Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Obstruction theory to formality and homotopy equivalences

Coline Emprin

Ecole Normale Supérieure de Paris PhD defense

June 25th, 2025

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � ♡ 。

Algebraic topology

 \rightarrow Henri Poincaré (1854–1912)

Goal: Classify topological spaces up to homotopy equivalences \sim = up to continuous deformation

Method: Use invariants = algebraic objects ($n \in \mathbb{N}$, groups, ...) that remain unchanged under homotopy equivalence.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Algebraic topology

 \rightarrow Henri Poincaré (1854–1912)

Goal: Classify topological spaces up to homotopy equivalences \sim = up to continuous deformation

Method: Use algebraic invariants

• Genus = number of holes

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

◆□▶◆母▶◆臣▶◆臣▶ 臣 のへで ▲

Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences \sim

- Genus = number of holes
- Cohomology groups H[•]

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences \sim

- Genus = number of holes
- Cohomology groups H[•]
- Cohomology ring H^{\bullet} with the cup product \cup

$$\mathbb{CP}^2 \not\sim \mathbb{S}^2 \lor \mathbb{S}^4$$
$$H^{\bullet} \cong \mathbb{Z}[x]/(x^3) \qquad H^{\bullet} \cong \mathbb{Z}[x,y]/(x^2,y^2,xy)$$
$$\deg(x) = 2 \qquad \deg(x) = 2, \ \deg(y) = 4$$

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

◆□▶◆母▶◆臣▶◆臣▶ 臣 のへで。

Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences \sim

- Genus = number of holes
- Cohomology groups H[•]
- Cohomology ring H^{\bullet} with the cup product \cup
- Massey products = n-ary operations generalizing \cup

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences \sim

- Genus = number of holes
- Cohomology groups H[•]
- Cohomology ring H^{\bullet} with the cup product \cup
- Massey products = n-ary operations generalizing \cup

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Algebraic topology

Goal: Classify topological spaces up to homotopy equivalences \sim

Method: Use algebraic invariants

- Genus = number of holes
- Cohomology groups H[•]
- Cohomology ring H^{\bullet} with the cup product \cup
- Massey products = n-ary operations generalizing \cup

\implies These invariants are not faithful !

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで。

Faithful invariants

X: a topological space (simply connected and of finite type)

Theorem (Mandell, 2005) The E_{∞} -algebra structure on $C_{sing}^{\bullet}(X;\mathbb{Z})$ is a faithful invariant. Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Faithful invariants

X: a topological space (simply connected and of finite type)

Theorem (Mandell, 2005) The E_{∞} -algebra structure on $C^{\bullet}_{sing}(X;\mathbb{Z})$ is a faithful invariant.

Rational homotopy type : class of X up to maps inducing isomorphisms in rational cohomology.

Theorem (Sullivan, 1977)

The commutative algebra of polynomial forms $\mathcal{A}^{\bullet}_{\mathrm{PL}}(X)$ is a faithful invariant of the rational homotopy type.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

The notion of formality

Formality •00000000 Kaledin classes

Formality criteria

Beyond formality

Formal topological spaces

Definition

A topological space X is formal if there exists a zig-zag

$$\mathcal{A}^{ullet}_{\mathrm{PL}}(X) \, \stackrel{\sim}{\longleftarrow}\, \cdot \, \stackrel{\sim}{\longrightarrow}\, \cdots \, \stackrel{\sim}{\longleftarrow}\, \, \stackrel{\sim}{\longrightarrow}\, \, \mathcal{H}^{ullet}_{\mathrm{sing}}(X;\mathbb{Q})$$

of quasi-isomorphisms of differential graded (dg) commutative algebras, i.e. morphisms inducing isomorphisms in cohomology.

