex is either the endpoint of
a vertical half-edge which is a deterministic function of (&;,e;), or the root of the first infinite
tree on the left or on the right of &;. This claim is obvious in the case (iii).

In the case (ii), the half-edge e; points either to the top, the left or the right. If it points to
the top, then all the ancestors of e;“ have been discovered, so the explored vertex is ej. If e;
does not point to the top, we assume without loss of generality that it points to the right. We
then start from the half-edge e; and move around &; towards the right. We first cross horizontal
half-edges pointing to the right at decreasing heights, until either we reach height 0, or we cross
a vertical half-edge pointing to the top. If we cross a first vertical half-edge e, then e must be
an ancestor of e;r (indeed, e has descendants at the same height as e?, and there is no other
half-edge pointing to the top between e; and e, , see Figure . Therefore, the explored vertex
must be e Finally, if we reach the bottom boundary, then the explored vertex is the root of
the first tree on the right of & (and its parent at height —1).

O

We denote by ¢p(n) the n-th walk step of our exploration, with ¢(0) = 0. Note that the
marked edge or half-edge from the time ¢(n) to the time ¢(n + 1) — 1 corresponds to the edge
in H from X,, to X,,11. Therefore, at time ¢(n), the explored part covers {Xg, X1,..., X, }. As
explained in the beginning of this subsection, it is important to control ¢. We can now state the
two important properties that our exploration satisfies.

Lemma 5.17. There is a deterministic constant ¢ such that for every n > 0, we have
e(n+1)—p(n) <ck(n+1).

Lemma 5.18. For every exploration step ¢, the unique vertex v; of E;\E;_1 that does not lie
at height —1 is either k-free on the left or k-free on the right.

Note that our exploration method was precisely designed to satisfy Lemma [5.18 Both these
lemmas are completely deterministic: they hold if we replace H by any infinite causal map with
no leaf, and (X,) by any infinite path. Before proving them, we explain how to conclude the
proof of Lemma [5.15] given these two results.

Proof of Lemma[5.15 given Lemmas[5.17 and[5.18 For every i > 0, let F; be the o-algebra
generated by (&, e;) . We first show that, for every exploration step ¢ > 0, we have

0<5<i
P (v; is k-bad|F;) < pu(1)¥. (5.7)
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Let ¢ > 0 be an exploration step. By Lemma [5.18] without loss of generality, we may assume
that v; is k-free on the right. Let vil, ey vf be the k first neighbours on the right of the rightmost
child of v;. Since v; is k-free on the right, these vertices do not belong to F;. By Lemma [5.16
conditionally on F;, their trees of descendants are i.i.d. Galton—Watson trees with offspring
distribution p. If the vertex v; is k-bad, each of the vertices vl-l, . ,vf has only one descendant
at height h + k 4 1, so we have
P (v; is k-bad|F;) < P (v},...,vF have one descendant each at height h + k + 1|7;)
k
= H P (vf has exactly one descendant at height h + k£ + 1|]:i)
j=1

k
= (s)*)",
and we obtain (5.7)), which implies
P (i is an exploration step and v; is k-bad) < ,u(l)k”2

for every ¢ > 0. By summing Lemma , we obtain ¢(n + 1) < ck(n + 1)2. Therefore, the
vertices Xo, X1,..., Xy, all lie in £, 11)2. If one of these points is k-bad, it cannot lie at height
—1 by definition of a bad point, so it is equal to v; for some 0 < i < ck(n + 1)2. Therefore, we
have

ck(n+1)?
PP (one of the points Xo, X1,..., X, is k-bad) < Z P (v; is k-bad)
1=0
2

< ck(n+1)2u(D)F,
which ends the proof. O

Proof of Lemma[5.17 To bound ¢(n + 1) — p(n), we describe precisely what happens between
the times p(n) and ¢(n + 1). Note that E,,) = Eyn)—1 is k-flat (if it was not, ¢(n) would have
to be an exploration step). Hence, if €u(n) 18 a full edge, then p(n) + 1 is a walk step and we
have p(n + 1) = p(n) + 1, so it is only necessary to treat the case where e, () is a half-edge.
In this case, the first thing our algorithm does is to explore the vertex e;f(n) and all its

undiscovered ancestors. We know that e’ n) = Xn+1, SO in particular its height is at most n + 1.
Therefore, exploring all its ancestors takes at most n + 2 steps.

We can now perform the (n+ 1)-th walk step, except if exploring e;(n) and its ancestors has
created a new pit of width at most 2k. This can happen in two different ways, as on Figure[5.19

— if e,(p) is vertical, exploring e;f(n) may split an existing pit in two,

— if e, () is horizontal (say it points to the right), exploring its ancestors may decrease the

width of an existing pit on the right of e ).

Note that in the first case, we can create at most two new pits, whereas in the second, we
can shrink only one (cf. Figure . Hence, we will create at most 2 narrow pits, at the same
height h.

In the first case (top of Figure , our algorithm will then fill the pit on the left if it has
width at most 2k, and then the pit on the right. The number of steps this takes is at most
2 x 2k = 4k. By doing so, we may create a new pit at height h + 1. However, since the trees we
work with have no leaf, this pit is at least as wide as the pit of £, in which e, lies. Hence,
the new pit at height & + 1 has width greater than 2k, and does not need to be filled. Therefore,
in the first case, the number of exploration steps needed to fill all the narrow pits is at most 4k.
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/
\ Hif - ' \- HK/

w(n) Ep(n)+2

Figure 5.19 — The two ways our exploration can create new pits between two walk steps. On the
top, a pit of width 3 is split into two pits of width 1. On the bottom, the width of a pit decreases
from 3 to 2. The new pits of width at most 2 are indicated in blue.

In the second case (bottom of Figure , if the pit has width at most 2k, our algorithm
will explore all the vertical half-edges of this pit, from left to right. This takes at most 2k steps.
Once again, this creates a new pit at height A + 1, but this time this pit may have width 2k or
less. If this is the case, our algorithm will explore all its half-edges and perhaps create a pit at
height h + 2, and so on. Note that the maximal height of £, is at most n. Indeed, the only
times at which this maximal height increases is when the random walk reaches some height for
the first time, so the maximal height of &) cannot be larger than the maximal height of the
random walk during its first n steps. Therefore, we will need to fill at most n pits (at heights
between 0 and n— 1), each of which taking at most 2k steps. Hence, filling the narrow pits takes
at most 2kn steps.

Therefore, in both cases, the number of steps needed to obtain a k-flat map and perform a
new walk step is bounded by max(4k, 2kn). If we add the number of steps needed to explore the
ancestors of e:(n) and the walk step ¢(n + 1), we obtain

o(n+1) — p(n) < max(4k,2kn) + (n+2) + 1 < ck(n+ 1),
with e.g. ¢ = 7. O

We finally prove Lemma [5.18] The proof will make use of the "step by step" description of
our exploration that we also used in the last proof. We recall that for every exploration step
i, we call v; the unique vertex of nonnegative height in E;\E;_1, and e; the oriented edge or
half-edge marking the current position of the random walk.

Proof of Lemma[5.18 We fix an exploration step ¢ > 0. Note that the vertex v; is always the
endpoint of some half-edge of &_1, that we denote by e,.
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Before moving on to the details of the proof, we explain how it is possible, by only looking
at the map &;_1, to be sure that the vertex v; is k-free on the right in F;. We move along the
boundary of &_; from e, towards the right, and stop when we encounter a vertex of height
h(v;) + 1. If this never occurs, it means that in &_; and &;, there is no vertex at height h(v;)+1
on the right of v;, so v; is k-free on the right. If this occurs, assume that by moving so, we
cross at least k vertical half-edges. Since the trees we consider have no leaf, all these vertical
half-edges have descendants at height h(v;) + 1, which lie on the right of all the children of v;.
Moreover, none of these descendants belongs to &;. Therefore, v; must be k-free on the right in
&i. Of course, this is also true for k-free on the left vertices (see the end of the caption of Figure
for an example). This remark will be implicitly used in all the cases below.

Let n be the integer such that ¢(n) < i < ¢(n+1). We distinguish two cases, corresponding
to the two "phases" of exploration between ¢(n) and ¢(n + 1) that we described in the proof of
Lemma [5.17] Both of these cases will be separated in a few subcases.

— We first treat the case where e;_1 is a half-edge, so the explored vertex v; is an ancestor

of e;r_l.

— We start with the subcase where e;_; is vertical, and lies in a pit p. Since e;_1 is
vertical, exploring the ancestors of e;” | takes only one step, so i = ¢(n) + 1 and
v; = eltl. Since i — 1 is a walk step, the pit p has width at least 2k + 1. Without loss
of generality, we may assume that at least k of the vertical half-edges of p are on the
right of e;_1, so v; is k-free on the right.

