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Algebraic topology

→ Henri Poincaré (1854–1912)

Goal: Classify topological spaces up to homotopy equivalences ∼
= up to continuous deformation

Method: Use invariants = algebraic objects (n ∈ N, groups, . . . )
that remain unchanged under homotopy equivalence.
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Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences ∼

Method: Use algebraic invariants
• Genus = number of holes
• Cohomology groups H•

• Cohomology ring H• with the cup product ∪

CP2 ̸∼ S2 ∨ S4

H• ∼= Z[x ]/(x3) H• ∼= Z[x , y ]/(x2, y2, xy)
deg(x) = 2 deg(x) = 2, deg(y) = 4
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Faithful invariants

X : a topological space (simply connected and of finite type)

Theorem (Mandell, 2005)
The E∞-algebra structure on C •

sing(X ;Z) is a faithful invariant.

Rational homotopy type : class of X up to maps inducing
isomorphisms in rational cohomology.

Theorem (Sullivan, 1977)
The commutative algebra of polynomial forms A•

PL(X ) is a faithful
invariant of the rational homotopy type.
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The notion of formality
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Formal topological spaces

Definition
A topological space X is formal if there exists a zig-zag

A•
PL(X )

∼←− · ∼−→ · · · ∼←− · ∼−→ H•
sing(X ;Q)

of quasi-isomorphisms of differential graded (dg) commutative
algebras, i.e. morphisms inducing isomorphisms in cohomology.

Remark
X formal =⇒ The cohomology ring H•

sing(X ,Q) completely
determines the rational homotopy type of X .
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Examples
→ Formal spaces
• Spheres, complex projective spaces, Lie groups
• Compact Kähler manifolds [Deligne–Griffiths–Morgan–Sullivan, ’75]

→ Nonformal spaces
• The complement of the Borromean rings
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Formality over any coefficient ring

Theorem (Saleh, 2017)
A space X is formal if and only if if there exists a zig-zag of
quasi-isomorphisms of dg associative algebras

C •
sing(X ;Q)

∼←− · ∼−→ · · · ∼←− · ∼−→ H•
sing(X ;Q) .

R : commutative ground ring

Definition
A topological space X is formal if there exists a zig-zag of
quasi-isomorphisms of dg associative algebras

C •
sing(X ;R)

∼←− · ∼−→ · · · ∼←− · ∼−→ H•
sing(X ;R) .
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Formality of an algebraic structure

A : cochain complex over R

P : colored operad or properad

ϕ : P → EndA : a dg P-algebra structure

Definition
The dg P-algebra (A, ϕ) is formal if there exists a zig-zag

(A, ϕ)
∼←− · ∼−→ · · · ∼←− · ∼−→ (H(A), φ1) ,

where φ1 is the canonical P-algebra structure on H(A).

Remark
X is formal if (C •

sing(X ;R),∪) is formal as dg associative algebra
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Examples

1. Differential geometry [Deligne–Griffiths–Morgan–Sullivan, 1975]
Compact Kähler manifolds

2. Mathematical physics [Kontsevich’s quantization theorem, 1997]
Hochschild complex of a polynomial algebra

3. Algebraic topology [Kontsevich, 1999]
The chains over the little k-disks operad

4. Representation theory [Riche–Soergel–Williamson, 2014]
The extensions of parity sheaves on the flag variety

5. Algebraic geometry [Cirici–Horel, 2018, Drummond-Cole–Horel, 2021]
Étale cohomology of complements of hyperplane arrangements
with coefficients in Zℓ
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Purity implies formality

(A, ϕ) : dg P-algebra encoded by an operad P

α : unit of infinite order in R

σα : the degree twisting by α = automorphism of (H(A), φ1)
which acts via αk× on Hk(A).

Theorem
If σα admits a chain-level lift, i.e. ∃ f ∈ End(A, ϕ) s.t. H(f ) = σα,
then (A, ϕ) is formal.

→ Deligne–Griffiths–Morgan–Sullivan [1975]

→ Sullivan [1977]

→ Guillén Santos–Navarro–Pascual–Roig [2005]

→ Cirici–Horel [2022]
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Example

5. Algebraic geometry [Cirici-Horel, 2018, Drummond-Cole–Horel, 2021]

X : a complement of a hyperplane arrangement over C
defined over a finite extension K of Qp.

ℓ : a prime number different from p.

