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Abstract

In the first part of the article we study Hamiltonian diffeomorphisms
of R2n which are generated by Lipschitz functions and prove a middle di-
mensional rigidity result for the image of coisotropic cylinders. The tools
that we use are Viterbo’s symplectic capacities and a series of inequalities
coming from their relation with symplectic reduction. In the second part we
consider the nonlinear string equation and treat it as an infinite-dimensional
Hamiltonian system. In this context we are able to apply Kuksin’s approx-
imation by finite dimensional Hamiltonian flows and prove a PDE version
of the rigidity result for coisotropic cylinders. As a particular example, this
result can be applied to the Sine-Gordon equation.
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1 Introduction

Let R2n be the standard Euclidean space with coordinates (q1, p1, . . . , qn, pn)
and consider the standard symplectic form ω =

∑
i dqi ∧ dpi. Gromov’s non-

squeezing theorem [6] states that symplectic diffeomorphisms of (R2n, ω) cannot
send balls of radius r into symplectic cylinders of radius R unless r ≤ R. For
example if φ is a symplectic diffeomorphism, B2n

r is the ball of radius r and
B2
R ⊆ R2 is the two dimensional disc of radius R then

φ(B2n
r ) ⊆ B2

R × R2n−2 implies r ≤ R.
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The original proof relied on the technique of pseudo-holomorphic curves which
was later used to prove a wide range of results in symplectic geometry. Shortly
after, several authors [8, 4, 20] gave independent proofs of Gromov’s theorem
using the concept of symplectic capacities. A symplectic capacity is a function
c : P(R2n)→ [0,+∞] that verifies the following properties:

1. (monotonicity) If U ⊆ V then c(U) ≤ c(V ).

2. (conformality) c(λU) = λ2c(U) for all λ ∈ R.

3. (symplectic invariance) If φ : R2n → R2n is a symplectic diffeomorphism
then c(φ(U)) = c(U).

4. (non-triviality+normalization) c(B2n
1 ) = π = c(B2

1 × R2n−2).

Together, the existence of a function with these properties implies Gromov’s theo-
rem. In this article we are going to work with Viterbo’s capacities in order to prove
a rigidity result for a particular type of Hamiltonian diffeomorphisms. More pre-
cisely we are interested in the middle dimensional symplectic rigidity problem.

One of the first questions regarding this problem appeared in [7] where Hofer
asked about the generalization of capacities to middle dimensions. He asked if
there exists a k-intermediate symplectic capacity ck satisfying monotonicity, k-
conformality, symplectic invariance and

ck(B2k
1 × R2n−2k) < +∞ but ck(B2k−2

1 × R2 × R2n−2k) = +∞?

This question was recently answered in the negative by Pelayo and Vũ Ngo. c in
[14]. In their article they proved that if n ≥ 2 then B2

1 × R2n−2 can be symplec-
tically embedded into the product B2n−2

R × R2 for R =
√

2n−1 + 2n−2 − 2. In
particular, by monotonicity and homogeneity, the value of the capacity on the left
has to be greater than or equal to a constant times the value on the right.

Another point of view for the middle dimensional problem comes from a re-
formulation of Gromov’s non-squeezing theorem. In dimension 2 symplectomor-
phims are the same as area preserving maps so in [5] Eliashberg and Gromov
pointed out that (using a theorem of Moser about the existence of area preserving
diffeomorphisms) Gromov’s theorem is equivalent to

area(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ.

Denote by Πk the projection on the first 2k coordinates. A possible generalization
of this statement to higher dimensions is

Vol(Πkφ(B2n
r )) ≥ Vol(ΠkB

2n
r ) = Vol(B2k

r ) for every symplectomorphism φ.



Coisotropic Camel 3

This problem was studied by Abbondandolo and Matveyev in [2]. In their arti-
cle they proved that the volume with respect to ω∧k of Πkφ(B2n

r ) can be made
arbitrarily small using symplectomorphisms. This ruled out the existence of mid-
dle dimensional volume symplectic rigidity for the ball. Nevertheless they proved
that the rigidity exists in the linear case and, shortly after, Rigolli [15] proved
that there is local middle dimensional volume rigidity if one restricts the class of
symplectomorphisms to analytic ones.

We would like to point out another possible middle dimensional generalization
of the squeezing problem. In dimension 2 the value of any symplectic capacity
on topological discs coincides with the area, so one may also rewrite Gromov’s
theorem as

c(Π1φ(B2n
r )) ≥ πr2 for every symplectomorphism φ,

where c is a symplectic capacity. One can then ask if this inequality is true with
Π1 replaced by Πk, and more generally look at subsets Z different from B2n

r

and replace πr2 with the capacity of ΠkZ. We prove that this type of inequal-
ity is true for Z = X × Rn−k ⊆ Ck × Cn−k provided that we restrict the
class of symplectomorphisms. The maps the we consider are Hamiltonian dif-
feomorphisms generated by functions H that are Lipschitz in space over compact
times intervals, or equivalently, functions that verify |∇Ht(z)| ≤ C(T ) for every
(t, z) ∈ [−T, T ] × R2n with C(T ) ≥ 0 for every T ∈ R. More precisely if we
denote by c and γ the two symplectic capacities defined by Viterbo in [20], we
have the following theorem:

Theorem 1.1. LetX ⊂ R2k be a compact set. ConsiderX×Rn−k ⊆ Ck×Cn−k
and letHt : R2n → R be a Lipschitz Hamiltonian that generates the flow ψt. Then
for every t ∈ R

c(X) ≤ γ(Πkψt(X × Rn−k)).

As an intuition of what this capacities are, if K is a convex smooth body then
c(K) coincides with the minimal area of a closed caracteristic on ∂K. On the
other hand γ is defined using Viterbo’s distance on Hamc(R2n); the energy of a
diffeomorphism is then defined to be the distance to the identity and γ(U) mea-
sures the minimal energy that one needs to displace U from itself. Both capacities
are always related by the inequality c(Z) ≤ γ(Z) which is recovered by Theorem
1.1 when t = 0.

For general sets the construction of Viterbo’s capacities (cf. [20]) starts by
defining for time-1 map ψ = ψH1 of the flow of a compactly supported Hamilto-
nian Ht two values: c(1, ψ) and c(µ, ψ). These values correspond to the action
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value of certain 1-periodic orbits of the flow obtained by variational methods. The
metric on Hamc(R2n) is then defined as d(ψ, Id ) = γ(ψ) = c(µ, ψ) − c(1, ψ).
All these quantities are invariant by symplectic conjugation so they can be used to
define symplectic invariants on open bounded sets as:

c(U) = sup{c(µ, ψ), ψ ∈ Hamc(U)}

γ(U) = inf{γ(ψ), ψ ∈ Hamc(R2n), ψ(U) ∩ U = ∅}

If V is an open (not necessarily bounded) subset of R2n then c(V ) (resp. γ(V )) is
defined as the supremum of the values of c(U) (resp. γ(U)) for all open bounded
U contained in V . IfX is an arbitrary domain of R2n then its capacity c(X) (resp.
γ(X)) is defined as the infimum of all the values c(V ) (resp. γ(V )) for all open
V containing X .

If k > 0 one can prove that c(R2k × Rn−k) = 0 = γ(R2k × Rn−k) for
the coisotropic subspace R2k × Rn−k ⊆ Ck × Cn−k (see Appendix A). By
monotonicity the same is true for coisotropic cylindersX×Rn−k ⊆ Ck×Cn−k so
the existence of Viterbo’s capacities all alone does not provide rigidity information
for the image of these sets by general symplectic diffeomorphisms.

Remark 1.2. We want to point out that Theorem 1.1 is not true for general sym-
plectomorphisms and its limits are well understood. An example of a symplec-
tomorphism which is not generated by a Lipschitz function and does not verify
the statement of Theorem 1.1 is given by the symplectomorphism ϕ given by
ϕ(z1, . . . , zn) = (zk+1, . . . , zn, z1, . . . , zk). We have

ϕ(X × Rn−k) ∩ (Ck × iRn−k) = Rn−k ×X ∩ (Ck × iRn−k)

and either the k-projection is contained in Z = Rk if m ≤ n/2 or in Z =
Rn−k × R4k−2n otherwise. In both cases γ(Z) = 0 by Appendix A, so if for
example X is a closed ball, then the statement is not verified. In this example ϕ is
generated by a quadratic Hamiltonian. Moreover we prove in Proposition 2.9 that
if |∇Ht(z)| ≤ A+B|z| then its flow ψt verifies the statement of Theorem 1.1 at
least for small times.

One may use the rigidity result of Theorem 1.1 to define a non-trivial invariant.
Consider the following quantity:

γkG(U) = inf{γ(Πkφ(U)) |φ ∈ G}

where G is a subgroup of the group of symplectic diffeomorphisms. For G =
Sympl(R2n) we know by Remark 1.2 that γkG is zero on coisotropic cylinders of
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dimension k. On the other hand, if the elements of G are Hamiltonian diffeo-
morphisms generated by Lipschitz functions then Theorem 1.1 implies that γkG is
bounded from bellow on coisotropic cylinders of dimension k. As an example of
G one can take the subgroup of Hamiltonian diffeomorphisms ϕHt where H , ϕHt
and (ϕHt )−1 are Lipschitz on the space variable over compact time intervals (see
Appendix B). For this subgroup Theorem 1.1 gives

c(X) ≤ γkG(X × Rn−k) ≤ γ(X).