— If e;_1 is vertical but is not in a pit, as in the previous case, we have i = ¢(n) + 1 and
v; is the endpoint of e;_1. Moreover, there is a direction (left or right) such that when
we start from e;—; and move along the boundary of &;_1 in this direction, the height
decreases before increasing for the first time (if not, e;—; would be in a pit). Without
loss of generality, this direction is the right. Let p be the first pit that we encounter on
the right of e;_1. If p does not exist, it means that the height never increases again,
so there is no vertex on the right of e;_; in &_; that is higher than e;,” ;. Therefore,
the vertex v; = ej_l is k-free on the right in &;. If p exists, it has width at least 2k +1,
so v; is (2k + 1)-free on the right, and in particular k-free.

— If e;_1 is horizontal, without loss of generality it points to the right. As explained
earlier (see Figure , the edge e, is in this case the first vertical half-edge we meet
when we move around &;_; from e;_; towards the right (except if no such vertical
half-edge exists, in which case v; is the root of a new tree on the right of &_1, and
v; is obviously k-free on the right). By the same argument as in the previous case, if
there is no pit on the right of e, then v; is k-free on the right (and even oo-free). If
there is one and p is the first such pit, note that between the times ¢(n) and 4, the
pit p has either been untouched, or has been shrunk by 1. Therefore, at time 7 it has
width at least 2k, so v; is k-free in E;.

— We now consider the second "phase", i.e. the case where &_1 has a pit of width at most
2k, and the goal of the exploration step i is to fill it.

— If e;_1 points to the top, then the pit has been created at time p(n) 4+ 1 as in the
top part of Figure Hence, the half-edge e, belonged at time ¢p(n) to a pit
(po,p1,-..,pj+1) of height h and width j > 2k. Therefore, either k of the vertical
half-edges p1,...,p; lie on the left of e,, or k of them lie on its right (the two cases
are not symmetric since the pit is filled from left to right). If k£ of these half-edges lie
on the left of e, then their k& endpoints (of height h + 1) have been explored before
v;, but none of the descendants of these endpoints has been discovered. Therefore, the
map &; contains at least k vertical half-edges at height h 4+ 1 on the left of v;, so v;
is k-free on the left. This case is the reason why, in the definition of a k-free vertex,
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we asked the neighbours of the children of v to be undiscovered, and not simply the
neighbours of v. If k of the half-edges of p lie on the right of e,, the argument is
similar (it is actually simpler since the half-edges on the right of e, have not yet been
explored).

— If e;—1 points to the right, then we are in the bottom case of Figure a pit p
of width 2k 4+ 1 has been shrunk to width 2k during the first phase, resulting in a
pit (po,p1,---,Pokr1) of width 2k at some height h. Let also A’ > h be the height
of e,. Since the pit is filled layer by layer from the bottom, the half-edge e, must be
a descendant of a half-edge p,, with 1 < ¢y < 2k. Moreover, our algorithm fills the
layers from left to right. Therefore, at time 4, for every 1 < £ < 2k, we have already
explored the descendants of ey up to height A’ + 1 if £ < fy and up to height h’ if
¢ > fy. But the vertex v; lies at height h’ + 1. Therefore, if £y > k + 1, then v; has k
vertical half-edges on its left so it is k-free on the left. On the other hand, if ¢y < k,
then v; has k vertical half-edges on its right at height h, so it is k-free on the right.
This concludes the proof.

O

5.4.3 Quasi-positive speed in H

The goal of this subsection is to use Lemma to prove that the walk has a speed n!=°®),
which is slightly weaker than positive speed. We will need to "bootstrap" this result in Section
to obtain positive speed. We denote by H,, the height of X,,. We also write

D,, = max{H, — H/|0 <k <{<n}
for the greatest "descent" of X before time n.

Proposition 5.19. Let 0 < § < 1 and 8 > 0. Then we have
P (Hn < nlf‘s) =0 (niﬁ) and P (Dn > n6) =0 <n75)
as n — +00o.

Proof. We start with the proof of the first estimate, the proof of the second will follow the same
lines. We call a vertex of H good if it has height —1 or if it has at least two children. The idea
of the proof is the following: by Lemma [5.15] with high probability, the walk does not visit any
k-bad point before time n for some k. Hence, it is never too far from a good point. Therefore,
the walk always has a reasonable probability to reach a good point in a near future. It follows
that X will visit many good points, so (Hy,) will accumulate a large positive drift.

More precisely, let a > 0 (we will take a large later). We define two events formalizing the
ideas we just explained:

Ay = {none of the vertices Xg, X1, ..., X, is ay/logn-bad},

9/2 one of the points Xom, Xt ..., X, o s/2 1S good}.

y“tm—+n

Ay = {forevery0<m<n-—n
Then we have
P (H, <n'™") <P(AS) + P(A1\Ag) + P (4 0 {H, <n'7}) (5.8)
We start with the first term. By Lemma [5.15] we have
P(AS) < cay/logn (n + 1)% (1) 1.
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Hence, if we choose a large enough (i.e. a® > _15;5(1)), we have P(A$) = o(n™5).

We now bound the second term of . For every 0 < m < n, let F,, be the o-algebra
generated by H and (Xo, X1,...,Xm). If X, is not av/logn-bad (which is an F,,,-measurable
event), let Y be the closest good vertex from X, (we may have Y = X,,,). We have dy (X, Y) <
2a+/log n, so there is a path from X,,, to Y of length at most 2a+/log n, and visiting only vertices

of degree 4 (except of course Y'). Therefore, we have
1 ) 2a+/logn

P (X visits the vertex Y between time m and time m + 2a+/log n|.7-"m) > <4

if X, is not a+/logn-bad. By induction on i, we easily obtain, for every i > 0,
. 1 ‘
P (Xm, Xm+1s - Xt 9iay/logn are neither good nor av/log n—bad) < (1 — W)

1
< exp <_42a\/10gn> ’

. s . )
In particular, by taking i = Zaiosn: Ve obtain, for every m:

5/2
. n
P (Xm, Xm+1, -5 X4 p0/2 are neither good nor ay/log n—bad) < exp <— 5 logn42a\/m> .

If the event A;\ Ay occurs, then there is an m with 0 <m <n — n%/2 such that the above event

occurs. Therefore, by summing the last equation over 0 < m < n — n%2, we obtain
/2
P(Al\AQ) < nexp (— 7 ]ogn42“\/m> = o(nfﬁ).
Finally, we bound the third term of by the Azuma inequality. For every n > 0, let
n—1
M, = H, — Y  Ey[Hij1 — Hi| X0, X1,...,Xj].
i=0

It is clear that M is a martingale with |M,, 11 — M,| < 2 for every n, and My = 0. Moreover, we

have
C(Xl) -1

(X)) +3
where we recall that ¢(v) is the number of children of a vertex v. In particular, we have
E?-L [HZ'+1 - Hi’Xo,Xl, PN 7Xz] > O, and EH [Hi+l - Hi|X0,X1, PN ,XZ] > é if Xz is a gOOd

By [Hip1 — Hi| Xo, X1,..., Xi] = Tx,¢on + Lx,con;

vertex. If Ay occurs, the walle X must visit at least nl=9/2 good vertices before time n, so we
have

n—1 .

ZEH [Hiv1 — Hi| X0, X1,...,X5] > 5n1*5/2.

=0

Therefore, if the event in the third term of (5.8) occurs, we have
M, < nl=0 — %nl_‘s/? < 0.

On the other hand, the Azuma inequality applied to M gives

1 1 /1 2
PH?/) <Mn < n1_6 - 5n1_6/2> < exp <_8n <5n1_5/2 — nl_‘5> ) ,



S0
1
P (Mn <nl70— 5n1_5/2> =o(n™"),

which bounds the third term of (5.8)), and proves the first part of Proposition
To prove the second part, we decompose the event {D,, > n5} in the same way as in (|5.8)).
By the definition of D, it is enough to show

_ _n0) — —(6+2)
e P (A2 {He— Hi < —n'}) = o(n™**), (5.9)

and then to sum over k and ¢. To prove (5.9)), note that if ¢ < k 4+ n’, then Hy — H, > —nd
deterministically. If £ > k 4+ n’, we use the same argument based on the Azuma inequality as

for the first part. Let 0 < k < k +n® < £ < n. If Ay occurs, then X visits at least f;;/; good
vertices between times k and £, so
/-1
14—k
> BylHipy — Hi| Xo,..., X > ¢
: 5 n6/2
i=k
Hence, if the event of (5.9)) occurs for k and ¢, we have
But the Azuma inequality gives
) (2(5 _ k)1/2n6/4)2
P(M,— M, < ——=(0—k)Y2n0/*) < .
( = My ==k Pt )< exp 8 x 5(( — k)
/2
- P\ T
= o(n 12),
which proves (5.9) and the second point of Proposition O

5.4.4 Positive speed in H via regeneration times

For every 0 < h < h/ < 400, we denote by By, ;s the map formed by the vertices of H with
height in {h,h + 1,...,h'}, in which for every vertex v at height h, we have added a vertex
below v that is linked only to v. We root By p/ at the vertex p; corresponding to the leftmost
descendant of p at generation h. The height of a vertex in By p/ is its height in H, minus h,
and the height of the additional vertices is —1. We denote by 0By, 5/ the set of these additional
vertices. Note that for any h > 0, the rooted map (B}, , pr) is independent of By j, and has the
same distribution as (H, p). Since this distribution is invariant by horizontal root translation,
this is still true for any choice of the root vertex of By, ;s at height 0, as long as the choice of the
root is independent of By, .

