Formality Higher structures Kaledin classes Beyond formality
0000 000000000 000000 000

Obstruction theory to formality and
homotopy equivalences

Coline Emprin

Université Bourgogne Europe

Dijon, France

September 25, 2025



Formality Higher structures Kaledin classes Beyond formality
©000 000000000 000000 000

Rational homotopy theory

Goal: Study the rational homotopy type of spaces, i.e. their class
up to maps inducing isomorphisms in rational cohomology.

Method: Use algebraic invariants
e Genus = number of holes
e Cohomology ring H*(X; Q) with the cup product U
e Massey products = n-ary operations generalizing U
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Rational homotopy theory

Goal: Study the rational homotopy type of spaces, i.e. their class
up to maps inducing isomorphisms in rational cohomology.

Method: Use algebraic invariants
e Genus = number of holes
e Cohomology ring H*(X; Q) with the cup product U
e Massey products = n-ary operations generalizing U

= These invariants are not faithful !
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Faithful invariants

X : a topological space (simply connected and of finite type)

Theorem (Sullivan, 1977)

The commutative algebra of polynomial forms A}, (X) is a faithful
invariant of the rational homotopy type.
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Formal topological spaces

Definition
A space X is formal if there exists a zig-zag of quasi-isomorphisms

~ ~

I;L(X) e smg(X Q)

i.e. morphisms inducing isomorphisms in cohomology.

Remark
X formal = The cohomology ring H, (X, Q) completely
determines the rational homotopy type of X.
Examples
e Spheres, complex projective spaces, Lie groups
e Compact Kahler manifolds [Deligne-Griffiths—Morgan-Sullivan, '75]
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Formality of an algebraic structure

A : cochain complex over R

2 . colored operad or properad

¢: P — Endy : adg H-algebra structure

Definition

The dg H-algebra (A, ¢) is formal if there exists a zig-zag

~

where 1 is the canonical Z-algebra structure on H(A).

Examples

e X formal if Ap; (X) is formal as dg commutative algebra
o C(Dy;R) is formal as an operad [Kontsevich, 1999]
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Homotopy retracts

Definition
(W, dw) is a homotopy retract of (V, dy) if there are maps

o (Veody) = (W.dw)

i

where idy — ip = dyh + hdy and i is a quasi-isomorphism .
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Homotopy retracts

Definition
(W, dw) is a homotopy retract of (V, dy) if there are maps

o (Veody) = (W.dw)

i

where idy — ip = dyh + hdy and i is a quasi-isomorphism .

Proposition

If R is a field, the cohomology of any cochain complex is a
homotopy retract:

(7 (Ada) = (H(A).0).
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Transfer of algebraic structure

(A, da, ®) : a dga algebra and a homotopy retraction:

o ((Adad) = (H.dy)

i

Beyond formality
[e]e]e}



Formality Higher structures Kaledin classes
oooo 0®0000000 000000

Transfer of algebraic structure

(A, da, ®) : a dga algebra and a homotopy retraction:

o ((Adad) = (H.dy)

— Transferred product: ¢ == po¢oi® : H®? - H

i i

he

Beyond formality
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Transfer of algebraic structure

(A, da, ®) : a dga algebra and a homotopy retraction:

o ((Adad) = (H.dy)

i

— Transferred product: ¢ == po¢oi® : H®? - H

i i
p
Not associative in generall
i i i i
i i
ip # ip

Beyond formality
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— Consider @3 : H®3 — H
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— Consider @3 : H®3 — H

1

i |
w/:hffy\ﬁ
p p

— In (H®3, H):
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— Consider @3 : H®3 — H

1

i |
w/:hffy\ﬁ
p p

— In (H®3, H):

— (pp is associative up to the homotopy 3.
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— @ H®" — H, for all n > 2
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— @ H®" — H, for all n > 2
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Homotopy associative algebras
Definition