We end this discussion with a brief comment on the proof of Theorem 1.1.
This theorem is a consequence of a stronger result about rigidity of the symplectic
reduction of sets. Recall that by definition a coistropic subspaceW ⊆ R2n verifies
Wω ⊆ W where Wω stands for symplectic orthogonal. One can then consider
the space W/Wω which is symplectic by construction. Denote by πW : W →
W/Wω the quotient map. The symplectic reduction of a subset Z ⊆ R2n byW is
defined as RedW (Z) = πW (Z ∩W ). Theorem 1.1 is a corollary of the following
theorem:

Theorem 1.3 (Coisotropic camel Theorem). Let X ⊆ R2k be a compact set.
Consider the subsets X × Rn−k ⊆ Ck × Cn−k and W = Ck × iRn−k. Let
H : R× R2n → R be a Lipschitz Hamiltonian function that generates a flow ψt.
For every t ∈ R we have

c(X) ≤ γ(RedW (ψt(X × Rn−k))).

Figure 1: This figure represents the image of the coisotropic cylinder by a com-
pactly supported Hamiltonian diffeomorphism ψ. The transverse plane represents
the complementary coisotropic subspace. Theorem 1.3 gives information about
the capacity of the projection of the intersection with W .
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Explicitly the reduction byW is Πm(ψt(X×Rn−m)∩(Cm×iRn−m)) which
is the projection of a bounded set, unlike the one in Theorem 1.1. In particular
Theorem 1.3 is not trivial for compactly supported Hamiltonians (see Figure 1).
The proof of this theorem is achieved by a series of inequalities between Viterbo’s
capacities of sets and the symplectic reduction of these sets. The advantage of us-
ing Viterbo’s capacities is that they are constructed using generating functions and
symplectic reduction can be seen as an explicit operation on generating functions
which can be then studied in detail. We first prove the theorem for compactly
supported Hamiltonian diffeomorphisms and then reduce the Lipschitz case to the
compactly supported one.

There is an unpublished proof of this theorem by Buhovski and Opshtein for
the case X = (S1(r))k a product of circles of radius r and RedW (ψt(X ×
Rn−k)) ⊆ Z(R) a symplectic cylinder of radius R which relies on the theory
of pseudoholomorphic curves.

Hamiltonian PDEs. The second part of this article deals with middle dimen-
sional symplectic rigidity in infinite dimensional Hilbert spaces.

Let E be a real Hilbert space and let ω be a non-degenerate 2-form. Here we
will understand non-degenerate in the sense that the map ξ ∈ E → ω(ξ, ·) ∈ E∗
is an isomorphism. In contrast with the finite dimensional case, little is known
about the rigidity properties of symplectomorphisms in this context. The most
general attempt to prove a non-squeezing theorem has been [3] where the result is
proved only for convex images of the ball. The first result pointing in the direction
of the infinite dimensional equivalent of Gromov’s theorem dates back to [9].
Kuksin gave a proof of the theorem for a particular type of symplectomorphism
that appear in the context of Hamiltonian PDEs. He did this by approximating
the flows by finite dimensional maps and then applying Gromov’s theorem. Since
then there has been a great number of articles proving the same result for different
Hamiltonian PDEs via finite dimensional approximation. We refer the reader to
[11] for an excellent summary of the prior work.

The goal of the second part of this article is to extend Theorem 1.1 to the
infinite dimensional case. We restrict ourselves to semilinear PDEs of the type
described in [9]. Let 〈·, ·〉 be the scalar product of E, {ϕ±j } be a Hilbert basis,
J : E → E be the complex structure defined by Jϕ±j = ∓ϕ∓j and J̄ = −J .
The symplectic structure that we consider is ω(·, ·) = 〈J̄ ·, ·〉 and the Hamiltonian
functions are of the form

Ht(u) =
1

2
〈Au, u〉+ ht(u),
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where A is a (possibly unbounded) linear operator and ht is a smooth function.
The Hamiltonian vector field is

XH(u) = JAu+ J∇ht(u)

Remark that the domain of definition of the vector field is the same as the domain
of A which is usually only defined on a dense subspace of E. If etJA is bounded,
then solutions can be defined via Duhamel’s formula and if ∇h is C1 and locally
Lipschitz, then the local flow is a well defined symplectomorphism [10]. Under
compactness assumptions on the nonlinearity, flow-maps can be approximated on
bounded sets by finite dimensional symplectomorphisms. Specific examples of
this type of equations are (see [9] for more details): Nonlinear string equation in
T,

ü = uxx + p(t, x, u)

where p is a smooth function which has at most polynomial growth at infinity.
Quadratic nonlinear wave equation in T2,

ü = ∆u+ a(t, x)u+ b(t, x)u2,

Nonlinear membrane equation on T2,

ü = −∆2u+ p(t, x, u),

Schrödinger equation with a convolution nonlinearity in Tn,

−iu̇ = −∆u+ V (x)u+
[ ∂
∂Ū

G(U, Ū , t, x)
]
∗ ξ, U = u ∗ ξ,

where ξ if a fixed real function and G is a real-valued smooth function.
For concreteness we will study the nonlinear string equation but the main

result will still be true for the previous equations provided that the nonlinear part
∇ht in the Hamiltonian formulation is bounded over compact time intervals.

Consider the periodic nonlinear string equation

ü = uxx − f(t, x, u), u = u(t, x),

where x ∈ T = R/2πZ and f is a smooth function which is bounded over
compact time intervals and has at most a polynomial growth in u, as well as its
u− and t−derivatives:∣∣∣ ∂a
∂ua

∂b

∂tb
f(t, x, u)

∣∣∣ ≤ Ck(1 + |u|)Mk , for for a+ b = k and all k ≥ 0,
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with M0 = 0. Here Ck are positive constants bounded for bounded t and Mk’s
are nonnegative and time independent. The hypothesis on M0 is the one that will
allow us latter to apply Theorem 1.3 to the finite dimensional approximations. For
example this hypothesis is verified by f(t, x, u) = sinu which gives the Sine-
Gordon equation. Let us describe the Hamiltonian structure of this equation. We
denote by B the operator B = (−∂2/∂x2 + 1)1/2 and remark that we may write
the equation in the form

u̇ = −Bv,
v̇ = (B −B−1)u+B−1f(t, x, u).

Define E = E+ × E− = H
1
2 (T) ×H

1
2 (T) the product of Hilbert spaces where

the scalar product of H
1
2 (T) is given by

〈u1, u2〉 =
1

2π

∫ 2π

0
Bu1(x)u2(x)dx.

Here J(u, v) = (−v, u), the operator is A = (B − B−1) × B and ∇ht(u, v) =
(B−1f(t, x, u), 0) which has bounded norm over compact time intervals since
M0 = 0 by hypothesis.

Let {ϕ+
j | j ∈ Z} be the Hilbert basis of E+ on which B is diagonal given by

the Fourier basis and denote by {ϕ−j := −Jϕ+
j | j ∈ Z} the associated Hilbert

basis of E−. Moreover denote Ek (resp. Ek+ and Ek−) the Hilbert subspace gen-
erated by {ϕ±j | |j| ≤ k} (resp. {ϕ+

j | |j| ≥ k + 1} and {ϕ−j | |j| ≥ k + 1}) and
Πk : E → Ek (resp. Πk

+ and Πk
−) the corresponding projection. We use the fi-

nite dimensional approximation together with Theorem 1.3 to prove the following
result:

Theorem 1.4. Denote by Φt : E → E the flow of the nonlinear string equation.
For every k ∈ N, every compact subset X of Ek and every t ∈ R we have

c(X) ≤ γ(ΠkΦ
t(X × Ek+)).

As an example of what type of information we get from this theorem, con-
sider the subspace E0 which consists on constant functions. In this case Theorem
1.4 gives us information on the global behavior of solutions with constant initial
velocity provided that the projection onE0 of this solutions is contained in a com-
pact set X , for example in the closed ball of radius r. On the other hand, if we
interchange the roles of Ek+ and Ek− we get information about solutions whose
initial position is given by a constant function. In particular we see that the energy
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of these solutions cannot be globally transfered to higher frequencies since the
projection on E0 cannot be contained in a ball B2

R with R < r.
Theorem 1.4 may also be seen as an existence result. We consider again the

case k = 0. By reordering the Hilbert basis we may project onto the symplec-
tic plane of frequency l of our choice. Suppose that X is a ball of radius R in
Vect{ϕ+

l , ϕ
−
l } ' R2, we will ask if the projection is contained in a ball of radius

r in Vect{ϕ+
l , ϕ

−
l }. Let U(t) = (u(t), v(t)) ∈ E = H

1
2 × H

1
2 be a solution of

the nonlinear string equation, that is, such that

u̇ = −Bv and ü = uxx − f(t, x, u).