Definition 5.20. We say that n > 0 is a regeneration time if H; < H, for every i < n, and
H; > H, for every i > n. We denote by 71 < 72 < ... the list of regeneration times in increasing
order.

We also denote by Ty the first time at which the simple random walk X on H hits OH. The
key of the proof of Theorem will be to combine the two following results.
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Proposition 5.21. We have E [Tl} < +00. In particular, 7! < 400 a.s..

Lemma 5.22. 1. Almost surely, 77 < +oo for every j > 1.

2. The path-decorated maps (BHTj’HTj+1,(X7j+i)0§i§7j+1_Tj> for 7 > 1 are i.i.d. and have

the same distribution as (BO7H717 (Xi)o<i<r1) conditioned on {Th = +o00}.

3. In particular, the pairs (Tj+1 — 713 H_j11 — HTJ-) for j > 1 are i.i.d. and have the same
distribution as (71, H.1) conditioned on {Ty = +o0}.

Proposition will be deduced from the results of Sections and [5.4.3] On the other
hand, Lemmal5.22]is the reason why regeneration times have been used to prove positive speed for
many other models. The same property has already been observed and used in various contexts
such as random walks in random environments [I30], or biased random walks on Galton—Watson
trees [109]. Although the proof is basically the same for our model, we write it formally in
Appendix [5.4]

Finally, we note that the finiteness of the times 7% could be deduced directly from the results
of Section even in the case p(0) > 0. However, this is not sufficient to ensure positive speed.

We now explain how to conclude the proof of Theorem from the last two results.

Proof of Theorem gwen Proposition[5.21] and Lemma[5.22 By Lemma [5.13] it is enough to
prove the result on H. By item 3 of Lemma and Proposition [5.21] we have

E[r ' lvn>0, #,>0]
]E 2 _ 1 — n=V, fn =2 < .
[ =] P(¥n >0, H, >0) = °°

Moreover, H.» — H.1 < 72 — 7! s0 E[H,2 — H.1] < +00 as well. By Lemma and the law

of large numbers, we have

J H_;
T—, 2 LR [7’2 — Tl} and — =S E[Hp - Hpl,
j jo+oo J J—+o0

For every n > 7', let j(n) be the index such that 77(") < n < 77(+1 Then we have @ —
E[r? — 717! a.s.. Moreover, we have H_jny < Hp, < H_jmy+1 by the definition of regeneration
times, so 2o — E[H,2 — H,1] a.s.. The result follows, with

i(n) T T
E[H,» — H.]

0.
E[r2 — 71] -

vy =
O

Proof of Proposition[5.21, We will actually show that 7! has a subpolynomial tail, i.e. for every
8 >0, we have

P(r!>n)= o(n=?).
We first need to introduce a few notation. We define by induction stopping times 7; and 7']( for
every 7 > 1:
— 71 = inf{n|H, > 0},
— 7 =inf{n > 7;|H,, < H,} for every j > 1,

— Tj41 = inf {n > TJ,|Hn > max (HQ,H1, .. .,HT/)}.

J

161



Let also J be the largest index such that 7; < +00. We claim that J is a geometric variable.
Indeed, on the one hand, we know that H,, — +00 when n — 400, so almost surely, if T]’~ < +00,
then 7;11 < +o0c. On the other hand, if 7; < +o0, let F7; be the o-algebra generated by BO,HT].
and (Xo, X1, ..., X7;). Then the variable

(BH-rj ,00 (XTj-H')OSiST]’-—Tj)

is independent of F, and has the same distribution as <BLOO, (XT1+i)0§i§T{f7'1)' In particular,
it 7; < 400, we have

P (TJ/ < —}-oo|]-"7-j) =P (7’{ < +oo) =P (Ty) = +0),

s0 P (7j41 < 4o00|7j < 400) does not depend on j. This shows that J is a.s. finite and geometric.
Note that 7! = 7;. For any n > 0, we also denote by .J, the largest index j such that Tj < n.
Finally, we recall that D, is the greatest "descent" of X before time n.

In order to estimate the tail of 71, we partition the event {71 > n} into several "bad" events.
Let 6 > 0 be small (we will actually only need § < 1/3). We have

IP’(T1 > n) :P(Tl % 'Tjn)
<P (Jn > n5) +P <Dn > n5> 4P (Jn <nd D, <nd £ m) . (5.10)

We now bound these terms one by one. First, we know that J, < J, which is a geometric
variable. Hence, the first term is at most exp(—cn?) for some constant c, so it is o(n=?) for any
B > 0. Moreover, the second part of Proposition shows that the second term is o(n™?) as
well.

Finally, we study the third term of . We first show that if D,, < n® and J,, < n%, then

H, <n? (this is a deterministic statement). If D,, < nd, let 1 < j < J,. We have Tj+1 < m,

TJn
so 7 < n and HTJ/, = H;; — 1 by the definition of 7. By the definitions of 711 and of D, we
have
H. ,—H; =1+maxH — (H, +1) < D, <n’.

[0.77] i

By summing over j (and remembering H,, = 1), we obtain

H

Tn

<14n0(J, —1) <1400’ —1) < n?®.

Therefore, if the event in the third term of (5.10) occurs, we have H,, < n?% but T}n < +00,
so there is k > n such that Hj < n2%. On the other hand, if § < 1/3, we have

26 1-6 1-6)\ _ —(B+1)
IP’(EIk>n,Hk§n)§IP>(EIk>n,Hk§k: )ggp(mgk ) §o<k )

by the first point of Proposition This proves that the third term of (5.10) decays super-
polynomially, which concludes the proof. O

5.5 Counterexamples and open questions

We finally discuss the necessity of the various assumptions made in the results of this paper,
and we state a few conjectures. See Figure for a quick summary.
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Liouville property. We first note that if we do not require the strips (S;) to be i.i.d., then
Theorem fails. Indeed, we start from C(T) and choose a ray vy of T. We then duplicate
many times the horizontal edges to add a very strong lateral drift towards ~g. If we also duplicate
the edges of ~y enough times, we can make sure that the simple random walk eventually stays
on the path 7g. This yields a map of the form M (T, (S;)) which has the intersection property,
so it is Liouville.

Poisson boundary. The description of the Poisson boundary given by Theorem [5.2]cannot be
true for any map of the form M (T, (S;)), even if the strips (.5;) are i.i.d.. Indeed, it is possible to
choose S; such that the walk (X,,) has a positive probability to stay in .S; forever, and such that
S; itself has a non-trivial Poisson boundary. In this case, the Poisson boundary of M (T, (S;))
is larger than §T, and nonatomicity in Theorem is false. On the other hand, we conjecture
that if we furthermore assume that all the slices S; are recurrent graphs (and i.i.d.), then 0T
is a realization of the Poisson boundary. As explained in Remark our arguments cannot
handle this general setting.

Positive speed. The positive speed is also false in general maps of the form M (T, (5;)) if
the strips S; are too large and do not add vertical drift. For example, if they are equal to the
half-planar regular triangular lattice, then the random walk will spend long periods in the same
strip, where it has speed zero. On the other hand, we conjecture that the assumption p(0) = 0
is not necessary in Theorem

As for Galton—Watson trees, another process of interest on the maps C(T) is the A-biased
random walk X*. If a vertex = has c¢(z) children and X;) = z, then X 1 1s equal to y with
probability m for every child y of z, and to z with probability m if z is the parent or
one of the two neighbours of x.

If A > 1, we expect that, whether 1(0) = 0 or not, the process behaves in the same way as
on trees [109]: the walk is recurrent for A > A, (as easily shown by the Nash-Williams criterion)
and should have positive speed for A < A, where A\c = > iu(i). If A < 1 and p(0) = 0, it is easy
to see that the speed is positive on C(T') since the drift at every vertex is positive. For A < 1
and 1(0) > 0, the A-biased walk on T has speed zero for A small enough (A < f/(¢), where q is
the extinction probability of T and f the generating function of 1). We believe that this regime
disappears on causal maps, and that the A-biased walk on C(T') has positive speed for every

A< 1.

Other properties of the simple random walk (for ;(0) = 0). As shown by Theorem
the harmonic measure of C(T') on OT is a.s. nonatomic and has full support. It would
be interesting to investigate finer properties of this measure, as it has been done for Galton—
Watson trees [108| [105]. We believe that as for Galton-Watson trees, the harmonic measure is
not absolutely continuous with respect to the mass measure, and should satisfy a dimension
drop.

