Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Operadic calculus and formality criteria

Coline Emprin

Young Topologists Meeting 2022

Department of Mathematical Sciences - University of Copenhagen

July 18, 2022

Higher structures

Some criteria

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

The notion of formality

Higher structures

Some criteria

Formal topological spaces

R : commutative ground ring

Higher structures

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Formal topological spaces

R : commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{ullet}_{\mathrm{sing}}(X;R) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H^{ullet}(X;R) \;.$$

Higher structures

Some criteria

Formal topological spaces

R : commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{ullet}_{\mathrm{sing}}(X;R) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H^{ullet}(X;R) \ .$$

→ Origins in rational homotopy theory (for $R \subset \mathbb{Q}$) X formal $\implies H^{\bullet}(X, \mathbb{Q})$ completely determines the rational homotopy type of the space.

- $\rightarrow\,$ Formal spaces
 - Spheres, complex projective spaces, Lie groups

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

- \rightarrow Formal spaces
 - Spheres, complex projective spaces, Lie groups
 - Compact Kähler manifolds [DGMS, 1975]

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

- $\rightarrow\,$ Formal spaces
 - Spheres, complex projective spaces, Lie groups
 - Compact Kähler manifolds [DGMS, 1975]
- \rightarrow Nonformal spaces
 - The complement of the Borromean rings

Some criteria

Formality of an algebraic structure

A: cochain complex over R

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Formality of an algebraic structure

- A : cochain complex over R
- (A, ν) : differential graded algebraic structure over A, e.g.
 - $\rightarrow\,$ a dg associative algebra,
 - $ightarrow\,$ a dg Lie algebra,
 - $ightarrow\,$ a dg operad,

 $\rightarrow \cdots$

Formality of an algebraic structure

- A : cochain complex over R
- (A, ν) : differential graded algebraic structure over A, e.g.
 - $\rightarrow\,$ a dg associative algebra,
 - $ightarrow\,$ a dg Lie algebra,
 - $\rightarrow\,$ a dg operad,

 $\rightarrow \cdots$

Definition

The dg algebra (A, ν) is formal if

$$\exists (A,\nu) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\overline{\nu}) .$$

(日)

Formality of an algebraic structure

- A : cochain complex over R
- (A, ν) : differential graded algebraic structure over A, e.g.
 - $\rightarrow\,$ a dg associative algebra,
 - $ightarrow\,$ a dg Lie algebra,
 - $\rightarrow\,$ a dg operad,

 $\rightarrow \cdots$

Definition

The dg algebra (A, ν) is formal if

$$\exists (A,\nu) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\overline{\nu}) .$$

Examples

• X is formal $\iff (C^{ullet}_{\mathrm{sing}}(X;R),\cup)$ is formal as dga algebra

Formality of an algebraic structure

- A : cochain complex over R
- (A, ν) : differential graded algebraic structure over A, e.g.
 - $\rightarrow\,$ a dg associative algebra,
 - $ightarrow\,$ a dg Lie algebra,
 - $ightarrow\,$ a dg operad,

 $\rightarrow \cdots$

Definition

The dg algebra (A, ν) is formal if

 $\exists (A,\nu) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\overline{\nu}) \ .$

- X is formal $\iff (C^{ullet}_{\mathrm{sing}}(X;R),\cup)$ is formal as dga algebra
- $C^{\bullet}_{sing}(\mathcal{D}_k; \mathbb{R})$ is formal as an operad, where \mathcal{D}_k is the little *k*-discs operad [Kontsevich, 1999]

Higher structures

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Higher structures & operadic calculus

Higher structures

Some criteria

(ロ)

Homotopy retracts

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Homotopy retracts

Definition (W, d_W) is a homotopy retract of (V, d_V) if there are maps of cochain complexes

$$h \overset{p}{\underset{i}{\longleftarrow}} (V, d_V) \underset{i}{\overset{p}{\longleftarrow}} (W, d_W)$$

where $id_V - ip = d_V h + hd_V$ and *i* is a quasi-isomorphism

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Homotopy retracts

Definition (W, d_W) is a homotopy retract of (V, d_V) if there are maps of cochain complexes

$$h \overset{p}{\overset{}} (V, d_V) \underset{i}{\overset{p}{\longleftarrow}} (W, d_W)$$

where $id_V - ip = d_V h + hd_V$ and *i* is a quasi-isomorphism

Proposition

If R is a field, any chain complex admits its cohomology as a homotopy retract

$$h \longrightarrow (A, d_A) \xrightarrow{P} (H(A), 0)$$

Higher structures

Some criteria

(ロ)