Use the symplectic Hilbert basis {ϕ±j | j ∈ Z} to write

U(t) =
∑
j

uj(t)ϕ
+
j + vj(t)ϕ

−
j =

∑
j

(uj(t)− vj(t)J)ϕ+
j .

We will denote by Uj(t) the complex number uj(t) − ivj(t). Moreover denote
by E1 the Hilbert subspace of E generated by {ϕ±j | |j| ≥ 1}. If 0 < r < R

Theorem 1.4 gives Φt(BR × E1
+) 6⊆ Br × E1 so we get:

Corollary 1.5. For any l ≥ 1, any R > r > 0 and any t0 ∈ R there exists a
(mild) solution U(t) = (u(t), v(t)) of the nonlinear string equation in H

1
2 ×H

1
2

such that

vj(0) = 0 for j 6= l and |Ul(0)| ≤ R but |Ul(t0)| > r

2 The Coisotropic Camel: Viterbo’s approach

We provide here a proof of the Coisotropic Camel Theorem which depends on
Viterbo’s spectral invariants, hence on generating functions instead of holomor-
phic curves. We start by proving the result for compactly supported Hamiltonian
diffeomorphisms.

2.1 Generating functions and spectral invariants.

The classical setting. To a compactly supported Hamiltonian diffeomorphism
ψ of R2n one associates a Lagrangian submanifold Lψ ⊂ T ∗S2n in the following
way. Denote by R2n×R2n the vector space R2n×R2n endowed with the symplec-
tic form (−ω)⊕ ω. The graph Γ(ψ) := {(x, ψ(x)); x ∈ R2n} ⊂ R2n × R2n is a
Lagrangian submanifold Hamiltonian isotopic to the diagonal ∆ := {(x, x); x ∈
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R2n} ⊂ R2n × R2n. Identifying R2n × R2n and T ∗R2n via the symplectic iso-
morphism

I : (q̄, p̄, q, p) 7→ (
q̄ + q

2
,
p̄+ p

2
, p− p̄, q̄ − q),

and noting that Γ(ψ) and ∆ coincide at infinity, we can produce a compact version
of the Lagrangian submanifold Γ(ψ) ⊂ R2n×R2n, which is a Lagrangian sphere
Lψ ⊂ T ∗S2n. This Lagrangian submanifold Lψ is Hamiltonian isotopic to the
0-section and coincides with it on a neighbourhood of the north pole, so it has a
generating function quadratic at infinity (called gfqi in the following) by [12, 16,
17]. This is a function S : S2n×RN → R which coincides with a non-degenerate
quadratic form Q : RN → R at infinity:

∃C > 0 such that S(x, ξ) = Q(ξ) ∀x ∈ S2n, |ξ| > C,

and such that

Lψ =
{

(x,
∂S

∂x
), (x, ξ) ∈ S2n × RN ,

∂S

∂ξ
(x, ξ) = 0

}
⊂ T ∗S2n.

with 0 being a regular value of (x, ξ) 7→ ∂S
∂ξ (x, ξ). A direct consequence of

the definition is that ΣS := {(x, ξ) | ∂S∂ξ (x, ξ) = 0} is a submanifold and that
the map iS : ΣS → T ∗S2n given by (x, ξ) 7→ (x, ∂S∂x (x, ξ)) is an immersion.
When S is a gfqi that generates an embedded submanifold one can prove that
iS is a diffeomorphism between ΣS and Lψ, so every S has a unique critical
point associated to (N, 0) given by i−1

S (N, 0). Denote by Eλ := {S ≤ λ},

iλ : (Eλ, E−∞) ↪→ (E+∞, E−∞), H∗(E+∞, E−∞)
T−1

' H∗(S2n) (T is the
Thom isomorphism). One can select spectral values c(α, S) for α ∈ H∗(S2n) by:

c(α, S) := inf{λ | i∗λ(Tα) 6= 0}.

The gfqi associated to ψ is unique up to certain explicit operations [18, 20] so
there is a natural normalization (requiring that S(i−1

S (N, 0)) = 0) that ensures
that the value c(α, S) does not depend on the gfqi , so we denote it henceforth
c(α,ψ). It is a symplectic invariant in the sense that if Φ ∈ Symp(R2n) then
c(α,Φ ◦ ψ ◦ Φ−1) = c(α,ψ). Taking for α generators 1 and µ of H0(S2n)
and H2n(S2n) respectively, we therefore get two spectral invariants c(1, ψ) and
c(µ, ψ) of Hamiltonian diffeomorphisms, and a spectral norm γ(ψ) := c(µ, ψ)−
c(1, ψ). These invariants can be used in turn to define symplectic invariants of
subsets of R2n. First if U is an open and bounded set:

c(U) = sup{c(µ, ψ), ψ ∈ Hamc(U)}, (2.1)

γ(U) = inf{γ(ψ), ψ ∈ Hamc(R2n), ψ(U) ∩ U = ∅} (2.2)
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If V is an open (not necessarily bounded) subset of R2n we define c(V ) (resp.
γ(V )) as the supremum of the values of c(U) (resp. γ(U)) for all open bounded
U contained in V . If X is an arbitrary domain of R2n then we define its capacity
c(X) (resp. γ(X)) to be the infimum of all the values c(V ) (resp. γ(V )) for all
open V containing X .

Symplectic reduction [20, §5]. Let us first state a general result for the spectral
invariants of the reduction of some Lagrangian submanifolds. The first claim is
proposition 5.1 in [20]. We include a proof for the sake of completeness.

Proposition 2.1. Let N and B be two connected compact oriented manifolds, S
a gfqi for a Lagrangian submanifold in T ∗(N × B), b a point in B and Sb :=
S(·, b, ·). Let α ∈ H∗(N) and µB ∈ H∗(B) the orientation class of B. Then,

c(α⊗ 1, S) ≤ c(α, Sb) ≤ c(α⊗ µB, S).

Moreover, if K̃(x, b, ξ) = K(x, ξ) for all (x, b, ξ) ∈ N ×B×RN , c(α⊗1, K̃) =
c(α,K) = c(α⊗ µB, K̃).

Proof. Let as before Eλ := {S 6 λ}, and Eλb := {Sb 6 λ}. Consider the
commutative diagram

H∗(N ×B)
T //

��

H∗(E∞, E−∞)
i∗λ //

��

H∗(Eλ, E−∞)

��

H∗(N)
T // H∗(E∞b , E

−∞
b )

i∗λ // H∗(Eλb , E
−∞
b )

where the map H∗(N × B) → H∗(N) is induced by the injection N → N ×
{b} → N ×B, and coincides with the composition of the projection on H∗(N)⊗
H0(B) and the obvious identification H∗(N) ⊗ H0(B) → H∗(N). Since the
diagram is commutative, i∗λT (α) 6= 0 implies i∗λT (α⊗ 1) 6= 0, so c(α⊗ 1, S) ≤
c(α, Sb). To get the second inequality, we need to introduce spectral invari-
ants defined via homology. The Thom isomorphism is now T : H∗(S

2n)
∼→

H∗(E
+∞, E−∞), and

c(A,S) = inf{λ | TA ∈ Im (iλ∗)}.

The homological and cohomological invariants are related by the equality c(α, S) =
−c(PD(α),−S) [20, Proposition 2.7]. In the homology setting, the commutative
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diagram becomes

H∗(N ×B)
T // H∗(E

∞, E−∞) H∗(E
λ, E−∞)

iλ∗oo

H∗(N)

OO

T // H∗(E
∞
b , E

−∞
b )

OO

H∗(E
λ
b , E

−∞
b )

OO

iλ∗oo

.

As before, if A ∈ H∗(N) verifies T (A) ∈ Im (iλ∗), then T (A ⊗ [b]) ∈ Im (iλ∗),
so c(A⊗ [b], S) 6 c(A,Sb) for all A ∈ H∗(N) (and all S). Thus,

c(α, Sb) = −c(PD(α),−Sb) 6 −c(PD(α)⊗ [b],−S) = −c(PD(α⊗ µB),−S)

and −c(PD(α ⊗ µB),−S) = c(α ⊗ µB, S) so we get c(α, Sb) ≤ c(α ⊗ µB, S).
Finally, if K̃(x, b, ξ) = K(x, ξ) for all (x, b, ξ) ∈ N×B×RN thenEλ = Eλb ×B
so i∗λ(α⊗β) = (i∗λα)⊗β. This gives c(α⊗1, K̃) = c(α⊗µB, K̃) = c(α,K).

Remark 2.2. To understand the context of the previous statement, notice that
when a Lagrangian submanifold L ⊂ T ∗N × T ∗B has a gfqi S, and has trans-
verse intersection with a fiber T ∗N × T ∗b B for some b ∈ B, the function Sb is a
gfqi for the reduction Lb of L∩ T ∗N × T ∗b B (which is an immersed Lagrangian
of T ∗N ).

