

Kaledin obstruction classes & formality criteria

Coline Emprin

Departament de Matemàtiques i Informàtica Universitat de Barcelona

November 21, 2022

Kaledin obstruction classes & formality criteria

1. The notion of formality

• The formality can be addressed as a deformation problem, using the operadic calculus.

2. Kaledin obstruction classes

 Construction of an obstruction theory to formality over any coefficient ring.

3. Formality criteria

- Formality descent with torsion coefficients
- Intrinsic formality criterium
- Degree twisting & automorphisms lifts

The notion of formality

Formal topological spaces

R: commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{\bullet}_{\mathrm{sing}}(X;R) \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ \cdots \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ H^{\bullet}_{\mathrm{sing}}(X;R) \ .$$

ightarrow Origins in rational homotopy theory (for $\mathbb{Q} \subset R$)

X formal \Longrightarrow The cohomology ring $H^{\bullet}_{\operatorname{sing}}(X,\mathbb{Q})$ completely determines the rational homotopy type of X.

Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [DGMS, 1975]

Formality of an algebraic structure

A: chain complex over R

graded algebraic operad

 $\phi: \mathscr{P} \to \mathsf{End}_{\mathcal{A}}$ a dg \mathscr{P} -algebra structure

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if

$$\exists (A,\phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\varphi_0) ,$$

where φ_0 is the canonical \mathscr{P} -algebra structure on H(A).

Examples

- X is formal := $(C_{\rm sing}^{\bullet}(X;R), \cup)$ is formal as dga algebra
- $C(\mathcal{D}_k; \mathbb{R})$ is formal as an operad [Kontsevich, 1999]

Operadic homological algebra

A: chain complex over R

Assumptions: • reduced connected weight-graded (co)operads

ullet R is a \mathbb{Q} -algebra in the case of symmetric operads

P: graded Kozul operad

$$\mathscr{P}_{\infty} \xrightarrow{\sim} \mathscr{P}$$
 with $\mathscr{P}_{\infty} \coloneqq \Omega \mathscr{P}^{\mathsf{i}}$

$$\{\mathscr{P}_{\infty} - \mathsf{algebra} \ \mathsf{structures} \ \mathsf{on} \ A\} \coloneqq \mathsf{Hom}_{\mathsf{dgOp}} \left(\Omega \mathscr{P}^{\mathsf{i}}, \mathsf{End}_{A}\right)$$

Proposition

$$\mathsf{Hom}_{\mathrm{dgOp}}\left(\Omega\mathscr{P}^i,\mathsf{End}_{A}\right)\cong\mathrm{Codiff}\left(\mathscr{P}^i(A)\right)$$

Definition

An ∞ -morphism $F:(A,\varphi)\leadsto(B,\psi)$ between \mathscr{P}_∞ -algebra structures is a morphism of dg \mathscr{P}^{i} -coalgebras:

$$(\mathscr{P}^{\mathsf{i}}(A),\varphi)\to (\mathscr{P}^{\mathsf{i}}(B),\psi)$$
.

F is an ∞ -quasi-isomorphism if $F_0: A \to B$ is a quasi-isomorphism.

Proposition (R is a characteristic zero field)

zig-zag of quasi-isos of
$$\mathscr{P}$$
-algebras

$$\infty$$
-quasi-iso

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} (B, \phi') \iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (B, \phi')$$

Corollary

A dg
$$\mathscr{P}$$
-algebra (A, ϕ) is formal $\iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_0)$.

Homotopy transfer

Theorem (Homotopy transfer theorem)

Let (A, d) be a chain complex s.t. H(A) is a homotopy retract:

$$h \bigcap^{p} (A,d) \xrightarrow{p} (H(A),0)$$

where $\mathrm{id}_A - ip = d_A h + h d_A$ and i is a quasi-isomorphism. For every \mathscr{P} -algebra structure (A, ϕ) , there exists a \mathscr{P}_{∞} -algebra structure φ on H(A) s.t. p extends to an ∞ -quasi-isomorphism:

$$(A, \phi) \xrightarrow{p_{\infty}} (H(A), \varphi)$$

Formality
$$(H(A), \varphi_0)$$

\mathscr{P}_{∞} -algebra structures on H(A)

