

Kaledin classes & formality criteria

Coline Emprin

Séminaire de Topologie Algébrique Laboratoire Analyse, Géométrie et Applications

Jeudi 14 septembre 2023

Kaledin classes & formality criteria

1. The notion of formality

 The formality can be addressed as a deformation problem. using the operadic calculus.

Kaledin obstruction classes

 Construction of an obstruction theory to formality over any coefficient ring.

3. Formality criteria

- Formality descent with torsion coefficients
- Intrinsic formality criterium
- Degree twisting & automorphisms lifts

The notion of formality

Formal topological spaces

R: commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{\bullet}_{\mathrm{sing}}(X;R) \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ \cdots \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ H^{\bullet}_{\mathrm{sing}}(X;R) \ .$$

ightarrow Origins in rational homotopy theory (for $\mathbb{Q} \subset R$)

X formal \Longrightarrow The cohomology ring $H^{\bullet}_{\operatorname{sing}}(X,\mathbb{Q})$ completely determines the rational homotopy type of X.

Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [DGMS, 1975]

Formality of an algebraic structure

A: chain complex over R

graded algebraic operad

 $\phi: \mathscr{P} \to \mathsf{End}_{\mathcal{A}}$ a dg \mathscr{P} -algebra structure

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if

$$\exists (A,\phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\varphi_0) ,$$

where φ_0 is the canonical \mathscr{P} -algebra structure on H(A).

Examples

- X is formal := $(C_{\rm sing}^{\bullet}(X;R), \cup)$ is formal as dga algebra
- $C(\mathcal{D}_k; \mathbb{R})$ is formal as an operad [Kontsevich, 1999]

Operadic homological algebra

A: chain complex over R

Assumptions: • reduced connected weight-graded (co)operads

 $oldsymbol{R}$ is a \mathbb{Q} -algebra in the case of symmetric operads

graded Koszul operad

$$\mathscr{P}_{\infty} \xrightarrow{\sim} \mathscr{P}$$
 with $\mathscr{P}_{\infty} \coloneqq \Omega \mathscr{P}^{\mathsf{i}}$

$$\{\mathscr{P}_{\infty} - \mathsf{algebra} \ \mathsf{structures} \ \mathsf{on} \ A\} \coloneqq \mathsf{Hom}_{\mathsf{dgOp}} \left(\Omega \mathscr{P}^{\mathsf{i}}, \mathsf{End}_{A}\right)$$

Proposition

$$\mathsf{Hom}_{\mathrm{dgOp}}\left(\Omega\mathscr{P}^i,\mathsf{End}_{A}\right)\cong\mathrm{Codiff}\left(\mathscr{P}^i(A)\right)$$

Definition

An ∞ -morphism $F:(A,\varphi)\leadsto(B,\psi)$ between \mathscr{P}_∞ -algebra structures is a morphism of dg \mathscr{P}^{i} -coalgebras:

$$(\mathscr{P}^{\mathsf{i}}(A),\varphi)\to (\mathscr{P}^{\mathsf{i}}(B),\psi)$$
.

F is an ∞ -quasi-isomorphism if $F_0: A \to B$ is a quasi-isomorphism.

Proposition (R is a characteristic zero field)

zig-zag of quasi-isos of
$$\mathscr{P}$$
-algebras

$$\infty$$
-quasi-iso

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} (B, \phi') \iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (B, \phi')$$

Corollary

A dg
$$\mathscr{P}$$
-algebra (A, ϕ) is formal $\iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_0)$.

Homotopy transfer

Theorem (Homotopy transfer theorem)

Let (A, d) be a chain complex s.t. H(A) is a homotopy retract:

$$h \stackrel{p}{\longrightarrow} (A,d) \stackrel{p}{\longleftarrow} (H(A),0)$$

where $\mathrm{id}_A - ip = d_A \hbar + h d_A$ and i is a quasi-isomorphism. For every \mathscr{P} -algebra structure (A, ϕ) , there exists a \mathscr{P}_{∞} -algebra structure φ on H(A) s.t. p extends to an ∞ -quasi-isomorphism:

$$(A, \phi) \xrightarrow{p_{\infty}} (H(A), \varphi)$$
Formality
$$\exists ?$$

$$(H(A), \varphi_0)$$

\mathscr{P}_{∞} -algebra structures on H(A)