Following [20, §5], we work on R2m × T ∗Tk ' R2m × Rk × Tk endowed
with coordinates (z, p, q). Let π : R2m × Rk × Rk → R2m × Rk × Tk be
the projection and consider a Hamiltonian diffeomorphism ψ ∈ Hamc(R2m ×
T ∗Tk) with coordinates (ψz, ψp, ψq) generated by Ht. It is easy to see that Ht ◦π
generates a lift ψ̃ ∈ Ham(R2m × Rk × Rk) such that

ψ̃z(z, p, q̃ + 1) = ψ̃z(z, p, q̃) = ψz(z, p, q) (with (z, p, q) = π(z, p, q̃))

ψ̃p(z, p, q̃ + 1) = ψ̃p(z, p, q̃) = ψp(z, p, q)

ψ̃q̃(z, p, q̃ + 1) = ψ̃q̃(z, p, q̃) + 1

Again, the graph of ψ̃ is a Lagrangian submanifold Γ(ψ̃) ⊂ R2m × R2k ×R2m×
R2k that under I becomes a Lagrangian submanifold of T ∗R2m × T ∗R2k whose
points are denoted by Γψ̃(z, p, q̃) equal to

(
I(z, ψz(z, p, q)),

p+ ψp(z, p, q)

2
,
q̃ + ψ̃q̃(z, p, q̃)

2
, q̃−ψ̃q̃(z, p, q̃), ψp(z, p, q)−p

)
.
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Now ψ̃q̃(z, p, q̃ + 1) = ψ̃q̃(z, p, q̃) + 1 implies that Γψ̃ descends to an embedding
Γ̃ψ : R2m × Rk × Tk → T ∗R2m × T ∗Rk × T ∗Tk, given by

Γ̃ψ(z, p, q) =
(
I(z, ψz),

p+ ψp
2

, q − ψq,
q + ψq

2
, ψp − p

)
.

This embedding Γ̃ψ is Hamiltonian isotopic to the zero-section, and coincides
with the zero-section at infinity. As in the classical situation, Γ̃(ψ) := Im Γ̃ψ can
be compactified to a Lagrangian submanifold

Lψ ⊂ T ∗(S2m × Sk × Tk),

which is Hamiltonian isotopic to the zero-section, and coincides with the zero-
section on a neighbourhood of {N} × Sk × Tk and of S2m × {N} × Tk. After
normalization (by S(i−1

S (N,N, 0, 0)) = 0), the gfqi of Lψ provides spectral
invariants c(α ⊗ β ⊗ γ, ψ) for α ∈ H∗(S2m), β ∈ H∗(Sk) and γ ∈ H∗(Tk).
As in (2.1), these invariants can be used to define c(α ⊗ β ⊗ γ,X), for subsets
X ⊂ R2m × T ∗Tk.

Proposition 2.3. If X is a compact subset of R2m then

c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk).

Proof: Let U be a bounded neighbourhood of X , φ ∈ Hamc(U). By compactness
of X and by definition of the spectral capacities c, it is enough to find, for any
neighbourhood V of 0 in Rk, a Ψ ∈ Hamc(U × V × Tk) such that c(µ, φ) 6
c(µ⊗ µ⊗ 1,Ψ).

Let H : R × R2m → R be a generator of φ, and χ ∈ C∞c (V) with χ(0) = 1
and ∂χ

∂p (0) = 0. The Hamiltonian χH of R2m × Rk × Tk generates a compactly
supported Hamiltonian diffeomorphism that we will note Ψ = (ψz, ψp, ψq). It is
easy to see that

Ψ(z, p, q) = (ψz(z, p), p, q + C(z, p))

with C(z, p) =
∫ 1

0
∂χ
∂p (p)H(t, z)dt, and that C(z, 0) = 0 and ψz(z, 0) = ϕ(z).

The embedding ΓΨ : R2m × Rk × Tk → T ∗R2m × T ∗Rk × T ∗Tk it thus given
by

Γ̃Ψ(z, p, q) = (I(z, ψz(z, p)), p, −C(z, p), q +
1

2
C(z, p), 0).

By definition, when we compactify Im Γ̃Ψ we get LΨ which, by the previous
expression, is easily seen to be transverse to T ∗S2m × T0S

k × T ∗Tk. Now

Γ̃Ψ(z, 0, q) = (I(z, ϕ(z)), 0, 0, q, 0).
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so LΨ ∩ T ∗S2m × T0S
k × T ∗Tk = Lϕ × {(0, 0)} × 0Tk and the reduction is

Lϕ × 0Tk which is also Hamiltonian isotopic to the zero-section. Therefore, by
remark 2.2, if S is a gfqi for LΨ, S0 is a gfqi for Lϕ × 0Tk . On the other hand,
if K is a gfqi for Lϕ then K̃(z, q, ξ) = K(z, ξ) is also a gfqi for Lϕ × 0Tk .
Moreover, both S0 and K̃ have 0 as the critical value associated to {N}×{q}, so
by uniqueness of gfqi c(µ⊗ 1, K̃) = c(µ⊗ 1, S0). By proposition 2.1,

c(µ,K) = c(µ⊗ 1, K̃) = c(µ⊗ 1, S0) ≤ c(µ⊗ µ⊗ 1, S),

which precisely means that c(µ, ϕ) ≤ c(µ⊗ µ⊗ 1,Ψ). �

The next proposition is a modified version of [20, proposition 5.2]. Since the
proof there is a bit elliptical, (it refers to the proofs of several other propositions
of the same paper) we give more indications in section 2.3 below.

Proposition 2.4. Consider a compact set Z ⊂ R2m × Rk × Tk, a point w ∈ Tk
and the reduction Zw := (Z ∩ {q = w})/Rk. Then

c(µ⊗ µ⊗ 1, Z) ≤ γ(Zw).

2.2 Non-squeezing and symplectic reduction.

Together, propositions 2.3 and 2.4 provide the non-squeezing statement we are
looking for. Recall that if Z ⊆ R2n and W is a coisotropic subspace of R2n then
the symplectic reduction of Z is defined by RedW (Z) = πW (Z ∩ W ) where
πW : W →W/Wω is the natural projection.

Theorem 2.5. Let X ⊆ R2m be a compact set and consider X × Rn−m ⊂
Cm ×Cn−m and denote by W := Cm × iRn−m. For every compactly supported
Hamiltonian diffeomorphism ψ of Cn and every t ∈ R we have

c(X) ≤ γ(RedW (ψt(X × Rn−m))).

Proof. Since ψ has compact support, we can view it as a symplectomorphism of
Cm × T ∗Tn−m ' R2m × Rn−m × Tn−m. In this setting X × Rn−m is seen as
X×{0}×Tn−m and ψ(X×{0}×Tk)0 coincides with RedW (ψt(X×Rn−m)).
Now applying proposition 2.3, invariance, proposition 2.4 and monotonicity we
get the chain of inequalities:

c(X) ≤ c(µ⊗ µ⊗ 1, X × {0} × Tk) = c(µ⊗ µ⊗ 1, ψ(X × {0} × Tk))
≤ γ(ψ(X × {0} × Tk)0) = γ(RedW (ψt(X × Rn−m))).
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Corollary 2.6 (Lagrangian Camel theorem). Let L := S1(r)m×Rn−m ⊂ Cm×
Cn−m be a standard Lagrangian tube. Assume that there is a compactly supported
Hamiltonian diffeomorphism ψ of Cn such that ψ(L)∩(Cm×iRn−m) ⊂ Z(R)×
iRn−m where Z(R) is a symplectic cylinder of capacity R. Then r ≤ R.

Proof. Theorem 2.5 gives c(S1(r)m) 6 γ(Z(R)) = πR2 and c(S1(r)m) = πr2

by [19, remark 1.5].

2.3 Proof of proposition 2.4.

Let Z ⊂ R2m × Rk × Tk and Zw :=
(
Z ∩ {q = w}

)
/Rk. We need to show that

c(µ ⊗ µ ⊗ 1, Z) 6 γ(Zw). Let V ⊂ R2m be an arbitrary neighbourhood of Zw,
and

U := (R2m × Rk × Tk \ {w}) ∪ (V × Rk × Tk).

Obviously, Z ⊂ U and Uw = V , so by monotonicity of c, it is enough to prove
that c(µ⊗µ⊗ 1, U) 6 γ(Uw). Notice moreover that any Hamiltonian diffeomor-
phism of R2m that displaces V = Uw also displaces its filling Ũw := R2m\F∞w ,
where F∞w is the unbounded connected component of R2m\Uw. Thus γ(Uw) =
γ(Ũw), so we may as well assume that R2m\Uw is connected and unbounded,
which we do henceforth. Let ψ ∈ Hamc(U) and ϕ ∈ Hamc(Cm) be such that
ϕ(Uw) ∩ Uw = ∅. We need to prove that

c(µ⊗ µ⊗ 1, ψ) ≤ γ(ϕ).

We know that the Lagrangian submanifoldLϕ in T ∗S2m is isotopic to the zero
section by a Hamiltonian diffeomorphism Φ and has a gfqi K : S2m ×Rd → R.
This diffeomorphism Φ induces a Hamiltonian diffeomorphism Φ̃ := Φ × Id on
T ∗S2m × T ∗Sk that verifies Φ̃(0) = Lϕ × 0 and K̃(x, y, η) := K(x, η) (defined
on S2m × Sk × Rd) is a gfqi for this submanifold. Now for a gfqi S of Lψ we
have

c(µ⊗µ⊗1, ψ) = c(µ⊗µ⊗1, S) 6 c(µ⊗µ, Sw) 6 c(µ⊗µ, Sw−K̃)−c(1⊗1,−K̃).

