





# Kaledin classes & formality criteria

### Coline Emprin

Homotopical Algebra and Higher Structures August 27, 2024 | MFO | Oberwolfach

arXiv: 2404.17529





# The notion of formality



## Formal topological spaces

R: commutative ground ring

### Definition

A topological space X is formal if there exists a zig-zag of quasi-isomorphisms of dga algebras,

$$C^{\bullet}_{\mathrm{sing}}(X;R) \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ \cdots \ \stackrel{\sim}{\longleftarrow} \ \cdot \ \stackrel{\sim}{\longrightarrow} \ H^{\bullet}_{\mathrm{sing}}(X;R) \ .$$

ightarrow Origins in rational homotopy theory (for  $\mathbb{Q} \subset R$ )

X formal  $\Longrightarrow$  The cohomology ring  $H^{\bullet}_{\operatorname{sing}}(X,\mathbb{Q})$  completely determines the rational homotopy type of X.

### Examples

- Spheres, complex projective spaces, Lie groups
- Compact Kähler manifolds [Deligne, Griffiths, Morgan & Sullivan, 1975]

## Formality of an algebraic structure

A : chain complex over R

 ${\mathscr P}$  : colored operad or properad

 $\phi: \mathscr{P} \to \mathsf{End}_{\mathcal{A}}: \mathsf{adg} \ \mathscr{P}\text{-algebra structure}$ 

### Definition

The dg  $\mathscr{P}$ -algebra  $(A, \phi)$  is formal if

$$\exists (A, \phi) \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} \cdots \stackrel{\sim}{\longleftarrow} \cdot \stackrel{\sim}{\longrightarrow} (H(A), \varphi_*) ,$$

where  $\varphi_*$  is the canonical  $\mathscr{P}$ -algebra structure on H(A).

### Examples

- X is formal =  $(C_{\text{sing}}^{\bullet}(X; R), \cup)$  is formal as dga algebra
- $C(\mathcal{D}_k; \mathbb{R})$  is formal as an operad [Kontsevich, 1999]

```
(A,\phi): dg \mathscr{P}-algebra encoded by an operad \mathscr{P}
```

 $\alpha$ : unit of infinite order in R

 $\sigma_{\alpha}$ : the degree twisting by  $\alpha =$  automorphism of  $(H(A), \varphi_*)$  which acts via  $\alpha^k \times$  on  $H_k(A)$ .

### **Theorem**

If  $\sigma_{\alpha}$  admits a chain-level lift, i.e.  $\exists f \in \text{End}(A, \phi)$  s.t.  $H(f) = \sigma_{\alpha}$ , then  $(A, \phi)$  is formal.

- → Deligne, Griffiths, Morgan, Sullivan [1975]
- → Sullivan [1977]
- → Guillén Santos, Navarro, Pascual, Roig [2005]
- $\rightarrow$  Drummond-Cole and Horel [2021]

## Example (Drummond-Cole and Horel, 2021)

X: a complement of a hyperplane arrangement over  $\mathbb C$  defined over a finite extension K of  $\mathbb Q_p$ .

 $\ell$ : a prime number different from p

$$o C^{ullet}(X_{an}, \mathbb{Z}_{\ell}) \cong C^{ullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$$
 [Artin].

 $\to$  A Frobenius action on  $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Z}_{\ell})$  is  $\sigma_q$  [Kim, 1994].

## Questions

- Can we descend these results to other coefficient rings? (e.g.  $\mathbb{Z}_{(\ell)},...$ )
- Does the degree twisting criteria hold for other types of algebras? (e.g. Hopf algebras, involutive Lie bialgebras,...)

• Is the degree twisting the only homology automorphism satisfying this property?



# Higher structures



## Homotopy retracts

### Definition

 $(W, d_W)$  is a homotopy retract of  $(V, d_V)$  if there are maps

$$h \longrightarrow (V, d_V) \xrightarrow{p} (W, d_W)$$

where  $id_V - ip = d_V h + h d_V$  and i is a quasi-isomorphism.

## Proposition

If R is a field, the cohomology of any cochain complex is a homotopy retract:

$$h \longrightarrow (A, d_A) \stackrel{p}{\longleftrightarrow} (H(A), 0)$$
.

