

Kaledin classes & formality criteria

Coline Emprin

Stockholm Mathematics Centre December 20, 2024

arXiv: 2404.17529

The notion of formality

Formal topological spaces

R: commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C_{\operatorname{sing}}^{\bullet}(X;R) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H_{\operatorname{sing}}^{\bullet}(X;R)$$
.

Formal topological spaces

R: commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{\bullet}_{\operatorname{sing}}(X;R) \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ \cdots \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ H^{\bullet}_{\operatorname{sing}}(X;R) \ .$$

ightarrow Origins in rational homotopy theory (for $\mathbb{Q} \subset R$)

X formal \Longrightarrow The cohomology ring $H^{\bullet}_{\mathrm{sing}}(X,\mathbb{Q})$ completely determines the rational homotopy type of X.

Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [Deligne, Griffiths, Morgan & Sullivan, 1975]

Formality of an algebraic structure

A : chain complex over R

 ${\mathscr P}$: colored operad or properad

 $\phi: \mathscr{P} \to \mathsf{End}_{\mathcal{A}}: \mathsf{adg} \ \mathscr{P}\text{-algebra structure}$

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if

$$\exists (A,\phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\varphi_*) ,$$

where φ_* is the canonical \mathscr{P} -algebra structure on H(A).

Examples

- X is formal = $(C_{\text{sing}}^{\bullet}(X; R), \cup)$ is formal as dga algebra
- $C(\mathcal{D}_k; \mathbb{R})$ is formal as an operad [Kontsevich, 1999]

Purity implies formality

 (A,ϕ) : dg \mathscr{P} -algebra encoded by an operad \mathscr{P}

 α : unit of infinite order in R

 σ_{α} : the degree twisting by $\alpha =$ automorphism of $(H(A), \varphi_*)$ which acts via $\alpha^k \times$ on $H_k(A)$.

Theorem

If σ_{α} admits a chain-level lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$, then (A, ϕ) is formal.

- → Deligne, Griffiths, Morgan, Sullivan [1975]
- → Sullivan [1977]
- → Guillén Santos, Navarro, Pascual, Roig [2005]
- \rightarrow Drummond-Cole and Horel [2021]

Examples

- Petersen [2014], Boavida de Brito and Horel [2021] The little disks operad \mathcal{D}_k & Grothendieck-Teichmüller group
- Riche, Soergel, Williamson [2014]
 The extensions of parity sheaves on the flag variety.
- Drummond-Cole and Horel [2021]
 - X: a complement of a hyperplane arrangement over $\mathbb C$ defined over a finite extension K of $\mathbb Q_p$.
 - ℓ : a prime number different from p
 - $\to C^{\bullet}(X_{an}, \mathbb{Z}_{\ell}) \cong C^{\bullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ [Artin].
 - \to A Frobenius action on $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ is σ_q [Kim, 1994].

Questions

- Can we descend these results to other coefficient rings? (e.g. $\mathbb{Z}_{(\ell)},\ldots$)
- Does the degree twisting criteria hold for other types of algebras? (e.g. Hopf algebras, involutive Lie bialgebras,...)

• Is the degree twisting the only homology automorphism satisfying this property?

Kaledin classes & formality criteria

1. Higher structures

• Formality can be addressed as a deformation problem, using the operadic calculus.

2. Kaledin classes

An obstruction theory to the formality over any ring

3. Formality criteria

Formality descent with torsion coefficient, Automorphism lifts

4. Beyond formality

• Generalizing Kaledin classes to study homotopy equivalences

Higher structures

Homotopy retracts

Definition

 (W, d_W) is a homotopy retract of (V, d_V) if there are maps

$$h \longrightarrow (V, d_V) \xrightarrow{p} (W, d_W)$$

where $\mathrm{id}_V-ip=d_Vh+hd_V$ and i is a quasi-isomorphism .

Homotopy retracts

Definition

 (W, d_W) is a homotopy retract of (V, d_V) if there are maps

$$h \longrightarrow (V, d_V) \stackrel{p}{\longleftrightarrow} (W, d_W)$$

where $\mathrm{id}_V-\mathit{ip}=\mathit{d}_V\mathit{h}+\mathit{hd}_V$ and i is a quasi-isomorphism .