Remark

X formal \implies The cohomology ring $H^{\bullet}_{sing}(X, \mathbb{Q})$ completely determines the rational homotopy type of X.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

(ロ)

Examples

- \rightarrow Formal spaces
 - Spheres, complex projective spaces, Lie groups
 - Compact Kähler manifolds [Deligne-Griffiths-Morgan-Sullivan, '75]
- \rightarrow Nonformal spaces
 - The complement of the Borromean rings

Formality 00000000 Kaledin classes

Formality criteria

Beyond formality

<ロト < 回 > < 三 > < 三 > < 三 > の へ つ 12

Formality over any coefficient ring

Theorem (Saleh, 2017)

A space X is formal if and only if if there exists a zig-zag of quasi-isomorphisms of dg associative algebras

$$C^{ullet}_{\mathrm{sing}}(X;\mathbb{Q}) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H^{ullet}_{\mathrm{sing}}(X;\mathbb{Q}) \;.$$

R : commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dg associative algebras

$$C^{ullet}_{\mathrm{sing}}(X; \mathbb{R}) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H^{ullet}_{\mathrm{sing}}(X; \mathbb{R})$$

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Formality of an algebraic structure

- A: cochain complex over R
- \mathscr{P} : colored operad or properad
- $\phi: \mathscr{P} \to \mathsf{End}_{\mathsf{A}}: \mathsf{a} \mathsf{ dg} \ \mathscr{P}\text{-}\mathsf{algebra} \mathsf{ structure}$

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if there exists a zig-zag

$$(A,\phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\varphi_1),$$

where φ_1 is the canonical \mathscr{P} -algebra structure on H(A).

Remark

X is formal if $(C^{ullet}_{\mathrm{sing}}(X;R),\cup)$ is formal as dg associative algebra

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Examples

- 1. Differential geometry [Deligne–Griffiths–Morgan–Sullivan, 1975] Compact Kähler manifolds
- 2. Mathematical physics [Kontsevich's quantization theorem, 1997] Hochschild complex of a polynomial algebra
- 3. Algebraic topology [Kontsevich, 1999] The chains over the little *k*-disks operad
- 4. Representation theory [Riche–Soergel–Williamson, 2014] The extensions of parity sheaves on the flag variety
- 5. Algebraic geometry [Cirici–Horel, 2018, Drummond-Cole–Horel, 2021] Étale cohomology of complements of hyperplane arrangements with coefficients in \mathbb{Z}_{ℓ}

Formality 0000000000 Kaledin classes

Formality criteria

Beyond formality

Purity implies formality

 $({\it A},\phi)$: dg ${\mathscr P}$ -algebra encoded by an operad ${\mathscr P}$

- α : unit of infinite order in R
- σ_{α} : the degree twisting by α = automorphism of ($H(A), \varphi_1$) which acts via $\alpha^k \times$ on $H^k(A)$.

Theorem

If σ_{α} admits a chain-level lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$, then (A, ϕ) is formal.

- \rightarrow Deligne–Griffiths–Morgan–Sullivan [1975]
- \rightarrow Sullivan [1977]
- \rightarrow Guillén Santos–Navarro–Pascual–Roig [2005]
- \rightarrow Cirici–Horel [2022]

Formality 0000000000 Kaledin classes

Formality criteria

Beyond formality

Example

- 5. Algebraic geometry [Cirici-Horel, 2018, Drummond-Cole-Horel, 2021]
 - X : a complement of a hyperplane arrangement over \mathbb{C} defined over a finite extension K of \mathbb{Q}_p .
 - ℓ : a prime number different from p.
 - $\to C^{\bullet}_{\operatorname{sing}}(X_{\operatorname{an}}, \mathbb{Z}_{\ell}) \cong C^{\bullet}_{\operatorname{et}}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell}) \quad [\operatorname{Artin}].$
 - \rightarrow A Frobenius action on $H^{\bullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ is σ_q [Kim, 1994].

Formality 00000000 Kaledin classes

Formality criteria

Beyond formality

(ロ)

Questions

- Can we descend these results to other coefficient rings? (e.g. $\mathbb{Z}_{(\ell)}$)
- Does the degree twisting criteria hold for other types of algebras? (e.g. Hopf algebras, Lie bialgebras,...)
- Is the degree twisting the only homology automorphism satisfying this property?
- Can we incorporate all the aformentionned examples into a single theory?

