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Algebraic topology

— Henri Poincaré (1854-1912)

Goal: Classify topological spaces up to homotopy equivalences ~
= up to continuous deformation

Method: Use invariants = algebraic objects (n € N, groups, ...)
that remain unchanged under homotopy equivalence.
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Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences ~

Method: Use algebraic invariants
e Genus = number of holes
e Cohomology groups H®
e Cohomology ring H® with the cup product U

CP? ot SEAVASH

H* = Z[x]/(x*) H® = Z[x, y]/(x*, y?, xy)
deg(x) =2 deg(x) =2, deg(y) =4
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Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences ~

Method: Use algebraic invariants
e Genus = number of holes
e Cohomology groups H*®
e Cohomology ring H® with the cup product U
e Massey products = n-ary operations generalizing U

OOO ”
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Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences ~

Method: Use algebraic invariants

e Genus = number of holes

Cohomology groups H*®

Cohomology ring H® with the cup product U

Massey products = n-ary operations generalizing U

= These invariants are not faithful !
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Faithful invariants

X : a topological space (simply connected and of finite type)

Theorem (Mandell, 2005)
The E-algebra structure on C2 (X;7Z) is a faithful invariant.

sing
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Faithful invariants

X : a topological space (simply connected and of finite type)

Theorem (Mandell, 2005)
The E-algebra structure on C2 (X;7Z) is a faithful invariant.

sing

Rational homotopy type : class of X up to maps inducing
isomorphisms in rational cohomology.

Theorem (Sullivan, 1977)

The commutative algebra of polynomial forms Ay, (X) is a faithful
invariant of the rational homotopy type.
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The notion of formality
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Formal topological spaces

Definition
A topological space X is formal if there exists a zig-zag

2L (X) A A AN Hs.ing(X;Q)

of quasi-isomorphisms of differential graded (dg) commutative
algebras, i.e. morphisms inducing isomorphisms in cohomology.

Remark
X formal == The cohomology ring Hg, (X, Q) completely
determines the rational homotopy type of X.
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Examples
— Formal spaces
e Spheres, complex projective spaces, Lie groups
e Compact Kahler manifolds [Deligne-Griffiths—Morgan-Sullivan, '75]

— Nonformal spaces

e The complement of the Borromean rings
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Formality over any coefficient ring

Theorem (Saleh, 2017)

A space X is formal if and only if if there exists a zig-zag of
quasi-isomorphisms of dg associative algebras

~ ~

smg(X Q) — e —> Hg (X'Q)

sing

R : commutative ground ring

Definition
A topological space X is formal if there exists a zig-zag of
quasi-isomorphisms of dg associative algebras

~ ~

c* (X;R) A & (X;R).

sing sing
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Formality of an algebraic structure

A : cochain complex over R

. colored operad or properad

¢: P — Endy : adg P-algebra structure

Definition

The dg -algebra (A, ¢) is formal if there exists a zig-zag

~

(Ag) «— + — o — - = (H(A).¢1) ,
where (1 is the canonical Z7-algebra structure on H(A).

Remark
X is formal if (C3,,,(X; R),U) is formal as dg associative algebra
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Examples

. Differential geometry [Deligne-Griffiths—Morgan—Sullivan, 1975]

Compact Kihler manifolds

. Mathematical physics [Kontsevich's quantization theorem, 1997]

Hochschild complex of a polynomial algebra

Algebraic topology [Kontsevich, 1999]
The chains over the little k-disks operad

. Representation theory [Riche-Soergel-Williamson, 2014

The extensions of parity sheaves on the flag variety

Algebraic geometry [Cirici-Horel, 2018, Drummond-Cole—Horel, 2021]
Etale cohomology of complements of hyperplane arrangements
with coefficients in Z;
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Purity implies formality

(A, ¢) : dg S-algebra encoded by an operad &
« : unit of infinite order in R

04 : the degree twisting by o = automorphism of (H(A), 1)
which acts via a¥x on HK(A).

Theorem
If o admits a chain-level lift, i.e. 3 f € End(A, ¢) s.t. H(f) = 04,
then (A, ¢) is formal.