Another quantity of interest related to the simple random walk is the heat kernel decay,
i.e. the probability of returning to the root at time n. Perhaps surprisingly, the annealed and
quenched heat kernels might have different behaviours: if (1) > 0, the possibility that T' does
not branch during the first n'/3 steps gives an annealed lower bound of order e On the other
hand, the worst possible traps after the first branching points seem to be large portions of square
lattice, which yield a quenched lower bound of order e . Our argument for quasi-positive
speed could be adapted to prove that the heat kernel decays quicker than any polynomial, which
seems far from optimal. On the other hand, a natural first step to show that the lower bounds
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are tight would be to prove anchored expansion for C(T'). However, this property does not seem
well suited to the study of causal maps since connected subsets of C(7") can be quite nasty.

Other random processes. Finally, other random processes such as percolation on C(7") might
be investigated. We expect that we should have p. < p,, i.e. there is a regime where infinitely
many infinite components coexist, as it is generally conjectured for hyperbolic graphs [30]. We
note that oriented percolation is studied in a work in progress of David Marchand.

More generally, for unimodular, planar graphs, other notions of hyperbolicity (including
Pe < py) have been studied in [I5] and proved to be equivalent to each other. It might be
interesting to study the relation with our setting: if it is true that any hyperbolic (in the sense of
[15]) unimodular map contains a supercritical Galton—Watson tree, then our results of Section [5.2]
apply. On the other hand, it is clear that every unimodular planar map containing a supercritical
Galton—-Watson tree is hyperbolic in the sense of [I5].

5.A Appendix: The regeneration structure

The goal of this appendix is to prove Lemma We recall that OH is the set of vertices
at height —1, and that T}y is the first time at which X hits 9H. We will first prove the following
intermediate result.

Lemma 5.23. 1. We have 7! < 400 a.s..

2. The path-decorated map (BHTLOO, (XT1+,~)Z~ZO) is independent of (BO7H71,(XZ‘)OSZ‘§T1) and
has the same distribution as (H, (X;);>0) conditioned on the event {Tp = +oo}.

Note that the first point follows from Proposition [5.21] so we only need to focus on the
second point.

Proof of Lemma[5.23 We first note that, by Proposition we have H,, — 400 a.s., so the
conditioning on {Tp = +oo} is non-degenerate.

For every h > 0, let T, = min{n > 0|H, = h}, and let T} = min{n > T}|H, < h}.
By Proposition we have T}, < 400 a.s.. We also know that the rooted map (B, o0, X73,)
is independent of (Byp, (X;)o<i<T,) and has the same distribution as #H. Therefore, the path-

decorated map (Bh,ooa (XTthi)OSiST;L—Th) is independent of (By 1, (X;)o<i<7,) and has the same
distribution as (H, (Xi)OSiSTa)'
It follows that, for any two measurable sets A and B of path-decorated maps, we have

P ((Bo,u ,» (Xi)o<i<r1) € A and (By , oo; (X;14:)iz0) € B)

h>0

= ZP ((807}” (Xi)OgigTh) € A and Vi < h,Ti/ < Th
h=0 and (Bhpo, (XTh-i-i)iZO) € B and T;L = +OO),
by noting that H,: is the smallest height ¢ such that 7] = +oo. Note that the event {Vi <

h,T! < Ty} is a measurable function of (Byp, (Xi)o<i<t,), and the event {T; = +oo} is a
measurable function of (B oo, (X7, +i)i>0). Hence, by the independence and the distribution of
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(Bh,oos (X7, +4)i>0) found above, we have

P ((807H7.17 (XZ)OSZSTl) S A and (BH7.17007 (XTl+i)’iZO) € B)

= ZP ((BO,ha (Xi)OSiSTh) € Aand Vi < h,TZ-, < Th) P ((80,007 (Xi)iz()) € B and Ta = +OO)
h>0

=P ((Bo,cos (Xi)iz0) € B|Ty = +o0) f(A),

where f(A) is a function of A. Therefore, the path-decorated maps (BQ,H‘rl,(XZ‘)OSZ’STI) and
(BH.,.l,OOv (X7.1+i)@-20) are independent and, by taking A = ), we obtain that the distribution of
the second is a multiple of the distribution of (H, (X;)i>0) conditioned on the event {Ty = +o00}.
Since both are probability measures, they coincide. O

Proof of Lemma[5.23. We define the shift operator 6 as follows:
(M, (Xi)iz0) 00 = (Bh_, 0o(H), (X7114)i>0) -

We first notice that Lemma remains true if we consider (#,X) under the measure
P (:|Ty = +o0) instead of P. Indeed, conditioning on an event of positive probability does not
change the fact that 7! < 400 a.s.. Moreover, the event {Tj = +oo} only depends on the path-
decorated map (BO7HT1,(X1‘)OS,L'§T1) and not on (BHTLOO’ (X;144)i>0), so conditioning on this
event affects neither the independence of these two path-decorated maps, nor the distribution
of the second.

But by Lemma[5.23] the map (H, (X;)i>0) o6 has the same distribution as (#, (X;);>0) under
P(:|Ty = +00), so Lemmaapplies after composition by . In particular, we have 710 < 400
a.s., i.e. 72 < +00 a.s.. Moreover, the two following path-decorated maps are independent :

o (807H7.17(Xi)0§i§71) 0f = (BHTl,HTQ, (XTlﬂ-)OSiSTz,Tl),

— (Bi .00, (X7144)i0) ©0 = (BH_5 00, (X724:)i0),
and the second one has the same distribution as (H, (X;)i>0) under P (-|T5 = +00). From here,
an easy induction on j shows that for any j > 1, we have 77 < 400 and the path-decorated

map (BHT]. N (X7j+i)0SiSTj+l_Tj> has indeed the right distribution and is independent of

(BHTJ'H,OO’ (XTjJrl_H;)iZO). This proves Lemma [5.22| (the third item is a direct consequence of
the first two). O
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Appendix A

Correspondence between type-1 and
type-11 PSHIT

We recall that a type-I triangulation is a triangulation that may contain loops and multiple
edges, while a type-II triangulation is a triangulation that may contain multiple edges, but no
loop. The goal of this appendix is to describe precisely the relation between the type-II PSHIT
defined in [58] and the type-I PSHIT defined in Chapter |3| As an application, we also compute
some constants related to the growth of type-I PSHIT. The type-II PSHIT will be denoted by
(TI)o<r<r. and the type-I PSHIT by (T4)o<r<a., where k. = 2 and A = ﬁ
Two-connected core. Consider an infinite, one-ended type-I triangulation 7T'. Note that if ¢
is a loop in T and f is the face adjacent to £ on its unbounded side, then either ¢ is contained in
a larger loop, or the two other sides of f are linking the same pair of distinct vertices. Therefore,
if we remove all the loops of T" and all the vertices and edges lying inside a loop, we obtain
a map where all the faces have degree 2 or 3. By gluing multiple edges to close the faces of
degree 2, we obtain a type-II triangulation that we call the two-connected core of T, or simply
its core, and denote by Core(T). If the root edge of T lies inside a loop attached to a vertex v,
we root Core(T') at the edge that has been contracted around this loop, oriented such that v is
its starting point.

On the other hand, we cannot recover T' from Core(T’). However, it is easy to see that every
triangulation T" with core C' can be obtained by the following procedure.

e We duplicate every edge e of C into b, > 1 multiple edges. These multiple edges form
be — 1 faces of degree 2 that we call facets.

e For every edge e, we insert a loop in each of the b, — 1 facets lying between the copies of
e (there are always two vertices adjacent to a facet, so two ways to insert the loop).

e We fill all these loops with type-I triangulations of the 1-gon (for every edge e of C' and
every 1 < i < b, — 1, we denote by ¢ the triangulation filling the loop in the i-th facet
formed by copies of e).

The core decomposition of ']I‘{\. We will denote by eé the root edge of ’]T§ and by eél the
root edge of its core. Unfortunately, the complete description of the core decomposition of ']I‘{\ is
quite long because the neighbourhood of the root edge is a bit tricky to handle.

We fix A € (0, \] and, as in Chapter we take h € (0, ﬂ such that \ = W. We recall
that the partition function of Boltzmann type-I triangulations of a 1-gon with parameter A is

1 1+2h
Zi\) =~ — — 2
1Y) 2 92/1+8h
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T Core(T)

Figure A.1 — A triangulation 7" and its core. On this example, we have b., = 3 and b, = 1. The
green zones are filled with triangulations of a 1-gon (which have not been drawn for the sake of
clarity).

Let 8 =2Z1(\) and k = (1_2;‘1()\))3 = (th)g. Finally, unless otherwise specified, by a geometric

variable B with parameter 5, we will mean a geometric variable starting at 1, i.e.
P(B=1i)=(1-8)"
for every i > 1.

