TD4: Le groupe fondamental

Applications du cours * à préparer en l'avance et corriger en début de séance

Pour s'entrainer et approfondir * * à traiter pendant la séance

Pour aller plus loin * * * facultatifs

Exercice 1. Groupe fondamental d'un groupe topologique *

- 1. Principe de Eckmann-Hilton : Soit X un ensemble. On suppose que X est équipé de deux produits, c'est-à-dire de deux applications $*: X \times X \to X$ et $\circ: X \times X \to X$ vérifiant les conditions suivantes :
 - (i) Chaque loi admet une unité 1_{*} et 1_o, respectivement.
 - (ii) L'application $*: X \times X \to X$ est compatible avec l'opération \circ , c'est-à-dire :

$$(x \circ x') * (y \circ y') = (x * y) \circ (x' * y').$$

Montrer que les deux applications produits sont égales, et qu'elles définissent une structure de mono $\ddot{}$ de commutatif sur X.

2. Montrer que le groupe fondamental d'un groupe topologique est abélien. (On rappelle qu'un groupe topologique est un espace topologique muni d'une loi de groupe pour laquelle la multiplication et le passage à l'inverse sont continus).

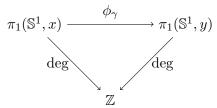
Exercice 2. Groupe fondamental de certains groupes linéaires *

- 1. Soit $n \geq 1$ un entier. Déterminer le nombre de composantes connexes des groupes suivants : $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $U_n(\mathbb{C})$.
- 2. Montrer que l'application $SU_2(\mathbb{C}) \to \mathbb{C}^2$ qui à une matrice associe sa première colonne induit un homéomorphisme entre $SU_2(\mathbb{C})$ et \mathbb{S}^3 .
- 3. En déduire le groupe fondamental des groupes topologiques $SU_2(\mathbb{C})$, $U_2(\mathbb{C})$ et $GL_2(\mathbb{C})$.
- 4. Calculer le groupe fondamental de $SO_2(\mathbb{R})$, de $GL_2(\mathbb{R})_+$ (composante connexe de $GL_2(\mathbb{R})$ formée des matrices de déterminant positif) et de $GL_2(\mathbb{R})_-$ (composante connexe de $GL_2(\mathbb{R})$ formée des matrices de déterminant négatif).

Exercice 3. Degré d'une application *

1. Soit $f: \mathbb{S}^1 \to \mathbb{S}^1$ une application continue et soit $x \in \mathbb{S}^1$. On note $n_x(f) \in \mathbb{Z}$ le nombre tel que le diagramme suivant soit commutatif :

(a) Montrer que pour tout chemin γ d'origine y et d'extrémité x, on a un diagramme commutatif de morphisme de groupes (où $\phi_{\gamma}([\alpha]) = [\gamma^{-1}\alpha\gamma]$)



(b) Montrer que le nombre n_x est indépendant de x. On l'appelle le degré de f, et on le note $\deg(f)$.

- 2. Montrer que $\deg(f \circ g) = \deg(f) \cdot \deg(g)$.
- 3. Montrer que deux applications sont homotopes si, et seulement si elles ont le même degré.
- 4. Montrer que si $\deg(f) \neq 0$ alors f est surjective. La réciproque est-elle vraie?
- 5. Montrer que si f est injective alors $|\deg(f)| = 1$. La réciproque est-elle vraie?

Exercice 4. Théorème de Borsuk-Ulam **

Le théorème de Borsuk-Ulam dit que pour tout $n \geq 1$ et pour toute application continue $f: \mathbb{S}^n \to \mathbb{R}^n$, il existe $x \in \mathbb{S}^n$ tel que f(x) = f(-x).

- 1. Prouver le théorème pour n = 1.
- 2. On souhaite montrer le théorème pour n=2. On raisonne par l'absurde et on suppose donc qu'il existe une application $f: \mathbb{S}^2 \to \mathbb{R}^2$ qui vérifie, pour tout $x, f(x) \neq f(-x)$.
 - (a) Montrer que si $g: \mathbb{S}^1 \to \mathbb{S}^1$ vérifie g(-x) = -g(x) alors g est de degré impair.
 - (b) Soit l'application $q: \mathbb{S}^2 \to \mathbb{S}^1$ définie par

$$g: x \mapsto \frac{f(x) - f(-x)}{|f(x) - f(-x)|}.$$

Observer que g(-x) = -g(x) et en déduire le théorème pour n = 2 en considérant $g \circ \iota : \mathbb{S}^1 \to \mathbb{S}^1$ où ι est l'inclusion de \mathbb{S}^1 comme équateur dans \mathbb{S}^2 .

3. Montrer le théorème de Lusternik-Schnirelmann : Soient A, B, C trois fermés de \mathbb{S}^2 dont la réunion recouvre \mathbb{S}^2 . Montrez que l'un des fermés contient deux points antipodaux.

Exercice 5. Point base et groupe d'homotopie d'un produit **

- 1. On suppose que X est connexe par arcs. Soient x_0 et x_1 des points de X. Montrer que les groupes $\pi_k(X, x_0)$ et $\pi_k(X, x_1)$ sont isomorphes pour tous $k \ge 0$.
- 2. Soient (X, x_0) et (Y, y_0) des espaces topologiques pointés, et soit $k \ge 1$ un nombre entier. Montrer que

$$\pi_k(X \times Y, (x_0, y_0)) \cong \pi_k(X, x_0) \times \pi_k(Y, y_0).$$

Exercice 6. Sphéroïdes **

Soit (X, x_0) un espace topologique pointé, et soit $k \ge 1$ un nombre entier.

- 1. Soit $s_0 \in \mathbb{S}^k$ un point de la sphère \mathbb{S}^k . Décrire l'opération de groupe sur $\pi_k(X, x_0)$ en termes des applications $(\mathbb{S}^k, s_0) \to (X, x_0)$.
- 2. Si $k \geq 2$, montrer que le groupe $\pi_k(X, x_0)$ est abélien.

Exercice 7. Homotopie libre $\star \star \star$

Soit X un espace topologique non vide et connexe par arcs, et soit x un point de X. On appelle lacet libre dans X une application continue $f:[0,1] \to X$ telle que f(0) = f(1). Deux lacets libres f_0 et f_1 sont dits librement homotopes s'il existe une application continue $H:[0,1] \times [0,1] \to X$ telle que, pour tout $t \in [0,1]$, on ait

$$H(t,0) = f_0(t), \ H(t,1) = f_1(t), \ H(0,t) = H(1,t)$$
.

Montrer que l'ensemble des classes d'homotopie libre est en bijection avec l'ensemble des classes de conjugaison de $\pi_1(X,x)$.