The convolution dg Lie algebra associated to H(A):

$$\mathfrak{g}:=\left(\mathsf{Hom}(\overline{\mathscr{P}}^i,\mathrm{End}_{\mathit{H}(A)}),[-,-],\mathit{d}\right)$$

$$ightarrow \operatorname{\mathsf{Hom}}(\overline{\mathscr{P}}^{\mathsf{i}},\operatorname{\mathsf{End}}_{H(A)}) \coloneqq \prod_{n \geq 0} \operatorname{\mathsf{Hom}}(\overline{\mathscr{P}}^{\mathsf{i}}(n),\operatorname{\mathsf{End}}_{H(A)}(n))$$

$$ightarrow d(\varphi) \coloneqq -(-1)^{|\varphi|} \varphi \circ d_{\overline{\mathscr{P}}^{\mathsf{i}}}$$

$$\rightarrow \ \varphi \star \psi \coloneqq \overline{\mathscr{P}}^{\mathsf{i}} \xrightarrow{\Delta_{(\mathbf{1})}} \overline{\mathscr{P}}^{\mathsf{i}} \circ_{(\mathbf{1})} \overline{\mathscr{P}}^{\mathsf{i}} \xrightarrow{\varphi \circ_{(\mathbf{1})} \psi} \mathsf{End}_{H(A)} \circ_{(\mathbf{1})} \mathsf{End}_{H(A)} \xrightarrow{\gamma_{(\mathbf{1})}} \mathsf{End}_{H(A)}$$

$$\rightarrow [\varphi, \psi] := \varphi \star \psi - (-1)^{|\varphi||\psi|} \psi \star \varphi$$

Every $\varphi \in \text{Hom}(\overline{\mathscr{P}}^{\mathsf{I}}, \operatorname{End}_{H(A)})$ decomposes as

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \dots)$$

where φ_k is the restriction $\varphi_k : \overline{\mathscr{P}}^{\mathsf{i}}(k+2) \Longrightarrow \operatorname{End}_{H(A)}(k+2)$.

Its set of Maurer–Cartan elements:

$$MC(\mathfrak{g}) = \{ \varphi \in \mathfrak{g}_{-1}, \ d(\varphi) + \frac{1}{2} [\varphi, \varphi] = 0 \}$$

Proposition

$$\{\mathscr{P}_{\infty} - algebra \ structures \ on \ H(A)\} \cong \mathrm{MC}(\mathfrak{g})$$

Remark

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0, \varphi_1, \varphi_2, \ldots)$$
 Higher Massey products Formality \exists ? $(H(A), \varphi_0)$

 \implies If the higher Massey products vanish, then (A, ϕ) is formal.

The gauge group

The convolution dg Lie algebra:

$$\mathfrak{g} \coloneqq \left(\mathsf{Hom}(\overline{\mathscr{P}}^i, \operatorname{End}_{\textit{H}(\textit{A})}), [-, -], \textit{d}\right)$$

Its set of degree zero elements:

$$\mathfrak{g}_0 := \mathsf{Hom}(\overline{\mathscr{P}}^i, \mathrm{End}_{H(A)})_0$$

The Baker–Campbell–Hausdorff formula, with $\mathrm{ad}_\lambda \coloneqq [\lambda, -]$:

$$\lambda, \mu \in \mathfrak{g}_0, \qquad e^{\mathrm{ad}_{\mathrm{BCH}(\lambda, \mu)}} = e^{\mathrm{ad}_{\lambda}} \circ e^{\mathrm{ad}_{\mu}} \ .$$

$$BCH(\lambda,\mu) = \lambda + \mu + \frac{1}{2}[\lambda,\mu] + \frac{1}{12}([\lambda,[\lambda,\mu]] + [\mu,[\mu,\lambda]]) + \cdots$$

$$\Gamma := (\mathfrak{g}_0, \mathrm{BCH}, 0)$$

The gauge action

$$\Gamma := (\mathfrak{g}_0, \operatorname{BCH}, 0)$$

$$\{\mathscr{P}_{\infty} - \mathsf{algebra} \; \mathsf{structures} \; \mathsf{on} \; \mathsf{H}(\mathsf{A})\} := \mathrm{MC}(\mathfrak{g})$$

Gauge action

$$egin{array}{lll} \Gamma imes \mathrm{MC}(\mathfrak{g}) & \longrightarrow & \mathrm{MC}(\mathfrak{g}) \ (\lambda, arphi) & \longmapsto & \lambda \cdot arphi \coloneqq \mathrm{e}^{\mathrm{ad}_{\lambda}}(arphi) - rac{\mathrm{e}^{\mathrm{ad}_{\lambda} - \mathrm{id}}}{\mathrm{ad}_{\lambda}}(d\lambda) \end{array}$$