The convolution dg Lie algebra associated to H(A):

$$\mathfrak{g}:=\left(\mathsf{Hom}(\overline{\mathscr{P}}^i,\mathrm{End}_{\mathit{H}(A)}),[-,-],\mathit{d}\right)$$

Every $\varphi \in \text{Hom}(\overline{\mathscr{P}}^1, \operatorname{End}_{H(A)})$ decomposes as

$$\varphi = \varphi_0 + \varphi_1 + \varphi_2 + \cdots$$

where φ_k is the restriction $\varphi_k : \overline{\mathscr{P}}^{\mathsf{i}}(k+2) \Longrightarrow \operatorname{End}_{H(A)}(k+2)$.

Its set of Maurer–Cartan elements:

$$MC(\mathfrak{g}) = \{ \varphi \in \mathfrak{g}_{-1}, \ d(\varphi) + \frac{1}{2} [\varphi, \varphi] = 0 \}$$

Proposition

$$\{\mathscr{P}_{\infty} - \textit{algebra structures on } \mathsf{H}(\mathsf{A})\} \cong \mathrm{MC}(\mathfrak{g})$$

Remark

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0 + \varphi_1 + \varphi_2 + \cdots) \quad \mathsf{Higher Massey products}$$

$$\exists ?$$

$$(H(A), \varphi_0)$$

 \implies If the higher Massey products vanish, then (A, ϕ) is formal.

The gauge group

The convolution dg Lie algebra:

$$\mathfrak{g} := \left(\mathsf{Hom}(\overline{\mathscr{P}}^i, \operatorname{End}_{\textit{H}(\textit{A})}), [-, -], \textit{d}\right)$$

Its set of degree zero elements:

$$\mathfrak{g}_0 := \mathsf{Hom}(\overline{\mathscr{P}}^i, \mathrm{End}_{H(A)})_0$$

The Baker–Campbell–Hausdorff formula, with $\mathrm{ad}_\lambda \coloneqq [\lambda, -]$:

$$\lambda, \mu \in \mathfrak{g}_0, \qquad e^{\mathrm{ad}_{\mathrm{BCH}(\lambda,\mu)}} = e^{\mathrm{ad}_{\lambda}} \circ e^{\mathrm{ad}_{\mu}}.$$

$$BCH(\lambda,\mu) = \lambda + \mu + \frac{1}{2}[\lambda,\mu] + \frac{1}{12}([\lambda,[\lambda,\mu]] + [\mu,[\mu,\lambda]]) + \cdots$$

$$\Gamma := (\mathfrak{g}_0, \mathrm{BCH}, 0)$$

The gauge action

$$\Gamma := (\mathfrak{g}_0, \operatorname{BCH}, 0)$$

$$\{\mathscr{P}_{\infty} - \mathsf{algebra} \ \mathsf{structures} \ \mathsf{on} \ \mathsf{H}(\mathsf{A})\} := \mathrm{MC}(\mathfrak{g})$$

Gauge action

$$\begin{array}{ccc} \Gamma \times \mathrm{MC}(\mathfrak{g}) & \longrightarrow & \mathrm{MC}(\mathfrak{g}) \\ (\lambda, \varphi) & \longmapsto & \lambda \cdot \varphi \coloneqq \mathrm{e}^{\mathrm{ad}_{\lambda}}(\varphi) - \frac{\mathrm{e}^{\mathrm{ad}_{\lambda} - \mathrm{id}}}{\mathrm{ad}_{\lambda}}(d\lambda) \end{array}$$

Proposition (Dotsenko - Shadrin - Vallette, 2016)

$$\exists \ \infty\text{-quasi-isomorphism} \ (H(A),\varphi) \ \stackrel{\sim}{\leadsto} \ (H(A),\varphi_0)$$

$$\iff$$

$$\exists \ \lambda \in \Gamma \ \text{such that} \ \lambda \cdot \varphi = \varphi_0$$

An equivalent characterization of formality

 (A, ϕ) : a \mathscr{P} -algebra s.t. H(A) is a homotopy retract

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0 + \varphi_1 + \varphi_2 + \cdots)$$
Formality
$$\exists ?$$

$$(H(A), \varphi_0)$$

Definition

- (A, ϕ) is formal if $\exists \lambda \in \Gamma$ such that $\lambda \cdot \varphi = \varphi_0$
- (A, ϕ) is *n*-formal if $\exists \lambda \in \Gamma$ such that $\lambda \cdot \varphi = \varphi_0 + \psi_{n+1} + \cdots$