Proposition

If R is a field, the cohomology of any cochain complex is a homotopy retract:

$$h \longrightarrow (A, d_A) \stackrel{p}{\longleftrightarrow} (H(A), 0)$$
.

Transfer of algebraic structure

 (A, d_A, ϕ) : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

ightarrow Transferred product: $\varphi_2 := p \circ \phi \circ i^{\otimes 2} : H^{\otimes 2} \to H$

$$i$$
 p

Transfer of algebraic structure

 (A, d_A, ϕ) : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

 \rightarrow Transferred product: $\varphi_2 := p \circ \phi \circ i^{\otimes 2} : H^{\otimes 2} \to H$

$$i \longrightarrow p$$

Not associative in general!

 \rightarrow Consider $\varphi_3: H^{\otimes 3} \rightarrow H$

Notion of formality

$$:= h \downarrow_{p}^{i} - \downarrow_{p}^{i}$$

 \rightarrow Consider $\varphi_3: H^{\otimes 3} \rightarrow H$

Notion of formality

$$:= h \downarrow_{p}^{i} - \downarrow_{p}^{i}$$

 \rightarrow In Hom $(H^{\otimes 3}, H)$:

$$\partial \left(\begin{array}{c} \\ \end{array} \right) = ip \begin{array}{c} i \\ i \\ p \end{array} - ip \begin{array}{c} i \\ i \\ p \end{array}$$

 $\rightarrow \varphi_2$ is associative up to the homotopy φ_3 .

Notion of formality

$$1 \quad 2 \quad \cdots \quad n \quad := \quad \sum_{PBT_n} \pm \quad \stackrel{i}{\underset{p}{\bigvee}} \quad \stackrel{i}{\underset{p}$$

Homotopy associative algebras

Definition (Stasheff, 1963)

 A_{∞} -algebra: a cochain complex H with a collection of maps

$$\varphi_n: H^{\otimes n} \to H$$

of degree 2 - n, for all $n \ge 2$, which satisfy the relations

Examples

- Every dga algebra (A, ϕ) is an A_{∞} -algebra with $\varphi_n = 0$ for all $n \ge 3$.
- $(H, d_H, \varphi_2, \varphi_3, \dots)$

Homotopy transfer theorem

Theorem (Kadeishvili, 1982)

Given a dga algebra (A, d_A, ϕ) and a homotopy retract

$$h \longrightarrow (A, d_A, \phi) \xrightarrow{p} (H, d_H)$$

there exists an A_{∞} -algebra structure on H such that p (and i) extend to A_{∞} -quasi-isomorphisms:

$$(A, d_A, \phi) \sim (H, d_H, \varphi_2, \varphi_3, \varphi_4, \dots)$$

Homotopy morphisms

$$(A, d_A, \phi_2, \dots), (H, d_H, \varphi_2, \dots) : A_{\infty}$$
-algebras

Definition

 A_{∞} -morphism $f: A \rightsquigarrow H$ is a collection of linear maps

$$f_n: A^{\otimes n} \longrightarrow H, \quad n \geqslant 1$$
,

of degree 1 - n, which satisfy the relations

$$\sum_{\substack{k\geqslant 1\\i_1+\cdots+i_k=n}}\pm\bigvee_{\substack{f_{i_1}\ldots f_{i_k}\\j_{\leqslant k}}}\bigvee_{j}=\sum_{\substack{k+l=n+1\\1\leqslant j\leqslant k}}\pm\bigvee_{\substack{f_k\\f_k}}$$

where $\varphi_1 = d_H$ and $\phi_1 = d_A$.

Homotopy quasi-isomorphisms

Definition

 A_{∞} -quasi-isomorphism $f: A \overset{\sim}{\leadsto} H$ is an A_{∞} -morphism where $f_1: A \to H$ is a quasi-isomorphism .

Homotopy quasi-isomorphisms

Definition

 A_{∞} -quasi-isomorphism $f: A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1: A \to H$ is a quasi-isomorphism .

Proposition (R is a field)

quasi-isos of associative algebras

 A_{∞} -quasi-iso

$$\exists (A,\phi) \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \stackrel{\sim}{\longrightarrow} (B,\phi') \iff \exists (A,\phi) \stackrel{\sim}{\leadsto} (B,\phi')$$

Corollary

A dga algebra (A, ϕ) is formal if and only if

$$\exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$$
.