Aso-algebra: a cochain complex H with a collection of maps
©n: H®" = H

of degree 2 — n, for all n > 2, which satisfy the relations

() -

Examples

e Every dga algebra (A, ¢) is an Ac-algebra with ¢, =0 for all n > 3.
o (H,dn,p2,3,...)
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Homotopy transfer theorem

Theorem (Kadeishvili, 1982)
Given a dga algebra (A, da, ¢) and a homotopy retract

I

(7 (Adad) == (H.dy)

there exists an Ax-algebra structure on H such that p (and i)
extend to Aso-quasi-isomorphisms:

(Aa dAaQS) AN (H, dHaQD2y(103ag047 .. )
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Homotopy morphisms

(A, dA, ¢2, e ), (H, dH, ©2, ... ) . Aoo—algebras
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Homotopy morphisms

(A, dA,¢2, R ), (H, dH,QOQ, .. ) . Aoo—algebras

Definition
Aso-morphism f : A~ H is a collection of linear maps

fp: A" — H, n>1,

of degree 1 — n, which satisfy the relations

Vo

£ f .
> P
k>1 f) k+l=n+1

where ¢1 = dy and ¢1 = da.
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Homotopy quasi-isomorphisms

Definition
Ano-quasi-isomorphism f : A <5 H is an Aso-morphism where
fi : A— H is a quasi-isomorphism .
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Homotopy quasi-isomorphisms

Definition
Ano-quasi-isomorphism f : A <5 H is an Aso-morphism where
fi : A— H is a quasi-isomorphism .

Proposition (R is a characteristic zero field)
quasi-isos of associative algebras Asc-quasi-iso
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Homotopy quasi-isomorphisms

Definition

Ano-quasi-isomorphism f : A <5 H is an Aso-morphism where
fi : A— H is a quasi-isomorphism .

Proposition (R is a characteristic zero field)

quasi-isos of associative algebras Asc-quasi-iso

Corollary
A dga algebra (A, ¢) is formal if and only if

3 (A, )~ (H(A), ) -
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An equivalent characterization of formality
(A, d, ¢) a dga algebra such that H(A) is a homotopy retract

(A, d, 9) Wm (H(A), s, 03,04 . ..) Higher Massey products

37
Formality



Formality Higher structures Kaledin classes Beyond formality
0000 000000008 000000 000

An equivalent characterization of formality
(A, d, ¢) a dga algebra such that H(A) is a homotopy retract

(A, d, 9) MM% (H(A), s, 03,04 . ..) Higher Massey products
37
Formality
(H(A), ¢+)

= If the higher Massey products vanish, then (A, d, ¢) is formal.
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An equivalent characterization of formality
(A, d, ¢) a dga algebra such that H(A) is a homotopy retract

(A, d, 9) MM% (H(A), s, 03,04 . ..) Higher Massey products
37
Formality
(H(A), ¢+)

= If the higher Massey products vanish, then (A, d, ¢) is formal.
Definition
® (A, d, o) is gauge formal if 3 (H(A), ox, 03,04 ...) ~ (H(A), ).



Formality Higher structures Kaledin classes Beyond formality
0000 000000008 000000 000

An equivalent characterization of formality
(A, d, ¢) a dga algebra such that H(A) is a homotopy retract

(A, d, 9) MM% (H(A), s, 03,04 . ..) Higher Massey products
37
Formality
(H(A), ¢+)

= If the higher Massey products vanish, then (A, d, ¢) is formal.
Definition
® (A, d, o) is gauge formal if 3 (H(A), ox, 03,04 ...) ~ (H(A), ).
® (A d, o) is gauge n-formal if

3 (H(A)7(p*7(p3>994) ':) (H(A)a(phoa-'woa(p:rkla---) .
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Kaledin classes

Kaledin class:

Ko = [i03 +20ali + 3¢sh® + -] € H* (a[1]°)
nth-truncated Kaledin class :

