

Obstruction theory to formality and homotopy equivalences

Coline Emprin

Université Bourgogne Europe Dijon, France

September 25, 2025

Rational homotopy theory

Goal: Study the rational homotopy type of spaces, i.e. their class up to maps inducing isomorphisms in rational cohomology.

Method: Use algebraic invariants

- Genus = number of holes
- Cohomology ring $H^{\bullet}(X; \mathbb{Q})$ with the cup product \cup
- Massey products = n-ary operations generalizing \cup

Rational homotopy theory

Goal: Study the rational homotopy type of spaces, i.e. their class up to maps inducing isomorphisms in rational cohomology.

Method: Use algebraic invariants

- Genus = number of holes
- Cohomology ring $H^{\bullet}(X; \mathbb{Q})$ with the cup product \cup
- Massey products = n-ary operations generalizing \cup
 - ⇒ These invariants are not faithful!

Faithful invariants

X: a topological space (simply connected and of finite type)

Theorem (Sullivan, 1977)

The commutative algebra of polynomial forms $\mathcal{A}_{\mathrm{PL}}^{\bullet}(X)$ is a faithful invariant of the rational homotopy type.

Formal topological spaces

Definition

A space X is formal if there exists a zig-zag of quasi-isomorphisms

$$\mathcal{A}^{\bullet}_{\mathrm{PL}}(X) \,\stackrel{\sim}{\longleftarrow}\, \cdot \stackrel{\sim}{\longrightarrow}\, \cdots \,\stackrel{\sim}{\longleftarrow}\, \cdot \stackrel{\sim}{\longrightarrow}\, H^{\bullet}_{\mathrm{sing}}(X;\mathbb{Q})$$

i.e. morphisms inducing isomorphisms in cohomology.

Remark

X formal \implies The cohomology ring $H^{\bullet}_{sing}(X,\mathbb{Q})$ completely determines the rational homotopy type of X.

Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [Deligne-Griffiths-Morgan-Sullivan, '75]

Formality of an algebraic structure

A: cochain complex over R

 ${\mathscr P}$: colored operad or properad

 $\phi: \mathscr{P} \to \mathsf{End}_A$: a dg \mathscr{P} -algebra structure

Definition

The dg \mathscr{P} -algebra (A, ϕ) is formal if there exists a zig-zag

$$(A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A), \varphi_*)$$

where φ_1 is the canonical \mathscr{P} -algebra structure on H(A).

Examples

- X formal if $\mathcal{A}^{\bullet}_{\mathrm{PL}}(X)$ is formal as dg commutative algebra
- $C(\mathcal{D}_k; \mathbb{R})$ is formal as an operad [Kontsevich, 1999]

Higher structures

Definition

 (W, d_W) is a homotopy retract of (V, d_V) if there are maps

$$h \longrightarrow (V, d_V) \xrightarrow{p} (W, d_W)$$

where $id_V - ip = d_V h + h d_V$ and i is a quasi-isomorphism .

Homotopy retracts

Definition

 (W, d_W) is a homotopy retract of (V, d_V) if there are maps

$$h \longrightarrow (V, d_V) \xrightarrow{p} (W, d_W)$$

where $id_V - ip = d_V h + h d_V$ and i is a quasi-isomorphism.

Proposition

If R is a field, the cohomology of any cochain complex is a homotopy retract:

$$h \stackrel{p}{\longrightarrow} (A, d_A) \stackrel{p}{\longleftarrow} (H(A), 0)$$
.