Transfer of algebraic structure

Some criteria

(ロ)

Transfer of algebraic structure

ightarrow (A, d, u) a dga algebra and a homotopy retract:

$$h (\overset{p}{\longrightarrow} (A, d_A, \nu) \underset{i}{\overset{p}{\longleftarrow}} (H, d_H)$$

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Transfer of algebraic structure

ightarrow (A, d, u) a dga algebra and a homotopy retract:

$$h \overset{P}{\longrightarrow} (A, d_A, \nu) \underset{i}{\overset{P}{\longleftarrow}} (H, d_H)$$

 \rightarrow Transferred product: $\mu_2 \coloneqq p \circ \nu \circ i^{\otimes 2} : H^{\otimes 2} \rightarrow H$

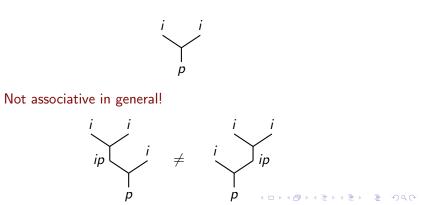
Some criteria

Transfer of algebraic structure

ightarrow (A, d, u) a dga algebra and a homotopy retract:

$$h \overset{P}{\longrightarrow} (A, d_A, \nu) \underset{i}{\overset{P}{\longleftarrow}} (H, d_H)$$

 \rightarrow Transferred product: $\mu_2 \coloneqq p \circ \nu \circ i^{\otimes 2} : H^{\otimes 2} \rightarrow H$



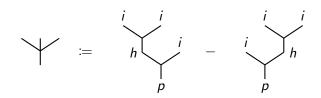
Higher structures

Some criteria

E 990

<ロト < 四ト < 三ト < 三ト < 三ト -

 \rightarrow Consider $\mu_3: H^{\otimes 3} \rightarrow H$



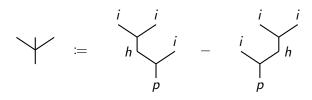
Higher structures

Some criteria

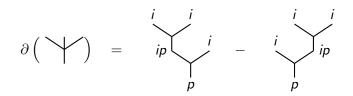
<ロト < 四ト < 三ト < 三ト < 三ト -

∃ 990

$$\rightarrow$$
 Consider $\mu_3 : H^{\otimes 3} \rightarrow H$



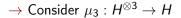
 \rightarrow In Hom $(H^{\otimes 3}, H)$:

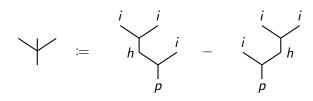


Higher structures

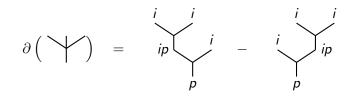
Some criteria

(日)





 \rightarrow In Hom $(H^{\otimes 3}, H)$:



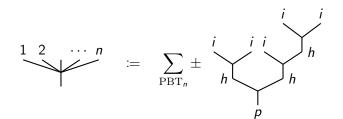
 $\rightarrow \mu_2$ is associative up to the homotopy μ_3 .

Higher structures

Some criteria

(ロ)

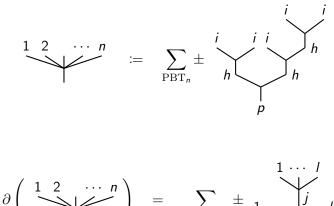
$$\rightarrow \mu_n : H^{\otimes n} \rightarrow H$$
, for all $n \ge 2$



Higher structures

Some criteria

$$\rightarrow \mu_n : H^{\otimes n} \rightarrow H$$
, for all $n \ge 2$



▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Higher structures

Some criteria

(日)

