

Kaledin classes & formality criteria

Coline Emprin

ANR Higher Algebra, Geometry, and Topology May 6, 2024 | CIRM | Luminy

arXiv: 2404.17529

The notion of formality

Formal topological spaces

R: commutative ground ring

Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{\bullet}_{\mathrm{sing}}(X;R) \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ \cdots \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ H^{\bullet}_{\mathrm{sing}}(X;R) \ .$$

ightarrow Origins in rational homotopy theory (for $\mathbb{Q} \subset R$)

X formal \Longrightarrow The cohomology ring $H^{\bullet}_{\mathrm{sing}}(X,\mathbb{Q})$ completely determines the rational homotopy type of X.

Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [Deligne, Griffiths, Morgan & Sullivan, 1975]

Formality of an algebraic structure

A: chain complex over R

 ${\mathscr P}$: colored operad or properad

 $\phi: \mathscr{P} \to \mathsf{End}_{\mathcal{A}}: \mathsf{adg} \ \mathscr{P}\mathsf{-algebra} \ \mathsf{structure}$

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if

$$\exists (A,\phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A),\varphi_0) ,$$

where φ_0 is the canonical \mathscr{P} -algebra structure on H(A).

Examples

- X is formal = $(C_{\text{sing}}^{\bullet}(X; R), \cup)$ is formal as dga algebra
- $C(\mathcal{D}_k; \mathbb{R})$ is formal as an operad [Kontsevich, 1999]

Purity implies formality

 (A,ϕ) : dg \mathscr{P} -algebra encoded by an operad \mathscr{P}

 α : unit of infinite order in R

 σ_{α} : the degree twisting by $\alpha =$ automorphism of $(H(A), \varphi_0)$ which acts via $\alpha^k \times$ on $H_k(A)$.

Theorem

If σ_{α} admits a chain-level lift, i.e. $\exists f \in \text{End}(A, \phi)$ s.t. $H(f) = \sigma_{\alpha}$, then (A, ϕ) is formal.

- → Deligne, Griffiths, Morgan, Sullivan [1975]
- → Sullivan [1977]
- → Guillén Santos, Navarro, Pascual, Roig [2005]
- \rightarrow Drummond-Cole and Horel [2021]

- Petersen [2014], Boavida de Brito and Horel [2021] The little disks operad \mathcal{D}_k & Grothendieck-Teichmüller group
- Riche, Soergel, Williamson [2014]
 The extensions of parity sheaves on the flag variety.
- Drummond-Cole and Horel [2021]
 - X: a complement of a hyperplane arrangement over $\mathbb C$ defined over a finite extension K of $\mathbb Q_p$.
 - ℓ : a prime number different from p
 - $\to C^{\bullet}(X_{an}, \mathbb{Z}_{\ell}) \cong C^{\bullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ [Artin].
 - \to A Frobenius action on $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$ is σ_q [Kim, 1994].

Questions

- Can we descend these results to other coefficient rings? (e.g. $\mathbb{Z}_{(\ell)},...$)
- Does the degree twisting criteria hold for other types of algebras? (e.g. Hopf algebras, involutive Lie bialgebras,...)

• Is the degree twisting the only homology automorphism satisfying this property?

Kaledin classes & formality criteria

1. Gauge formality

• Formality seen as a deformation problem

2. Kaledin classes

An obstruction theory to the formality over any ring

3. Formality criteria

- Formality descent with torsion coefficient
- Automorphism lifts

Gauge formality

Operadic homological algebra

A: chain complex over R

9: reduced connected weight-graded Koszul operad

$$\mathscr{P}_{\infty} \xrightarrow{\sim} \mathscr{P}$$
 with $\mathscr{P}_{\infty} \coloneqq \Omega \mathscr{P}^{\mathsf{I}}$

$$\{\mathscr{P}_{\infty} - \mathsf{algebra} \ \mathsf{structures} \ \mathsf{on} \ A\} \coloneqq \mathsf{Hom}_{\mathsf{dgOp}} \left(\Omega \mathscr{P}^{\mathsf{i}}, \mathsf{End}_{A}\right)$$

Proposition

$$\mathsf{Hom}_{\mathrm{dgOp}}\left(\Omega\mathscr{P}^{i},\mathsf{End}_{\mathcal{A}}\right)\cong\mathrm{Codiff}\left(\mathscr{P}^{i}(\mathcal{A})\right)$$

Definition

An ∞ -morphism $F:(A,\varphi)\leadsto(B,\psi)$ between \mathscr{P}_∞ -algebra structures is a morphism of dg \mathscr{P}^{i} -coalgebras:

$$(\mathscr{P}^{\mathsf{i}}(A),\varphi)\to (\mathscr{P}^{\mathsf{i}}(B),\psi)$$
.