Proposition A.1. The core of T{\ has the same distribution as TZ!. Moreover, conditionally on
Core(T}), the following holds.
e The variables b, for the edges e of Core(T%) are independent.
e For every edge e # ell of Core(T{\), the variable b, is geometric with parameter S.
e The vertices at which the loops are inserted in the facets are picked according to inde-
pendent fair coin flips.
e The triangulations t! for e # 66[ and 1 < ¢ < b, — 1 are independent type-I Boltzmann
triangulations of the 1-gon with parameter \.
e The probability that 66 is not a loop and is not inside a loop is equal to \/ﬁ.

e Conditionally on 66 not being in a loop:
— the variable beéf is a geometric variable of parameter 5 biased by its size,

— the root eé is chosen uniformly among the beé’ copies of 66[ and oriented like eél ,

— the insertions of the loops "inbetween" 66[ are again decided by independent fair
coins,
— the triangulations t!,; for 1 <17 < begf — 1 are independent type-I Boltzmann trian-
0

gulations of the 1-gon with parameter A.
e conditionally on eé being a loop or inside a loop:
— the variable beéz — 1 is a geometric variable of parameter 8 biased by its size,

— the index 4 such that e} € t is picked uniformly in {1,2,... 7b661 — 1},
— the insertions of the loops containing tfg 11 for i = iy are decided by independent fair
) 0
coins (the insertion for tle(} ; 1s fixed by the orientation of e{)l ),
0

— the triangulations ti, ; for ¢ # iy are independent Boltzmann type-I triangulations of

the 1-gon with parameter A,
— the triangulation tze‘} ; is a Boltzmann type-I triangulation of the 1-gon with parameter
0

A, biased by its total number of edges, and eé is picked uniformly among all the edges
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of tiOH, and oriented by a fair coin flip.
0

We note that a similar decomposition is described by Angel and Ray [18] to build Markovian
type-I triangulations of the half-plane from Markovian type-II triangulations. However, in [1§],
the Markov property considered is weaker than the one from [58], and we obtain Markovian
triangulations if we replace (be) by i.i.d. geometric variables of any parameter and fill the loops
with i.i.d. triangulations of any law. This is not true anymore with the stronger Markov property
of [58].

We recall that a triangulation with a hole of perimeter p is a triangulation with a simple
boundary of length p, rooted at any oriented edge, while a triangulation of a p-gon is rooted in
such a way that the external face lies on the right of the root edge. In all the proof below, if ¢ is a
triangulation with a hole, we will denote by [t| its total number of vertices. If ¢ is a triangulation
of a p-gon, we will denote by |¢| the number of its vertices that do not lie on its boundary.

Proof. We will prove this decomposition by rebuilding ’]I‘§ from TZ!. Clearly, there is a unique
(in distribution) random triangulation T that satisfies all the conclusions of Proposition
and we only need to prove that 7" has the same distribution as ']I‘{\. For this, we will prove that
T is A-Markovian and conclude by Proposition 5 ofA Chapter [3| Let t be a finite triangulation
with a hole of perimeter p. We split the event {¢ C T'} in two, and write

Ay = {t C T and t is surrounded in T by a loop} and Ay = {t C T}\A;.

In the case where p = 1, we consider that the unique edge of Jt is a loop surrounding t. We will
denote by eé the root edge of f, and by eél the root edge of its core.

If ¢ is surrounded by a loop, then in particular e{] is surrounded by a loop, which has proba-
bility 1 — —=—. If this occurs, let £ be the maximal loop of T surrounding t. By the construction

N V1+8h
of T, the triangulation T} filling ¢ is a Boltzmann type-I triangulation of a 1-gon of parameter
A, biased by its number of edges and rooted at a uniform oriented edge. Moreover, we have

1
]P)(Al): <1_1—|—8h>P(tCT1) (Al)

If t C Ty, the part of T} lying between its boundary and ¢ is then a triangulation ¢’ of a p-gon with
an additional hole of perimeter 1. If p = 1, then ¢’ may be the trivial triangulation consisting of a
single loop, which means that ¢ and ¢ are simply glued together. For every possible triangulation
t', let t + ¢ be the triangulation obtained by gluing the boundary of ¢ to the hole of ¢, and
rooted on the root of t. We have

, pUazd A
P(Ty=t+t)= 25 (BT (A.2)

where the sum in the denominator is over all triangulations |t”| of a 1-gon, and |E(t")| is the
number of edges of t”. Moreover, we have |t +t'| = |t|+ [t/| (the vertices of the cycle along which
t and t’ are glued are counted in |t|, but not in |¢’|). By summing over all possible values
of ¢, we obtain that P (¢ C T}) is of the form ¢,\I*l. By (A1), so is P(A;). The values of ¢, could
be computed, but this will not be needed here.

We now move on to the event As, where t C T is not surrounded by a loop. If this is the case,
let Core(t) be the type-II triangulation obtained by deleting the loops and the parts of ¢ that are
separated from its hole by loops. Then we must have Core(t) C Core(f), which has probability
Cél xlCore® - Conditionally on this, let b, be the number of copies of e in ¢, and B, its number
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of copies in 7. Finally, for every e € Core(t) and 1 < i < b,, let t! be the triangulation filling
the i-th loop inserted "inbetween" e.

We first treat the case where the root edge of ¢ is not separated from the hole by a loop.
Then the root is not surrounded by a loop in f, so we are in the case of probability \/ﬁ in

our proposition. If furthermore the root of Core(t) does not lie on its boundary, we can write

CIIH\Core(tﬂ

P(Ag) = ————xP (B =bor) x [] P(Be > be) x 11 P (B, = b.)
L+8h ( ’ ’ ) ecOE e€E\(0EU{elT})
T (520) !
eclk 1=1 2 Zl beél

where E is the set of all edges of Core(t) and OF the set of its boundary edges. The factors %
come from the choice of the vertex at which we insert each loop in its facet, and the factor ; L

€0
from the choice of the root of T" among the beél copies of eél . By using the explicit distribution
of the variables b., we obtain

CIIH|C0re t)] be—1

_ |t o |[E\OE|+1
P (Ay) = \/W IEIEHIA x (1 —2Z1(\) 1

By the Euler formula, we have |E\OF|+ 1 = 3|t| — 2p+ 2. By replacing « by its value and using
the fact that [t| = Core(t) + >_.; |tt], we finally get

C]I

\/ﬁw (1—22,(\)" %2, (A.3)

P(A2) =

If 661 lies on the boundary of Core(t), the computation is similar, but it is more convenient to
use the following description of beézz the number of copies of begf on the left and on the right
of b.; are i.i.d. geometric variables started at 0 with parameter 271(\). We obtain the same
formula as in the end.

We finally treat the case where eé is separated from the hole of £ by a loop. Note that in
this case, the vertex attached to the loop around eé is fixed by the orientation of e(I)I . By similar
arguments as above, after using the construction of T and the values of B8 and k, we obtain

_ It — —2pt2 S 1
P(42) = CIAI(1—22,(N)7" x (1 m) 26NN — Z1(V)
_ Cinw (1—22,(\)"2*2. (A.4)

v1+8h

The factor 2 (3M\Z1(\) — Z1()\)) in the denominator is the partition function of Boltzmann tri-
angulations of a 1-gon with a marked oriented edge. The last step uses the values of Z;(\) and
Z1(\) given by [95]. Note that and yield the same result, which is of the form Cfu)\ltl-
Therefore, the probability

P (t c f) = P(A;) + P(Ay)

is also of the form c;’/\m, so T is A-Markovian. By Proposition 5 of Chapter |3| it must have the
same distribution as ’]I‘{\. O
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Applications. This decomposition allows to transfer to ']T{\ many properties of T/ that are
shown in [58]. For example, the simple random walk on ’]I‘§ has the same distribution as the
simple random walk on its core, which has been delayed at some points. Therefore, they must
have the same Poisson boundary.

On the other hand, the core of Tg\ has the same infinite geodesics as ’]I'{\, so our results
from Chapters [4] and [5] extend to the type-II PSHIT. In particular, they are also weakly hy-
perbolic and admit bi-infinite geodesics. The near-critical scaling limit result of Chapter |3| for
the Gromov—Hausdorff distance can also be extended to the type-II PSHIT. However, for the
Gromov—Hausdorff distance, this would require some additional work to prove that the mass
inside the loops is well distributed.

Finally, we discuss the precise growth of T{\. If v € Core (T{\), the distances of v to the root
in Tg\ and in its core are the same up to a random additive constant given by the distance from
eé to the largest loop surrounding it. Therefore, by using the sharp exponential growth results
for TII (Theorem 2 of [58]), we obtain similar results for T%.

Corollary A.2. Assume A < A.. We have the almost sure convergences

1=2h = VI=4R\" |, e iy as . B (TD)] s, 1
< 2h > |0B; (Tk)lmn* and 0B (TL)| r—+o" 1—4h’

where H{\ is a positive random variable.

In particular, this result shows that the exponential growth rate of T§ is the same as the
exponential growth rate of its infinite tree of geodesics defined in Chapter [

Sketch of proof of Corollary[A-2 We consider the coupling of ']I‘§ with TZ! given by Proposition
Note that there is a random 6 > 0 (corresponding to the distance from eé to the largest
loop around it) such that, for every r > 0, we have

OBy, (T3) = 0B (TL) .

