TD12: Homologie cellulaire

Applications du cours * à préparer en l'avance et corriger en début de séance

Pour s'entrainer et approfondir * * à traiter pendant la séance

Pour aller plus loin * * * facultatifs

Exercice 1. Homologie cellulaire de quelques espaces *

Soient R un groupe abélien et $n \geq 0$. Calculer l'homologie à coefficients dans R des espaces suivants :

- 1. La sphère \mathbb{S}^n ,
- 2. Les espaces projectifs complexes \mathbb{CP}^n et \mathbb{CP}^{∞} ,
- 3. L'espace projectif \mathbb{RP}^n et \mathbb{RP}^{∞} ,
- 4. La surface S_q de genre $g \geq 1$. En déduire l'homologie du tore \mathbb{T} .
- 5. Trouver deux espaces qui ont même homologie à coefficients dans Q mais pas à coefficients dans Z,
- 6. Trouver deux espaces qui ont même homologie à coefficients dans $\mathbb{Z}/2\mathbb{Z}$ mais pas à coefficients dans \mathbb{Z} .

Exercice 2. Caractéristique d'Euler **

Soit X un CW-complexe fini. Pour tout $k \geq 0$, on note c_k le nombre de k-cellules de X. La caractéristique d'Euler de X est l'entier $\chi(X) = \sum_{i>0} (-1)^i c_i$.

1. Soit K un corps. Montrer que $\chi(X)$ peut également être calculée par la formule

$$\chi(X) = \sum_{i>0} (-1)^i \dim_F H_i(X; \mathbb{K}).$$

- 2. Calculer la caractéristique d'Euler des surfaces S_g et S_g' pour tout $g \ge 0$.
- 3. Donner une condition nécessaire et suffisante sur les entiers g et h pour qu'il existe un revêtement de S_g par S_h .
- 4. On suppose que le CW-complexe fini X s'écrit comme l'union de deux sous-complexes A et B. Montrer que

$$\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B).$$

5. Soient X et Y des CW-complexes finis. Expliquer comment $X \times Y$ peut être muni d'une structure de CW-complexe fini, et montrer que $\chi(X \times Y) = \chi(X)\chi(Y)$.

Exercice 3. Homologie cellulaire et produit **

Soient X et Y deux CW-complexes. On suppose que X ou Y est localement fini (par exemple que l'un des deux est compact).

- 1. Construire une structure de CW-complexe sur le produit $X \times Y$.
- 2. Montrer que l'on a un isomorphisme naturel au niveau des complexes de chaînes cellulaires

$$C^{cw}_{\bullet}(X \times Y) \cong C^{cw}_{\bullet}(X) \otimes C^{cw}_{\bullet}(Y)$$

3. Calculer l'homologie à coefficients dans \mathbb{Z} de $\mathbb{S}^m \times \mathbb{S}^n$ pour $m, n \geq 1$.

Exercice 4. Espaces de Moore $\star \star$

Étant donnés un groupe abélien G et un entier $n \geq 1$, on appelle espace de Moore pour (G, n) un CW-complexe X tel que $H_n(X, \mathbb{Z}) \simeq G$ et $\tilde{H}_i(X) = 0$ pour $i \neq n$.

- 1. Construire un espace de Moore pour $G=\mathbb{Z}/m\mathbb{Z}$ et n quelconque.
- 2. Construire un espace de Moore pour G abélien de type fini et n quelconque.
- 3. Construire un espace de Moore pour G et n quelconques.
- 4. Soient $(G_i)_{i\geq 1}$ des groupes abéliens. Construire un espace topologique connexe par arcs X tel que $H_i(X,\mathbb{Z})=G_i$ pour tout $i\geq 1$.

Exercice 5. Points antipodaux ***

Calculer l'homologie des espaces suivants :

- 1. Le quotient de \mathbb{S}^2 obtenu en identifiant les points antipodaux de son équateur.
- 2. Le quotient de \mathbb{S}^3 obtenu en identifiant les points antipodaux de son équateur $\mathbb{S}^2 \subset \mathbb{S}^3$.

