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Formal topological spaces
R : commutative ground ring

Definition
A topological space X is formal if there exists a zig-zag of
quasi-isomorphisms of dga algebras,

CL.(X;R) < - = ... & Hng (Xi R)

sing
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Formal topological spaces
R : commutative ground ring

Definition
A topological space X is formal if there exists a zig-zag of
quasi-isomorphisms of dga algebras,

Cing(XGR) «— - — -+ — + — H§(XiR) .

— Origins in rational homotopy theory (for Q C R)

X formal = The cohomology ring H, (X, Q) completely
determines the rational homotopy type of X.
Examples

® Spheres, complex projective spaces, Lie groups

® Compact Kahler manifolds [Deligne, Griffiths, Morgan & Sullivan, 1975]
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Formality of an algebraic structure
A : chain complex over R
& . colored operad or properad
¢: P — Endy : adg H-algebra structure
Definition
The dg H-algebra (A, ¢) is formal if

~

where ¢, is the canonical Z-algebra structure on H(A).
Examples
e X is formal = (C2,.(X; R),U) is formal as dga algebra

sing

® C(Dk;R) is formal as an operad [Kontsevich, 1999]
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Purity implies formality

(A, ¢) : dg S-algebra encoded by an operad &
a : unit of infinite order in R

0o : the degree twisting by a = automorphism of (H(A), )
which acts via a¥x on Hy(A).

Theorem
If 0, admits a chain-level lift, i.e. 3 f € End(A, ¢) s.t. H(f) = o4,
then (A, ¢) is formal.

— Deligne, Griffiths, Morgan, Sullivan [1975]

— Sullivan [1977]

— Guillén Santos, Navarro, Pascual, Roig [2005]
— Drummond-Cole and Horel [2021]
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Examples

® Petersen [2014], Boavida de Brito and Horel [2021]
The little disks operad Dy & Grothendieck-Teichmiiller group

® Riche, Soergel, Williamson [2014]
The extensions of parity sheaves on the flag variety.

¢ Drummond-Cole and Horel [2021]
X : a complement of a hyperplane arrangement over C
defined over a finite extension K of Q.

¢ : a prime number different from p
— C.(Xan,Zg) = Ce.t(va Zg) [Artin].
— A Frobenius action on H3.(X5%, Zy) is 0 [Kim, 1994].
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Questions

e Can we descend these results to other coefficient rings?
(e.g. Z(g), )

e Does the degree twisting criteria hold for other types of
algebras? (e.g. Hopf algebras, involutive Lie bialgebras,...)

e Is the degree twisting the only homology automorphism
satisfying this property?
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Kaledin classes & formality criteria

1. Higher structures

® Formality can be addressed as a deformation problem, using
the operadic calculus.

2. Kaledin classes
® An obstruction theory to the formality over any ring

3. Formality criteria
® Formality descent with torsion coefficient, Automorphism lifts

4. Beyond formality
® Generalizing Kaledin classes to study homotopy equivalences
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Homotopy retracts

Definition
(W, dw) is a homotopy retract of (V,d\/) if there are maps

v ((Vody) = (W.dw)

i

where idy — ip = dyh + hdy and i is a quasi-isomorphism .
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Homotopy retracts
Definition

(W, dw) is a homotopy retract of (V,dy) if there are maps

v ((Vody) = (W.dw)

i

where idy — ip = dyh + hdy and i is a quasi-isomorphism .
Proposition

If R is a field, the cohomology of any cochain complex is a
homotopy retract:

(7 (Ada) == (H(A).0).
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Transfer of algebraic structure

(A, da, @) : a dga algebra and a homotopy retraction:

o (Adad) = (H.dn)

— Transferred product: ¢ == po¢oi®: H®? - H

i i

he

Beyond formality
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Transfer of algebraic structure

(A, da, @) : a dga algebra and a homotopy retraction:

o (Adad) = (H.dn)

i

— Transferred product: ¢ == po¢oi®: H®? - H

i i
p
Not associative in general!
i i i i
i i
ip 7 ip

Beyond formality
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— Consider @3 : H®3 — H
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— Consider @3 : H®3 — H