Therefore, to prove the exponential growth of perimeters, we just need to translate Theorem
2 of [58] in terms of A instead of k: the exponential growth rate in [58] is

a+y/a(3a — 2)

a—+/a(Ba—2)’

201_
where o € (%, 1) is such that kK = M We easily obtain a =
rate is

ﬁ, so the exponential growth

a+ a(3a—2)_1+\/1—4h_< 2h >‘1
a—+/aBa—2) 1-v1—4h \1-2h—-+1—4h)

To estimate the volumes, we notice that the vertices of B}, (Tf\) are exactly:
e the vertices of B (Tﬁl),
e the vertices inside the loops inserted "inbetween" the edges of Bf (T%!) that do not belong
to the boundary of the hull.
By Theorem 2 of [58], we have

2 (0] 0
|8B; (Tél)‘ T—>+00 1

where vy = %g:; = %. Therefore, by the Euler formula, the number of edges of B? (']I‘g ) that

do not belong to its boundary is asymptotically (3vrr — 2) ‘83; (Tg ) ‘ Moreover, the average
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271(\)

number of loops inserted in each of these edges is % = T2, and the average number of

AZ1(A)

additional vertices per loop is 700 By the law of large numbers, we obtain

° I
B ey 2A0) ABO)

/
T X X L
|0Be (TL)| r—+oo 1-2Z1(\) © Zi(\)
1
1—4n’
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Appendix B

The average degree in the PSHIT

The goal of this second appendix is to study the degree of the root in the type-I and type-II
PSHIT ']I‘{\ and TZ . We recall that the root verter p of a triangulation 7 is the starting point of
the root edge, and the root degree degy(p) is the number of half-edges incident to p (in particular,
loops incident to p are counted twice). Our motivation for this is to give a more precise form of
Conjecture More precisely, for n > 1 and g > 0, let T,{,g (resp. T,{fg) be a uniform type-I
(resp. type-II) triangulation of a torus of genus g with n vertices. Let also # > 0. As noted in
Section 4 of [58], if T#@Hn admits a local limit T as n — +o0, then we have

1
©6(1+200)°

(B.1)

1 i 1
. [de&r(P)] g [degTue (0)
n,0rn
The reason why the quantity of interest is the mean inverse root degree and not the mean
root degree is that p is not picked uniformly in Tr{,IGHn: each vertex is chosen with probability
proportional to its degree, so we need to bias back by the inverse degree to obtain a "typical"
vertex. In particular, if T is of the form Tél as it is believed, then by computing the expected
inverse of the root degree in T/, we can identify the parameter  in terms of f;;. This last
argument also holds for type-I triangulations. Our computations about the root degree in the

PSHIT allow us to state a more precise version of Conjecture 1 of [5§].

Conjecture B.1.

e Let 0 <A< A, and let h € (0, ﬂ be such that A\ = W. Then ’]I‘{\ is the local limit
as n — 4oo of Trfﬁm, where
1 1+ 8h)v1—4h
o= (L+ )HM —1]. (B.2)
6h log Ty

o Let 0 < k < ke, and let a € [%, 1) be such that k = M Then TZ is the local limit

as n — +oo of Télenn, where
1 1
91125 o (1t VRPN -1]. (B.3)
a V3a—2 98 Ja—\Ba—2

Note that in particular, we have #; = 0 if and only if A = ., and ;7 = 0 if and only if
Kk = Ke. On the other hand, we have 67,057 — +oo when k, A — 0. We will first focus on the
type-1I case, where the computations are more tractable (although, surprisingly, the formula is
slightly simpler for 67 than for ;).
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B.1 The root degree in T

As explained above, our goal here is to compute the mean inverse degree of the type-II
PSHIT.

Proposition B.2. Let 0 < k < Kk, and let o € [%, 1) be such that k = M Then we have

E 1 l-a (l—a)f f—i—x/Sa—
= +
degqr{j(ﬂ)

2 2\/3047— f—\/3a7—

This, together with (B.1]), justifies the second part of Conjecture . Note that in particular,

1 1
degr, (pJ ik
type-1I UIPT is 6. This can also be deduced directly from the local convergence of triangulations

of the sphere to the UIPT.

when Kk — K., we have o — % and E so we recover that the average degree in the

Proof. We will compute the generating function of the root degree in the type-II PSHIT by a
peeling approach. Note that it is possible that at some point of the peeling exploration, the root
vertex is "trapped" in a finite Boltzmann triangulation. Therefore, we also need to know the
distribution of the root degree in Boltzmann triangulations.

We fix 0 < k < K. From now on, the type-II PSHIT will be denoted by T, (we omit the
index IT). We will denote by T% a Boltzmann type-II triangulation of a p-gon with parameter
k. By the spatial Markov property of Ty, for any finite triangulation ¢ with a hole of length p,
conditionally on ¢ C Ty, the triangulation T\t is a infinite triangulation of the p-gon whose
distribution only depends on p. We denote by T% a triangulation with this distribution. We will
first study the root degree in 77, then in T%. The root degree in T, can be easily deduced since
T, is just T2, where the two boundary edges have been glued together.

We denote by Z, the partition function of type-II Boltzmann triangulations of a p-gon with
parameter x, and by C), the constants describing the peeling process of T, [58]. We also introduce
the following notation:

Dy(z) =E [mdegT@(p)} ., Dy(x) = Z,Dp(x) and D(zx,y) ZD
p>2

and, similarly,

E,(z)=E {;gdegTﬁ(p)} , E’p(x) = CpEy(x) and &(x,y) ZE
p=>2

The reason why we prefer to work with D and E instead of D and E will be clear in a few lines.
We also define

Z(y) = z:Zpyp_2 =D(l,y) and C(y ZC P2 =E(1,y). (B.4)

p>2 p>2

These last two functions can be computed. The first one is an intermediate step in the enumer-
ation of triangulations of polygons (see e.g. [79]):

Z(y)=21y2<(ﬁ—ay)\/1—g+y—ﬂ>-

Moreover, by the same idea as in the type-I case (see the proof of Proposition 5 of Chapter [3)),

we can show 1

Cly) = 5— 2 (B.5)
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We can now start by computing D. By peeling the edge on the left of the root vertex in 77,
we obtain the following equation:

KZ. 1
Dy(w) = “FHaDy(a) +
p

)
1,- L Z,_iZ:
; 2o+ Z %MxDiH(x). (B.6)
p i=1 p

The term ]1% x comes from the fact that 72 may just be the trivial triangulation where the
two edges of the boundary are simply glued together. By multlplymg both sides by Z,,, the last

equation becomes a (nicer) equation about the numbers D »(z). By multiplying by y?~2 and
summing over p, we obtain

RX

D(z,y) = ” (D(z,y) — D(x,0)) + = + 2y Z(y)D(z,y). (B.7)

We solve this equation by a kernel method: it can be rewritten

<1 - ’Zﬁ n a:yZ(y)) D(z,y) =z — %D@,O). (B.8)

For every z, let Y (z) be such that the first factor in the left-hand side vanishes, i.e.

RI

YY)

+2Y(2)2(Y (z)) = 0. (B.9)

Note that Y can be explicitely computed by a computer algbra system, but the formula is a
bit complicated and it will be more convenient not to do so. The right-hand side of (B.8) must

vanish as well for y = Y (x), so D(z,0) = @ and, by (B.7), we obtain

Y ()
D(x,y) = - .
Kk —yY(z) yZ(y) yi/g()f;(y(m))

By letting y — Y (x), we also obtain

Y

DY) = —yazm —veza)

(B.10)

Similarly, by performing one peeling step on T4, we obtain

xC. 1 Zit1 Cit1Z
Ep(z) = é) Epii(x) + Z Dit1(z) + Z ZTPZ rEi(2),
p i=1 p

where the first sum corresponds to the case where the discovered face separates p from infinity,
and the second to the case where p still lies in the infinite part. Exactly like , this equation
is nicer when rewritten in terms of E,(x). We then multiply it by y?~2 and sum over p to get

RT

Ew,y) = =~ (Ex,y) =&, 0)) + 2yCly)Dlw, y) + 2y Z(y)€(w, ).

We now apply the same kernel trick as for D. Note that we are only interested in the root degree
in T2, so it is enough to compute £(x,0). The last equation can be rewritten

(1 -2y myz<y>) (a,y) = 2yC(y)Dla,y) "€ (2,0)
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Note that the factor in the left-hand side is the same as in (B.8). Therefore, if we replace y by
Y (x) as given by (B.9)), we obtain

Y2 Y3
E(x,0) = C( )D(z,Y) = K2 (k=Y +2Y2Z(Y)) (k= Y2Z(Y) = Y3Z/(Y))’

by using and -

From here we can compute the expected inverse of the root degree. We recall that Ty is equal
to T2 where we have glued together the two edges of the boundary, so degr, (p) = degr2 (p)—1,so

(B.11)

the generating function of degy, (p) is %28 (z,0) (the factor k2 = 1/Cy comes from the distinction
between Fy(z) and Fo(x)). Hence, we have

E|: 1 :| 1E|:dg (p) l:|d 1,{’25( )d
- | = rae8r, (P)— T = z,0
degr, (p) /0 /o z?

