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Formal topological spaces
R : commutative ground ring

Definition
A topological space X is formal if there exists a zig-zag of
quasi-isomorphisms of dga algebras,

Cing(XGR) «— - — -+ — + — H§(XiR) .

— Origins in rational homotopy theory (for Q C R)
X formal = The cohomology ring H, (X, Q) completely

determines the rational homotopy type of X.
Examples

® Spheres, complex projective spaces, Lie groups

® Compact Kahler manifolds [Deligne, Griffiths, Morgan & Sullivan, 1975]



The notion of formality Gauge formality Kaledin classes Formality criteria
0e0000 00000000 0000 000000000

Formality of an algebraic structure
A : chain complex over R
& . colored operad or properad
¢: P — Endy : adg H-algebra structure
Definition
The dg H-algebra (A, ¢) is formal if

~

where g is the canonical Z-algebra structure on H(A).

Examples

® X is formal = (C3,,(X; R),V) is formal as dga algebra
® C(Dk;R) is formal as an operad [Kontsevich, 1999]
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Purity implies formality

(A, @) : dg S-algebra encoded by an operad &
a : unit of infinite order in R

04 : the degree twisting by a = automorphism of (H(A), o)
which acts via a¥x on Hy(A).

Theorem
If 0, admits a chain-level lift, i.e. 3 f € End(A, ¢) s.t. H(f) = o4,
then (A, ¢) is formal.

— Deligne, Griffiths, Morgan, Sullivan [1975]

— Sullivan [1977]

— Guillén Santos, Navarro, Pascual, Roig [2005]
— Drummond-Cole and Horel [2021]
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Examples

® Petersen [2014], Boavida de Brito and Horel [2021]
The little disks operad Dy & Grothendieck-Teichmiiller group

® Riche, Soergel, Williamson [2014]
The extensions of parity sheaves on the flag variety.

¢ Drummond-Cole and Horel [2021]
X : a complement of a hyperplane arrangement over C
defined over a finite extension K of Q.

¢ : a prime number different from p
— C.(Xan,Zg) = Ce.t(X?7 Zg) [Artin].
— A Frobenius action on H3.(X5%, Zy) is 0 [Kim, 1994].
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Questions

e Can we descend these results to other coefficient rings?
(e.g. Z(g), )

e Does the degree twisting criteria hold for other types of
algebras? (e.g. Hopf algebras, involutive Lie bialgebras,...)

e Is the degree twisting the only homology automorphism
satisfying this property?
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Kaledin classes & formality criteria

1. Gauge formality
® Formality seen as a deformation problem

2. Kaledin classes
® An obstruction theory to the formality over any ring

3. Formality criteria

® Formality descent with torsion coefficient
® Automorphism lifts
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Operadic homological algebra

A : chain complex over R
7 . reduced connected weight-graded Koszul operad
P = P with P, = QP!

{ P — algebra structures on A} :== Homggop (22", End,)

Proposition

Homagop (22, Enda) = Codiff (2/(A))
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Definition
An oo-morphism F : (A, p) ~ (B, 1) between Z-algebra
structures is a morphism of dg &?'-coalgebras:

(Z'(A), ) = (Z'(B), ¥) -
F is an oo-quasi-isomorphism if Fg : A — B is a quasi-isomorphism.
Proposition (R is a characteristic zero field)

zig-zag of quasi-isos of &?-algebras 00-qUasi-iso

Corollary
A dg P-algebra (A, ¢) is formal <= J (A, ¢) ~ (H(A), o).
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Homotopy transfer
Theorem (Homotopy transfer theorem)
Let (A, d) be a chain complex s.t. H(A) is a contraction :

p

(T (A d) == (H(A),0)

i

ida—ip = dah+hda, pi=idypy, h =0, ph=0, hi=0.