1

i [
P p

— In Hom(H®3, H):

— (pp is associative up to the homotopy 3.
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— op: H®" — H, for all n > 2
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Homotopy associative algebras
Definition (Stasheff, 1963)

Axo-algebra: a cochain complex H with a collection of maps
©n: H®" = H

of degree 2 — n, for all n > 2, which satisfy the relations

(2 -

Examples

e Every dga algebra (A, ¢) is an Ac-algebra with ¢, =0 for all n > 3.
o (H,dn,p2,3,...)
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Homotopy transfer theorem

Theorem (Kadeishvili, 1982)
Given a dga algebra (A, da, ¢) and a homotopy retract

h C (A, da, 9) — (H, dun)

i

there exists an Ao-algebra structure on H such that p (and i)
extend to Aoo-quasi-isomorphisms:

(A7 dA7¢) RSttt (Ha dH:QO27(103a(P47 .. )
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Homotopy morphisms

(A, da, d2,...), (H,du,p2,...) : Ax-algebras

Definition
Aoo-morphism f : A~ H is a collection of linear maps

fp: A" — H, n>1,
of degree 1 — n, which satisfy the relations

AVARRR\74
f.. . f

> -y e

k=1 k+I=n+1
I’1+‘~‘+I‘k:n ¢k

where ¢1 = dy and ¢1 = da.



Notion of formality Higher structures Kaledin classes Formality criteria Beyond formality
000000 000000080 0000000 00000000 0000

Homotopy quasi-isomorphisms

Definition
Aso-quasi-isomorphism f : A < H is an Aso-morphism where
fi : A— H is a quasi-isomorphism .
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Homotopy quasi-isomorphisms

Definition
Aso-quasi-isomorphism f : A < H is an Aso-morphism where
fi : A— H is a quasi-isomorphism .
Proposition (R is a field)
quasi-isos of associative algebras Asc-quasi-iso

Corollary
A dga algebra (A, ¢) is formal if and only if

3 (A, ¢) = (H(A), ) -
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An equivalent characterization of formality
(A, d, ¢) a dga algebra such that H(A) is a homotopy retract

(A, d, 9) m (H(A), s, 03,04 . ..) Higher Massey products

37
Formality

(H(A), ¢x)
= If the higher Massey products vanish, then (A, d, ¢) is formal.
Definition
® (A, d, ) is gauge formal if 3 (H(A), 0x, ¢3,04...) = (H(A), ).

® (A d, o) is gauge n-formal if

3 (H(A), ps, p3,08...) ~ (H(A),04,0,...,0,¢0.1,...) .
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Hochschild complex
Transfered structure: (H(A), ¢, ©3, @4, ...)
n € Hom(H(A)®", H(A)), |en|l=2—n

Hochschild cochain complex:

g =[] s " Hom(H(A)®", H(A))

n>1

Lie bracket : [x,y] = xxy — (—=1)XMly x x

for x € Hom(H(A)®", H(A)) and y € Hom(H(A)®™ H(A)) .

Beyond formality
0000



Notion of formality Higher structures Kaledin classes Formality criteria Beyond formality
000000 000000000 0@00000 00000000 0000

A formal deformation

Transfered structure:

(04 03,04, ...) € g = [ [ s Hom(H(A)®", H(A))
A formal deformation:
¢ =, + p3h+ pah® + -+ € g[h] := g@R[A]
Proposition : ade = [®, —] defines a differential on g[]

Twisted dg Lie algebra:

olnl® = (a7l [, . ado)
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Kaledin classes

n® = 3 + 204h + 3psh? + - - € g[7]

Lemma : 939 is a cycle in g[2]® = (a[7], [, —], ads),

adq,(é?th) = [CD, 85(1)] =0.

Beyond formality
0000
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Kaledin classes

Oh® = 3+ 204 + 3psh® + -+ € g[h]

Lemma : 939 is a cycle in g[2]® = (a[7], [, —], ads),
ad¢,(8ﬁd>) = [d>,8hd>] =0.