The first inequality above follows from proposition 2.1, while the second one is
the triangle inequality for spectral invariants [20, proposition 3.3] (because (µ ⊗
µ) ∪ (1 ⊗ 1) = µ ⊗ µ). The following lemmas ensure that c(µ ⊗ µ, Sw − K̃) =
c(µ⊗ µ,−K̃), so (applying proposition 2.1):

c(µ⊗µ⊗1, ψ) 6 c(µ⊗µ,−K̃)−c(1⊗1,−K̃) = c(µ,−K)−c(1,−K) = γ(φ−1),

and γ(φ−1) = γ(φ) which gives the desired inequality.
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Consider a Hamiltonian path ψt from the identity to ψ in Hamc(U) and a
Hamiltonian path Ψt of T ∗S2m×T ∗Sk×T ∗Tk such that Ψt(0) = Lψt . This path
gives rise to a family of gfqi St, continuous in t, that generate Lψt for all t and
that coincide with a fixed quadratic form Q outside a compact set independent of
t [12, 16, 17]. The first lemma ensures that we can further assume St normalized.

Lemma 2.7. Gt := St − c(µ ⊗ 1 ⊗ γ, St) is a continuous family of normalized
generating functions for Lψt . Moreover there exists a family of fiber preserving
diffeomorphisms ϕt such that Gt ◦ ϕt is a continuous family of normalized gfqi
for Lψt .

Proof. To start with, we know that both functions StN (p, q, ξ) = St(N, p, q, ξ)
and StN (z, q, ξ) = St(z,N, q, ξ) generate the zero sections so they have just one
critical value. Moreover St(i−1

St (N,N, q, 0)) is a common critical value so they
are both the same. Using proposition 2.1 we get c(1⊗γ, StN ) ≤ c(µ⊗1⊗γ, St) ≤
c(µ⊗ γ, StN ) so c(µ⊗ 1⊗ γ, St) = St(i−1

St (N,N, q, 0)) determines continuously
the critical value at infinity.

For the second part, define ct := c(µ ⊗ 1 ⊗ γ, St) and recall that St equals
Q outside a compact set. Let χ : RN → [0, 1] be a compactly supported function

with χ ≡ 1 in a neighbourhood of 0, and Xt(ξ) := (1 − χ(ξ))ct
~∇Q(ξ)

‖~∇Q(ξ)‖2
, seen

as an autonomous vector field (t is not the parameter of integration). This vector
field Xt is well-defined and complete because Q is non-degenerate, so φt := Φ1

Xt

is well-defined. Moreover, if ξ lies far away in RN , Φr
Xt

(ξ) remains on the set
{1 − χ = 1} for all r ∈ [0, 1], so Q ◦ Φr

Xt
(ξ) = Q(ξ) + rct. As a consequence,

(Q−ct)◦φt = Q outside a compact set, soGt ◦φt := Gt(z, p, q, φt(ξ)) is a gfqi
for Lψt . Since moreover Gt is normalized, so is Gt ◦ φt. Finally, the family φt is
obviously continuous in the t variable.

Lemma 2.8. Let St be a continuous family of normalized gfqi for the Lagrangian
Lψt . Then c(µ ⊗ µ, Stw − K̃) is a critical value of −K̃ and as a consequence
c(µ⊗ µ, Sw − K̃) = c(µ⊗ µ,−K̃).

Proof. Recall that points in Lψt are of the form

Γ̃ψt(z, p, q) =
(
I(z, ψtz),

p+ ψtp
2

, q − ψtq,
q + ψtq

2
, ψtp − p

)
plus other points on the zero section that come from compactifying. Moreover,
the functions Stw formally generate the sets of points(
I(z, ψtz),

p+ ψtp
2

, q − ψtq
)

for points (z, p, q) that verify
q + ψtq

2
= w,
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plus other points in the zero section. This set is denoted henceforthLtw. Recall that
the notation Stw−K̃ stands for the function (z, p, ξ, η) 7→ St(z, p, w, ξ)−K(z, η).
It is enough to prove that all critical points (z, p, ξ, η) of Stw − K̃ are such that
(z, η) is a critical point of−K̃, while (z, p, ξ) is a critical point of Stw with critical
value 0. Letting x := (z, p), such a critical point verifies

∂Stw
∂x

=
∂K̃

∂x
and

∂Stw
∂ξ

=
∂K̃

∂η
= 0,

so it is associated to an intersection point of Ltw and Lφ × 0 in the fiber of (z, p).
This intersection point therefore verifies:

q − ψtq = 0 and
q + ψtq

2
= w (so q = ψtq = w),

or will be on the zero section coming from critical points of St at infinity. We
claim that such a point of intersection must lie on I(Uw ×Uw)c × T ∗Sk. Indeed,
if I(Uw × Uw) × T ∗Sk ∩ (Lϕ × 0) 6= ∅, then Φ−1(I(Uw × Uw)) ∩ 0 6= ∅.
But Φ−1(I(Uw × Uw)) = I(ϕ−1(Uw) × Uw) does not intersect the zero section
because ϕ displaces Uw. This in turn implies that the intersection point is on the
zero section: if a point of Ltw is in I(Uw×Uw)c×T ∗Sk, (z, ψtz) ∈ (Uw×Uw)c so
z /∈ Uw or ψtz /∈ Uw. In both cases, ψt(z, p, w) = (z, p, w) because q = ψtq = w,
and ψt has support in U , which intersects {q = w} along Uw × Rk. Thus, the
point Γ̃ψt(z, p, w) is on the zero section, (z, p, w, ξ) is indeed a critical point of
St and as a consequence (z, η) is a critical point of −K̃. In addition (z, p, w) is
in U c because z /∈ Uw.

Now we prove that all the points in U c have critical value 0. Since Suppψt b
U and U c is connected, there is an open connected set W that contains U c and
that does not intersect Suppψt (for all t). Then 0W ⊂ Lt so if j : W ↪→ Lt is the
inclusion on the zero section, f := i−1

St ◦ j : W → ΣSt is an embedding into the
set of critical points. The open set W is connected so St ◦ f is constant and all
the points in W have the same critical value. The fact that St is normalized now
implies that this value is zero.

Finally, Sard’s theorem ensures that the set of critical values of −K̃ has mea-
sure zero, so it is totally disconnected. By continuity of the invariants, c(µ ⊗
µ, Stw − K̃) is therefore constant, so c(µ⊗ µ,−K̃) = c(µ⊗ µ, S1

w − K̃).

2.4 Lipschitz setting

We proceed with the proof of Theorem 1.3. We will reduce the Lipschitz case to
the compactly supported case and then use Theorem 2.5 to conclude.
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Proof of Theorem 1.3. Let Hs be a Lipschitz Hamiltonian function, then there is
an A > 0 such that |∇Hs(z)| ≤ A for every (s, z) ∈ [0, t] × R2n. Denote by ψt
the Hamiltonian flow at time t associated to Hs. First, an easy computation using
the integral equation verified by the trajectories ψt(z) for z ∈ R2n yields both

|ψt(z)− z| ≤ |t|A and |ψt(z)| ≤ |z|+ |t|A.

Let X be a compact set of R2m contained in the ball of radius r centered at the
origin and suppose that z ∈ R2n verifies for a fixed t ∈ R

z ∈ X × Rn−m and ψt(z) ∈ Cm × iRn−m.

For such a z we will call ψ[0,t](z) a camel trajectory. Denote πm+ the natural
projection on Rn−m of coordinates (qm+1, . . . , qn). Using the fact the πm+ψt(z) =
0 we find

|z| ≤ r + |πm+ z| = r + |πm+ (ψt(z)− z)| ≤ r + |t|A,

so |ψs(z)| ≤ r + 2|t|A for all s ∈ [0, t]. We see that all the camel trajectories are
contained in the ball centered at the origin of radius r + 2|t|A. We now build
a compactly supported Hamiltonian diffeomorphism that coincides with ψt in
B(0, R) (for someR ≥ r+2|t|A) and whose camel trajectories are also contained
in this ball. The conclusion will then follow by Theorem 2.5. Let χ : R → R be
a smooth function with values on [0, 1] that equals 1 over the interval [0, R], van-
ishes over [2R,+∞[ and such that |χ′| ≤ 2/R and define Gt(z) = χ(|z|)Ht(z)
(the value ofRwill be chosen later). It is a compactly supported function that gen-
erates a Hamiltonian diffeomorphism φt. Since we may suppose that Hs(0) = 0
for all s we have |Hs(z)| ≤ A|z| for (s, z) ∈ [0, t]× R. This gives

|∇Gs(z)| = |χ′(|z|)
z

|z|
Hs(z) + χ(|z|)∇Hs(z)| ≤

2

R
A2R+A = 5A.