## Transfer of algebraic structure

 $(A, d_A, \phi)$ : a dga algebra and a homotopy retraction:

$$h \stackrel{p}{\longrightarrow} (A, d_A, \phi) \stackrel{p}{\longleftrightarrow} (H, d_H)$$

ightarrow Transferred product:  $\varphi_2 \coloneqq p \circ \phi \circ i^{\otimes 2} : H^{\otimes 2} \to H$ 

$$i \longrightarrow p$$

Not associative in general!

 $\rightarrow$  Consider  $\varphi_3: H^{\otimes 3} \rightarrow H$ 

 $\rightarrow$  In Hom $(H^{\otimes 3}, H)$ :

$$\partial \left( \begin{array}{c} \\ \end{array} \right) = ip \begin{array}{c} i \\ i \\ p \end{array} - \begin{array}{c} i \\ i \\ p \end{array}$$

 $\rightarrow \varphi_2$  is associative up to the homotopy  $\varphi_3$ .

 $\rightarrow \varphi_n: H^{\otimes n} \rightarrow H$ , for all  $n \geqslant 2$ 

$$1 \quad 2 \quad \cdots \quad n \quad := \quad \sum_{PBT_n} \pm \quad \stackrel{i}{h} \quad \stackrel{i}{h} \quad \stackrel{i}{h} \quad \stackrel{i}{h}$$

## Homotopy associative algebras

## Definition (Stasheff, 1963)

 $A_{\infty}$ -algebra: a cochain complex H with a collection of maps

$$\varphi_n: H^{\otimes n} \to H$$

of degree 2 - n, for all  $n \ge 2$ , which satisfy the relations

### **Examples**

- Every dga algebra  $(A, \phi)$  is an  $A_{\infty}$ -algebra with  $\varphi_n = 0$  for all  $n \ge 3$ .
- $(H, d_H, \varphi_2, \varphi_3, \dots)$



## Homotopy transfer theorem

## Theorem (Kadeishvili, 1982)

Given a dga algebra  $(A, d_A, \phi)$  and a homotopy retract

$$h \longrightarrow (A, d_A, \phi) \xrightarrow{p} (H, d_H)$$

there exists an  $A_{\infty}$ -algebra structure on H such that p (and i) extend to  $A_{\infty}$ -quasi-isomorphisms:

$$(A, d_A, \phi) \sim (H, d_H, \varphi_2, \varphi_3, \varphi_4, \dots)$$

Kaledin classes

$$(A, d_A, \phi_2, \dots), (H, d_H, \varphi_2, \dots) : A_{\infty}$$
-algebras

### Definition

 $A_{\infty}$ -morphism  $f: A \rightsquigarrow H$  is a collection of linear maps

$$f_n: A^{\otimes n} \longrightarrow H, \quad n \geqslant 1$$
,

of degree 1-n, which satisfy the relations

$$\sum_{\substack{k\geqslant 1\\i_1+\cdots+i_k=n}}\pm\bigvee_{\substack{f_{i_1}\ldots f_{i_k}\\j_{\leqslant k}}}\bigvee_{j}=\sum_{\substack{k+l=n+1\\1\leqslant j\leqslant k}}\pm\bigvee_{\substack{j\\f_k}}$$

where  $\varphi_1 = d_H$  and  $\phi_1 = d_A$ .

## Homotopy quasi-isomorphisms

### Definition

 $A_{\infty}$ -quasi-isomorphism  $f: A \stackrel{\sim}{\leadsto} H$  is an  $A_{\infty}$ -morphism where  $f_1: A \to H$  is a quasi-isomorphism .

## Proposition (R is a field)

quasi-isos of associative algebras

 $A_{\infty}$ -quasi-iso

$$\exists (A, \phi) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \cdot \cdot \xleftarrow{\sim} \cdot \xrightarrow{\sim} (B, \phi') \iff \exists (A, \phi) \xrightarrow{\sim} (B, \phi')$$

## Corollary

A dga algebra  $(A, \phi)$  is formal if and only if

$$\exists (A, \phi) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$$
.

## An equivalent characterization of formality

 $(A, d, \phi)$  a dga algebra such that H(A) is a homotopy retract

$$(A,d,\phi) \xrightarrow{\mathsf{HTT}} (H(A),\varphi_*,\varphi_3,\varphi_4\ldots) \qquad \mathsf{Higher\ Massey\ products}$$
 
$$\begin{tabular}{ll} \hline \\ \mathsf{Formality} \\ \hline \\ (H(A),\varphi_*) \\ \hline \end{tabular}$$

 $\implies$  If the higher Massey products vanish, then  $(A, d, \phi)$  is formal.