Homotopy associative algebras

Definition A_{∞} -algebra: a chain complex H with a collection of maps

$$\mu_n: H^{\otimes n} \to H$$

of degree n-2, for all $n \ge 2$, which satisfy the relations

Some criteria

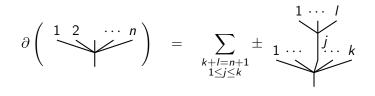
(日)

Homotopy associative algebras

Definition A_{∞} -algebra: a chain complex *H* with a collection of maps

$$\mu_n: H^{\otimes n} \to H$$

of degree n-2, for all $n \ge 2$, which satisfy the relations



Examples

Every dga algebra (A, ν) is an A_∞-algebra with μ_n = 0 for all n ≥ 3.

Some criteria

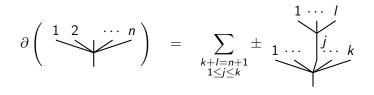
*ロ * * ◎ * * ■ * * ■ * * ● * * ●

Homotopy associative algebras

Definition A_{∞} -algebra: a chain complex *H* with a collection of maps

$$\mu_n: H^{\otimes n} \to H$$

of degree n-2, for all $n \ge 2$, which satisfy the relations



- Every dga algebra (A, ν) is an A_∞-algebra with μ_n = 0 for all n ≥ 3.
- $(H, d_H, \mu_2, \mu_3, \dots)$

Higher structures

Some criteria

Homotopy transfer theorem

Theorem (Kadeishvili, 1982)

Given a dga algebra (A, d_A, ν) and a homotopy retract

$$h \overset{p}{\longrightarrow} (A, d_A, \nu) \overset{p}{\longleftarrow} (H, d_H)$$

there exists an A_{∞} -algebra structure on H such that p (and i) extend to A_{∞} -quasi-isomorphisms:

$$p_{\infty}: (A, d_A, \nu) \stackrel{\sim}{\rightsquigarrow} (H, d_H, \mu_2, \mu_3, \dots)$$

Some criteria

Homotopy morphisms

 (A, d_A, ν_2, \dots) , (H, d_H, μ_2, \dots) : A_∞ -algebras

Some criteria

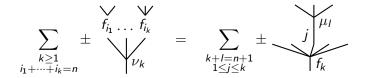
Homotopy morphisms

$$(A, d_A, \nu_2, \dots), (H, d_H, \mu_2, \dots) : A_\infty$$
-algebras

Definition A_{∞} -morphism $f : A \rightsquigarrow H$ is a collection of linear maps

$$f_n: A^{\otimes n} \longrightarrow H, \quad n \ge 1$$
,

of degree n-1, which satisfy the relations



where $\mu_1 = d_H$ and $\nu_1 = d_A$.

Higher structures

Some criteria

▲□▶▲冊▶▲≣▶▲≣▶ ≣ のQ@

Homotopy quasi-isomorphisms

Definition A_{∞} -quasi-isomorphism $f : A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1 : A \to H$ is a quasi-isomorphism.

Higher structures

Some criteria

Homotopy quasi-isomorphisms

Definition A_{∞} -quasi-isomorphism $f : A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1 : A \to H$ is a quasi-isomorphism.

Proposition A, H dga algebras

 $\exists A \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H \iff \exists A \stackrel{\sim}{\rightsquigarrow} H$

Some criteria

(日)

Homotopy quasi-isomorphisms

Definition A_{∞} -quasi-isomorphism $f : A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1 : A \to H$ is a quasi-isomorphism.

Proposition A, H dga algebras

 $\exists A \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} H \iff \exists A \stackrel{\sim}{\rightsquigarrow} H$

Corollary

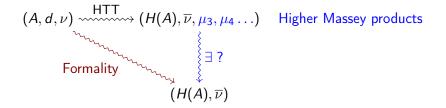
A dga algebra (A, d, ν) is formal $\iff \exists (A, d, \nu) \stackrel{\sim}{\rightsquigarrow} (H(A), 0, \overline{\nu}).$

Some criteria

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

An equivalent characterization of formality

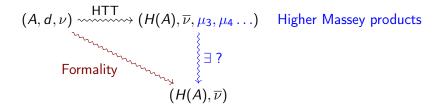
 (A, d, ν) a dga algebra such that H(A) is a homotopy retract



▲□▶▲□▶▲□▶▲□▶ □ のQで

An equivalent characterization of formality

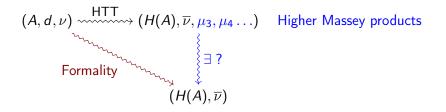
 (A, d, ν) a dga algebra such that H(A) is a homotopy retract



 \implies If the higher Massey products vanish, then (A, d, ν) is formal.