Kaledin obstruction classes

Formal deformation

$$\varphi = \varphi_0 + \varphi_1 + \varphi_2 + \cdots \in MC(\mathfrak{g})$$

A formal deformation of φ :

$$\Phi := \varphi_0 + \varphi_1 h + \varphi_2 h^2 + \dots + \varphi_k h^k + \dots$$

in the dg Lie algebra $\mathfrak{g}[[h]] := \mathfrak{g} \otimes R[[h]]$.

Remark

$$\Phi \in \mathrm{MC}(\mathfrak{g}[[h]])$$
, i.e. $d(\Phi) + \frac{1}{2}[\Phi, \Phi] = 0$.

Proposition

$$d^{\Phi} \coloneqq d + [\Phi, -]$$
 is a differential on $\mathfrak{g}[[h]]$

Twisted dg Lie algebra:

$$\mathfrak{g}[[h]]^{\Phi} := (\mathfrak{g}[[h]], [-, -], d^{\Phi})$$

The Kaledin classes

$$\partial_h \Phi := \varphi_1 + 2\varphi_2 h + \dots + k\varphi_k h^{k-1} + \dots \in \mathfrak{g}[[h]]$$

Lemma

 $\partial_h \Phi$ is a cycle in $\mathfrak{g}[[h]]^{\Phi}$, i.e. $d^{\Phi}(\partial_h \Phi) = 0$.

Definition (Kaledin class)

The Kaledin class of $\varphi \in MC(\mathfrak{g})$ is the homology class

$$K_{\Phi} := [\partial_h \Phi] \in H_{-1} \left(\mathfrak{g}[[h]]^{\Phi} \right) .$$

Its nth-truncated Kaledin class is

$$\mathcal{K}_{\Phi}^n := \left[\varphi_1 + 2\varphi_2 h + \dots + n\varphi_n h^{n-1}\right] \in \mathcal{H}_{-1}\left(\left(\mathfrak{g}[[h]]/h^{n+1}\right)^{\widetilde{\Phi}}\right) \ .$$

R : commutative ground ring

char(R): smallest non-invertible prime in R

n: any positive integer s.t. if $char(R) \neq 0$, n-1 < char(R)

Theorem (E., 2022)

 (A, ϕ) : a \mathscr{P} -algebra s.t. H(A) is a homotopy retract

- (A, ϕ) is n-formal $\iff K_{\Phi}^n = 0$.
- If R is a \mathbb{Q} -algebra, then (A, ϕ) is formal $\iff K_{\Phi} = 0$.

Remark

This construction generalizes to other types of algebraic structures: algebras over colored operads, gebras over properads, etc.

Previous works: [Kaledin, 2007], [Lunts, 2007], [Melani-Rubió, 2019]

Heuristic behind these obstruction classes

Gauge action:
$$\lambda \cdot \varphi \coloneqq e^{\operatorname{ad}_{\lambda}}(\varphi) - \frac{e^{\operatorname{ad}_{\lambda}} - \operatorname{id}}{\operatorname{ad}_{\lambda}}(d\lambda)$$

Vector field Υ_{λ} on $\mathrm{MC}(\mathfrak{g})$: $\forall \lambda \in \Gamma$, $\Upsilon_{\lambda}(\varphi) := -d\lambda - [\varphi, \lambda]$

Associated flow:

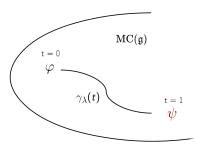
$$\frac{d}{dt}\gamma_{\lambda}(t) = \Upsilon_{\lambda}\left(\gamma_{\lambda}(t)\right)$$

Integration of the flow starting at $\gamma_{\lambda}(0) = \varphi$:

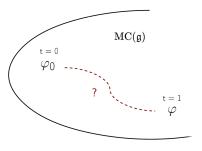
$$\gamma_{\lambda}(t) = e^{t \operatorname{ad}_{\lambda}}(\varphi) - \frac{e^{t \operatorname{ad}_{\lambda}} - \operatorname{id}}{t \operatorname{ad}_{\lambda}}(t d\lambda)$$

$$\lambda \cdot \varphi = \psi \Longleftrightarrow \gamma_{\lambda}(1) = \psi$$

$$\lambda \cdot \varphi = \psi \iff \gamma_{\lambda}(1) = \psi$$

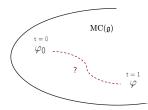


The case of formality



Does there exists $\lambda \in \Gamma$, such that $\gamma_{\lambda}(0) = \varphi_0$ and $\gamma_{\lambda}(1) = \varphi$?