Ky = [p3 +2psh+ -+ (n = 2)p,h" 3] € H <(g[[h]]/h”_2)$)

Theorem ([Kaledin, 2007], [Lunts, 2007] )

R : Q-algebra

(A, ¢) : dg associative algebra, H(A) is a homotopy retract
* (A, ¢) is gauge formal <= K¢ = 0.
® (A, ¢) is gauge n-formal <= Kg = 0.
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Kaledin class:
Ko = [3 + 2pah + 3psh® + -+ | € H (gllﬁﬂ¢>
nth-truncated Kaledin class :

Kg = [803 +2psh+ -+ (n— 2)g0,,h”_3] c 4! <(g[[h]]/h”_2)$)

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani-Rubié, 2019] )
R : Q-algebra
P : binary Koszul operad
(A, @) : dg -algebra such that H(A) is a homotopy retract
* (A, ¢) is gauge formal <= K¢ = 0.
® (A, ¢) is gauge n-formal <—= K = 0.
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Kaledin class:
Ko = [3 + 2pah + 3psh® + -+ | € H (g[[ﬁ]]q’)
nth-truncated Kaledin class :

K = 03+ 2pah+ -+ (n = 2)p,h" %] € H' ((9[[71]1/71"_2)6>

Theorem (E., 2024)
R : commutative ring
P : (pr)operad, possibly coloured in groupoids
(A, @) : dg -algebra such that H(A) is a homotopy retract
® If R is a Q-algebra, (A, ®) is gauge formal <—= K¢ = 0.
e [f n! is invertible in R, (A, ¢) is gauge n-formal <—= K§ = 0.
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Properadic coformality of spheres

Example (Kontsevich-Takeda—Vlassopoulos, 2021)
A = C,(Q5"; R) has an pre-Calabi-Yau structure

¢ = my + mg + mg +-
~—~
Aco-alg Poisson bivector

up to homotopy

where m(y) is a cyclically anti-symmetric collection of maps

mﬁﬁﬁﬂh®~®ﬂwéﬂ-

= encodes Poincaré duality.

Theorem (E.-Takeda, 2025)
If R is a Q-algebra, (C.(2S"; R), ¢) is gauge formal.
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Complement of hyperplane arrangements

K : a finite extension of Q,

¢ : a prime number different from p

q : order of the residue field of the ring of integers of K
s : order of g in F/f

X : a complement of a hyperplane arrangement over C

Theorem (E., 2024)

If X is defined over K, i.e. 3 K — C and 3 X a complement of
hyperplane arrangement over K such that X xx C = X, then
C* (Xan, Z(yy) is gauge (s — 1)-formal.
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Triviality of fibrations

Theorem (E., 2024)
X : a simply connected topological space
F : a nilpotent space of finite Q-type.

A fibration £ : E — X with fiber Fq is trivial up to homotopy if and
only if € @ R is trivial up to homotopy.

Example
The Fadell-Neuwirth fibration :

¢ Confp_q <Rd) — Conf, (Sd) L

If dis odd, £ ® R is trivial up to homotopy [Haya Enriquez, 2022]

= ¢ is trivial up to homotopy.
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Homotopy equivalences between algebraic structures

Definition
The dg P-algebras (A, ¢) and (B, 1)) are
® homotopy equivalent

3 (A, ¢) DA A AN (B, )
® gauge homotopy equivalent if 3 (A, ¢) < (B,v).

Example
(A, ¢) is formal <= it is homotopy equivalent to (H(A), )
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Minimal model on highly connected variety

Theorem (E., 2025)

Let K be a field. Let M? be a compact k-connected oriented
C°°-manifold where d is smaller than (¢ 4+ 1)k + 2. The algebra

Coing(M, K)
is homotopy equivalent to an A-algebra (Hg,,,(M,K), ¢), with

on=0 forn>¢.
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Thank you for your attention!

‘CeasY?
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