Formality 00000000 Kaledin classes

Formality criteria

Beyond formality

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 18

Kaledin classes

• A faithful obstruction theory to the formality over any ring

Formality criteria

- Formality descent
- Intrinsic formality
- Automorphism lifts

Beyond formality

- Generalizing Kaledin classes to detect homotopy equivalences
- Models for highly connected manifolds

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

・ロト・日本・モン・モン・モークへで
19

Kaledin classes

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Gauge formality

- A: cochain complex over R
- ${\mathscr C}$: reduced weight-graded differential graded coproperad
- (A, ϕ) : dg ΩC -algebra

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Gauge formality

- A: cochain complex over R
- ${\mathscr C}$: reduced weight-graded differential graded coproperad
- (A, ϕ) : dg ΩC -algebra
- Theorem (Hoffbeck–Leray–Vallette, 2025) R is a characteristic zero field and (B, ϕ') a dg ΩC -algebra

$$\exists (A,\phi) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \cdots \xleftarrow{\sim} \cdot \xrightarrow{\sim} (B,\phi') \iff \exists (A,\phi) \xrightarrow{\sim} (B,\phi')$$

zig-zag of quasi-isos of $\Omega \mathscr{C}$ -algebras ∞ -quasi-iso

Definition

The $\Omega \mathscr{C}$ -algebra (A, ϕ) is gauge formal if $\exists (A, \phi) \xrightarrow{\sim} (H(A), \varphi_1)$.

Beyond formality

(ロ)、(型)、(E)、(E)、(E)の(C)₂₁

Homotopy transfer theorem

Theorem

Suppose that H(A) is a contraction of A if \mathscr{C} is

- 1. a symmetric cooperad then R is a \mathbb{Q} -algebra [Berglund, 14];
- 2. a coproperad then R is a characteristic zero field [HLV, 20];
- 3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].

For any ΩC -algebra structure (A, ϕ) , there exists an ΩC -algebra $(H(A), \varphi)$ and an ∞ -quasi-isomorphism:

$$(A, \phi) \xrightarrow{p_{\infty}} (H(A), \varphi)$$

Beyond formality

◆□ → ◆ □ → ◆ 三 → ◆ 三 ・ の へ や 21

Homotopy transfer theorem

Theorem

Suppose that H(A) is a contraction of A if \mathscr{C} is

- 1. a symmetric cooperad then R is a \mathbb{Q} -algebra [Berglund, 14];
- 2. a coproperad then R is a characteristic zero field [HLV, 20];
- 3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].

For any ΩC -algebra structure (A, ϕ) , there exists an ΩC -algebra $(H(A), \varphi)$ and an ∞ -quasi-isomorphism:

 $(A,\phi) \xrightarrow{p_{\infty}} (H(A),\varphi)$ gauge formalit $(H(A), \varphi_1)$

Beyond formality

Homotopy transfer theorem

Theorem

Suppose that H(A) is a contraction of A if \mathscr{C} is

- 1. a symmetric cooperad then R is a \mathbb{Q} -algebra [Berglund, 14];
- 2. a coproperad then R is a characteristic zero field [HLV, 20];
- 3. a symmetric quasi-planar cooperad then R is a field [GRiL, 23].

For any ΩC -algebra structure (A, ϕ) , there exists an ΩC -algebra $(H(A), \varphi)$ and an ∞ -quasi-isomorphism:

Kaledin classes 0000000

Formality criteria

 $\{\Omega \mathscr{C}\text{-algebra structures on } \mathsf{H}(\mathsf{A})\} := \mathrm{MC}(\mathfrak{g})$

The convolution dg Lie algebra associated to H(A):

$$\mathfrak{g} := \left(\operatorname{Hom}\left(\overline{\mathscr{C}}, \operatorname{End}_{\mathcal{H}(\mathcal{A})} \right), [-, -], d \right)$$

Every $\varphi \in \operatorname{Hom}\left(\overline{\mathscr{C}}, \operatorname{End}_{H(A)}\right)$ decomposes as

$$\varphi = (\varphi_1, \varphi_2, \varphi_3, \dots)$$

where φ_k is the restriction $\varphi_k : \mathscr{C}^{(k)} \Longrightarrow \operatorname{End}_{H(A)}$.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

An equivalent characterization of formality

 (A,ϕ) : an $\Omega \mathscr{C}$ -algebra that admits a transferred structure

 \implies If the higher Massey products vanish, then (A, d, ϕ) is formal. Definition

- (A, ϕ) is gauge formal if $\exists (H(A), \varphi_1, \varphi_2, \ldots) \xrightarrow{\sim} (H(A), \varphi_*).$
- (A, ϕ) is gauge *n*-formal if

 $\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*, 0, \dots, 0, \varphi_{n+1}', \dots) .$

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Formal deformation

$$\varphi = (\varphi_1, \varphi_2, \varphi_3, \dots) \in \mathrm{MC}(\mathfrak{g})$$

A formal deformation of φ_1 :

$$\Phi \coloneqq \varphi_1 + \varphi_2 \hbar + \varphi_3 \hbar^2 + \dots + \varphi_{k+1} h^k + \dots$$

in the dg Lie algebra $\mathfrak{g}[\![\hbar]\!] := \mathfrak{g} \widehat{\otimes} R[\![\hbar]\!]$.