Does there exists $\lambda \in \Gamma$, such that $\gamma_{\lambda}(0) = \varphi_0$ and $\gamma_{\lambda}(1) = \varphi$?



Attempt: "
$$\Phi(h) = \varphi_0 + \varphi_1 h + \varphi_2 h^2 + \cdots$$
"

Does there exists $\lambda \in \Gamma$, such that $\Phi = \gamma_{\lambda}$?

$$\Phi = \gamma_{\lambda} \iff \partial_{h}\Phi = \Upsilon_{\lambda}(\Phi) := -d\lambda - [\Phi, \lambda]$$

$$\iff \partial_{h}\Phi = d^{\Phi}(-\lambda)$$

$$\iff \partial_{h}\Phi \text{ is a boundary in } \mathfrak{g}[[h]]^{\Phi}$$

$$\iff \mathcal{K}_{\Phi} := [\partial_{h}\Phi] = 0$$

Formality criteria

Formality descent

 (A,ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

 $H_i(A)$: projective, finitely generated for all i.

Q: faithfully flat commutative R-algebra.

Proposition (E., 2022)

 (A,ϕ) is **n**-formal \iff $(A\otimes_R Q,\phi\otimes 1)$ is **n**-formal.

Proof.

$$H_{-1}\left(\mathfrak{g}_{H(A)}[[h]]^{\Phi}\right) \otimes_{R[[h]]} Q[[h]] \cong H_{-1}\left(\mathfrak{g}_{H(A \otimes_{R} Q)}[[h]]^{\Phi \otimes 1}\right)$$

$$K_{\Phi} \otimes 1 = 0 \iff K_{\Phi \otimes 1} = 0$$

Examples

- $C(\mathcal{D}_k; \mathbb{R})$ is formal $\iff C(\mathcal{D}_k; \mathbb{Q})$ is formal [GSNPR, 2005]
- $\mathbb{Z}_{(I)} \subset \mathbb{Z}_I$

Intrinsic formality

A graded \mathscr{P} -algebra (H, φ_0) is intrinsically formal if every \mathscr{P} -algebra (A, ϕ) such that $(H(A), \varphi_0) = (H, \varphi_0)$ is itself formal.

$$\mathfrak{g}^{\varphi_0}$$
: $(\mathfrak{g},[-,-],d+[\varphi_0,-])$

Proposition (E., 2022)

$$H_{-1}(\mathfrak{g}^{\varphi_0}) = 0 \implies (H, \varphi_0)$$
 intrinsically formal.

Proof.

For all (A, ϕ) such that $(H(A), \varphi_0) = (H, \varphi_0)$, then

$$K_{\Phi} = 0 \in H_{-1}\left(\mathfrak{g}[[h]]^{\Phi}\right)$$
 .

Previous works: [Hinich, 2003]

Tamarkin's proof of Kontsevich formality

k: a characteristic zero field

A: a polynomial algebra over k

Theorem (Hinich, 2003)

The shifted cohomological Hochschild complex C(A; A)[1] is formal as a dg Lie algebra.

Proof.

- Lie[1] ⊂ Gerst;
- $(HH^{\bullet}(A), \varphi_0)$ has a *Gerst*-algebra structure;
- C(A; A) has a $Gerst_{\infty}$ -algebra structure inducing φ_0 ;
- $(HH^{\bullet}(A), \varphi_0)$ is intrinsically formal as a *Gerst*-algebra;
 - $\to H_{-1}(\mathfrak{g}^{\varphi_0}) = 0$, where $\mathfrak{g} = \operatorname{Hom}(\overline{\operatorname{Gerst}}^i, \operatorname{End}_{HH^{\bullet}(A)})$.

The degree twisting

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

 α : a unit in R.