The same argument that we used with ψt tells us that all the camel trajectories of
φt are contained in the ball of radius r + 10|t|A. Choose any R > r + 10|t|A to
define χ and the theorem follows.

Proposition 2.9. Let Ht be a Hamiltonian such that |∇Ht(z)| ≤ A+B|z|. Then
its flow ψt verifies the Coisotropic Camel property for |t| < ln2

5B .

Proof. By considering the Hamiltonian Ht/B we may suppose B = 1. Using
Gronwall’s lemma we get the inequalities

|ψt(z)| ≤ et(|z|+A)−A and |ψt(z)− z| ≤ (et − 1)(|z|+A).
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The camel points verify |z| ≤ r+(et−1)|z|+(et−1)A so these inequalities allow
us to bound the trajectories if et < 2 so if t < ln 2. Now if we consider the same
Hamiltonian G as in the previous proof we get that |∇Gt| ≤ 5|z|+ 5A so by the
previous argument (with B = 5) if t < ln 2

5 we can bound the camel trajectories
by a constant independent ofR. ForR big enough the camel trajectories ofH and
G are contained in a set where the flows coincide, so they have the same camel
trajectories and we may conclude by theorem 2.5.

The time bound in Proposition 2.9 is not optimal and one may get a better one
modifying the bound for |χ′|, but this bound cannot be extended much more since
the statement fails for bigger t (see Remark 1.2).

3 Hamiltonian PDEs

Let E be a real Hilbert space. A (strong) symplectic form on a real Hilbert space
is a continuous 2-form ω : E ×E → R which is non-degenerate in the sense that
the associated linear mapping

Ω : E → E∗ defined by ξ 7→ ω(ξ, ·)

is an isomorphism. Let H : E → R be a smooth Hamiltonian function. In
the same way as in the finite dimensional case one can define the vector field
XH(u) = Ω−1(dH(u)) and consider the ODE

u̇ = XH(u).

The situation encountered in examples is however a little bit different. In most
cases the Hamiltonian H is not defined on the whole space E but only on a dense
Hilbert subspace DH(E) ⊆ E. This raises the question of what a solution is and
how to construct it.

3.1 Semilinear Hamiltonian equations

Denote by 〈·, ·〉 the scalar product of E. Consider an anti-self-adjoint isomor-
phism J̄ : E → E and supply E with the strong symplectic structure

ω(·, ·) = 〈J̄ ·, ·〉.

Denote J = (J̄)−1 which is also an anti-self-adjoint isomorphism of E. Take a
possibly unbounded linear operator A with dense domain such that JA generates
a C0 group of (symplectic) transformations

{etJA | t ∈ R} with ‖etJA‖E ≤MeN |t|
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and consider the Hamiltonian function

Ht(u) =
1

2
〈Au, u〉+ ht(u),

where h : E × R → R is smooth. The corresponding Hamiltonian equation has
the form

u̇ = XH(u) = JAu+ J∇ht(u).

In this case the domain of definition of the Hamiltonian vector field is the same as
the domainD(A) ofA which is a dense subspace ofE. This implies that classical
solutions can only be defined on D(A). More precisely by a classical solution we
mean a function u : [0, T [→ E continuous on [0, T [, continuously differentiable
on ]0, T [, with u(t) ∈ D(A) for 0 < t < T and such that the equation is satisfied
on [0, T [. Nevertheless the boundedness of the exponential allows us to define
solutions in the whole space E via Duhamel’s formula:

Definition 3.1. A continuous curve u(t) ∈ C([0, T ];E) is a (mild) solution of the
Hamiltonian equation in E with initial condition u(0) = u0 if for 0 ≤ t ≤ T ,

u(t) = etJAu0 +

∫ t

0
e(t−s)JAJ∇hs(u(s))ds.

One can easily verify that if u(t) is a classical solution, then it is also a mild
solution. For semilinear equations we know (see for example [13]) that if ∇h is
locally Lipschitz continuous, then for each initial condition there exists a unique
solution which is defined until blow-up time. If moreover ∇h is continuously
differentiable then the solutions with u0 ∈ D(A) are classical solutions of the
initial value problem. Locally we get a smooth flow map Φt : O ⊆ E → E
defined on an open set O. If every solution satisfies an a priory estimate

‖u(t)‖E ≤ g(t, u(0)) <∞

where g is a continuous function on R × E, then all flow maps Φt : E → E
are well defined and smooth. This is the case for example if ‖∇ht(u)‖E ≤ C.
Remark that the choice of the linear map A is arbitrary. Indeed if JA gener-
ates a continuous group of transformations and B is a bounded linear operator
then J(A+ B) is an infinitesimal generator of a group etJ(A+B) on E satisfying
‖etJ(A+B)‖E ≤ MeN+M‖B‖|t|. One can then consider the linear part J(A + B)
and set J∇ht − JB as the nonlinear part. This indeterminacy is only apparent:
classical solutions verify Duhamel’s formula for JA and J(A + B) so both flow
maps coincide over the dense subspaceD(A) which by continuity implies that the
two flows are equal.
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3.2 Nonlinear string equation

Consider the periodic nonlinear string equation

ü = uxx − f(t, x, u), u = u(t, x),

where x ∈ T = R/2πZ and f is a smooth function which is bounded over
compact time intervals and has at most a polynomial growth in u, as well as its
u− and t−derivatives:∣∣∣ ∂a
∂ua

∂b

∂tb
f(t, x, u)

∣∣∣ ≤ Ck(1 + |u|)Mk , for for a+ b = k and all k ≥ 0,

with M0 = 0, Ck are positive constants bounded for bounded t and nonnegative
Mk’s are t independent. We now describe the Hamiltonian structure of this equa-
tion. Denote by B the operator B = (−∂2/∂x2 + 1)1/2 and remark that we may
write the equation in the form

u̇ = −Bv,
v̇ = (B −B−1)u+B−1f(t, x, u).

Define E = H
1
2 (T) × H

1
2 (T) as the product of Hilbert spaces where the scalar

product of H
1
2 (T) is given by

〈u1, u2〉 =
1

2π

∫ 2π

0
Bu1(x)u2(x)dx.

If we define the function

ht(u, v) = − 1

2π

∫ 2π

0
F (t, x, u(x))dx, F =

∫ u

0
fdu.

we get
∇ht(u, v) = (B−1f(t, x, u(x)), 0).

The gradient verifies ‖∇ht‖E ≤ C0 over the compact time interval associated to
C0. The polynomial growth condition on f guarantees that there exists a 0 < θ <

1/2 such that ∇h has a C1 extension to H
1
2
−θ(T) × H

1
2
−θ(T). Moreover this

implies that ∇h is locally Lipschitz in E over compact time intervals (see [9] for
details). A special case where such properties can be verified is f(t, x, u) = sinu
which corresponds to the Sine-Gordon equation. In this case ‖∇ht‖E ≤ 1 and the
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gradient is globally Lipschitz since sin : L2 → L2 is Lipschitz and B−1 : L2 →
H

1
2 is continuous so for u, v ∈ H1/2

‖B−1 sinu−B−1 sin v‖H1/2 ≤ ‖sinu− sin v‖L2 ≤ ‖u− v‖L2≤ ‖u− v‖H1/2 .

Moreover sin : L2 → L2 is smooth so ∇h is smooth and has a smooth Lipschitz
extension ∇h̃ to L2. These properties will be useful when constructing the finite
dimensional approximation. Now putting A = (B − B−1) × B and defining
J : E → E by J(u, v) = (−v, u) we can write the nonlinear string equation as
the semilinear PDE:

(u̇, v̇) = JA(u, v) + J∇ht(u, v).

Consider the symplectic Hilbert basis {ϕ±j | j ∈ Z} where

ϕ+
j =

1

(j2 + 1)
1
4

(ϕj(x), 0), ϕ−j =
1

(j2 + 1)
1
4

(0,−ϕj(x)),

with

ϕj(x) =

{√
2 sin jx, j > 0,√
2 cos jx, j ≤ 0.

In this basis we have (B × B)ϕ±j =
√
j2 + 1ϕ±j so if we denote λj =

√
j2 + 1

we get that

Aϕ+
j = (λj −

1

λj
)ϕ+

j and Aϕ−j = λjϕ
−
j .

Now remark that JA has eigenvalues {±i
√
λ2
j − 1 = ±ij}. If we calculate etJA

we get that its action on each symplectic plane ϕ+
j R⊕ϕ

−
j R is given by the matrix cos tj −

√
j2+1
j sin tj

j√
j2+1

sin tj cos tj


which gets closer and closer to a rotation as j goes to infinity. In particular we get
a bounded group of symplectic linear maps. We conclude that for all t ∈ R the
time t map of the flow of the nonlinear string equation Φt : E → E is defined on
the whole space E.
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3.3 Finite dimensional approximation

In this subsection we will follow [9] for the particular case of the nonlinear string
equation. We include the proofs for completeness. Recall that the Hilbert basis of
E is {ϕ±j | j ∈ Z} and denote En the vector space generated by {ϕ±j | |j| ≤ n}.
It is a real vector space isomorphic to R2n+2. Let En be the Hilbert space with
basis {ϕ±j | |j| > n} so that E = En⊕En and write u = (un, u

n) for an element
u ∈ E. The fact that J andA preserveEn for all nwill allow us to define the finite
dimensional approximations just by projecting the vector field. Let Πn : E → En
be the natural projection and consider the Hamiltonian function

Hn(u) =
1

2
〈Au, u〉+ hn(u) where hn(u) := ht(Πn(u)).