— Deligne—Griffiths—Morgan—Sullivan [1975]
— Sullivan [1977]

— Guillen Santos—Navarro—Pascual-Roig [2005]
— Cirici-Horel [2022]
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Example

5. Algebraic geometry [Cirici-Horel, 2018, Drummond-Cole~Horel, 2021]

X : a complement of a hyperplane arrangement over C
defined over a finite extension K of Q.

¢ : a prime number different from p.
— Cone(Xan, Zy) = Co(X, Zg) [Artin].

sing

— A Frobenius action on Hg, (X5, Zy) is 04 [Kim, 1994].
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Questions

Can we descend these results to other coefficient rings?
(e.g. Z(g))

Does the degree twisting criteria hold for other types of
algebras? (e.g. Hopf algebras, Lie bialgebras,...)

Is the degree twisting the only homology automorphism
satisfying this property?

Can we incorporate all the aformentionned examples into a
single theory?
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Outline

Kaledin classes
® A faithful obstruction theory to the formality over any ring

Formality criteria

® Formality descent
® |Intrinsic formality
® Automorphism lifts

Beyond formality

® Generalizing Kaledin classes to detect homotopy equivalences
® Models for highly connected manifolds
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Gauge formality

A : cochain complex over R
¢ : reduced weight-graded differential graded coproperad
(A, ¢) : dg Q% -algebra

Beyond formality
00000
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Gauge formality

A : cochain complex over R
¢ : reduced weight-graded differential graded coproperad
(A, ¢) : dg Q% -algebra

Theorem (Hoffbeck—Leray—Vallette, 2025)
R is a characteristic zero field and (B, ¢') a dg Q% -algebra

zig-zag of quasi-isos of Q¢ -algebras 00-quasi-iso

Definition
The Q% -algebra (A, ¢) is gauge formal if 3 (A, ¢) ~ (H(A),p1).
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Homotopy transfer theorem

Theorem
Suppose that H(A) is a contraction of A if € is
1. a symmetric cooperad then R is a Q-algebra [Berglund, 14];
2. a coproperad then R is a characteristic zero field [HLV, 20];
3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].

For any Q€ -algebra structure (A, ¢), there exists an Q€ -algebra
(H(A), ¢) and an oco-quasi-isomorphism:

(A, §) ooy (H(A), )



Introduction Formality Kaledin classes Formality criteria Beyond formality

O0000C 00000000 O®00000 O0000000C

Homotopy transfer theorem

Theorem
Suppose that H(A) is a contraction of A if € is

1. a symmetric cooperad then R is a Q-algebra [Berglund, 14];

2. a coproperad then R is a characteristic zero field [HLV, 20];

3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].
For any Q€ -algebra structure (A, ¢), there exists an Q€ -algebra
(H(A), ¢) and an oco-quasi-isomorphism:

(A, §) ooy (H(A), )

Y

gauge formality
(H(A), ¢1)
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Homotopy transfer theorem
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{Q%-algebra structures on H(A)} := MC(g)

The convolution dg Lie algebra associated to H(A):

g := (Hom (¢, Endya)) , [—, -], d)

— Hom(?7 Endpa)) = ano Hom (?(n)7 EndH(A)(n))

— d(p) = —(-1)?lpod
@ 11)

—HT 87 2 Endua) & Endya 203, Endya)

= (e = pxt— (=) x g

- oxtp=F —> fa
Every ¢ € Hom (?, EndH(A)) decomposes as

©=(p1,902,03,...)

where ¢y is the restriction ¢ : €K) = Endpa).
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An equivalent characterization of formality

(A, ¢): an Q%-algebra that admits a transferred structure

(A, 0) HIT (H(A), ¢1, 02,93, ...) Higher Massey products
~ 2637
gauge formality
(H(A), ¢1)

= If the higher Massey products vanish, then (A, d, ¢) is formal.
Definition
* (A, ¢) is gauge formal if 3 (H(A), 01, 2,...) ~ (H(A), ).
* (A, ¢) is gauge n-formal if

3 (H(A), @x, 03,08 ...) ~ (H(A), 04,0,...,0,¢0 1,...) .
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Formal deformation