F is an ∞ -quasi-isomorphism if $F_0: A \to B$ is a quasi-isomorphism.

Proposition (R is a characteristic zero field)

zig-zag of quasi-isos of
$$\mathscr{P}$$
-algebras

$$\infty$$
-quasi-iso

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (B, \phi') \iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (B, \phi')$$

Corollary

A dg
$$\mathscr{P}$$
-algebra (A, ϕ) is formal $\iff \exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_0)$.

Homotopy transfer

Theorem (Homotopy transfer theorem)

Let (A, d) be a chain complex s.t. H(A) is a contraction :

$$h \bigcap^{p} (A,d) \xrightarrow{p} (H(A),0)$$

$$id_A - ip = d_A h + h d_A$$
, $pi = id_{H(A)}$, $h^2 = 0$, $ph = 0$, $hi = 0$.

For every \mathscr{P} -algebra structure (A, ϕ) , there exists a \mathscr{P}_{∞} -algebra structure φ s.t. p extends to an ∞ -quasi-isomorphism:

$$(A,\phi) \xrightarrow{p_{\infty}} (H(A),\varphi)$$
Formality
$$H(A),\varphi_{0}$$

The convolution dg Lie algebra associated to H(A):

$$\mathfrak{g}:=\left(\mathsf{Hom}(\overline{\mathscr{P}}^i,\mathrm{End}_{\mathit{H}(A)}),[-,-],\mathit{d}\right)$$

$$\rightarrow \ \mathsf{Hom}\left(\overline{\mathscr{P}}^i,\mathsf{End}_{\mathit{H}(A)}\right) \coloneqq \textstyle\prod_{n \geq 0} \mathsf{Hom}\left(\overline{\mathscr{P}}^i(\mathit{n}),\mathsf{End}_{\mathit{H}(A)}(\mathit{n})\right)$$

$$ightarrow d(\varphi) \coloneqq (-1)^{|\varphi|+1} \varphi \circ d_{\overline{\mathscr{P}}^{|\varphi|}}$$

$$\rightarrow \ \varphi \star \psi \coloneqq \overline{\mathscr{P}}^{\mathsf{i}} \xrightarrow{\Delta_{(\mathbf{1})}} \overline{\mathscr{P}}^{\mathsf{i}} \circ_{(\mathbf{1})} \overline{\mathscr{P}}^{\mathsf{i}} \xrightarrow{\varphi \circ_{(\mathbf{1})} \psi} \mathsf{End}_{H(A)} \circ_{(\mathbf{1})} \mathsf{End}_{H(A)} \xrightarrow{\gamma_{(\mathbf{1})}} \mathsf{End}_{H(A)}$$

$$\rightarrow [\varphi, \psi] := \varphi \star \psi - (-1)^{|\varphi||\psi|} \psi \star \varphi$$

Every $\varphi \in \operatorname{Hom}\left(\overline{\mathscr{P}}^{\mathsf{I}},\operatorname{End}_{H(\mathcal{A})}\right)$ decomposes as

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \dots)$$

where φ_k is the restriction $\varphi_k : \overline{\mathscr{P}}^{i(k)} \longrightarrow \operatorname{End}_{H(A)}$.

Its set of Maurer-Cartan elements:

$$MC(\mathfrak{g}) = \{ \varphi \in \mathfrak{g}_{-1}, \ d(\varphi) + \frac{1}{2} [\varphi, \varphi] = 0 \}$$

Proposition

$$\{\mathscr{P}_{\infty} - algebra \ structures \ on \ H(A)\} \cong \mathrm{MC}(\mathfrak{g})$$

Remark

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0, \varphi_1, \varphi_2, \ldots)$$
 Higher Massey products

Formality

 $(H(A), \varphi_0)$

 \implies If the higher Massey products vanish, then (A, ϕ) is formal.