The Hamiltonian equation now becomes

u̇ = XHn(u) = JAu+ J∇hn(u),

where∇hn(u) = Πn(∇ht(Πn(u))). Since∇hn continues to be locally Lipschitz
and bounded, XHn generates a global flow Φt

n. This flow can be decomposed as
Φt
n = etJA ◦ V t

n with V t
n(u) = (φtn(un), un). Here φtn is a finite dimensional

Hamiltonian flow on En generated by the time dependent function hn ◦ etJA. We
remark that this function has a bounded gradient so φtn verifies Theorem 1.3 for
every t ∈ R. The key point of the approximation is the following lemma which is
a slight modification of a lemma in [9, appendix 2]:

Lemma 3.2. Denote Fθ = H
1
2
−θ(T)×H

1
2
−θ(T) and let K be a compact subset

of Fθ. Let g : R× Fθ → E be a continuous map and fix a T > 0. Then

sup
(t,u)∈[−T,T ]×K

‖gt(u)− gt(Πnu)‖E

converges to zero as n goes to infinity. Moreover, for every R > 0 there exists a
decreasing function εR : N→ R such that εR(n)→ 0 as n→∞ and

‖∇ht(u)−∇hn(u)‖E ≤ εR(n)

for every u ∈ B(0, R) and |t| ≤ T .

Proof. By contradiction suppose that there is a sequence {(sn, zn)} ⊂ [−T, T ]×
K such that ‖gsn(zn)− gsn(Πnzn)‖E ≥ δ > 0 for every n ∈ N. By compactness
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we may suppose that there is a converging subsequence (snk , znk)→ (s, z). This
sequence will also verify Πnkznk → z. We have

‖gsnk (znk)−gsnk (Πnkznk)‖E ≤ ‖gsnk (znk)−gs(z)‖E+‖gs(z)−gsnk (Πnkznk)‖E

and the quantity of the rhs converges to zero as nk goes to infinity by continuity
of g. In particular, for nk big enough we get ‖gsnk (znk)− gsnk (Πnkznk)‖E < δ,
a contradiction.

For the second claim recall that∇ht has an extension to Fθ for θ small enough
(see [9]). Denote by ∇h̃t the extension and let i : E → Fθ be the compact
inclusion so that ∇ht(u) = ∇h̃t(i(u)). Recall that ∇hn(u) = Πn∇ht(Πn(u)).
We have

‖∇ht(u)−∇hn(u)‖E ≤ ‖∇ht(u)−Πn∇ht(u)‖E+‖Πn∇ht(u)−Πn∇ht(Πnu)‖E

≤ ‖∇h̃t(i(u))−Πn∇h̃t(i(u))‖E + ‖∇h̃t(i(u))−∇h̃t(Πni(u))‖E .

For every R > 0 the sets
⋃
|t|≤T ∇h̃t(i(BE(0, R))) and i(BE(0, R))) are pre-

compact in E = F0 and Fθ respectively, so we may take the sup in BE(0, R) and
|t| ≤ T and apply the first part of the lemma to conclude.

Now we have all the tools we need for the finite dimensional approximation.

Proposition 3.3 ([9]). Fix a t ∈ R. For each R > 0 and ε > 0 there exists an N
such that if n ≥ N then

‖V t(u)− V t
n(u)‖E ≤ ε

for all u ∈ B(0, R).

Proof. Duhamel’s formula and the fact that that etJA is a bounded operator give

‖V t(u)− V t
n(u)‖E ≤ C

∫ t

0
‖∇hs(Φs(u))−∇hn(Φs

n(u))‖Eds ≤

≤ C
∫ t

0
‖∇hs(Φs(u))−∇hs(Φs

n(u))‖Eds+C
∫ t

0
‖∇hs(Φs

n(u))−∇hn(Φs
n(u))‖Eds.

If u ∈ BE(0, R) and s ∈ [0, t] then ‖∇h‖E bounded implies that for all n ∈ N
the element Φs

n(u) wont leave a ball of radius R′(R, t). We can now use Lemma
3.2 and the fact that∇h is locally Lipschitz to get

‖V t(u)− V t
n(u)‖E ≤ C̃

∫ t

0
‖V s(u)− V s

n (u)‖Eds+ Ctε(n).
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By Gronwall’s lemma we conclude that

‖V t(u)− V t
n(u)‖E ≤ ε(n)C(t)

where C(t) depends continuously on t. The function ε(n) is decreasing and con-
verges to zero so there exists an N ∈ N such that if n ≥ N then ε(n)C(t) ≤ ε
which gives the result.

3.4 Coisotropic Camel

We now move towards the proof of Theorem 1.4. Recall that to state Theorem 1.3
we had to divide the simplectic phase space into two Lagrangian subspaces that
determine the coisotropic subspaces that we work with. In the infinite dimensional
case we have E = E+ ⊕ E− = H

1
2 × H

1
2 where E+ (resp. E−) is generated

by {ϕ+
j | j ∈ Z} (resp. {ϕ−j | j ∈ Z}). Moreover denote Ek (resp. Ek+ and Ek−)

the Hilbert subspace generated by {ϕ±j | |j| ≤ k} (resp. {ϕ+
j | |j| ≥ k + 1} and

{ϕ−j | |j| ≥ k + 1}) and Πk : E → Ek (resp. Πk
+ and Πk

−) the corresponding
projection. First, lets state the infinite dimensional version of Theorem 1.3.

Proposition 3.4. Fix a k ≥ 1 and let X be a compact set contained in Ek. Define

C = {u ∈ E |Πku ∈ X and Πk
−u = 0}.

Then for every t ∈ R we have

c(X) ≤ γ(Πk(V
t(C) ∩ {Πk

+ = 0})).

This is not a statement about the actual flow of the nonlinear string equation.
Nevertheless using the fact that etJA restricts to a symplectic isomorphism on
each En we get Theorem 1.4:

Proof of Theorem 1.4. We always have the inclusion Πk(V
t(C) ∩ {Πk

+ = 0}) ⊆
ΠkV

t(C) so by Proposition 3.4 and monotonicity of the symplectic capacity γ we
have

c(X) ≤ γ(Πk(V
t(C) ∩ {Πk

+ = 0})) ≤ γ(ΠkV
t(C)).

The linear operator etJA restricts to a symplectic isomorphism on each En which
commutes with Πk and the capacity γ is invariant under symplectic transforma-
tions so

γ(ΠkV
t(C)) = γ(e−tJAΠke

tJAV t(C)) = γ(ΠkΦ
t(C)).

which gives the desired result.
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The proof of proposition 3.4 relies on the finite dimensional result and it is
the finite dimensional approximation of the flow that allows us to go from finite
to infinite dimensions. For these reasons we start with the following lemma:

Lemma 3.5. 1. Fix a k ≥ 1 and letX be a compact set contained inEk. Then
for every t ∈ R and n > k we have c(X) ≤ γ(Πk(V

t
n(C) ∩ {Πk

+ = 0})).

2. The set ∪n{u ∈ C |Πk
+V

t
nu = 0} ⊆ E is bounded by a constant R(t).

3. The set {u ∈ C |Πk
+V

tu = 0} is compact and so is V t(C) ∩ {Πk
+ = 0}.

Proof. Recall that V t
nu = (φtn(un), un) where φtn is a finite dimensional flow

generated by a Lipschitz Hamiltonian function so it verifies Theorem 1.3. An
easy computation shows that V t

n verifies the statement if and only if φtn verifies
Theorem 1.3 on En.

For the second claim let u ∈ E and decompose its norm as ‖u‖ ≤ ‖Πku‖ +
‖Πk

+u‖+‖Πk
−u‖. If u ∈ C then by definition Πku belongs toX which is compact

contained in a ball of a certain radius r and Πk
−u = 0 so ‖u‖ ≤ r + ‖Πk

+u‖. It
is then enough to show that Πk

+V
t
nu = 0 implies ‖Πk

+u‖ ≤ c(t). Duhamel’s for-
mula and the fact that and sup(t,u)∈[0,t]×E‖∇hn(u)‖ ≤ sup(t,u)∈[0,t]×E‖∇h(u)‖
is bounded imply that ‖V t

nu − u‖ ≤ c(t) where c(t) does not depend on n. We
get that ‖Πk

+u‖ = ‖Πk
+V

t
nu−Πk

+u‖ ≤ ‖V t
nu− u‖ ≤ c(t) and the result follows

with R(t) = r + c(t).
For the third claim we start by using the same argument as before to prove that

{u ∈ C |Πk
+V

tu = 0} is bounded. Now let {zn} ⊂ E be a sequence such that

Πkzn ∈ X, Πk
−zn = 0, and Πk

+V
tzn = 0 for all n ∈ N.