→ C •
sing(Xan,Zℓ) ∼= C •

et(XK ,Zℓ) [Artin].

→ A Frobenius action on H•
et(XK ,Zℓ) is σq [Kim, 1994].
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Questions

• Can we descend these results to other coefficient rings?
(e.g. Z(ℓ))

• Does the degree twisting criteria hold for other types of
algebras? (e.g. Hopf algebras, Lie bialgebras,...)

• Is the degree twisting the only homology automorphism
satisfying this property?

• Can we incorporate all the aformentionned examples into a
single theory?
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Outline

Kaledin classes
• A faithful obstruction theory to the formality over any ring

Formality criteria
• Formality descent
• Intrinsic formality
• Automorphism lifts

Beyond formality
• Generalizing Kaledin classes to detect homotopy equivalences
• Models for highly connected manifolds
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Kaledin classes
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Gauge formality

A : cochain complex over R

C : reduced weight-graded differential graded coproperad

(A, ϕ) : dg ΩC -algebra

Theorem (Hoffbeck–Leray–Vallette, 2025)
R is a characteristic zero field and (B, ϕ′) a dg ΩC -algebra

∃ (A, ϕ) ∼←− · ∼−→ · · · ∼←− · ∼−→ (B, ϕ′) ⇐⇒ ∃ (A, ϕ) ∼
⇝ (B, ϕ′)

zig-zag of quasi-isos of ΩC -algebras ∞-quasi-iso

Definition
The ΩC -algebra (A, ϕ) is gauge formal if ∃ (A, ϕ) ∼

⇝ (H(A), φ1).
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Homotopy transfer theorem

Theorem
Suppose that H(A) is a contraction of A if C is

1. a symmetric cooperad then R is a Q-algebra [Berglund, 14];

2. a coproperad then R is a characteristic zero field [HLV, 20];

3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].

For any ΩC -algebra structure (A, ϕ), there exists an ΩC -algebra
(H(A), φ) and an ∞-quasi-isomorphism:

(A, ϕ) (H(A), φ)
p∞
∼

(H(A), φ1)

gauge formality

∼
∃ ?

∼
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{ΩC -algebra structures on H(A)} := MC(g)

The convolution dg Lie algebra associated to H(A):

g :=
(
Hom

(
C ,EndH(A)

)
, [−,−], d

)
→ Hom(C ,EndH(A)) :=

∏
n≥0 Hom

(
C (n),EndH(A)(n)

)
→ d(φ) := −(−1)|φ|φ ◦ dC

→ φ ⋆ ψ := C
∆(1,1)−−−→ C ⊠

(1,1)
C

φ ⊠
(1,1)

ψ

−−−−→ EndH(A) ⊠
(1,1)

EndH(A)

γ(1,1)−−−→ EndH(A)

→ [φ,ψ] := φ ⋆ ψ − (−1)|φ||ψ|ψ ⋆ φ

Every φ ∈ Hom
(
C ,EndH(A)

)
decomposes as

φ = (φ1, φ2, φ3, . . . )

where φk is the restriction φk : C (k) =⇒ EndH(A).
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An equivalent characterization of formality
(A, ϕ): an ΩC -algebra that admits a transferred structure

(A, ϕ) (H(A), φ1, φ2, φ3, . . .) Higher Massey products

(H(A), φ1)

HTT
∼

gauge formality

∼
∃ ?

∼

=⇒ If the higher Massey products vanish, then (A, d , ϕ) is formal.

Definition
• (A, ϕ) is gauge formal if ∃ (H(A), φ1, φ2, . . .)

∼
⇝ (H(A), φ∗).

• (A, ϕ) is gauge n-formal if

∃ (H(A), φ∗, φ3, φ4 . . .)
∼
⇝ (H(A), φ∗, 0, . . . , 0, φ′

n+1, . . . ) .
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Formal deformation

φ = (φ1, φ2, φ3, . . . ) ∈ MC(g)

A formal deformation of φ1:

Φ := φ1 + φ2ℏ+ φ3ℏ2 + · · ·+ φk+1h
k + · · ·

in the dg Lie algebra g[[ℏ]] := g⊗̂R[[ℏ]].

Remark
Φ ∈ MC(g[[ℏ]]), i.e. d(Φ) + 1

2 [Φ,Φ] = 0.