Remark

$$\Phi \in \mathrm{MC}(\mathfrak{g}\llbracket\hbar\rrbracket)$$
, i.e. $d(\Phi) + \frac{1}{2}[\Phi, \Phi] = 0$.

Proposition

$$d^{\Phi} \coloneqq d + [\Phi, -]$$
 is a differential on $\mathfrak{g}\llbracket \hbar \rrbracket$

Twisted dg Lie algebra:

$$\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi} := (\mathfrak{g}\llbracket\hbar\rrbracket, [-, -], d^{\Phi})$$

Formality 000000000 Kaledin classes 00000●0

Formality criteria

Beyond formality

・ロト・日本・モート・モークへで 25

The Kaledin classes

$$\partial_{\hbar} \Phi \coloneqq \varphi_2 + 2\varphi_3 \hbar + \dots + k \varphi_{k+1} \hbar^{k-1} + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket$$

Lemma

 $\partial_{\hbar}\Phi$ is a cycle in $\mathfrak{g}[\![\hbar]\!]^{\Phi}$, i.e. $d^{\Phi}(\partial_{\hbar}\Phi) = 0$.

Formality 000000000 Kaledin classes 00000●0

Formality criteria

Beyond formality

٠

◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ 25

The Kaledin classes

$$\partial_{\hbar} \Phi \coloneqq \varphi_2 + 2\varphi_3 \hbar + \dots + k \varphi_{k+1} \hbar^{k-1} + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket$$

Lemma

 $\partial_{\hbar}\Phi$ is a cycle in $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}$, i.e. $d^{\Phi}(\partial_{\hbar}\Phi) = 0$.

Definition Kaledin class:

$$K_{\Phi} := [\partial_{\hbar} \Phi] \in H^1\left(\mathfrak{g}\llbracket\hbar
brace^{\Phi}
ight) \;.$$

*n*th-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} \coloneqq \left[\varphi_{2} + 2\varphi_{3}\hbar + \dots + n\varphi_{n+1}\hbar^{n-1}\right] \in \mathcal{H}^{1}\left(\left(\mathfrak{g}\llbracket\hbar\right]/\hbar^{n}\right)^{\widetilde{\Phi}}\right)$$

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Kaledin class:

$$\mathcal{K}_{\mathbf{\Phi}}\coloneqq \left[arphi_{2}+2arphi_{3}\hbar+3arphi_{4}\hbar^{2}+\cdots
ight]\in \mathcal{H}^{1}\left(\mathfrak{g}\llbracket\hbar
ight]^{\mathbf{\Phi}}
ight)$$

nth-truncated Kaledin class :

$$\mathcal{K}^{n}_{\Phi} := \left[\varphi_{2} + 2\varphi_{3}\hbar + \dots + n\varphi_{n+1}\hbar^{n-1}\right] \in \mathcal{H}^{1}\left(\left(\mathfrak{g}[\![\hbar]\!]/\hbar^{n}\right)^{\widetilde{\Phi}}\right) \;.$$

Theorem (E., 2024)

Let (A, ϕ) be an ΩC -algebra that admits a transferred structure.

- If R is a \mathbb{Q} -algebra, (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- If n! is invertible in R, (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Previous works: [Kaledin, 2007], [Lunts, 2007], [Melani-Rubió, 2019]

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

・ロト・日本・モン・モン・モークへで 27

Formality criteria

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Formality descent

 $({\it A},\phi)$: an dg $\Omega {\mathscr C}$ -algebra that admits a transferred structure

 $H^{i}(A)$: projective, finitely generated for all *i*.

S : faithfully flat commutative R-algebra.

Theorem (E., 2024) (A, ϕ) is gauge *n*-formal \iff ($A \otimes_R S, \phi \otimes 1$) is gauge *n*-formal.