The gauge group

The convolution dg Lie algebra:

$$\mathfrak{g}\coloneqq \left(\mathsf{Hom}(\overline{\mathscr{P}}^i,\mathrm{End}_{\textit{H(A)}}),[-,-],\textit{d}\right)$$

Its set of degree zero elements:

$$\mathfrak{g}_0 := \mathsf{Hom}\left(\overline{\mathscr{P}}^i, \mathrm{End}_{\textit{H}(\textit{A})}\right)_0$$

The Baker–Campbell–Hausdorff formula, with $ad_{\lambda} := [\lambda, -]$:

$$\lambda, \mu \in \mathfrak{g}_0, \qquad e^{\mathrm{ad}_{\mathrm{BCH}(\lambda,\mu)}} = e^{\mathrm{ad}_{\lambda}} \circ e^{\mathrm{ad}_{\mu}}.$$

$$BCH(\lambda,\mu) = \lambda + \mu + \frac{1}{2}[\lambda,\mu] + \frac{1}{12}([\lambda,[\lambda,\mu]] + [\mu,[\mu,\lambda]]) + \cdots$$

$$\Gamma := (\mathfrak{g}_0, \operatorname{BCH}, 0)$$

The gauge action

$$\Gamma := (\mathfrak{g}_0, \operatorname{BCH}, 0)$$

$$\{\mathscr{P}_{\infty}-\mathsf{algebra}\;\mathsf{structures}\;\mathsf{on}\;\mathsf{H}(\mathsf{A})\}\cong\mathrm{MC}(\mathfrak{g})$$

Gauge action

$$egin{array}{lll} \Gamma imes \mathrm{MC}(\mathfrak{g}) & \longrightarrow & \mathrm{MC}(\mathfrak{g}) \ (\lambda, arphi) & \longmapsto & \lambda \cdot arphi \coloneqq \mathrm{e}^{\mathrm{ad}_{\lambda}}(arphi) - rac{\mathrm{e}^{\mathrm{ad}_{\lambda} - \mathrm{id}}}{\mathrm{ad}_{\lambda}}(d\lambda) \end{array}$$

Proposition (Dotsenko – Shadrin – Vallette, 2016)

$$\exists \ \infty\text{-quasi-isomorphism} \ (H(A),\varphi) \ \stackrel{\sim}{\leadsto} \ (H(A),\varphi_0)$$

$$\iff$$

$$\exists \ \lambda \in \Gamma \ \text{such that} \ \lambda \cdot \varphi = \varphi_0$$

 (A, ϕ) : a \mathscr{P} -algebra that admits a transferred structure

$$(A, \phi) \xrightarrow{\mathsf{HTT}} (H(A), \varphi_0, \varphi_1, \varphi_2, \dots)$$
Formality
$$\exists ?$$

$$(H(A), \varphi_0)$$

Definition

- (A, ϕ) is gauge formal if $\exists \lambda \in \Gamma$ such that $\lambda \cdot \varphi = \varphi_0$
- (A, ϕ) is gauge *n*-formal if $\exists \lambda \in \Gamma$ such that

$$\lambda \cdot \varphi = (\varphi_0, 0, \dots, 0, \psi_{n+1}, \dots) .$$

Kaledin classes

Formal deformation

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \dots) \in \mathrm{MC}(\mathfrak{g})$$

A formal deformation of φ_0 :

$$\Phi := \varphi_0 + \varphi_1 \hbar + \varphi_2 \hbar^2 + \dots + \varphi_k \hbar^k + \dots$$

in the dg Lie algebra $\mathfrak{g}\llbracket\hbar\rrbracket := \mathfrak{g}\widehat{\otimes}R\llbracket\hbar\rrbracket$.

Remark

$$\Phi \in \mathrm{MC}(\mathfrak{g}\llbracket \hbar \rrbracket)$$
, i.e. $d(\Phi) + \frac{1}{2}[\Phi, \Phi] = 0$.