Proposition (Dotsenko - Shadrin - Vallette, 2016)

$$\exists \infty \text{-quasi-isomorphism} \ (H(A), \varphi) \stackrel{\sim}{\leadsto} (H(A), \varphi_0)$$

$$\iff$$

$$\exists \ \lambda \in \Gamma \ \text{such that} \ \lambda \cdot \varphi = \varphi_0$$

An equivalent characterization of formality

 (A, ϕ) : a \mathscr{P} -algebra s.t. H(A) is a homotopy retract

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0, \varphi_1, \varphi_2, \dots)$$
Formality
$$\exists ?$$

$$(H(A), \varphi_0)$$

Definition

- (A, ϕ) is gauge formal if $\exists \ \lambda \in \Gamma$ such that $\lambda \cdot \varphi = \varphi_0$
- (A, ϕ) is gauge *n*-formal if $\exists \lambda \in \Gamma$ such that

$$\lambda \cdot \varphi = (\varphi_0, 0, \dots, 0, \psi_{n+1}, \dots) .$$

Kaledin obstruction classes

Formal deformation

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \dots) \in \mathrm{MC}(\mathfrak{g})$$

A formal deformation of φ_0 :

$$\Phi := \varphi_0 + \varphi_1 \hbar + \varphi_2 \hbar^2 + \dots + \varphi_k h^k + \dots$$

in the dg Lie algebra $\mathfrak{g}\llbracket\hbar\rrbracket:=\mathfrak{g}\widehat{\otimes}R\llbracket\hbar\rrbracket.$

Remark

$$\Phi \in \mathrm{MC}(\mathfrak{g}\llbracket \hbar \rrbracket)$$
, i.e. $d(\Phi) + \frac{1}{2}[\Phi, \Phi] = 0$.

Proposition

$$d^{\Phi} \coloneqq d + [\Phi, -]$$
 is a differential on $\mathfrak{g}\llbracket \hbar
rbracket$

Twisted dg Lie algebra:

$$\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi} := (\mathfrak{g}\llbracket\hbar\rrbracket, [-,-], d^{\Phi})$$

The Kaledin classes

$$\partial_{\hbar}\Phi := \varphi_1 + 2\varphi_2\hbar + \dots + k\varphi_k\hbar^{k-1} + \dots \in \mathfrak{g}\llbracket\hbar\rrbracket$$

Lemma

 $\partial_{\hbar}\Phi$ is a cycle in $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}$, i.e. $d^{\Phi}(\partial_{\hbar}\Phi)=0$.

Definition (Kaledin class)

The Kaledin class of $\varphi \in MC(\mathfrak{g})$ is the homology class

$$\mathcal{K}_{\Phi} := \left[\partial_{\hbar}\Phi\right] \in \mathcal{H}_{-1}\left(\mathfrak{g}\llbracket\hbar
brace^{\Phi}\right)$$
 .

Its nth-truncated Kaledin class is

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \cdots + n\varphi_{n}\hbar^{n-1} \right] \in \mathcal{H}_{-1}\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n} \right)^{\widetilde{\Phi}} \right) .$$

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_1 + 2\varphi_2 \hbar + 3\varphi_3 \hbar^2 + \cdots \right] \in \mathcal{H}_{-1} \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

 n^{th} -truncated Kaledin class :

$$K_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \dots + n\varphi_{n}\hbar^{n-1}\right] \in H_{-1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani-Rubió, 2019])

 $R: \mathbb{Q}$ -algebra

P: Koszul operad

 (A,ϕ) : dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_1 + 2\varphi_2 \hbar + 3\varphi_3 \hbar^2 + \cdots \right] \in \mathcal{H}_{-1} \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

 n^{th} -truncated Kaledin class :

$$K_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \dots + n\varphi_{n}\hbar^{n-1}\right] \in H_{-1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n}\right)^{\widetilde{\Phi}}\right)$$

Theorem (E., 2023)

R: commutative ground ring

P: Koszul (pr)operad colored in groupoids

 (A,ϕ) : dg \mathcal{P} -(al)gebra s.t. H(A) is a homotopy retract

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Heuristic behind these obstruction classes

Gauge action:
$$\lambda \cdot \varphi \coloneqq e^{\operatorname{ad}_{\lambda}}(\varphi) - \frac{e^{\operatorname{ad}_{\lambda}} - \operatorname{id}}{\operatorname{ad}_{\lambda}}(d\lambda)$$