### Definition

- $(A, d, \phi)$  is gauge formal if  $\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*)$ .
- $(A, d, \phi)$  is gauge *n*-formal if

$$\exists (H(A), \varphi_*, \varphi_3, \varphi_4 \dots) \stackrel{\sim}{\leadsto} (H(A), \varphi_*, 0, \dots, 0, \varphi'_{n+1}, \dots).$$



## Kaledin classes



## Hochschild complex

Transfered structure:  $(H(A), \varphi_*, \varphi_3, \varphi_4, \ldots)$ 

$$\varphi_n \in Hom(H(A)^{\otimes n}, H(A)), \quad |\varphi_n| = 2 - n$$

Hochschild cochain complex:

$$\mathfrak{g} := \prod_{n \geqslant 1} s^{-n+1} Hom(H(A)^{\otimes n}, H(A))$$

Lie bracket :  $[x, y] := x \star y - (-1)^{|x||y|} y \star x$ 

$$x \star y := \sum_{i=1}^{n} (-1)^{(i-1)(m-1)}$$

for  $x \in Hom(H(A)^{\otimes n}, H(A))$  and  $y \in Hom(H(A)^{\otimes m}, H(A))$ .



### Transfered structure:

$$(\varphi_*, \varphi_3, \varphi_4, \ldots) \in \mathfrak{g} \coloneqq \prod_{n \geqslant 1} s^{-n+1} \mathit{Hom}(H(A)^{\otimes n}, H(A))$$

#### A formal deformation:

$$\Phi := \varphi_* + \varphi_3 \hbar + \varphi_4 \hbar^2 + \dots \in \mathfrak{g}\llbracket \hbar \rrbracket := \mathfrak{g} \widehat{\otimes} R \llbracket \hbar \rrbracket$$

Proposition :  $\mathrm{ad}_{\Phi} \coloneqq [\Phi, -]$  defines a differential on  $\mathfrak{g}\llbracket \hbar \rrbracket$ 

### Twisted dg Lie algebra:

$$\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi} := (\mathfrak{g}\llbracket\hbar\rrbracket, [-, -], \mathrm{ad}_{\Phi})$$

## Kaledin classes

$$\partial_{\hbar}\Phi := \varphi_3 + 2\varphi_4\hbar + 3\varphi_5\hbar^2 + \cdots \in \mathfrak{g}\llbracket\hbar\rrbracket$$

Lemma :  $\partial_{\hbar}\Phi$  is a cycle in  $\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}:=(\mathfrak{g}\llbracket\hbar\rrbracket,[-,-],\mathrm{ad}_{\Phi})$ ,

$$\mathrm{ad}_\Phi\big(\partial_\hbar\Phi\big)\coloneqq [\Phi,\partial_\hbar\Phi]=0\ .$$

Kaledin class:

$$\mathcal{K}_{\Phi} := [\partial_{\hbar}\Phi] \in H^1\left(\mathfrak{g}\llbracket\hbar\rrbracket^{\Phi}\right) .$$

n<sup>th</sup>-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^n := \left[\varphi_3 + 2\varphi_4 \hbar + \dots + (n-2)\varphi_n \hbar^{n-3}\right] \in H^1\left(\left(\mathfrak{g}\llbracket \hbar \rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right).$$

Kaledin classes

### Kaledin class:

$$\mathcal{K}_{\Phi} := \left[\varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots\right] \in H^1\left(\mathfrak{g}\llbracket \hbar \rrbracket^{\Phi}\right)$$

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3}\right] \in H^{1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007])

 $R: \mathbb{Q}$ -algebra

 $(A, \phi)$ : dg associative algebra, H(A) is a homotopy retract

- $(A, \phi)$  is gauge formal  $\iff K_{\Phi} = 0$ .
- $(A, \phi)$  is gauge n-formal  $\iff K_{\Phi}^n = 0$ .