An equivalent characterization of formality

 (A,d,ϕ) a dga algebra such that H(A) is a homotopy retract

$$(A,d,\phi)$$
 \longleftrightarrow $(H(A),\varphi_*,\varphi_3,\varphi_4\ldots)$ Higher Massey products \ominus ?

Formality $(H(A),\varphi_*)$

 \implies If the higher Massey products vanish, then (A, d, ϕ) is formal.

Definition

- (A, d, ϕ) is gauge formal if $\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$.
- (A, d, ϕ) is gauge *n*-formal if

$$\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*, 0, \dots, 0, \varphi'_{n+1}, \dots).$$

Hochschild complex

Transfered structure: $(H(A), \varphi_*, \varphi_3, \varphi_4, \ldots)$

$$\varphi_n \in Hom(H(A)^{\otimes n}, H(A)), \quad |\varphi_n| = 2 - n$$

Hochschild cochain complex:

$$\mathfrak{g} := \prod_{n \geqslant 1} s^{-n+1} Hom(H(A)^{\otimes n}, H(A))$$

Lie bracket : $[x, y] := x \star y - (-1)^{|x||y|} y \star x$

$$x \star y := \sum_{i=1}^{n} (-1)^{(i-1)(m-1)}$$

for $x \in Hom(H(A)^{\otimes n}, H(A))$ and $y \in Hom(H(A)^{\otimes m}, H(A))$.

A formal deformation

Transfered structure:

$$(\varphi_*, \varphi_3, \varphi_4, \ldots) \in \mathfrak{g} \coloneqq \prod_{n \geqslant 1} s^{-n+1} \mathit{Hom}(H(A)^{\otimes n}, H(A))$$

A formal deformation:

$$\Phi := \varphi_* + \varphi_3 \hbar + \varphi_4 \hbar^2 + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket := \mathfrak{g} \widehat{\otimes} R \llbracket \hbar \rrbracket$$

Proposition : $\mathrm{ad}_{\Phi} \coloneqq [\Phi, -]$ defines a differential on $\mathfrak{g}\llbracket \hbar \rrbracket$

Twisted dg Lie algebra:

$$\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi} := (\mathfrak{g}\llbracket\hbar\rrbracket, [-, -], \mathrm{ad}_{\Phi})$$

$$\partial_{\hbar}\Phi := \varphi_3 + 2\varphi_4\hbar + 3\varphi_5\hbar^2 + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket$$

Lemma :
$$\partial_{\hbar}\Phi$$
 is a cycle in $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}:=(\mathfrak{g}\llbracket\hbar\rrbracket,[-,-],\mathrm{ad}_{\Phi}),$
$$\mathrm{ad}_{\Phi}(\partial_{\hbar}\Phi):=[\Phi,\partial_{\hbar}\Phi]=0.$$

$$\partial_{\hbar}\Phi := \varphi_3 + 2\varphi_4\hbar + 3\varphi_5\hbar^2 + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket$$

Lemma : $\partial_{\hbar}\Phi$ is a cycle in $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}:=(\mathfrak{g}\llbracket\hbar\rrbracket,[-,-],\mathrm{ad}_{\Phi})$,

$$\mathrm{ad}_\Phi\big(\partial_\hbar\Phi\big)\coloneqq [\Phi,\partial_\hbar\Phi]=0\ .$$

Kaledin class:

$$\mathcal{K}_{\Phi} := [\partial_{\hbar}\Phi] \in H^1\left(\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}\right) .$$

nth-truncated Kaledin class:

$$\mathcal{K}^n_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + \dots + (n-2)\varphi_n \hbar^{n-3}\right] \in H^1\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right) \ .$$

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3}\right] \in H^{1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007])

 $R: \mathbb{Q}$ -algebra

 (A,ϕ) : dg associative algebra, H(A) is a homotopy retract

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3} \right] \in H^{1}\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n-2} \right)^{\widetilde{\Phi}} \right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani–Rubió, 2019])