An equivalent characterization of formality

 (A, d, ν) a dga algebra such that H(A) is a homotopy retract



 \implies If the higher Massey products vanish, then (A, d, ν) is formal. Definition

- (A, d, ν) is formal if $\exists (H(A), \overline{\nu}, \mu_3, \mu_4 \dots) \xrightarrow{\sim} (H(A), \overline{\nu}).$
- (A, d, ν) is *n*-formal if $\exists (H(A), \overline{\nu}, \mu_3, \mu_4 \dots) \xrightarrow{\sim} (H(A), \overline{\nu}, 0, \dots, 0, \mu'_{n+1}, \dots)$.

Some criteria

(ロ)

There is nothing special with the dga algebra structure!

There is nothing special with the dga algebra structure!

Examples

- dg commutative algebras and C_∞ -algebras
- dg Lie algebras and L_∞ -algebras
- dg Frobenius algebras and $\textit{Frobenius}_\infty\text{-algebras}$
- dg Lie bialgebras and $LieBi_{\infty}$ -algebras
- ...
- dg \mathcal{P} -algebra and \mathcal{P}_{∞} -algebras, for any Koszul (pr)operad \mathcal{P} .

(日)

There is nothing special with the dga algebra structure!

Examples

- dg commutative algebras and C_∞ -algebras
- dg Lie algebras and L_∞ -algebras
- dg Frobenius algebras and $\textit{Frobenius}_\infty\text{-algebras}$
- dg Lie bialgebras and $LieBi_{\infty}$ -algebras
- ...
- dg $\mathcal{P}\text{-algebra}$ and $\mathcal{P}_\infty\text{-algebras},$ for any Koszul (pr)operad $\mathcal{P}.$

 \implies Operadic calculus provides a unified framework to deal with all types of algebraic structures

Formality

Higher structures

Some criteria

(ロ)

Formality criteria

Some criteria

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

The degree twisting

(A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract

Some criteria

The degree twisting

 (A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract

 α : a unit in R.

 σ_{α} : the degree twisting by α

 \rightarrow linear automorphism of H(A) which acts via $\alpha^k \times$ on $H^k(A)$.

Some criteria

(日)

The degree twisting

 (A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract

- α : a unit in R.
- σ_{α} : the degree twisting by α
 - \rightarrow linear automorphism of H(A) which acts via $\alpha^{k} \times$ on $H^{k}(A)$.

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in End(A, \nu)$ s.t. $H(f) = \sigma_{\alpha}$.

•
$$\forall k, \ \alpha^k - 1 \in \mathbb{R}^{\times} \implies (A, d, \nu) \text{ is formal.}$$

• $\forall k \leq n, \ \alpha^k - 1 \in R^{\times} \implies (A, d, \nu) \text{ is n-formal.}$

(日)

Theorem (Drummond-Cole – Horel, 2021)

Suppose that σ_{α} admits a lift, i.e. $\exists f \in End(A, \nu)$ s.t. $H(f) = \sigma_{\alpha}$.

- $\forall k, \ \alpha^k 1 \in \mathbb{R}^{\times} \implies (A, d, \nu) \text{ is formal.}$
- $\forall k \leq n, \ \alpha^k 1 \in R^{\times} \implies (A, d, \nu) \text{ is n-formal.}$

Heuristic :

- ightarrow Higher Massey products have to be compatible with the lift.
- → They intertwine multiplication by α^{l} with multiplication by α^{k} with $l \neq k$.
- \rightarrow They have to vanish

Complement of subspace arrangements

- X : a complement of a hyperplane arrangement over \mathbb{C} \rightarrow complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.
- K: a finite extension of \mathbb{Q}_p
- q: order of the residue field of the ring of integers of K
- I: a prime number different from p
- **h** : order of q in \mathbb{F}_{I}^{\times}

Proposition

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists X$ a complement of a hyperplane arrangement over K s.t. $X \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_I)$ is (h-1)-formal.