Transfer of algebraic structure

 (A, d_A, ϕ) : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

Transfer of algebraic structure

 (A, d_A, ϕ) : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

 \rightarrow Transferred product: $\varphi_2 := p \circ \phi \circ i^{\otimes 2} : H^{\otimes 2} \rightarrow H$

$$i$$
 p

 (A, d_A, ϕ) : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

 \rightarrow Transferred product: $\varphi_2 := p \circ \phi \circ i^{\otimes 2} : H^{\otimes 2} \to H$

$$i \longrightarrow p$$

Not associative in general!

ightarrow Consider $\varphi_3: H^{\otimes 3}
ightarrow H$

 \rightarrow Consider $\varphi_3: H^{\otimes 3} \rightarrow H$

$$:= h \downarrow_{p}^{i} - i \downarrow_{p}^{h}$$

 \rightarrow In $(H^{\otimes 3}, H)$:

$$\partial \left(\begin{array}{c} \downarrow \\ \downarrow \end{array} \right) = ip \begin{array}{c} \downarrow \\ \downarrow \\ p \end{array} - \begin{array}{c} \downarrow \\ \downarrow \\ p \end{array}$$

 \rightarrow Consider $\varphi_3: H^{\otimes 3} \rightarrow H$

$$:= h \downarrow_{p}^{i} - i \downarrow_{p}^{h}$$

 \rightarrow In $(H^{\otimes 3}, H)$:

$$\partial \left(\begin{array}{c} \\ \\ \end{array} \right) = ip i - i i p i$$

 $\rightarrow \varphi_2$ is associative up to the homotopy φ_3 .

$$\rightarrow \varphi_n: H^{\otimes n} \rightarrow H$$
, for all $n \geqslant 2$

$$1 \quad 2 \quad \cdots \quad n \quad := \quad \sum_{PBT_n} \pm \quad \stackrel{i}{h} \quad \stackrel{i}{h} \quad \stackrel{i}{h}$$

 $\rightarrow \varphi_n: H^{\otimes n} \rightarrow H$, for all $n \geqslant 2$

$$1 \quad 2 \quad \cdots \quad n \quad := \quad \sum_{PBT_n} \pm \quad \stackrel{i}{\underset{p}{\bigvee}} \quad \stackrel{i}{\underset{p}$$

Definition

 A_{∞} -algebra: a cochain complex H with a collection of maps

$$\varphi_n: H^{\otimes n} \to H$$

of degree 2 - n, for all $n \ge 2$, which satisfy the relations

$$\partial \left(\begin{array}{c} 1 & 2 & \cdots & n \\ \\ & & \\ \end{pmatrix} = \sum_{\substack{k+l=n+1\\1\leqslant j\leqslant k}} \pm \sum_{\substack{1 & \cdots & j \\ \\ 1 & \cdots & j \\ \\ \end{pmatrix}}$$

Examples

- Every dga algebra (A, ϕ) is an A_{∞} -algebra with $\varphi_n = 0$ for all $n \ge 3$.
- $(H, d_H, \varphi_2, \varphi_3, ...)$

Homotopy transfer theorem

Theorem (Kadeishvili, 1982)

Given a dga algebra (A, d_A, ϕ) and a homotopy retract

$$h \longrightarrow (A, d_A, \phi) \xrightarrow{p} (H, d_H)$$

there exists an A_{∞} -algebra structure on H such that p (and i) extend to A_{∞} -quasi-isomorphisms:

$$(A, d_A, \phi) \sim (H, d_H, \varphi_2, \varphi_3, \varphi_4, \dots)$$

$$(A, d_A, \phi_2, \dots), (H, d_H, \varphi_2, \dots) : A_{\infty}$$
-algebras

Homotopy morphisms

$$(A, d_A, \phi_2, \dots)$$
, $(H, d_H, \varphi_2, \dots)$: A_{∞} -algebras

Definition

 A_{∞} -morphism $f: A \rightsquigarrow H$ is a collection of linear maps

$$f_n: A^{\otimes n} \longrightarrow H, \quad n \geqslant 1$$
,

of degree 1 - n, which satisfy the relations

$$\sum_{\substack{k\geqslant 1\\i_1+\cdots+i_k=n}}\pm\bigvee_{\substack{f_{i_1}\ldots f_{i_k}\\\phi_k}}\bigvee_{p_k}=\sum_{\substack{k+l=n+1\\1\leqslant j\leqslant k}}\pm\bigvee_{\substack{f_k\\f_k}}\bigvee_{p_l}$$

where $\varphi_1 = d_H$ and $\phi_1 = d_A$.