 $R: \mathbb{O}$ -algebra

P: Binary Koszul operad

 (A, ϕ) : dg \mathcal{P} -algebra that admits a transferred structure

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

n^{th} -truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3} \right] \in H^{1}\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n-2} \right)^{\widetilde{\Phi}} \right)$$

Theorem (E., 2024)

R: commutative ground ring

 \mathcal{P} : (pr)operad colored in groupoids

n: integer such that n! is invertible in R

 (A,ϕ) : dg ${\mathcal P}$ -algebra that admits a transferred structure

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Properadic coformality of spheres

Example (Kontsevich, Takeda, Vlassopoulos, 2021)

 $C_*(\Omega S^n; R)$ has a pre-Calabi-Yau structure ϕ

= a polyvector field + integrability condition with respect to a noncommutative analogue of the Schouten-Nijenhuis bracket.

Theorem (E., Takeda, in preparation, 2024)

- 1. If R is a \mathbb{Q} -algebra, $(C_*(\Omega S^n; R), \phi)$ is gauge formal.
- 2. Otherwise, $(C_*(\Omega S^{2n}; R), \phi)$ is not gauge formal.

Formality criteria

Formality descent

 (A, ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure

 $H_i(A)$: projective, finitely generated for all i.

S: faithfully flat commutative R-algebra.

Proposition (E., 2024)

 (A, ϕ) is gauge n-formal \iff $(A \otimes_R S, \phi \otimes 1)$ is gauge n-formal.

Proof.

$$H_{-1}\left(\mathfrak{g}_{H(A)}\llbracket\hbar
brace^{\Phi}\right)\otimes_{R\llbracket\hbar
brace}S\llbracket\hbar
brace\cong H_{-1}\left(\mathfrak{g}_{H(A\otimes_R S)}\llbracket\hbar
brace^{\Phi\otimes 1}\right)$$

Examples

- $C(\mathcal{D}_k; \mathbb{R})$ is formal $\iff C(\mathcal{D}_k; \mathbb{Q})$ is formal [GSNPR, 2005]
- $\mathbb{Z}_{(\ell)} \subset \mathbb{Z}_{\ell}$

Complement of hyperplane arrangements

X: a complement of a hyperplane arrangement over \mathbb{C} \to complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

 ℓ : a prime number different from p

s: order of q in $\mathbb{F}_{\ell}^{\times}$

Proposition (Dummond-Cole – Horel, 2021)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_{\ell})$ is gauge (s-1)-formal.

Formality descent $\implies C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$ is gauge (s-1)-formal.

Triviality of fibrations

Theorem (E., 2024)

X : a simply connected topological space

F: a nilpotent space of finite \mathbb{Q} -type.

A fibration $\xi: E \to X$ with fiber $F_{\mathbb{Q}}$ is trivial up to homotopy iff

 $\xi \otimes \mathbb{R}$ is trivial up to homotopy.

Example

The Fadell–Neuwirth fibration :

$$\xi: \operatorname{Conf}_{n-1}\left(\mathbb{R}^d\right) \longrightarrow \operatorname{Conf}_n\left(\mathbb{S}^d\right) \longrightarrow \mathbb{S}^d \ .$$

If d is odd, $\xi \otimes \mathbb{R}$ is trivial up to homotopy [Haya Enriquez, 2022]

 $\implies \xi$ is trivial up to homotopy.

Automorphism lifts

 (A,ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure

Theorem (E., 2024)

Suppose that $u \in Aut(H(A), \varphi_0)$ admits a chain lift. Let

$$\operatorname{Ad}_{u}:\operatorname{End}_{H(A)}\to\operatorname{End}_{H(A)}\quad \psi\longmapsto u^{\otimes q}\circ\psi\circ(u^{-1})^{\otimes p}$$
,

for
$$\psi \in \operatorname{End}_{H(A)}(p,q) = \operatorname{Hom}\left(H(A)^{\otimes p}, H(A)^{\otimes q}\right)$$

- 1. If $Ad_u id$ is invertible, then (A, ϕ) is gauge formal and every homology automorphism admits a chain level lift.
- 2. If $Ad_u id$ is invertible on the elements of degree k for all k < n, then (A, ϕ) is gauge n-formal.