For every &7-algebra structure (A, ¢), there exists a &.-algebra
structure ¢ s.t. p extends to an co-quasi-isomorphism:

Poo

(A, @) ~vvvs (H(A), )

37
Formality

(H(A), o)
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P .-algebra structures on H(A)
The convolution dg Lie algebra associated to H(A):

gi= (Hom(p}) Endpa)), [ -], d)

— Hom (?I, EndH(A)) = [1,50 Hom (@I(n), EndH(A)(n))
— d(p) = (-1)**po d_i
i Agy —i i po¥
— pxY = Iz & I o(1) Iz ﬂ) Endya) o1y Endpa) W_1)> Endy(a)

=[] =pxy— (-1 xp

Every ¢ € Hom (?i, EndH(A)) decomposes as

¢ = (¢o0, ¢1,02,--.)

i(k)

where ¢y is the restriction ¢y 2 Endy(a)-
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Its set of Maurer—Cartan elements:
MC(g) = {¢ € g-1, d(¢) + 5[, ¢] = 0}
Proposition

{P — algebra structures on H(A)} = MC(g)

Remark
HTT .
(A, @) ~~~nr (H(A), o, 01, 92,...)  Higher Massey products
37
Formality
(H(A), ¢0)

= If the higher Massey products vanish, then (A, ¢) is formal.
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The gauge group
The convolution dg Lie algebra:
—i
g:= (Hom(Z', Endpga)), [, -1, d)
Its set of degree zero elements:
= Hom (#', End
go om ( , i H(A))O
The Baker—Campbell-Hausdorff formula, with ady = [\, —] :
Mp€go,  eMsontu — eadr o g

BCH(A p) = A+ p+ *[A K] +15 ([A s ]+ [, [, AT + -

I := (go, BCH, 0)
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The gauge action
I := (go, BCH, 0)
{P — algebra structures on H(A)} = MC(g)

Gauge action

FxMC(g) — MC(g)
Ap) = Api=eh(p) - £y

ad>\

Proposition (Dotsenko — Shadrin — Vallette, 2016)

3 oo-quasi-isomorphism (H(A), p) ~ (H(A), ¢o)
—
I X €T such that A - p = ¢
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An equivalent characterization of formality

(A, ¢): a H-algebra that admits a transferred structure

(Avgb) A (H(A)ac)OOaSDl’SO%)
37
Formality
(H(A), ¢o)

Definition
® (A, o) is gauge formal if 3 X\ € T such that A\ - ¢ = g
® (A, ¢) is gauge n-formal if 3 X € T such that

A =(¢0,0,...,0,0n41,...) .
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Formal deformation

¥ = (@03301750% . ) € MC(G)

A formal deformation of g:
& = o+ p1h+ ok + -+ phF 4
in the dg Lie algebra g[i] := g®R[7].
Remark
® € MC(g[n]), i.e. d(®)+ L[, 9] =0.
Proposition
d® == d + [®, ] is a differential on g[[h]
Twisted dg Lie algebra:

gl[h]]¢ = (g[[h]]’ [_7 _]’ d¢)
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The Kaledin classes

P = o1+ 2poh + - -+ + kot 4 € g[h]

Lemma
Op® is a cycle in g[A]®, i.e. d®(0pP) = 0.

Definition (Kaledin class)
The Kaledin class of ¢ € MC(g) is the homology class

Ko = [0h0] € H_, (gl[h]]¢) .

Its nt-truncated Kaledin class is

K§ = o1+ 2p2h 4+ mon™*] € Hoa ((all/0)°)
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Kaledin class:
Ko = [o1 + 200+ 3p3h? + -] € Ho1 (o[]°)
nth-truncated Kaledin class :

Kg = [or + 200+ -+ ngah™ 1] € Hoy ((o1]/27)°)

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani-Rubié, 2019] )
R : Q-algebra
P : Koszul operad
(A, @) : dg P-algebra that admits a transferred structure
® (A, ¢) is gauge formal <= K¢ = 0.
e (A, ¢) is gauge n-formal <— K = 0.
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Kaledin class:
Ko = [901 + 2poh + 3g03h2 + - ] e H 4 (gﬂh]](b)
nth_truncated Kaledin class :

Kg = [901 +2p2h 4 - - + ”SOnhnfl] € H.q ((g[hﬂ/h”)a))

Theorem (E., 2024)

R : commutative ground ring

P : (pr)operad colored in groupoids

n : integer such that n! is invertible in R

(A, @) : dg P-algebra that admits a transferred structure
* (A, ) is gauge formal <= K¢ = 0.
® (A, ) is gauge n-formal <—= K = 0.
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Formality descent
(A, ¢) : a dg P-algebra that admits a transferred structure
H;(A) : projective, finitely generated for all .