We claim that {zn} has a convergent subsequence. First remark that, by the
decomposition of VN in EN ⊕ EN , for every u ∈ E and N ∈ N we have
ΠNV t

Nu = ΠNu. Moreover, by definition of zn, if N ≥ k then ΠN
−zn = 0

and ΠN
+V

tzn = 0. For N ≥ k we have

‖ΠNzn‖ = ‖ΠN
+zn‖ = ‖ΠN

+V
t
Nzn‖ = ‖ΠN

+V
t
Nzn−ΠN

+V
tzn‖ ≤ ‖V t

Nzn−V tzn‖.

Now {zn}n is a bounded sequence so we can apply proposition 3.3 and for every
ε > 0 there exists a N0(ε) ∈ N such that if N ≥ N0 then ‖V t

Nzn − V tzn‖ ≤ ε.
By the previous inequalities this implies that for N ≥ N0 we have ‖ΠNzn‖ ≤
ε. On the other hand, {zn}n bounded implies that it has a weakly converging
subsequence (still denoted by {zn} for simplicity) that converges when projected
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onto any finite dimensional subspace EN . We conclude that for any δ > 0, with
ε = δ/3 and N ≥ N0(ε), if p, q ∈ N are big enough we have

‖zp − zq‖ ≤ ‖ΠNzp −ΠNzq‖+ ‖ΠNzp‖+ ‖ΠNzq‖ < δ

which implies that zn is a Cauchy sequence.

Proof of Proposition 3.4. Let Vε be the open ε neighbourhood of Πk(V
t(C) ∩

{Πk
+ = 0}). We will show that for each ε > 0 there exists an n ∈ N such

that Πk(V
t
n(C) ∩ {Πk

+ = 0}) ⊆ Vε. Once this is proven, Lemma 3.5 part 1
and monotonicity of the capacity γ imply that c(X) ≤ γ(Vε) for every ε > 0 so
c(X) ≤ limε→0 γ(Vε). We then use that Πk(V

t(C) ∩ {Πk
+ = 0}) is compact by

Lemma 3.5 part 3 to conclude that limε→0 γ(Vε) = γ(Πk(V
t(C) ∩ {Πk

+ = 0}))
which is the desired result.

The proof is by contradiction. Suppose that there exist an ε0 > 0 and a se-
quence {zn} ⊂ E such that for all n ∈ N

Πkzn ∈ X, Πk
−zn = 0, Πk

+V
t
nzn = 0 and d(ΠkV

t
nzn,V0) ≥ ε0.

We claim that {zn} has a convergent subsequence. We use the same argument as
in Lemma 3.5 part 3. For N ≥ k we have

‖ΠNzn‖ = ‖ΠN
+zn‖ = ‖ΠN

+V
t
Nzn‖ = ‖ΠN

+V
t
Nzn−ΠN

+V
t
nzn‖ ≤ ‖V t

Nzn−V t
nzn‖.

By Lemma 3.5 part 2 we know that zn is a bounded sequence so we can apply
Proposition 3.3 and for every δ > 0 there exists a N0(δ) ∈ N such that if n,N ≥
N0 then ‖V t

Nzn − V t
nzn‖ ≤ δ. By the previous inequalities this implies that for

n,N ≥ N0 we have ‖ΠNzn‖ ≤ δ. On the other hand, {zn} bounded implies that
it has a weakly converging subsequence (still denoted by {zn} for simplicity) that
converges when projected onto any finite dimensional subspaceEN . We conclude
that for any δ > 0, with ε = δ/3 and N ≥ N0(ε), if p, q ≥ N0 are big enough we
have

‖zp − zq‖ ≤ ‖ΠNzp −ΠNzq‖+ ‖ΠNzp‖+ ‖ΠNzq‖ < δ

which implies that zn is a Cauchy sequence. Denote z its limit in E. The set X is
closed so Πkz ∈ X and Πk

− is continuous so Πk
−z = 0. This means that z is an

element of C. Moreover remark that

‖V tz − V t
nzn‖ ≤ ‖V tz − V tzn‖+ ‖V tzn − V t

nzn‖.
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so by continuity of V t and again proposition 3.3 we get that V t
nzn converges to

V tz in E. Using the hypothesis Πk
+V

t
nzn = 0 we find that Πk

+V
tz = 0 which

allows us to conclude that ΠkV
tz belongs to V0. This contradicts the fact that

d(ΠkV
t
nzn,V0) ≥ ε0 > 0 for all n ∈ N achieving the proof of the theorem.
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A Some calculations of symplectic capacities

By definition we know that for every symplectic capacity c we have

c(B2n
r ) = πr2 = c(B2

r × R2n−2)

The reader interested in the proof of this equality for the two different symplectic
capacities c and γ that were defined in [20] may look, for example, at [1]. We are
interested in the value of Viterbo’s capacities on coisotropic spaces R2k×Rn−k ⊆
Ck×Cn−k with n 6= k. Recall that c and γ are first defined on open bounded sets
U , then if V is open and unbounded subsets then c(V ) is defined as the supremum
of the values of c(U) for all open bounded U contained in V and finally if X is
an arbitrary domain of R2n then c(X) is the infimum of all the values c(V ) for all
open V containing X .

Proposition A.1. Consider the coisotropic subspace R2k × Rn−k ⊆ Ck × Cn−k
with 0 ≤ k < n. We have

c(R2k × Rn−k) = 0 = γ(R2k × Rn−k).

Proof. First remark that for every λ 6= 0 we have λ ·(R2k×Rn−k) = R2k×Rn−k
so by homogeneity of symplectic capacities we deduce that any capacity is either
0 or +∞ on coisotropic subspaces. Since we have the inequality c(R2k×Rn−k) ≤
γ(R2k × Rn−k) it is enough to prove that γ(R2k × Rn−k) < +∞. By definition

γ(R2k × Rn−k) = inf{γ(V ) |V is open and R2k × Rn−k ⊆ V },

so it is enough to find an open set V containing R2k × Rn−k with finite γ value.
Recall moreover that for a bounded open set we have

γ(U) = inf{γ(ψ), ψ ∈ Hamc(R2n), ψ(U) ∩ U = ∅}
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In order to find the open set with finite displacement energy we will use [20,
Proposition 4.14] which states the following: for a C2 compactly supported Hamil-
tonian H : [0, 1]× R2n → R that generates a flow ψ1 we have γ(ψ1) ≤ ‖H‖C0 .

Find a smooth function f : R → R with values on ]0, 1[ and f ′(s) > 0 for
every s ∈ R. Define the open set

V = {(q1, p1, . . . , qn, pn) ∈ R2n such that |pn| < f ′(qn)}.

By hypothesis k < n so R2k × Rn−k ⊆ V . We claim that γ(V ) < +∞. For this
we will consider the bounded Hamiltonian H(q, p) = −2f(qn) which generates
the flow

ψt(q, p) = (q1, p1, . . . , qn, pn + t2f ′(qn)).

If (q, p) ∈ V then

|pn + 2f ′(qn)| ≥ 2f ′(qn)− |pn| > f ′(qn)

which implies that ψ1(V ) ∩ V = ∅. Let U be an open bounded set contained
in V , we have ψ1(U) ∩ U = ∅. Find a compactly supported smooth function
χ : R2n → R with values on [0, 1] and constant equal to 1 on a neighbourhood of⋃
t∈[0,1] ψt(U). Then χH verifies ‖χH‖C0 ≤ ‖H‖C0 and by construction its flow

still displaces the open set U . We conclude by [20, Proposition 4.14] that γ(U) ≤
‖H‖C0 . Since the bound does not depend on U this implies that γ(V ) ≤ ‖H‖C0
which finally gives

γ(R2k × Rn−k) ≤ ‖H‖C0 < +∞

concluding the proof.

B A Hamiltonian subgroup of the group of symplectic
diffeomorphisms

In this section we exhibit a subgroup of Sympl(R2n) which is strictly bigger
than the group of compactly supported Hamiltonian diffeomorphisms and whose
elements are generated by Lipschitz functions.

Proposition B.1. Denote HamdL(R2n) the set of Hamiltonian diffeomorphisms
ϕHt such thatHt, ϕHt and (ϕHt )−1 are all Lipschitz in space over compact time in-
tervals. ThenHamdL(R2n) is a subgroup of Sympl(R2n). MoreoverHamdL(R2n)
is strictly bigger than the group of compactly supported Hamiltonian diffeomor-
phisms.
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Remark B.2. The superscript dL on HamdL(R2n) stands for double Lipschitz
condition.

Proof. First recall the following formulas:

ϕHt ◦ ϕKt = ϕH#K
t and (ϕHt )−1 = ϕH̄t ,

where
H#K(t, z) = H(t, z) +K(t, (ϕHt )−1(z)),

H̄(t, z) = −H(t, ϕHt (z)).

The identity is clearly in HamdL(R2n) and it is an easy exercise to use these
formulas to prove that HamdL(R2n) has a group structure. For the second state-
ment, consider a Lipschitz autonomous Hamiltonian H with Lipschitz gradient
and use Gronwall’s lemma to prove that ϕHt (and therefore (ϕHt )−1 = ϕH−t) is
Lipschitz.
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