To compute this integral, we use the change of variables Y (x) = y. By , we have

_ _ AT YPZ(Y) + 9’2 (y)
k=22 (y) (k—y2Z(y))”

By using the expression (B.11)) of £, we obtain

1 Y(1)
o
degr, (p) vo) K—Yy+2y*Z(y)
/(l—a)(3a—1)/4 y q
= Y
0 (v —ay) /134

_1—a+(1—a)f Va++3a—2
2 2¢/3a =2 f—\/3a7—

where in the end we use the formula (B.4]) for Z. O

B.2 From type-II to type-1

Before explaining where our formula for 6; comes from, we first give two reasons why the
computation performed in the type-II case is more difficult for the type-I PSHIT.

e As in the type-II case, we can pass from ']I'{\ to a triangulation of a 1-gon by a simple
root transformation: we duplicate the root edge, add a loop between these two copies,
and root the obtained map at this new loop. However, if the root edge of ']I’)\ is a loop,
duplicating it adds 2 to the root degree, whereas if the root edge is not a loop, duplicating
it adds only 1 to the degree. Therefore, we must distinguish two cases in the end of the
computation.

e A more serious problem is the peeling case described on Figure [B-1} in the type-II case,
when the discovered face separates the triangulation in 2, all the edges adjacent to the
root lie in the same part, whereas it is not the case here. In the case of Figure [B:I] the
generating functions of the root degrees in t; and ¢ must be multiplied, so the type-
I analog of Equation contains a factor Dy(z)D;(x) and becomes non-linear in D.
Although the equation remains explicitely solvable, it seems to make all the computations
much harder, and we did not manage to end the computation.
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e
p

Figure B.1 — A "bad" peeling step: the degree of p depends on both parts ¢; and t5. The peeled
edge is e.

To obtain our formula for 7, instead of a rigorous computation of the mean inverse root
degree, we use a heuristic argument based on the formula for #;; and the core decomposition of
the previous appendix. Let 0 < A < A;, and let h be as in Conjecture Let also k = W,

as in Appendix . Assume that, for some 07,077 > 0, the triangulations TTIL g, converge locally

to T4, and T/ 0y CODVerge to T,
The idea is the following: we will express in two different ways the proportion of the vertices
of Té orn that belong to its core, and deduce a relation between 67 and 0;7. By using our formula

for O77, this will give a formula for §;7. Note that the "core" of T n.0;n 18 1O precisely well-defined:
for maps with a high genus, loops do not always separate the map in two disjoint parts. However,
if we believe that TrIL,Om converges to an infinite planar triangulation, these "non-separating"
loops are very rare (the probability to find such a loop in the neighbourhood of a typical vertex
goes to 0 as n — +00). For example, we could define the "core" of T 91n as the set of vertices
v that can be linked to a vertex at distance 1000 from v, without to cross any loop.

If the triangulations Tr{ﬂf converge locally to 'H‘I then the core of Tn o0 S€en from a typical
vertex, looks like the core of TL, which is TZ/. It seems reasonable to expect that the core of

Trlham is roughly of the form TT{,I’ p for some (random, but concentrated) n', ¢’. Since this core

looks locally like TH , if the second part of Conjecture is true, we should have n—l, ~ Oy,
where 055 is given by - On the other hand, taking the core should not affect the genus
much, so we expect ¢’ = 0n, so n’ = 91 . Therefore, the core of T .0 should look locally like

T(IQII 011, 00m° In particular, the proportlon of the vertices of Tnﬂm lying in its core is HQTI['

On the other hand, the core decomposition of triangulations of the form Té g,n Should be

similar to the decomposition of TI given by Proposition Therefore, such triangulations
should be obtained by starting from Tm 0,,;m for some m and inserting loops in the same way
as in Proposition By the Euler formula, the number of edges of "JI‘m 9;,m 1S asymptotically
3(1 + 2077)m. Moreover as noted in the proof of Corollary [A.2] the mean number of vertices
inserted per edge of the core is
20\Z1(A) 2k
1-2Z1(\) 1+ 2h'

Therefore, the number of new vertices is equivalent to 7
final vertices that belong to the core is

(1 +26077)m, so the proportion of the

1
1+ 1+2h(1 + 2(9[[)

Therefore, we should have
01 1

HH 1+ 1+2h( —1-20[[)'
We can now replace ;7 by the formula of the second part of Conjecture and replace a by

ﬁ in this formula. After a few simplifications, we obtain (B.2)).
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Appendix C

Hyperbolic Boltzmann bipartite maps

The goal of this appendix is to try to generalize the construction of the PSHIT to the gen-
eral setting of bipartite planar maps with Boltzmann weights on the face degrees. We prove the
existence of hyperbolic Boltzmann maps in a case including natural analogs of the PSHIT for
2p-angulations for p > 2 (see Proposition below). However, we do not obtain a full charac-
terization of the Boltzmann weights corresponding to an infinite Markovian map. In particular,
we do not know whether the maps with large faces studied in [43] have a hyperbolic analog.

Maps with a general boundary. As for triangulations, to define an infinite Markovian
bipartite map M, we first need to define precisely the events of the form m C M. We will use
the definitions from [42] and [57], which are different from those we used with triangulations. We
first recall these definitions. Intuitively, they mean that holes are filled by maps with a general
boundary, whereas for triangulations the holes were filled by maps with a simple boundary.

Let M be an infinite, one-ended planar map. Let also E be a connected set of dual edges
of M, including the dual edge of the root. Let F(E) be the set of faces of M that are adjacent
to at least one edge of E. We denote by m(FE) the finite map obtained by gluing the faces of
F(E) along the dual edges of the edges of E (see Figure [C.1]). This finite map is rooted at the
edge corresponding to the root edge of M. It has additional faces that do not belong to F(FE).
We call these faces the holes of m(F), while its other faces are called internal faces. We write
m(E) C M. We will only be interested in the case where m(E) has only one hole.

The important difference between this definition and the one we used for triangulations is
that if we know that m C M, it is still possible that two different edges of Om correspond to
the same edge of M. This is equivalent to saying that the boundary of m does not have to be
a simple path in M. With this definition, it is still possible to define a Markov property and a
peeling process for bipartite maps. This new peeling process, introduced by Budd [42], is better
suited to the study of general maps for two reasons:

e The holes that might be created by a peeling step must now be filled by maps with a
general boundary, whose combinatorics are better understood than those of maps with a
simple boundary.

e When a peeling step discovers a large new face, we do not need to know right now which
of its vertices belong to the pre-existing boundary. This avoids an explosion of the number
of peeling cases.

We refer to [42] or [57] for a precise definition of this peeling process.

Definition C.1. Let q = (¢;)i>0 be a sequence of nonnegative numbers. We say that a random

infinite, one-ended bipartite planar map M is q-Markovian if there are constants (Cp(q))p>1
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Figure C.1 — On the right, a infinite bipartite M and a set of dual edges F (in blue). On the
right, the finite map m(E). Note that the edges e, e} of m(FE) are glued together in M, as well
as the edges eg, ).

such that, for every map m with one hole of perimeter 2p, we have

P(m c M) = Cy(q) H Qdeg(f)/25
fem

where the product is over all internal faces f of m.

The reason why we restrict ourselves to bipartite maps (i.e. maps where all the face degrees
are even) is that the combinatorial results about these maps are simpler to express (see [42]).

The combinatorics of Boltzmann bipartite maps. Before stating our results, we recall
a few facts about the combinatorics of Boltzmann bipartite maps. For p > 1, let W),(q) be the
partition function of Boltzmann map of a p-gon with weight sequence q, i.e.

Wp(q) = Z H Qdeg(f)/2>

m  fem

where the sum is over all maps m of a p-gon with a general boundary. We say that the weight se-
quence q is admissible if all these partition functions are finite. Let fq(z) = > 351 gk (215:11)96’“*1.

The criterion proved in [I11] states that q is admissible if and only if the equation

fal@)=1- 2 (1)

x
has a positive solution. If this is the case, let Zq be the smallest such solution. Then fq(z) > 1 —%
for every 0 <z < Zg, so fo(Zq) < % We call q critical if f4(Zq) = % (this means that g
q a
is only "barely" admissible) and sub-critical if fo(Zq) < 2= Moreover, the partition functions
q

Wp(q) can be computed in an implicit way [57, Section 5.1].

Before stating our result, we need to define a measure on Z that appears naturally when
studying the peeling process of finite Boltzmann maps. Let q be an admissible weight sequence,
and let gq = 4Z4. For i € Z, we set

o[ dit194 it >0,
v = { 2W_1i(a) gy ifi < —1. (C.2)
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Then v is a probability measure (see Section 3.3.1 of [57]). More precisely, it is the step distribu-
tion of the random walk describing the evolution of the "perimeter" of (critical or sub-critical)
Boltzmann half-planar maps under their peeling process. Moreover, by [57, Proposition 14| (or
[42, Proposition 5|), if q is sub-critical, then the walk with step distribution v drifts to —oo.

If q is admissible and critical, then g-Markovian maps are constructed in [42], 57]. They are
also proved to be the local limits of g-Boltzmann maps of the sphere conditionned to be large.
Therefore, we will mostly be interested in the sub-critical case.