Proposition
dΦ := d + [Φ,−] is a differential on g[[ℏ]]

Twisted dg Lie algebra:

g[[ℏ]]Φ := (g[[ℏ]], [−,−], dΦ)



25

Introduction Formality Kaledin classes Formality criteria Beyond formality

The Kaledin classes

∂ℏΦ := φ2 + 2φ3ℏ+ · · ·+ kφk+1ℏk−1 + · · · ∈ g[[ℏ]]

Lemma
∂ℏΦ is a cycle in g[[ℏ]]Φ, i.e. dΦ(∂ℏΦ) = 0.

Definition
Kaledin class:

KΦ := [∂ℏΦ] ∈ H1
(
g[[ℏ]]Φ

)
.

nth-truncated Kaledin class:

Kn
Φ :=

[
φ2 + 2φ3ℏ+ · · ·+ nφn+1ℏn−1] ∈ H1

(
(g[[ℏ]]/ℏn)Φ̃

)
.
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Kaledin class:

KΦ :=
[
φ2 + 2φ3ℏ+ 3φ4ℏ2 + · · ·

]
∈ H1

(
g[[ℏ]]Φ

)
nth-truncated Kaledin class :

Kn
Φ :=

[
φ2 + 2φ3ℏ+ · · ·+ nφn+1ℏn−1] ∈ H1

(
(g[[ℏ]]/ℏn)Φ̃

)
.

Theorem (E., 2024)
Let (A, ϕ) be an ΩC -algebra that admits a transferred structure.

• If R is a Q-algebra, (A, ϕ) is gauge formal ⇐⇒ KΦ = 0.
• If n! is invertible in R , (A, ϕ) is gauge n-formal ⇐⇒ Kn

Φ = 0.

Previous works: [Kaledin, 2007], [Lunts, 2007], [Melani–Rubió, 2019]
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Formality criteria
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Formality descent

(A, ϕ) : an dg ΩC -algebra that admits a transferred structure

H i (A) : projective, finitely generated for all i .

S : faithfully flat commutative R-algebra.

Theorem (E., 2024)
(A, ϕ) is gauge n-formal ⇐⇒ (A⊗R S , ϕ⊗ 1) is gauge n-formal.

Examples
• Dk : little k-disks operads [Guillén Santos–Navarro–Pascual–Roig]
C (Dk ;R) is formal ⇐⇒ C (Dk ;Q) is formal
• Z(ℓ) ⊂ Zℓ
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Complement of hyperplane arrangements

X : a complement of an hyperplane arrangement over C
→ complement of a finite collection of affine hyperplanes in An

C.

K : a finite extension of Qp

q : order of the residue field of the ring of integers of K
ℓ : a prime number different from p

s : order of q in F×
ℓ

Theorem (Cirici–Horel, 2018, Dummond-Cole–Horel, 2021)
If X is defined over K then C •(Xan,Zℓ) is gauge (s − 1)-formal.
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Complement of hyperplane arrangements

X : a complement of an hyperplane arrangement over C
→ complement of a finite collection of affine hyperplanes in An

C.

K : a finite extension of Qp

q : order of the residue field of the ring of integers of K
ℓ : a prime number different from p

s : order of q in F×
ℓ

Theorem (E., 2024)
If X is defined over K then C •(Xan,Z(ℓ)) is gauge (s − 1)-formal.

Proof.
Formality descent
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Intrinsic formality
A graded ΩC -algebra (H, φ∗) is intrinsically formal if every dg
ΩC -algebra (A, ϕ) such that (H(A), φ1) ∼= (H, φ∗) is gauge formal.

gφ∗ : (g, [−,−], d + [φ∗,−])

Proposition (E., 2024)

H1(gφ∗) = 0 =⇒ (H, φ∗) intrinsically formal.

Proof.
For all (A, ϕ) such that (H(A), φ1) = (H, φ∗), then

KΦ = 0 ∈ H1
(
g[[ℏ]]Φ

)
.

Previous works: [Hinich, 2003] → Tamarkin’s proof of Kontsevich formality
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Properadic coformality of spheres

Example (Kontsevich–Takeda–Vlassopoulos, 2021)
A = C∗(ΩS

n;R) has an pre-Calabi-Yau (or V∞-algebra) structure

ϕ = m(1)︸︷︷︸
A∞-alg

+ m(2)︸︷︷︸
Poisson bivector
up to homotopy

+ m(3) + · · ·

where m(ℓ) is a cyclically anti-symmetric collection of maps

mk1,...,kℓ
(ℓ) : sAk1 ⊗ · · · ⊗ sAkℓ → Aℓ .