Vector field Υ_{λ} on $MC(\mathfrak{g})$: $\forall \lambda \in \Gamma$, $\Upsilon_{\lambda}(\varphi) := -d\lambda - [\varphi, \lambda]$

Associated flow:

$$\frac{d}{dt}\gamma_{\lambda}(t) = \Upsilon_{\lambda}\left(\gamma_{\lambda}(t)\right)$$

Integration of the flow starting at $\gamma_{\lambda}(0) = \varphi$:

$$\gamma_{\lambda}(t) = e^{t \operatorname{ad}_{\lambda}}(\varphi) - \frac{e^{t \operatorname{ad}_{\lambda}} - \operatorname{id}}{t \operatorname{ad}_{\lambda}}(t d\lambda)$$

$$\lambda \cdot \varphi = \psi \Longleftrightarrow \gamma_{\lambda}(1) = \psi$$

$$\lambda \cdot \varphi = \psi \Longleftrightarrow \gamma_{\lambda}(1) = \psi$$

The case of formality

Does there exists $\lambda \in \Gamma$, such that $\gamma_{\lambda}(0) = \varphi_0$ and $\gamma_{\lambda}(1) = \varphi$?

Does there exists $\lambda \in \Gamma$, such that $\gamma_{\lambda}(0) = \varphi_0$ and $\gamma_{\lambda}(1) = \varphi$?

Attempt: "
$$\Phi(\hbar) = \varphi_0 + \varphi_1 \hbar + \varphi_2 \hbar^2 + \cdots$$
"

Does there exists $\lambda \in \Gamma$, such that $\Phi = \gamma_{\lambda}$?

$$\Phi = \gamma_{\lambda} \iff \partial_{\hbar} \Phi = \Upsilon_{\lambda}(\Phi) = -d\lambda - [\Phi, \lambda]$$

$$\iff \partial_{\hbar} \Phi = d^{\Phi}(-\lambda)$$

$$\iff \partial_{\hbar} \Phi \text{ is a boundary in } \mathfrak{g}\llbracket \hbar \rrbracket^{\Phi}$$

$$\iff \mathcal{K}_{\Phi} = [\partial_{\hbar} \Phi] = 0$$

Formality criteria

Formality descent

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

 $H_i(A)$: projective, finitely generated for all i.

S: faithfully flat commutative R-algebra.

Proposition (E., 2023)

 (A,ϕ) is gauge n-formal $\iff (A\otimes_R S,\phi\otimes 1)$ is gauge n-formal.

Proof.

$$\begin{array}{ccc}
H_{-1}\left(\mathfrak{g}_{H(A)}\llbracket\hbar\rrbracket^{\Phi}\right) \otimes_{R\llbracket\hbar\rrbracket} S\llbracket\hbar\rrbracket & \cong & H_{-1}\left(\mathfrak{g}_{H(A\otimes_{R}S)}\llbracket\hbar\rrbracket^{\Phi\otimes 1}\right) \\
& & & & & & \\
K_{\Phi}\otimes 1 = 0 & \iff & K_{\Phi\otimes 1} = 0
\end{array}$$

Examples

- $C(\mathcal{D}_k; \mathbb{R})$ is formal $\iff C(\mathcal{D}_k; \mathbb{Q})$ is formal [GSNPR, 2005]
- $\mathbb{Z}_{(\ell)} \subset \mathbb{Z}_{\ell}$

Intrinsic formality

A graded \mathscr{P} -algebra (H,φ_0) is intrinsically formal if every \mathscr{P} -algebra (A,ϕ) such that $(H(A),\varphi_0)=(H,\varphi_0)$ is itself gauge formal.

$$\mathfrak{g}^{\varphi_0}$$
: $(\mathfrak{g},[-,-],d+[\varphi_0,-])$

Proposition (E., 2023)

$$H_{-1}(\mathfrak{g}^{\varphi_0}) = 0 \implies (H, \varphi_0)$$
 intrinsically formal.

Proof.

For all (A, ϕ) such that $(H(A), \varphi_0) = (H, \varphi_0)$, then

$$\textit{K}_{\Phi} = 0 \in \textit{H}_{-1}\left(\mathfrak{g}\llbracket \hbar \rrbracket^{\Phi}\right) \; .$$

Tamarkin's proof of Kontsevich formality

k: a characteristic zero field

A: a polynomial algebra over k

Theorem (Hinich, 2003)

The shifted cohomological Hochschild complex C(A; A)[1] is formal as a dg Lie algebra.