### Kaledin class:

$$\mathcal{K}_{\Phi} := \left[ \varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left( \mathfrak{g} \llbracket \hbar 
bracket^{\Phi} \right)$$

### nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[\varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3}\right] \in H^{1}\left(\left(\mathfrak{g}\llbracket\hbar\rrbracket/\hbar^{n-2}\right)^{\widetilde{\Phi}}\right)$$

Theorem ([Kaledin, 2007], [Lunts, 2007], [Melani–Rubió, 2019])

 $R: \mathbb{O}$ -algebra

P: Koszul operad

 $(A, \phi)$ : dg  $\mathcal{P}$ -algebra such that H(A) is a homotopy retract

- $(A, \phi)$  is gauge formal  $\iff K_{\Phi} = 0$ .
- $(A, \phi)$  is gauge n-formal  $\iff K_{\Phi}^n = 0$ .

$$\mathcal{K}_{\Phi} := \left[ \varphi_3 + 2\varphi_4 \hbar + 3\varphi_5 \hbar^2 + \cdots \right] \in H^1 \left( \mathfrak{g} \llbracket \hbar 
bracket^{\Phi} \right)$$

00000

nth-truncated Kaledin class:

$$\mathcal{K}_{\Phi}^{n} := \left[ \varphi_{3} + 2\varphi_{4}\hbar + \dots + (n-2)\varphi_{n}\hbar^{n-3} \right] \in \mathcal{H}^{1}\left( \left( \mathfrak{g}\llbracket \hbar \rrbracket / \hbar^{n-2} \right)^{\widetilde{\Phi}} \right)$$

Theorem (E., 2023)

R: commutative ring

 $\mathcal{P}$ : (Pr)operad, possibly coloured in groupoids

 $(A, \phi)$ : dg  $\mathcal{P}$ -algebra such that H(A) is a homotopy retract

- $(A, \phi)$  is gauge formal  $\iff K_{\Phi} = 0$ .
- $(A, \phi)$  is gauge n-formal  $\iff K_{\Phi}^n = 0$ .



# Formality criteria



## Formality descent

 $(A, \phi)$ : a dg  $\mathscr{P}$ -algebra that admits a transferred structure

 $H_i(A)$ : projective, finitely generated for all i.

S: faithfully flat commutative R-algebra.

## Proposition (E., 2024)

 $(A, \phi)$  is gauge n-formal  $\iff$   $(A \otimes_R S, \phi \otimes 1)$  is gauge n-formal.

### Proof.

$$H_{-1}\left(\mathfrak{g}_{H(A)}\llbracket\hbar
brace^{\Phi}\right)\otimes_{R\llbracket\hbar
brace}S\llbracket\hbar
brace\cong H_{-1}\left(\mathfrak{g}_{H(A\otimes_R S)}\llbracket\hbar
brace^{\Phi\otimes 1}\right)$$

## **Examples**

- $C(\mathcal{D}_k; \mathbb{R})$  is formal  $\iff C(\mathcal{D}_k; \mathbb{Q})$  is formal [GSNPR, 2005]
- $\mathbb{Z}_{(\ell)} \subset \mathbb{Z}_{\ell}$

X: a complement of a hyperplane arrangement over  $\mathbb{C}$   $\to$  complement of a finite collection of affine hyperplanes in  $\mathbb{A}^n_{\mathbb{C}}$ .

K: a finite extension of  $\mathbb{Q}_p$ 

q: order of the residue field of the ring of integers of K

 $\ell$ : a prime number different from p

s: order of q in  $\mathbb{F}_{\ell}^{\times}$ 

Proposition (Dummond-Cole – Horel, 2021)

If X is defined over K, i.e.  $\exists K \hookrightarrow \mathbb{C}$  and  $\exists \mathcal{X}$  a complement of a hyperplane arrangement over K s.t.  $\mathcal{X} \times_K \mathbb{C} \cong X$ , then  $C^{\bullet}(X_{an}, \mathbb{Z}_{\ell})$  is gauge (s-1)-formal.

Formality descent  $\implies C^{\bullet}(X_{an}, \mathbb{Z}_{(\ell)})$  is gauge (s-1)-formal.