Proposition

$$d^{\Phi} \coloneqq d + [\Phi, -]$$
 is a differential on $\mathfrak{g}\llbracket \hbar
rbracket$

Twisted dg Lie algebra:

$$\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi} := (\mathfrak{g}\llbracket\hbar\rrbracket, [-,-], d^{\Phi})$$

The Kaledin classes

$$\partial_{\hbar}\Phi := \varphi_1 + 2\varphi_2\hbar + \dots + k\varphi_k\hbar^{k-1} + \dots \in \mathfrak{g}\llbracket\hbar\rrbracket$$

Lemma

$$\partial_{\hbar}\Phi$$
 is a cycle in $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}$, i.e. $d^{\Phi}(\partial_{\hbar}\Phi)=0$.

Definition (Kaledin class)

The Kaledin class of $\varphi \in MC(\mathfrak{g})$ is the homology class

$$\mathcal{K}_{\Phi} := \left[\partial_{\hbar}\Phi\right] \in \mathcal{H}_{-1}\left(\mathfrak{g}\llbracket\hbar
brace^{\Phi}\right)$$
 .

Its n^{th} -truncated Kaledin class is

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \dots + n\varphi_{n}\hbar^{n-1}\right] \in \mathcal{H}_{-1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n}\right)^{\widetilde{\Phi}}\right) \ .$$

$$\mathcal{K}_{\Phi} := \left[\varphi_1 + 2\varphi_2 \hbar + 3\varphi_3 \hbar^2 + \cdots \right] \in \mathcal{H}_{-1} \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

nth-truncated Kaledin class:

$$K_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \dots + n\varphi_{n}\hbar^{n-1}\right] \in H_{-1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani–Rubió, 2019])

 $R: \mathbb{O}$ -algebra

P: Koszul operad

 (A, ϕ) : dg \mathcal{P} -algebra that admits a transferred structure

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

$$K_{\Phi} := \left[\varphi_1 + 2\varphi_2 \hbar + 3\varphi_3 \hbar^2 + \cdots\right] \in H_{-1}\left(\mathfrak{g}\llbracket \hbar \rrbracket^{\Phi}\right)$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{1} + 2\varphi_{2}\hbar + \dots + n\varphi_{n}\hbar^{n-1} \right] \in \mathcal{H}_{-1}\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n} \right)^{\widetilde{\Phi}} \right)$$

Theorem (E., 2024)

R: commutative ground ring

 \mathcal{P} : (pr)operad colored in groupoids

n: integer such that n! is invertible in R

 (A, ϕ) : dg \mathcal{P} -algebra that admits a transferred structure

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Formality criteria

Formality descent

 (A, ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure

 $H_i(A)$: projective, finitely generated for all i.

S : faithfully flat commutative *R*-algebra.

Proposition (E., 2024)

 (A, ϕ) is gauge n-formal \iff $(A \otimes_R S, \phi \otimes 1)$ is gauge n-formal.

Proof.

$$H_{-1}\left(\mathfrak{g}_{H(A)}\llbracket\hbar
brace^{\Phi}\right)\otimes_{R\llbracket\hbar
brace}S\llbracket\hbar
brace\cong H_{-1}\left(\mathfrak{g}_{H(A\otimes_R S)}\llbracket\hbar
brace^{\Phi\otimes 1}\right)$$

Examples

- $C(\mathcal{D}_k; \mathbb{R})$ is formal $\iff C(\mathcal{D}_k; \mathbb{Q})$ is formal [GSNPR, 2005]
- $\mathbb{Z}_{(\ell)} \subset \mathbb{Z}_{\ell}$

Complement of hyperplane arrangements

X: a complement of a hyperplane arrangement over \mathbb{C} \to complement of a finite collection of affine hyperplanes in $\mathbb{A}^n_{\mathbb{C}}$.

K: a finite extension of \mathbb{Q}_p

q: order of the residue field of the ring of integers of K

 ℓ : a prime number different from p

s: order of q in $\mathbb{F}_{\ell}^{\times}$

Proposition (Dummond-Cole – Horel, 2021)

If X is defined over K, i.e. $\exists \ K \hookrightarrow \mathbb{C}$ and $\exists \ \mathcal{X}$ a complement of a hyperplane arrangement over K s.t. $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{\mathsf{an}}, \mathbb{Z}_{\ell})$ is gauge (s-1)-formal.

Formality descent $\implies C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$ is gauge (s-1)-formal.

Triviality of fibrations

Theorem (E., 2024)

X : a simply connected topological space

F: a nilpotent space of finite \mathbb{Q} -type.