S : faithfully flat commutative R-algebra.

Proposition (E., 2024)
(A, ¢) is gauge n-formal <= (A®gr S, ¢ ® 1) is gauge n-formal.

Proof.
H-1 (gna)[11®) ©rpp SRl = Ho1 (9H(agks) [71°Y) O

Examples

e C(Dg;R) is formal <= C(Dy; Q) is formal [GSNPR, 2005]
o Zy C Ze
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Complement of hyperplane arrangements

X : a complement of a hyperplane arrangement over C
— complement of a finite collection of affine hyperplanes in AZ.

K : a finite extension of Q,
q : order of the residue field of the ring of integers of K
¢ : a prime number different from p

s : order of g in F/f

Proposition (Dummond-Cole — Horel, 2021)

If X is defined over K, i.e. 3 K — C and 3 X a complement of a
hyperplane arrangement over K s.t. X xx C = X, then
C*(Xan, Zy) is gauge (s — 1)-formal.

Formality descent == C*(Xan, Z(y)) is gauge (s — 1)-formal.
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Triviality of fibrations

Theorem (E., 2024)
X : a simply connected topological space
F : a nilpotent space of finite Q-type.

A fibration £ : E — X with fiber Fq is trivial up to homotopy iff
£ ® R s trivial up to homotopy.

Example
The Fadell-Neuwirth fibration :

¢ : Confp_1 (Rd> — Conf, (Sd) U

If d > 5 odd, £ ®R is trivial up to homotopy [Haya Enriquez, 2022]

= £ is trivial up to homotopy.
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Automorphism lifts

(A, ¢) : a dg P-algebra that admits a transferred structure

Theorem (E., 2024)
Suppose that u € Aut(H(A), po) admits a chain lift. Let

Ady : Endy(a) — Endyay ¢ — u®9 oo (u")®P |
for 1 € Endpya)(p, q) = Hom (H(A)®P, H(A)®9)

1. If Ad, — id is invertible, then (A, ¢) is gauge formal and every
homology automorphism admits a chain level lift.

2. If Ad, —id is invertible on the elements of degree k for all
k < n, then (A, ¢) is gauge n-formal.
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Automorphism lifts

R : a characteristic zero field
(A, ¢) : adg P-algebra that admits a transferred structure s.t.
H(A) is finite dimensional.

Corollary (E., 2024)

Suppose that there exists u € Aut(H(A), o) such that for all
k< n, and all p-tuples (k1, ..., kp),

Spec(Uky +-+ky+k) N Spec(uy @ -+ @ ug,) = 2,

where u; == u,a). If u admits a lift at the level of chains then
(A, @) is gauge n-formal.
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Frobenius & Weil numbers

K : a finite extension of Q,

q : order of the residue field of the ring of integers Ok
£ : a prime number different from p

X : a smooth proper K-scheme

Definition

a € Qq is a Weil number of weight n if

Vi:Q= € i) =q"?.

Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on HJ,(X5, Qq) are
Weil numbers of weight n.
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Theorem

Let X be a smooth and proper scheme over C. The algebra
C*(Xan, Q) is formal.

Proof.

® There exists a smooth and proper model X over O.

C.(XanaQZ) = Ce't(/'\"?, @Z)
® Let u be the Frobenius action on HZ, (X%, Q).
® Forall k> 1, (ki,...,kp) and s := ki + - + kp,

Spec(us+) n Spec(ug, ® -+ ® ukp) =9
W w
a g

stk

a) =q% > (8)] = q

Previous work: [Deligne, 1980]
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Let Schyx be the category of smooth and proper schemes over K of
good reduction, i.e. for which there exists a smooth and proper
model over Ok.

Theorem (E., 2024)

Let V be a groupoid and let &? be a V-colored operad in sets.
Let X be a P-algebra in Schi. The dg &-algebra Co(Xan, Q) is
formal.

Example (Guillén Santos, Navarro, Pascual, & Roig, 2005)

M the cyclic operad of moduli spaces of stable algebraic curves

Co(Mn; Q) is formal
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Thank you for your attention!

e
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