Homotopy quasi-isomorphisms

Definition

 A_{∞} -quasi-isomorphism $f: A \overset{\sim}{\leadsto} H$ is an A_{∞} -morphism where $f_1: A \to H$ is a quasi-isomorphism .

Definition

 A_{∞} -quasi-isomorphism $f: A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1: A \to H$ is a quasi-isomorphism .

Proposition (R is a characteristic zero field)

quasi-isos of associative algebras

 A_{∞} -quasi-iso

$$\exists (A, \phi) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \cdots \xleftarrow{\sim} \cdot \xrightarrow{\sim} (B, \phi') \iff \exists (A, \phi) \xrightarrow{\sim} (B, \phi')$$

Homotopy quasi-isomorphisms

Definition

 A_{∞} -quasi-isomorphism $f: A \xrightarrow{\sim} H$ is an A_{∞} -morphism where $f_1: A \to H$ is a quasi-isomorphism.

Proposition (R is a characteristic zero field)

quasi-isos of associative algebras

 A_{∞} -quasi-iso

$$\exists (A, \phi) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \cdots \xleftarrow{\sim} \cdot \xrightarrow{\sim} (B, \phi') \iff \exists (A, \phi) \overset{\sim}{\leadsto} (B, \phi')$$

Corollary

A dga algebra (A, ϕ) is formal if and only if

$$\exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$$
.

 (A, d, ϕ) a dga algebra such that H(A) is a homotopy retract

$$(A, d, \phi) \xrightarrow{\text{HII}} (H(A), \varphi_*, \varphi_3, \varphi_4)$$
Formality
$$\exists ?$$

$$(H(A), \varphi_*)$$

Higher Massey products

 (A, d, ϕ) a dga algebra such that H(A) is a homotopy retract

$$(A, d, \phi) \xrightarrow{\text{HII}} (H(A), \varphi_*, \varphi_3, \varphi_4 \dots)$$
 Higher Massey products \exists ?

Formality $(H(A), \varphi_*)$

 \implies If the higher Massey products vanish, then (A, d, ϕ) is formal.

An equivalent characterization of formality

 (A, d, ϕ) a dga algebra such that H(A) is a homotopy retract

$$(A,d,\phi) \xrightarrow{\mathsf{HTT}} (H(A),\varphi_*,\varphi_3,\varphi_4\ldots)$$
 Higher Massey products \exists ?

Formality $(H(A),\varphi_*)$

 \implies If the higher Massey products vanish, then (A, d, ϕ) is formal.

Definition

• (A, d, ϕ) is gauge formal if $\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$.

 (A, d, ϕ) a dga algebra such that H(A) is a homotopy retract

 \implies If the higher Massey products vanish, then (A, d, ϕ) is formal.

Definition

- (A, d, ϕ) is gauge formal if $\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$.
- (A, d, ϕ) is gauge *n*-formal if

$$\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*, 0, \dots, 0, \varphi'_{n+1}, \dots).$$

Kaledin classes

Kaledin classes

Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3}\right] \in H^{1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007])

 $R: \mathbb{Q}$ -algebra

 (A,ϕ) : dg associative algebra, H(A) is a homotopy retract

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Kaledin class:

$$K_{\Phi} := \left[\varphi_3 + 2\varphi_4\hbar + 3\varphi_5\hbar^2 + \cdots\right] \in H^1\left(\mathfrak{gl}\!\!\left[\!\!\left[\hbar\right]\!\!\right]\!\!\right]^{\Phi}$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3}\right] \in H^{1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani–Rubió, 2019])

 $R: \mathbb{Q}$ -algebra

P : binary Koszul operad

 (A,ϕ) : dg -algebra such that H(A) is a homotopy retract

- (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left(\mathfrak{g} \llbracket \hbar \rrbracket^{\Phi} \right)$$

 n^{th} -truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \cdots + (n-2)\varphi_{n}\hbar^{n-3} \right] \in \mathcal{H}^{1}\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n-2} \right)^{\widetilde{\Phi}} \right)$$