¥ = (@13302750& . ) € MC(G)

A formal deformation of ¢;:
® = o1+ o2l + p3h® + -+ b £ -
in the dg Lie algebra g[i] := g®R[7].
Remark
® € MC(g[n]), i.e. d(®)+ L[, 9] =0.
Proposition
d® == d + [®, ] is a differential on g[[h]
Twisted dg Lie algebra:

gl[h]]¢ = (g[[h]]’ [_7 _]’ d¢)
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The Kaledin classes

D = o+ 2p3h + - + kg 1 B+ € g[]

Lemma
Op® is a cycle in g[R]®, i.e. d®(0,®) = 0.



Introduction Formality Kaledin classes Formality criteria Beyond formality
000000 000000000 00000e0 000000000 00000

The Kaledin classes

0P = o+ 2p3h + -+ + ks B+ - € g[h]
Lemma

Op® is a cycle in g[R]®, i.e. d®(0,®) = 0.

Definition
Kaledin class:
Ko = [050] € H? (g[[h]]¢) .

nth_truncated Kaledin class:

Ky = [p2 +203h+ -+ npn1h" 1] € H ((g[[h]]/h”)a’) ‘
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Kaledin class:
Ko = [i02 + 203l + 3pah® + -] € H* (a[1]°)
nth_truncated Kaledin class :

Ko = [p2 +2p3h+ - + npp1h™ 1] € H! ((9[[71]]/71”)6) :

Theorem (E., 2024)
Let (A, ¢) be an Q€ -algebra that admits a transferred structure.

® |f R is a Q-algebra, (A, @) is gauge formal <= K¢ = 0.
e [f n! is invertible in R, (A, ¢) is gauge n-formal <— KJ = 0.

Previous works: [Kaledin, 2007], [Lunts, 2007], [Melani-Rubié, 2019]
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Formality descent

(A, ¢) : an dg Q% -algebra that admits a transferred structure
H'(A) : projective, finitely generated for all i.

S : faithfully flat commutative R-algebra.

Theorem (E., 2024)
(A, @) is gauge n-formal <= (A®gr S, ¢ ® 1) is gauge n-formal.

Examples

e Dy : little k-disks operads [Guillen Santos—Navarro—Pascual-Roig]
C(Dy; R) is formal <= C(Dy; Q) is formal

° Z(g) C Zy
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Complement of hyperplane arrangements

X : a complement of an hyperplane arrangement over C
— complement of a finite collection of affine hyperplanes in AZ.

K : a finite extension of Q,

q : order of the residue field of the ring of integers of K
¢ : a prime number different from p

s : order of g in F/f

Theorem (Cirici-Horel, 2018, Dummond-Cole—Horel, 2021)
If X is defined over K then C®(Xan,Zy) is gauge (s — 1)-formal.
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Complement of hyperplane arrangements

X : a complement of an hyperplane arrangement over C
— complement of a finite collection of affine hyperplanes in AZ.

K : a finite extension of Q,

q : order of the residue field of the ring of integers of K
¢ : a prime number different from p

s : order of g in F/f

Theorem (E., 2024)
If X is defined over K then C*(Xan, Zy) is gauge (s — 1)-formal.

Proof.
Formality descent O
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Intrinsic formality

A graded Q%-algebra (H, p.) is intrinsically formal if every dg
Q%-algebra (A, ¢) such that (H(A), v1) = (H, ¢.) is gauge formal.

g@* : (97 [_7 _]7 d+ [(P*7 _])
Proposition (E., 2024)

HY(g?*) =0 = (H, p.) intrinsically formal.
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Intrinsic formality

A graded Q%-algebra (H, p.) is intrinsically formal if every dg
Q%-algebra (A, ¢) such that (H(A), v1) = (H, ¢.) is gauge formal.

g%ﬁ* : (97 [_7 _]7 d+ [90*7 _])
Proposition (E., 2024)
HY(g?*) =0 = (H, p.) intrinsically formal.