 σ_{lpha} : the degree twisting by lpha

 \rightarrow linear automorphism of H(A) which acts via $\alpha^k \times$ on $H_k(A)$.

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$.

- $\forall k, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is formal.
- $\forall k \leq n, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is n-formal.

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$.

- $\forall k, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is formal.
- $\forall k \leq n, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is n-formal.

Heuristic:

- ightarrow Higher Massey products have to be compatible with the lift.
- \rightarrow They intertwine multiplication by α^l with multiplication by α^k with $l \neq k$.
- \rightarrow They have to vanish

Previous works: [DGMS, 1975], [Sullivan, 1977], [GSNPR, 2005]

Complement of subspace arrangements

X: a complement of a hyperplane arrangement over \mathbb{C} \rightarrow complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

/ : a prime number different from p

h: order of q in \mathbb{F}_I^{\times}

Proposition (Cirici - Horel, 2022)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_l)$ is (h-1)-formal.

Proposition (Cirici - Horel, 2022)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_l)$ is (h-1)-formal.

Heuristic:

- $\to \ C^{\bullet}(X_{an},\mathbb{Z}_I) \cong C^{\bullet}_{\mathrm{et}}(\mathcal{X}_{\overline{K}},\mathbb{Z}_I).$
- \rightarrow The action of a Frobenius on $H_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_l)$ is σ_q , [Kim, 1994].

Formality descent $\implies C^{\bullet}(X_{an}, \mathbb{Z}_{(I)})$ is (h-1)-formal.

Automorphism lifts

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

Theorem (E., 2022)

Suppose that $\exists u \in \operatorname{Aut}(H(A), \varphi_0)$ admitting a chain lift. Let $\operatorname{Ad}_u : \operatorname{End}_{H(A)} \to \operatorname{End}_{H(A)}$ s.t. $\forall p \in \mathbb{N}$, and $\forall \psi \in \operatorname{End}_{H(A)}(p)$

$$\mathrm{Ad}_{u}(\psi) = u \circ \psi \circ (u^{-1})^{\otimes p} .$$

- 1. If $Ad_u id$ is invertible on the elements of degree k for all k < n, then (A, ϕ) is n-formal.
- 2. If R is a \mathbb{Q} -algebra and $\mathrm{Ad}_u \mathrm{id}$ is invertible, then (A, ϕ) is formal.

Automorphism lifts

R: a characteristic zero field

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract and finite dimensional.

Corollary

Suppose that there exists $u \in \operatorname{Aut}(H(A), \varphi_0)$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing\;,$$

where $u_i := u_{|H_i(A)}$. If u admits a lift at the level of chains then (A, ϕ) is n-formal.

Corollary

For every smooth projective K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_l)$ is formal.

Frobenius & Weil numbers

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

I: a prime number different from p

X: a smooth projective K-scheme

Definition

 $\alpha \in \overline{\mathbb{Q}}_I$ is a Weil number of weight n if

$$\forall \ \iota : \overline{\mathbb{Q}}_I \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \ .$$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{\mathrm{et}}(X_{\overline{K}},\mathbb{Q}_I)$ are Weil numbers of weight n.

Corollary

For every smooth projective K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_l)$ is formal.

Proof.

- $C^{\bullet}(X_{an}, \mathbb{Q}_I) \xrightarrow{\sim} C^{\bullet}_{et}(X_{\overline{K}}, \mathbb{Q}_I)$
- Let u be the Frobenius action on $H_{\operatorname{et}}^{\bullet}(X_{\overline{K}}, \mathbb{Q}_I)$ and fix $\iota : \overline{\mathbb{Q}}_I \hookrightarrow \mathbb{C}$.
- For all $k \geq 1$, (k_1, \ldots, k_p) and $s \coloneqq k_1 + \cdots + k_p$,

$$\operatorname{Spec}(u_{s+k}) \cap \operatorname{Spec}(u_{k_1} \otimes \cdots \otimes u_{k_p}) = \emptyset.$$

$$\cup \qquad \qquad \cup$$

$$\alpha \qquad \qquad \beta$$

$$|\iota(\alpha)| = q^{\frac{s+k}{2}} > |\iota(\beta)| = q^{\frac{s}{2}}$$

Previous works: [Deligne, 1980], [GSNPR, 2005]

Thank you for your attention!