(日)

Proposition

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists X$ a complement of a hyperplane arrangement over K s.t. $X \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_I)$ is (h-1)-formal.

Heuristic :

 $\rightarrow C^{\bullet}(X_{an}, \mathbb{Z}_{I}) \cong C^{\bullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{I}).$

 \rightarrow The action of a Frobenius on $H_{et}(\mathcal{X}_{\overline{K}},\mathbb{Z}_l)$ is σ_q , [Kim, 1994].

Some criteria

Automorphism lifts

R : a field

 (A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract and finite dimensional.

Some criteria

*ロ * * ◎ * * ■ * * ■ * * ● * * ●

Automorphism lifts

R : a field

 (A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract and finite dimensional.

Theorem (E., 2022)

Suppose that there exists $u \in Aut(H(A), \overline{\nu})$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

 $\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap \operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing$,

where $u_i := u_{|H^i(A)}$. If u admits a lift at the level of chains then (A, d, ν) is n-formal.

Automorphism lifts

R : a field

 (A, d, ν) : a dg \mathcal{P} -algebra s.t. H(A) is a homotopy retract and finite dimensional.

Theorem (E., 2022)

Suppose that there exists $u \in Aut(H(A), \overline{\nu})$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing$$

where $u_i := u_{|H^i(A)}$. If u admits a lift at the level of chains then (A, d, ν) is n-formal.

Corollary

For every smooth projective K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_l)$ is formal.

Some criteria

Frobenius & Weil numbers

- K: a finite extension of \mathbb{Q}_p
- q : order of the residue field of the ring of integers of K
- I: a prime number different from p
- X: a smooth projective K-scheme

Some criteria

Frobenius & Weil numbers

- K: a finite extension of \mathbb{Q}_p
- q: order of the residue field of the ring of integers of K
- I: a prime number different from p
- X: a smooth projective K-scheme

Definition $\alpha \in \overline{\mathbb{Q}}_l$ is a Weil number of weight *n* if

 $\forall \iota : \overline{\mathbb{Q}}_I \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2}.$

Some criteria

Frobenius & Weil numbers

- K: a finite extension of \mathbb{Q}_p
- q: order of the residue field of the ring of integers of K
- I: a prime number different from p
- X: a smooth projective K-scheme

 $\begin{array}{l} \text{Definition} \\ \alpha \in \overline{\mathbb{Q}}_l \text{ is a Weil number of weight } n \text{ if} \end{array}$

 $\forall \iota : \overline{\mathbb{Q}}_I \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2}.$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{et}(X_{\overline{K}}, \mathbb{Q}_l)$ are Weil numbers of weight n.

Some criteria

Corollary For every smooth projective K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_l)$ is formal.

(日)

Corollary

For every smooth projective K-scheme X, $C^{\bullet}(X_{an}, \mathbb{Q}_l)$ is formal.

Proof.

- $C^{\bullet}(X_{an}, \mathbb{Q}_{I}) \xrightarrow{\sim} C^{\bullet}_{et}(X_{\overline{K}}, \mathbb{Q}_{I})$
- Let u be the Frobenius action on $H^{\bullet}_{et}(X_{\overline{K}}, \mathbb{Q}_l)$ and fix $\iota : \overline{\mathbb{Q}}_l \hookrightarrow \mathbb{C}$.
- For all $k \geq 1$, (k_1, \ldots, k_p) and $s := k_1 + \cdots + k_p$,

$$\begin{array}{ccc} \operatorname{Spec}(u_{s+k}) & \cap & \operatorname{Spec}(u_{k_1} \otimes \cdots \otimes u_{k_p}) &= \varnothing \\ & & & & \\ & & & & \\ \alpha & & & & \beta \\ |\iota(\alpha)| = q^{\frac{s+k}{2}} & > & |\iota(\beta)| = q^{\frac{s}{2}} \end{array}$$

Formality

Higher structures

Some criteria

Thank you for your attention!