Kaledin class:
Ko = [050] € H? (g[[h]]¢) .

nth-truncated Kaledin class :

Beyond formality
0000

Ko = [p3+20sh+ -+ (n—2)p,h" %] € H! <(g|[h]]/h"‘2)$> '
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Kaledin classes

Kaledin class:

Ko = [ip3 +20ah + 3¢sh® + -] € H' (a[1]°)
nth_truncated Kaledin class :

Kg = [803 +2psh+ -+ (n— 2)(,0,,71"73] e H! <(g[[h]]/h”2)$)

Theorem ([Kaledin, 2007], [Lunts, 2007] )

R : Q-algebra

(A, ¢) : dg associative algebra, H(A) is a homotopy retract
® (A, 9) is gauge formal <= Ko = 0.
® (A, ¢) is gauge n-formal < K = 0.
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Kaledin class:

Ko = [i03 +20ali + 3¢sh® + -] € H' (a[1]°)
nth_truncated Kaledin class :

Ky = [p3 +2psh+ -+ (n = 2)p,h" 3] € H <(g[[h]]/h”_2)$)

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani-Rubié, 2019] )
R : Q-algebra
P : Binary Koszul operad
(A, ¢) : dg P-algebra that admits a transferred structure
* (A, ¢) is gauge formal <= K¢ = 0.
* (A, 9) is gauge n-formal <= Kg = 0.
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Kaledin class:

Ko = [p3 + 2p0ah + 3psh? + -] € H! (g|[h]]¢>
nth_truncated Kaledin class :

Ke = [903 +2pah+ -+ (n— 2)(,0,771”’3] c H! ((g[[h]]/h”z)a))

Theorem (E., 2024)

R : commutative ground ring

P : (pr)operad colored in groupoids

n : integer such that n! is invertible in R

(A, @) : dg P-algebra that admits a transferred structure

* (A ¢) is gauge formal <= K¢ = 0.
* (A, ¢) is gauge n-formal <= Kg = 0.
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Properadic coformality of spheres

Example (Kontsevich, Takeda, Vlassopoulos, 2021)
C.(25"; R) has a pre-Calabi-Yau structure ¢

= a polyvector field + integrability condition with respect to a
noncommutative analogue of the Schouten-Nijenhuis bracket.

Theorem (E., Takeda, in preparation, 2024)

1. If R is a Q-algebra, (C.(2S"; R), ¢) is gauge formal.
2. Otherwise, (C.(Q5%"; R), ¢) is not gauge formal.
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Formality descent
(A, ¢) : a dg P-algebra that admits a transferred structure
H;(A) : projective, finitely generated for all .

S : faithfully flat commutative R-algebra.

Proposition (E., 2024)
(A, ¢) is gauge n-formal <= (A®gr S, ¢ ® 1) is gauge n-formal.

Proof.
H-1 (gna)[11®) ©rpp SRl = Ho1 (9H(agks) [71°Y) O

Examples

e C(Dg;R) is formal <= C(Dy; Q) is formal [GSNPR, 2005]
o Zy C Ze
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Complement of hyperplane arrangements

X : a complement of a hyperplane arrangement over C
— complement of a finite collection of affine hyperplanes in AZ.

K : a finite extension of Q,

q : order of the residue field of the ring of integers of K
¢ : a prime number different from p

s : order of g in F/f

Proposition (Dummond-Cole — Horel, 2021)

If X is defined over K, i.e. 3 K — C and 3 X a complement of a
hyperplane arrangement over K s.t. X xx C = X, then
C*(Xan, Zy) is gauge (s — 1)-formal.

Formality descent == C*(Xan, Z(y)) is gauge (s — 1)-formal.



Notion of formality Higher structures Kaledin classes Formality criteria Beyond formality
000000 000000000 0000000 0O0e00000 0000

Triviality of fibrations

Theorem (E., 2024)
X : a simply connected topological space
F : a nilpotent space of finite Q-type.

A fibration £ : E — X with fiber Fq is trivial up to homotopy iff
£ ® R s trivial up to homotopy.