Examples

• D_k : little k-disks operads [Guillén Santos-Navarro-Pascual-Roig] $C(\mathcal{D}_k; \mathbb{R})$ is formal $\iff C(\mathcal{D}_k; \mathbb{Q})$ is formal

•
$$\mathbb{Z}_{(\ell)} \subset \mathbb{Z}_{\ell}$$

Beyond formality

Complement of hyperplane arrangements

- X : a complement of an hyperplane arrangement over \mathbb{C} \rightarrow complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.
- K: a finite extension of \mathbb{Q}_p
- q: order of the residue field of the ring of integers of K
- ℓ : a prime number different from p
- s : order of q in $\mathbb{F}_{\ell}^{\times}$

Theorem (Cirici–Horel, 2018, Dummond-Cole–Horel, 2021) If X is defined over K then $C^{\bullet}(X_{an}, \mathbb{Z}_{\ell})$ is gauge (s - 1)-formal.

Beyond formality

<ロト < 回 > < 三 > < 三 > < 三 > の へ つ 30

Complement of hyperplane arrangements

- X : a complement of an hyperplane arrangement over \mathbb{C} \rightarrow complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.
- K: a finite extension of \mathbb{Q}_p
- q: order of the residue field of the ring of integers of K
- ℓ : a prime number different from p
- s : order of q in $\mathbb{F}_{\ell}^{\times}$

Theorem (E., 2024)

If X is defined over K then $C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$ is gauge (s-1)-formal.

Proof. Formality descent

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

(ロ)

Intrinsic formality

A graded ΩC -algebra (H, φ_*) is intrinsically formal if every dg ΩC -algebra (A, ϕ) such that $(H(A), \varphi_1) \cong (H, \varphi_*)$ is gauge formal.

$$\mathfrak{g}^{arphi_*}$$
 : $(\mathfrak{g}, [-, -], d + [arphi_*, -])$

Proposition (E., 2024)

$$\mathsf{H}^1(\mathfrak{g}^{arphi_*}) = \mathsf{0} \implies (\mathsf{H}, arphi_*)$$
 intrinsically formal.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Intrinsic formality

A graded ΩC -algebra (H, φ_*) is intrinsically formal if every dg ΩC -algebra (A, ϕ) such that $(H(A), \varphi_1) \cong (H, \varphi_*)$ is gauge formal.

$$\mathfrak{g}^{arphi_*}$$
 : $(\mathfrak{g}, [-, -], d + [arphi_*, -])$

Proposition (E., 2024)

$$H^1(\mathfrak{g}^{arphi_*})=\mathsf{0}\implies (H,arphi_*)$$
 intrinsically formal.

Proof.

For all (A, ϕ) such that $(H(A), \varphi_1) = (H, \varphi_*)$, then

$$\mathcal{K}_{\Phi} = \mathsf{0} \in \mathcal{H}^1\left(\mathfrak{g}\llbracket\hbar
brace^{\Phi}
ight)$$

Previous works: [Hinich, 2003] \rightarrow Tamarkin's proof of Kontsevich formality

Kaledin classes

Formality criteria

Beyond formality

Properadic coformality of spheres

Example (Kontsevich–Takeda–Vlassopoulos, 2021) $A = C_*(\Omega S^n; R)$ has an pre-Calabi-Yau (or V_∞ -algebra) structure

 $\phi = \underbrace{m_{(1)}}_{A_{\infty}-\text{alg}} + \underbrace{m_{(2)}}_{\text{Poisson bivector}} + m_{(3)} + \cdots$

where $m_{(\ell)}$ is a cyclically anti-symmetric collection of maps

$$m^{k_1,\ldots,k_\ell}_{(\ell)}:s\!A^{k_1}\otimes\cdots\otimes s\!A^{k_\ell} o A^\ell$$
.

⇒ encodes Poincaré duality.

Kaledin classes

Formality criteria

Beyond formality

Properadic coformality of spheres

The pre-CY algebra on $C_*(\Omega S^n; R)$ has vanishing copairing:

 $m_{(2)}^{0,0} = 0$

 \rightarrow always the case where A is connective and $n \ge 1$.

Theorem (E.-Takeda, 2025) If R is a \mathbb{Q} -algebra, (H(A), φ_1) is intrinsically formal as an *n*-pre-CY algebra structure with vanishing copairing. Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Automorphism lifts

R : a field

 (A,ϕ) : a dg $\Omega \mathscr{C}$ -algebra that admits a transferred structure

 $H^{i}(A)$: projective, finitely generated for all *i*. H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists $u \in Aut(H(A), \varphi_1)$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap \operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing$$
,

where $u_i := u_{|H^i(A)}$. If u admits a lift at the level of chains then (A, ϕ) is gauge n-formal.