Automorphism lifts

R: a field

 (A, ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure s.t. H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists $u \in \operatorname{Aut}(H(A), \varphi_0)$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing\;,$$

where $u_i := u_{|H_i(A)}$. If u admits a lift at the level of chains then (A, ϕ) is gauge n-formal.

Frobenius & Weil numbers

K: a finite extension of \mathbb{Q}_p

 ${m q}$: order of the residue field of the ring of integers ${\mathcal O}_{\mathcal K}$

 ℓ : a prime number different from p

X : a smooth proper K-scheme

Definition

 $\alpha \in \overline{\mathbb{Q}}_{\ell}$ is a Weil number of weight n if

$$\forall \ \iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \ .$$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{\mathrm{et}}(X_{\overline{K}},\mathbb{Q}_\ell)$ are Weil numbers of weight n.

Theorem

Let X be a smooth and proper scheme over \mathbb{C} . The algebra $C^{\bullet}(X_{\mathrm{an}},\mathbb{Q})$ is formal.

Proof.

• There exists a smooth and proper model \mathcal{X} over $\mathcal{O}_{\mathcal{K}}$.

$$C^{ullet}(X_{an}, \mathbb{Q}_{\ell}) \cong C^{ullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$$

- Let u be the Frobenius action on $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$.
- For all $k \geq 1$, (k_1, \ldots, k_p) and $s \coloneqq k_1 + \cdots + k_p$, $\operatorname{Spec}(u_{s+k}) \quad \cap \quad \operatorname{Spec}(u_{k_1} \otimes \cdots \otimes u_{k_p}) = \varnothing \ .$ $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \beta$ $|\iota(\alpha)| = q^{\frac{s+k}{2}} \qquad > \qquad \qquad |\iota(\beta)| = q^{\frac{s}{2}}$

Previous work: [Deligne, 1980]

Let Sch_K be the category of smooth and proper schemes over K of good reduction, i.e. for which there exists a smooth and proper model over \mathcal{O}_K .

Theorem (E., 2024)

Let $\mathbb V$ be a groupoid and let $\mathscr P$ be a $\mathbb V$ -colored operad in sets. Let X be a $\mathscr P$ -algebra in Sch_K . The dg $\mathscr P$ -algebra $C_{ullet}(X_{\operatorname{an}},\mathbb Q)$ is formal.

Example (Guillén Santos, Navarro, Pascual, & Roig, 2005)

 $\overline{\mathcal{M}}$ the cyclic operad of moduli spaces of stable algebraic curves $C_{\bullet}(\overline{\mathcal{M}}_{an};\mathbb{Q})$ is formal

Beyond formality

Homotopy equivalences between algebraic structure

Definition

The dg \mathscr{P} -algebras (A, ϕ) and (B, ψ) are

homotopy equivalent

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (B, \psi)$$

• gauge homotopy equivalent if $\exists (A, \phi) \stackrel{\sim}{\leadsto} (B, \psi)$.

Example

 (A, ϕ) is formal if it is homotopy equivalent to $(H(A), \varphi_*)$

Question

• Can we generalize Kaledin classes to study homotopy equivalences ?

Obstruction sequences to homotopy equivalences

Let (A, φ) and (B, ψ) be two \mathscr{P} -algebras with $H(A) \cong H(B)$.

- \rightarrow obstruction sequence $(\vartheta_k)_{1 \le k \le n}$ which is either
 - an infinite sequence of vanishing classes, when $n = \infty$;
 - a finite sequence of trivial classes that ends on $\vartheta_n \neq 0$.

The index $n \in [1, \infty]$ of the last class only depends on ϕ and ψ .

Theorem (E., 2024)

The algebras (A, φ) and (B, ψ) are gauge homotopy equivalent modulo $\mathcal{F}^k\mathfrak{g}$ for all k if and only if $n = \infty$.

Minimal model on highly connected variety

Theorem (E., 2024)

Let M^d be a compact k-connected oriented C^{∞} -manifold where d is smaller than $(\ell+1)k+2$. For every prime number p,

$$C^*_{\mathrm{sing}}(M,\mathbb{F}_p)$$

is homotopy equivalent to an A_{∞} -algebra $(H^*_{\mathrm{sing}}(M,\mathbb{F}_p),\varphi)$, with $\varphi_n=0$ for $n\geqslant \ell$.

Thank you for your attention!