Example
The Fadell-Neuwirth fibration :

¢ : Confp_1 (Rd) — Conf, (Sd) U

If dis odd, £ ® R is trivial up to homotopy [Haya Enriquez, 2022]

= £ is trivial up to homotopy.
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Automorphism lifts

(A, ¢) : a dg P-algebra that admits a transferred structure

Theorem (E., 2024)
Suppose that u € Aut(H(A), po) admits a chain lift. Let

Ady : Endy(a) — Endyay ¢ — u®9 oo (u")®P |
for 1 € Endpya)(p, q) = Hom (H(A)®P, H(A)®9)

1. If Ad, — id is invertible, then (A, ¢) is gauge formal and every
homology automorphism admits a chain level lift.

2. If Ad, —id is invertible on the elements of degree k for all
k < n, then (A, ¢) is gauge n-formal.



Notion of formality Higher structures Kaledin classes Formality criteria Beyond formality
000000 000000000 0000000 00008000 0000

Automorphism lifts

R : a field
(A, ¢) : adg P-algebra that admits a transferred structure s.t.
H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists u € Aut(H(A), o) such that for all
k< n, and all p-tuples (k1, ..., kp),

Spec(uxy ..+ kp+k) N Spec(uy, @ -+ @ uk,) = ,

where u; == u,a). If u admits a lift at the level of chains then
(A, @) is gauge n-formal.
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Frobenius & Weil numbers

K : a finite extension of Q,

q : order of the residue field of the ring of integers Ok
£ : a prime number different from p

X : a smooth proper K-scheme

Definition

a € Qq is a Weil number of weight n if

Vi:Q= € i) =q"?.

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on HJ,(X5, Qq) are
Weil numbers of weight n.
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Theorem

Let X be a smooth and proper scheme over C. The algebra
C*(Xan, Q) is formal.

Proof.

® There exists a smooth and proper model X over O.

C.(XanaQZ) = Cgt(Xﬁv @Z)
® Let u be the Frobenius action on HZ, (X%, Q).
® Forall k> 1, (ki,...,kp) and s := ki + - + kp,

Spec(us+) n Spec(ug, ® -+ ® ukp) =9
W w
a g

stk

a) =q% > (8)] = q

Previous work: [Deligne, 1980]
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Let Schy be the category of smooth and proper schemes over K of
good reduction, i.e. for which there exists a smooth and proper
model over Ok.

Theorem (E., 2024)

Let V be a groupoid and let &? be a V-colored operad in sets.
Let X be a P-algebra in Schi. The dg &-algebra Co(Xan, Q) is
formal.

Example (Guillén Santos, Navarro, Pascual, & Roig, 2005)

M the cyclic operad of moduli spaces of stable algebraic curves

Co(Mn; Q) is formal
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Homotopy equivalences between algebraic structure

Definition
The dg P-algebras (A, ¢) and (B, ) are
® homotopy equivalent

~

J(A¢) < o & (B

® gauge homotopy equivalent if 3 (A, ¢) ~ (B,v).

Example
(A, @) is formal if it is homotopy equivalent to (H(A), px)

Question

e Can we generalize Kaledin classes to study homotopy
equivalences ?
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Obstruction sequences to homotopy equivalences

Let (A, ¢) and (B, ) be two Z-algebras with H(A) = H(B).

— obstruction sequence (Jx); <, Which is either
. an infinite sequence of vanishing classes, when n = oo ;
. a finite sequence of trivial classes that ends on ¥, # 0 .

The index n € [1,00] of the last class only depends on ¢ and .

Theorem (E., 2024)

The algebras (A, ) and (B, ) are gauge homotopy equivalent
modulo F*g for all k if and only if n = cc.
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Minimal model on highly connected variety

Theorem (E., 2024)

Let M9 be a compact k-connected oriented C°°-manifold where d
is smaller than (¢ + 1)k + 2. For every prime number p,

C;ng(Ma ]FP)

is homotopy equivalent to an Ax-algebra (HZ,,(M,Fp), ¢), with
on=0forn>¥.
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Thank you for your attention!
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