A fibration $\xi: E \to X$ with fiber $F_{\mathbb{Q}}$ is trivial up to homotopy iff

 $\xi \otimes \mathbb{R}$ is trivial up to homotopy.

Example

The Fadell-Neuwirth fibration:

$$\xi: \operatorname{Conf}_{n-1}\left(\mathbb{R}^d\right) \longrightarrow \operatorname{Conf}_n\left(\mathbb{S}^d\right) \longrightarrow \mathbb{S}^d$$
.

If $d\geqslant 5$ odd, $\xi\otimes\mathbb{R}$ is trivial up to homotopy [Haya Enriquez, 2022]

 $\implies \xi$ is trivial up to homotopy.

Automorphism lifts

 (A, ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure

Theorem (E., 2024)

Suppose that $u \in Aut(H(A), \varphi_0)$ admits a chain lift. Let

$$\operatorname{Ad}_{u}:\operatorname{End}_{H(A)}\to\operatorname{End}_{H(A)}\quad \psi\longmapsto u^{\otimes q}\circ\psi\circ(u^{-1})^{\otimes p}$$
,

for
$$\psi \in \operatorname{End}_{H(A)}(p,q) = \operatorname{Hom}\left(H(A)^{\otimes p}, H(A)^{\otimes q}\right)$$

- 1. If $Ad_u id$ is invertible, then (A, ϕ) is gauge formal and every homology automorphism admits a chain level lift.
- 2. If $Ad_u id$ is invertible on the elements of degree k for all k < n, then (A, ϕ) is gauge n-formal.

Automorphism lifts

R: a characteristic zero field

 (A,ϕ) : a dg \mathscr{P} -algebra that admits a transferred structure s.t. H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists $u \in \operatorname{Aut}(H(A), \varphi_0)$ such that for all k < n, and all p-tuples (k_1, \ldots, k_p) ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing\;,$$

where $u_i := u_{|H_i(A)}$. If u admits a lift at the level of chains then (A, ϕ) is gauge n-formal.

Frobenius & Weil numbers

K: a finite extension of \mathbb{Q}_p

 ${m q}$: order of the residue field of the ring of integers ${\mathcal O}_{\mathcal K}$

 ℓ : a prime number different from p

X: a smooth proper K-scheme

Definition

 $\alpha \in \overline{\mathbb{Q}}_{\ell}$ is a Weil number of weight n if

$$\forall \ \iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \ .$$

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on $H^n_{\mathrm{et}}(X_{\overline{K}},\mathbb{Q}_\ell)$ are Weil numbers of weight n.

Let X be a smooth and proper scheme over \mathbb{C} . The algebra $C^{\bullet}(X_{\mathrm{an}},\mathbb{Q})$ is formal.

Proof.

• There exists a smooth and proper model \mathcal{X} over \mathcal{O}_K .

$$C^{ullet}(X_{an}, \mathbb{Q}_{\ell}) \cong C^{ullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$$

- Let u be the Frobenius action on $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$.
- For all $k \geq 1$, (k_1, \ldots, k_p) and $s \coloneqq k_1 + \cdots + k_p$, $\operatorname{Spec}(u_{s+k}) \quad \cap \quad \operatorname{Spec}(u_{k_1} \otimes \cdots \otimes u_{k_p}) = \varnothing \ .$ $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \beta$ $|\iota(\alpha)| = q^{\frac{s+k}{2}} \qquad > \qquad \qquad |\iota(\beta)| = q^{\frac{s}{2}}$

Previous work: [Deligne, 1980]

Let Sch_K be the category of smooth and proper schemes over K of good reduction, i.e. for which there exists a smooth and proper model over \mathcal{O}_K .

Theorem (E., 2024)

Let $\mathbb V$ be a groupoid and let $\mathscr P$ be a $\mathbb V$ -colored operad in sets. Let X be a $\mathscr P$ -algebra in Sch_K . The dg $\mathscr P$ -algebra $C_{ullet}(X_{\operatorname{an}},\mathbb Q)$ is formal.

Example (Guillén Santos, Navarro, Pascual, & Roig, 2005)

 $\overline{\mathcal{M}}$ the cyclic operad of moduli spaces of stable algebraic curves $C_{\bullet}(\overline{\mathcal{M}}_{an};\mathbb{Q})$ is formal

Thank you for your attention!