Proposition C.2. (i) If a g-Markovian infinite map exists, it is unique (in distribution).
(ii) If q is not admissible, then there is no g-Markovian infinite map.

(iii) If q is admissible and sub-critical, then there is a gq-Markovian map if and only if the
equation

> v’ =1 (C.3)

has a solution w > 1.

(iv) In this case, for every p > 1, we have

Cyla) — S () (). (C.4)

. 1
=0

(v) In particular, if q is admissible and has an infinite convergence radius, then there is a
g-Markovian infinite map.

In particular, point (v) includes the case where q has a finite support. In the very particular
case ¢; = ql;—p,, this implies that we can define non-critical Markovian 2p-angulations for any
p > 2. Note also that the constants Cp(q) have a universal form, which is the same as for
triangulations.

Proof. As for triangulations (Theorem 1 of [58] or Proposition 5 of Chapter , the idea is to
perform a peeling step and deduce a recurrence relation for the numbers Cy(q). If at some point
the discovered part of a Markovian map is m and we peel an edge e of Om, the two peeling cases
are as follows: either we discover a new face on the other side of e, or we find out that e was
actually glued to another edge of m. In the second case, the boundary dm is split in two, and
one part must be filled with a finite g-Boltzmann map with a general boundary. The equation
we obtain is

p—1
Cp(a) = 4iCpria(a) +2_ Wis1(q)Cpi(q) (C.5)
=1

i>1

for every p > 1. In particular, if W;(q) = 400 for some ¢ > 0, then the constants C},, must be
infinite, so there is no g-Markovian map, which proves point (ii).

If there are constants (Cp(q)),>, satisfying these equations, it is possible to build infinite
g-Markovian maps by peeling, along the same lines as in [58]. Moreover, the distribution of a
g-Markovian map is entirely characterized by the constants Cp(q). Therefore, the problem is
reduced to the existence of a solution to .

As in [58], we will interpret as the search of a harmonic function for a certain random
walk. We extend (Cy(q)) to Z by setting Cp(q) = 0 for p < 0, and set ép(q) = gq"Cp(q). Then
can be rewritten as

Cpla) = D v(i)Cpyi,

1€Z
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where v is given by . In other words, there is a gq-Markovian infinite map if and only if
the random walk with step distribution v admits a non-trivial harmonic (on positive integers)
function that vanishes on nonpositive integers.

This problem is precisely adressed by Doney in [71]: for a walk drifting to —oo, such a
harmonic function exists if and only if the equation

Fa(w) =Y v(i)w' =1 (C.6)

€7

admits a solution w > 1. This proves point (iii). Moreover, if a harmonic function exists, it is
unique up to a multiplicative constant, which proves point (i). The results of [71] give a formula
for the harmonic functions (if it exists) in terms of the ladder process of a random walk S with
step distribution v. More precisely, we define the decreasing ladder process of S as the process
H™ such that Hy = 0 and, for every n > 0, the first value strictly smaller than —H,~ taken by

S'is —H, ;. Let also
u(i) =Y P(H, =i

n
n>0

for every ¢ > 0. Then by Theorem 1 of [71], we have

Cpla) = > wP ' ufi),
=0

The reason why the sum ranges up to p — 1 instead of p is that we want a harmonic function
vanishing on the set of nonpositive integers, whereas [71] deals with harmonic functions vanishing
on negative integers, so all the indices must be shifted by 1. On the other hand, the function u
is precisely the function h* in the proof of Proposition 14 in [57], so u(i) = % (2;), which proves
point (iv).

We finally prove point (v). The generating function F can be rewritten

Fa(w) =) ai(gqw) ™" +2)  Wia(a)(gqw) " = 1. (C.7)

i>1 i>1

Since v is a probability measure, we have Fq(1) = 1. In particular, the second sum in the
right-hand side of is finite for w = 1, so it is finite for any w > 1. Moreover, since q has an
infinite convergence radius, the first sum is finite for any w, so Fy(w) is finite for every w > 1.
Moreover, the first sum in has a finite derivative at w = 1, so F(1) is either finite or —oo.
In the first case, Fy(1) is the mean of v/, which must be negative since the walk S drifts to —oo.
Therefore, in both cases, we have Fq(z) < 1 for > 1 small enough. On the other hand, since q
has an infinite convergence radius and g; > 0 for some ¢ > 2, the first sum in goes to 400
as w — +00, so there must be w > 1 such that Fq(w) = 1. O

Note that the proof of point (v) still works if the convergence radius Rq of q is finite, as long
as Y0 i’ ! takes the value 1 before Rq (and in particular if it diverges near Rg).

The peeling process of non-critical Markovian infinite maps. Let q be a sub-critical,
admissible sequence for which (C.3) has a solution w > 1. Then we can study Mg, the unique
g-Markovian map, by its peeling process. By the formula (C.4)), we have

Cp+i(q) Wl
Cp(q) p—+oo
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for every ¢ € Z. Therefore, a quick computation shows that, when p is large, the perimeter
process of Mg behaves like a random walk with step distribution v, where

for every i € Z. In particular, the drift of 7 is equal to ch’l(w), which is positive by convexity of
Fq (it may be equal to +00). Therefore, the perimeter grows at least linearly in the number of
peeling steps. By applying the arguments of [43], the growth of the dual of M should be at least
exponential (and quicker if Fij(w) = +00). Therefore, we can expect the non-critical Markovian
infinite maps to have a hyperbolic behaviour. If F(w) = 400, we might obtain planar maps
exhbiting both a hyperboic behaviour like the PSHIT and the presence of very large faces like
the maps studied in [43]. However, we did not find any explicit example where Fg(w) = 400
(see also next paragraph). This might be a subject of future work.

A counter-example. Given Proposition[C.2] it is natural to ask whether for every admissible,

sub-critical weight sequence q, there is a g-Markovian map. The answer seems to be no.
Indeed, a natural family of critical, heavy-tailed weight sequences is the one described in

Section 6 of [43]: we fix a € (%, %) and, for every i > 1, we set

i1 T(1/2—a+1)

]]_.
T(1/2+4) =%

qi = ¢

where ¢ = % and v = ﬁlfz- The advantage of these sequences is that the step distribu-
tion v can be expressed in a quite simple way. Moreover, they correspond to infinite maps with
a very different geometry from the UIPT (the UIPQ corresponds to the case a — %) To turn q
into a sub-critical sequence, we fix y € (0,1) and "twist" q by setting
a=y""q

Then fy(z) = fq(yz) and it is easy to check that q is an admissible, sub-critical weight sequence.

Moreover, by Proposition and the convexity of Fy, there is a q-Markovian map if and
only if lim; g, Fg(x) > 1, where Ry is the convergence radius of q. We can then compute
numerically the quantity Fg(Rg). It seems that for any choice of a € (%, g) and y € (0,1), we
have Fg(Rg) < 1, so there should be no g-Markovian map.
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Résumé : Cette thése s’inscrit dans la théorie des cartes planaires aléatoires, et plus précisément
dans I’étude de modéles de nature hyperbolique.

Dans un premier temps, nous nous intéressons & un modéle de triangulations aléatoires dy-
namiques de la sphére basé sur les flips d’arétes, et nous montrons une borne inférieure sur le
temps de mélange de ce modéle.

Dans la suite, 'objet d’étude principal est une famille de triangulations aléatoires hyperboliques,
appelées PSHIT, qui sont des variantes de la triangulation uniforme du plan (UIPT). Nous
établissons un résultat de limite d’échelle quasi-critique, et obtenons & la limite un nouvel espace
métrique aléatoire appelé plan brownien hyperbolique. Nous étudions également des propriétés
métriques fines des PSHIT et du plan brownien hyperbolique, et notamment la structure de
leurs géodésiques infinies.

Enfin, nous nous intéressons a un autre modéle naturel de cartes aléatoires hyperboliques : les
cartes causales surcritiques. Nous établissons des résultats d’hyperbolicité métrique, ainsi que
des propriétés de la marche aléatoire sur ces cartes, dont un résultat de vitesse positive. Certaines
des propriétés obtenues sont robustes, et peuvent se généraliser & n’importe quelle carte planaire
contenant un arbre de Galton—Watson surcritique.
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Abstract: This thesis deals with random planar maps, and more precisely with hyperbolic
models.

We are first interested in a model of dynamical random triangulations of the sphere based on
edge-flips, for which we prove a lower bound on the mixing time.

We then focus on a family of random hyperbolic triangulations called the PSHIT, which are
variants of the Uniform Infinite Planar Triangulation (UIPT). We establish a near-critical scaling
limit result, and obtain in the limit a new random metric space called the hyperbolic Brownian
plane. We also study fine metric properties of the PSHIT and of the hyperbolic Brownian plane,
and in particular the structure of their infinite geodesics.

Finally, we are interested in another natural model of hyperbolic random maps: supercritical
causal maps. We establish metric hyperbolicity results, as well as properties of the simple random
walk on these maps, including a result of positive speed. Some of the properties we obtain are
robust, and may be generalized to any planar map containing a supercritical Galton—Watson
tree.
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