## Automorphism lifts

 $(A, \phi)$ : a dg  $\mathscr{P}$ -algebra that admits a transferred structure

Theorem (E., 2024)

Suppose that  $u \in Aut(H(A), \varphi_0)$  admits a chain lift. Let

$$\operatorname{Ad}_{u}:\operatorname{End}_{H(A)}\to\operatorname{End}_{H(A)}\quad \psi\longmapsto u^{\otimes q}\circ\psi\circ(u^{-1})^{\otimes p}$$
,

for 
$$\psi \in \operatorname{End}_{H(A)}(p,q) = \operatorname{Hom}\left(H(A)^{\otimes p}, H(A)^{\otimes q}\right)$$

- 1. If  $Ad_u id$  is invertible, then  $(A, \phi)$  is gauge formal and every homology automorphism admits a chain level lift.
- 2. If  $Ad_u id$  is invertible on the elements of degree k for all k < n, then  $(A, \phi)$  is gauge n-formal.

## Automorphism lifts

R: a characteristic zero field

 $(A,\phi)$ : a dg  $\mathscr{P}$ -algebra that admits a transferred structure s.t. H(A) is finite dimensional.

## Corollary (E., 2024)

Suppose that there exists  $u \in \operatorname{Aut}(H(A), \varphi_0)$  such that for all k < n, and all p-tuples  $(k_1, \ldots, k_p)$ ,

$$\operatorname{Spec}(u_{k_1+\cdots+k_p+k})\cap\operatorname{Spec}(u_{k_1}\otimes\cdots\otimes u_{k_p})=\varnothing\;,$$

where  $u_i := u_{|H_i(A)}$ . If u admits a lift at the level of chains then  $(A, \phi)$  is gauge n-formal.

## Frobenius & Weil numbers

K: a finite extension of  $\mathbb{Q}_p$ 

 ${m q}$  : order of the residue field of the ring of integers  ${\mathcal O}_{\mathcal K}$ 

 $\ell$ : a prime number different from p

X: a smooth proper K-scheme

### **Definition**

 $\alpha \in \overline{\mathbb{Q}}_{\ell}$  is a Weil number of weight n if

$$\forall \ \iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, \quad |\iota(\alpha)| = q^{n/2} \ .$$

## Theorem (Deligne, 1974)

For all n, the eigenvalues of a Frobenius action on  $H^n_{\mathrm{et}}(X_{\overline{K}},\mathbb{Q}_\ell)$  are Weil numbers of weight n.

### Theorem

Let X be a smooth and proper scheme over  $\mathbb{C}$ . The algebra  $C^{\bullet}(X_{\mathrm{an}},\mathbb{Q})$  is formal.

### Proof.

• There exists a smooth and proper model  $\mathcal{X}$  over  $\mathcal{O}_K$ .

$$C^{ullet}(X_{an}, \mathbb{Q}_{\ell}) \cong C^{ullet}_{et}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$$

- Let u be the Frobenius action on  $H_{et}^{\bullet}(\mathcal{X}_{\overline{K}}, \mathbb{Q}_{\ell})$ .
- For all  $k \geq 1$ ,  $(k_1, \ldots, k_p)$  and  $s \coloneqq k_1 + \cdots + k_p$ ,  $\operatorname{Spec}(u_{s+k}) \quad \cap \quad \operatorname{Spec}(u_{k_1} \otimes \cdots \otimes u_{k_p}) = \varnothing \ .$   $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \beta$   $|\iota(\alpha)| = q^{\frac{s+k}{2}} \qquad > \qquad \qquad |\iota(\beta)| = q^{\frac{s}{2}}$

Previous work: [Deligne, 1980]



Let  $\operatorname{Sch}_K$  be the category of smooth and proper schemes over K of good reduction, i.e. for which there exists a smooth and proper model over  $\mathcal{O}_K$ .

## Theorem (E., 2024)

Let  $\mathbb V$  be a groupoid and let  $\mathscr P$  be a  $\mathbb V$ -colored operad in sets. Let X be a  $\mathscr P$ -algebra in  $\operatorname{Sch}_K$ . The dg  $\mathscr P$ -algebra  $C_{ullet}(X_{\operatorname{an}},\mathbb Q)$  is formal.

## Example (Guillén Santos, Navarro, Pascual, & Roig, 2005)

 $\overline{\mathcal{M}}$  the cyclic operad of moduli spaces of stable algebraic curves  $C_{\bullet}(\overline{\mathcal{M}}_{an};\mathbb{Q})$  is formal



Thank you for your attention!