Theorem (E., 2024)

R: commutative ring

9 : (pr)operad, possibly coloured in groupoids

 (A, ϕ) : dg -algebra such that H(A) is a homotopy retract

- If R is a \mathbb{Q} -algebra, (A, ϕ) is gauge formal $\iff K_{\Phi} = 0$.
- If n! is invertible in R, (A, ϕ) is gauge n-formal $\iff K_{\Phi}^n = 0$.

Properadic coformality of spheres

Example (Kontsevich-Takeda-Vlassopoulos, 2021)

 $A = C_*(\Omega S^n; R)$ has an pre-Calabi-Yau structure

$$\phi = \underbrace{m_{(1)}}_{A_{\infty}-\text{alg}} + \underbrace{m_{(2)}}_{\text{Poisson bivector}} + m_{(3)} + \cdots$$

where $m_{(\ell)}$ is a cyclically anti-symmetric collection of maps

$$m_{(\ell)}^{k_1,\ldots,k_\ell}: sA^{k_1}\otimes\cdots\otimes sA^{k_\ell}\to A^\ell$$
.

⇒ encodes Poincaré duality.

Theorem (E.-Takeda, 2025)

If R is a \mathbb{Q} -algebra, $(C_*(\Omega S^n; R), \phi)$ is gauge formal.

Complement of hyperplane arrangements

K: a finite extension of \mathbb{Q}_p

 ℓ : a prime number different from p

q: order of the residue field of the ring of integers of K

s: order of q in $\mathbb{F}_{\ell}^{\times}$

 $ilde{ imes}$: a complement of a hyperplane arrangement over $\mathbb C$

Theorem (E., 2024)

If X is defined over K, i.e. $\exists K \hookrightarrow \mathbb{C}$ and $\exists \mathcal{X}$ a complement of hyperplane arrangement over K such that $\mathcal{X} \times_K \mathbb{C} \cong X$, then $C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$ is gauge (s-1)-formal.

Theorem (E., 2024)

X : a simply connected topological space

F: a nilpotent space of finite \mathbb{Q} -type.

A fibration $\xi: E \to X$ with fiber $F_{\mathbb{Q}}$ is trivial up to homotopy if and only if $\xi \otimes \mathbb{R}$ is trivial up to homotopy.

Example

The Fadell-Neuwirth fibration:

$$\xi: \mathrm{Conf}_{n-1}\left(\mathbb{R}^d\right) \longrightarrow \mathrm{Conf}_n\left(\mathbb{S}^d\right) \longrightarrow \mathbb{S}^d \ .$$

If d is odd, $\xi \otimes \mathbb{R}$ is trivial up to homotopy [Haya Enriquez, 2022]

 $\implies \xi$ is trivial up to homotopy.

Beyond formality

Homotopy equivalences between algebraic structures

Definition

The dg \mathscr{P} -algebras (A, ϕ) and (B, ψ) are

homotopy equivalent

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (B, \psi)$$

• gauge homotopy equivalent if $\exists (A, \phi) \stackrel{\sim}{\leadsto} (B, \psi)$.

Example

 (A, ϕ) is formal \iff it is homotopy equivalent to $(H(A), \varphi_*)$

Minimal model on highly connected variety

Theorem (E., 2025)

Let $\mathbb K$ be a field. Let M^d be a compact k-connected oriented C^∞ -manifold where d is smaller than $(\ell+1)k+2$. The algebra

$$C^{\bullet}_{\mathrm{sing}}(M,\mathbb{K})$$

is homotopy equivalent to an A_{∞} -algebra $(H^{\bullet}_{\mathrm{sing}}(M,\mathbb{K}),\varphi)$, with $\varphi_n=0$ for $n\geqslant \ell$.

Thank you for your attention!