Proof.
For all (A, ¢) such that (H(A), 1) = (H, ¢«), then

Ko =0 € H? (;;[[h]]“’) . O

Previous works: [Hinich, 2003] — Tamarkin's proof of Kontsevich formality
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Properadic coformality of spheres

Example (Kontsevich—Takeda—Vlassopoulos, 2021)
A = C.(225"; R) has an pre-Calabi-Yau (or V-algebra) structure

¢ = m(1) + m(2) + m3) —+ .-
~— ~—~
Acc-alg Poisson bivector

up to homotopy

where m(y) is a cyclically anti-symmetric collection of maps

mé(el)"“’k‘Z csAR @ L@ sAR 5 AL

= encodes Poincaré duality.
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Properadic coformality of spheres

The pre-CY algebra on C,(£25"; R) has vanishing copairing:

mez) =0

— always the case where A is connective and n > 1.

Theorem (E.-Takeda, 2025)

If R is a Q-algebra, (H(A), p1) is intrinsically formal as an
n-pre-CY algebra structure with vanishing copairing.

Beyond formality
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Automorphism lifts

R : a field
(A, ¢) : a dg Q% -algebra that admits a transferred structure
H'(A) : projective, finitely generated for all i.

H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists u € Aut(H(A), ¢1) such that for all
k< n, and all p-tuples (k1, ..., kp),

Spec(Uky 4.4 ky+k) N Spec(uy, @ - @ uy,) =,

where uj = uicay. If u admits a lift at the level of chains then
(A, @) is gauge n-formal.
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Frobenius & Weil numbers

K : a finite extension of Q,

q : order of the residue field of the ring of integers Ok
£ : a prime number different from p

X : a smooth proper K-scheme

Definition

a € Qq is a Weil number of weight n if

Vi:Q= € i) =q"?.

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on HJ,(X5, Qq) are
Weil numbers of weight n.
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Let Schy be the category of smooth and proper schemes over K of
good reduction, i.e. for which there exists a smooth and proper
model over Ok.

Theorem (E., 2024)

Let V be a groupoid and let &? be a V-colored operad in sets.
Let X be a P-algebra in Schi. The dg &-algebra Co(Xan, Q) is
formal.

Example (Guillén Santos—Navarro—Pascual-Roig, 2005)

Let M the cyclic operad of moduli spaces of stable algebraic curves
of genus zero. The cyclic operad Co(M,p; Q) is formal.
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Homotopy equivalences between algebraic structure

Definition
The dg Q% -algebras (A, ¢) and (B, 1)) are
® homotopy equivalent

~

J(A¢) < o & (B

® gauge homotopy equivalent if 3 (A, ¢) ~ (B,v).

® gauge n-homotopy equivalent if (A, ¢) is gauge homotopy
equivalent to an Q%-algebra (B, ¢) such that

W—@bE}—"—'_lg-

Example
(A, ¢) is formal <= it is homotopy equivalent to (H(A), ¢1)
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Obstruction sequences to homotopy equivalences

Let (A, ¢) and (B, 1)) be two Q2%-algebras admitting transferred
structures and such that H(A) = H(B).

— obstruction sequence (k)1 <<, Which is either
. an infinite sequence of vanishing classes, when m = oo ;

. a finite sequence of trivial classes that ends on ¥, # 0 .

Proposition
The index m € [1,00] only depends on ¢ and v: this is their
homotopy equivalence degree.
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Theorem (E., 2025)

Let (A, ¢) and (B,v) be two Q¢ -algebras admitting transferred
structures and such that H(A) = H(B).

1. If R is a Q-algebra, the algebras are gauge k-homotopy
equivalent for all k if and only if m = oo .

2. If m! is invertible in R, the algebras are gauge
(m — 1)-homotopy equivalent but not gauge m-homotopy
equivalent if and only if m e N .
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Minimal model on highly connected variety

Theorem (E., 2025)

Let K be a field. Let M9 be a compact k-connected oriented
C°-manifold where d is smaller than (¢ 4+ 1)k + 2. The algebra

e, (M,K)

sing

is homotopy equivalent to an Ax-algebra (HS,,(M,K), ), with
on=0forn>¥.
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Thank you for your attention!

P S



	Introduction
	Formality
	Kaledin classes
	Formality criteria
	Beyond formality