Kaledin classes

Formality criteria

Beyond formality

Frobenius & Weil numbers

- K: a finite extension of \mathbb{Q}_p
- q : order of the residue field of the ring of integers $\mathcal{O}_{\mathcal{K}}$
- ℓ : a prime number different from p
- X : a smooth proper K-scheme

Definition

 $\alpha \in \overline{\mathbb{Q}}_{\ell}$ is a Weil number of weight *n* if

$$\forall \, \iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \; .$$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{et}(X_{\overline{K}}, \mathbb{Q}_{\ell})$ are Weil numbers of weight n.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Let Sch_K be the category of smooth and proper schemes over K of *good reduction*, i.e. for which there exists a smooth and proper model over \mathcal{O}_K .

Theorem (E., 2024)

Let \mathbb{V} be a groupoid and let \mathscr{P} be a \mathbb{V} -colored operad in sets. Let X be a \mathscr{P} -algebra in $\operatorname{Sch}_{\mathcal{K}}$. The dg \mathscr{P} -algebra $C_{\bullet}(X_{\operatorname{an}}, \mathbb{Q})$ is formal.

Example (Guillén Santos-Navarro-Pascual-Roig, 2005)

Let $\overline{\mathcal{M}}$ the cyclic operad of moduli spaces of stable algebraic curves of genus zero. The cyclic operad $C_{\bullet}(\overline{\mathcal{M}}_{an}; \mathbb{Q})$ is formal.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

・ロト・日本・モート・モークへで 37

Beyond formality

Beyond formality

Homotopy equivalences between algebraic structure

Definition

The dg $\Omega \mathscr{C}$ -algebras (A, ϕ) and (B, ψ) are

homotopy equivalent

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (B, \psi)$$

- gauge homotopy equivalent if $\exists (A, \phi) \xrightarrow{\sim} (B, \psi)$.
- gauge *n*-homotopy equivalent if (A, ϕ) is gauge homotopy equivalent to an ΩC -algebra (B, φ) such that

$$\varphi - \psi \in \mathcal{F}^{n+1}\mathfrak{g}$$
 .

Example

 (A, ϕ) is formal \iff it is homotopy equivalent to $(H(A), \varphi_1)$

Obstruction sequences to homotopy equivalences

Let (A, ϕ) and (B, ψ) be two $\Omega \mathscr{C}$ -algebras admitting transferred structures and such that $H(A) \cong H(B)$.

 \rightarrow obstruction sequence $(\vartheta_k)_{1\leqslant k\leqslant m}$ which is either

- . an infinite sequence of vanishing classes, when $m=\infty$;
- . a finite sequence of trivial classes that ends on $\vartheta_m \neq 0$.

Proposition

The index $m \in \llbracket 1, \infty \rrbracket$ only depends on φ and ψ : this is their homotopy equivalence degree.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Theorem (E., 2025) Let (A, ϕ) and (B, ψ) be two ΩC -algebras admitting transferred structures and such that $H(A) \cong H(B)$.

- 1. If R is a \mathbb{Q} -algebra, the algebras are gauge k-homotopy equivalent for all k if and only if $m = \infty$.
- 2. If m! is invertible in R, the algebras are gauge (m-1)-homotopy equivalent but not gauge m-homotopy equivalent if and only if $m \in \mathbb{N}$.

Beyond formality

4 ロト 4 回 ト 4 三 ト 4 三 ・ 9 4 で 41

Minimal model on highly connected variety

Theorem (E., 2025)

Let \mathbb{K} be a field. Let M^d be a compact k-connected oriented C^{∞} -manifold where d is smaller than $(\ell + 1)k + 2$. The algebra

 $C^{\bullet}_{\mathrm{sing}}(M,\mathbb{K})$

is homotopy equivalent to an A_{∞} -algebra $(H^{\bullet}_{sing}(M, \mathbb{K}), \varphi)$, with $\varphi_n = 0$ for $n \ge \ell$.

Formality 000000000 Kaledin classes

Formality criteria

Beyond formality

Thank you for your attention!

(ロ)