=⇒ encodes Poincaré duality.



33

Introduction Formality Kaledin classes Formality criteria Beyond formality

Properadic coformality of spheres

The pre-CY algebra on C∗(ΩS
n;R) has vanishing copairing:

m0,0
(2) = 0

→ always the case where A is connective and n ⩾ 1.

Theorem (E.-Takeda, 2025)
If R is a Q-algebra, (H(A), φ1) is intrinsically formal as an
n-pre-CY algebra structure with vanishing copairing.
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Automorphism lifts

R : a field

(A, ϕ) : a dg ΩC -algebra that admits a transferred structure

H i (A) : projective, finitely generated for all i .
H(A) is finite dimensional.

Corollary (E., 2024)
Suppose that there exists u ∈ Aut(H(A), φ1) such that for all
k< n, and all p-tuples (k1, . . . , kp),

Spec(uk1+···+kp+k) ∩ Spec(uk1 ⊗ · · · ⊗ ukp) = ∅ ,

where ui := u|H i (A). If u admits a lift at the level of chains then
(A, ϕ) is gauge n-formal.
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Frobenius & Weil numbers

K : a finite extension of Qp

q : order of the residue field of the ring of integers OK

ℓ : a prime number different from p

X : a smooth proper K -scheme

Definition
α ∈ Qℓ is a Weil number of weight n if

∀ ι : Qℓ ↪→ C, |ι(α)| = qn/2 .

Theorem (Deligne, 1974)
For all n, the eigenvalues of a Frobenius action on Hn

et(XK ,Qℓ) are
Weil numbers of weight n.
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Let SchK be the category of smooth and proper schemes over K of
good reduction, i.e. for which there exists a smooth and proper
model over OK .

Theorem (E., 2024)
Let V be a groupoid and let P be a V-colored operad in sets.
Let X be a P-algebra in SchK . The dg P-algebra C•(Xan,Q) is
formal.

Example (Guillén Santos–Navarro–Pascual–Roig, 2005)
LetM the cyclic operad of moduli spaces of stable algebraic curves
of genus zero. The cyclic operad C•(Man;Q) is formal.
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Beyond formality
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Homotopy equivalences between algebraic structure

Definition
The dg ΩC -algebras (A, ϕ) and (B, ψ) are
• homotopy equivalent

∃ (A, ϕ) ∼←− · ∼−→ · · · ∼←− · ∼−→ (B, ψ)

• gauge homotopy equivalent if ∃ (A, ϕ) ∼
⇝ (B, ψ).

• gauge n-homotopy equivalent if (A, ϕ) is gauge homotopy
equivalent to an ΩC -algebra (B, φ) such that

φ− ψ ∈ Fn+1g .

Example
(A, ϕ) is formal ⇐⇒ it is homotopy equivalent to (H(A), φ1)
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Obstruction sequences to homotopy equivalences

Let (A, ϕ) and (B, ψ) be two ΩC -algebras admitting transferred
structures and such that H(A) ∼= H(B).

→ obstruction sequence (ϑk)1⩽k⩽m which is either
� an infinite sequence of vanishing classes, when m =∞ ;
� a finite sequence of trivial classes that ends on ϑm ̸= 0 .

Proposition
The index m ∈ [[1,∞]] only depends on φ and ψ: this is their
homotopy equivalence degree.



40

Introduction Formality Kaledin classes Formality criteria Beyond formality

Theorem (E., 2025)
Let (A, ϕ) and (B, ψ) be two ΩC -algebras admitting transferred
structures and such that H(A) ∼= H(B).

1. If R is a Q-algebra, the algebras are gauge k-homotopy
equivalent for all k if and only if m =∞ .

2. If m! is invertible in R , the algebras are gauge
(m − 1)-homotopy equivalent but not gauge m-homotopy
equivalent if and only if m ∈ N .
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Minimal model on highly connected variety

Theorem (E., 2025)
Let K be a field. Let Md be a compact k-connected oriented
C∞-manifold where d is smaller than (ℓ+ 1)k + 2. The algebra

C •
sing(M,K)

is homotopy equivalent to an A∞-algebra (H•
sing(M,K), φ), with

φn = 0 for n ⩾ ℓ.
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Thank you for your attention!
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