Proof.

- Lie[1] ⊂ Gerst;
- $(HH^{\bullet}(A), \varphi_0)$ has a *Gerst*-algebra structure;
- C(A; A) has a $Gerst_{\infty}$ -algebra structure inducing φ_0 ;
- $(HH^{\bullet}(A), \varphi_0)$ is intrinsically formal as a *Gerst*-algebra;
 - $\to H_{-1}(\mathfrak{g}^{\varphi_0}) = 0$, where $\mathfrak{g} = \operatorname{Hom}(\overline{\operatorname{Gerst}}^i, \operatorname{End}_{HH^{\bullet}(A)})$.

The degree twisting

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

 α : a unit in R.

 σ_{α} : the degree twisting by α

 \rightarrow linear automorphism of H(A) which acts via $\alpha^k \times$ on $H_k(A)$.

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$.

- $\forall k, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is gauge formal.
- $\forall k \leq n, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is gauge n-formal.

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$.

- $\forall k, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is gauge formal.
- $\forall k \leq n, \ \alpha^k 1 \in R^{\times} \implies (A, \phi)$ is gauge n-formal.

Heuristic:

- ightarrow Higher Massey products have to be compatible with the lift.
- \rightarrow They intertwine multiplication by α^l with multiplication by α^k with $l \neq k$.
- \rightarrow They have to vanish

Previous works: [DGMS, 1975], [Sullivan, 1977], [GSNPR, 2005]

Complement of subspace arrangements

X: a complement of a hyperplane arrangement over \mathbb{C} \rightarrow complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

 ℓ : a prime number different from p

s: order of q in $\mathbb{F}_{\ell}^{\times}$

Proposition (Cirici - Horel, 2022)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_{\ell})$ is gauge (s-1)-formal.

Proposition (Cirici - Horel, 2022)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_{\ell})$ is gauge (s-1)-formal.

Heuristic:

- $\to \ C^{\bullet}(X_{an},\mathbb{Z}_{\ell}) \cong C^{\bullet}_{\mathrm{et}}(\mathcal{X}_{\overline{K}},\mathbb{Z}_{\ell}) \ [\mathsf{Artin}]$
- \to The action of a Frobenius on $H_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ is σ_q , [Kim, 1994].

Formality descent $\implies C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$ is gauge (s-1)-formal.

Automorphism lifts

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract

Theorem (E., 2023)

Suppose that $\exists u \in \operatorname{Aut}(H(A), \varphi_0)$ admitting a chain lift. Let $\operatorname{Ad}_u : \operatorname{End}_{H(A)} \to \operatorname{End}_{H(A)}$ s.t. $\forall p \in \mathbb{N}$, and $\forall \psi \in \operatorname{End}_{H(A)}(p)$

$$\mathrm{Ad}_u(\psi) = u \circ \psi \circ (u^{-1})^{\otimes p} \ .$$

- 1. If $Ad_u id$ is invertible, then (A, ϕ) is gauge formal.
- 2. If $Ad_u id$ is invertible on the elements of degree k for all k < n, then (A, ϕ) is gauge n-formal.

Automorphism lifts

R: a characteristic zero field

 (A, ϕ) : a dg \mathscr{P} -algebra s.t. H(A) is a homotopy retract and finite dimensional.

Corollary

Suppose that there exists $u \in \operatorname{Aut}(H(A), \varphi_0)$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing$$
,

where $u_i := u_{|H_i(A)}$. If u admits a lift at the level of chains then (A, ϕ) is gauge n-formal.

Frobenius & Weil numbers

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

 ℓ : a prime number different from p

X : a smooth proper K-scheme

Definition

 $\alpha \in \overline{\mathbb{Q}}_{\ell}$ is a Weil number of weight n if

$$\forall \ \iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \ .$$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{\mathrm{et}}(X_{\overline{K}},\mathbb{Q}_\ell)$ are Weil numbers of weight n.

Corollary

For every smooth proper K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_{\ell})$ is formal.

Proof.

- $C^{\bullet}(X_{an}, \mathbb{Q}_{\ell}) \xrightarrow{\sim} C^{\bullet}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell})$
- Let u be the Frobenius action on $H^{\bullet}_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ and fix $\iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$.
- For all $k \geq 1$, (k_1, \ldots, k_p) and $s \coloneqq k_1 + \cdots + k_p$,

Previous works: [Deligne, 1980], [GSNPR, 2005]

Thank you for your attention!

