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ARITHMETIC AMPLENESS
AND AN ARITHMETIC BERTINI THEOREM

BY Frangois CHARLES

ABSTRACT. — Let X be a projective arithmetic variety of dimension at least 2. If £ is an ample
hermitian line bundle on X, we prove that the proportion of those effective sections o of %" such
that the divisor of o on X is irreducible tends to 1 as n tends to co. We prove variants of this statement
for schemes mapping to such an X.

On the way to these results, we discuss some general properties of arithmetic ampleness, including
restriction theorems, and upper bounds for the number of effective sections of hermitian line bundles
on arithmetic varieties.

RESUME. — Soit X une variété arithmétique projective de dimension au moins 2, et soit £ un
fibré hermitien sur X'. Si £ est ample, on démontre que la proportion des sections effectives de o qui
définissent un diviseur irréductible sur X tend vers 1 quand » tend vers co. On démontre également des
variantes de ce résultat pour des schémas admettant un morphisme vers X

On prouve par ailleurs un certain nombre de propriétés générales de ’amplitude arithmétique,
autour notamment de théorémes de restriction et d’estimées pour le nombre de sections effectives de
fibrés en droites hermitiens.

1. Introduction

1.1. Bertini theorems over fields

Let k be an infinite field, and let X be an irreducible variety over k with dimension at
least 2. Given an embedding of X in some projective space over k, the classical Bertini
theorem [23, Theorem 3.3.1] shows, in its simplest form, that infinitely many hyperplane
sections of X are irreducible.

In the case where k is finite, the Bertini theorem can fail, since the finitely many hyperplane
sections of X can all be reducible. As was first explained in [26] in the setting of smoothness
theorems, this phenomenon can be dealt with by replacing hyperplane sections with ample
hypersurfaces of higher degree. We can state the main result of [11]—see Theorem 1.6 in[11]
and the discussion in the proof of Theorem 6.1 below—as follows: let k be a finite field, let
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1542 F. CHARLES

X be a projective variety over k and let L be an ample line bundle on X. Let Y be an integral
scheme of finite type over k together with a morphism f : ¥ — X. Assume that the image
of f has dimension at least 2. If Z is a subscheme of Y, write Zyq,i, for the union of those
irreducible components of Z that do not map to a closed point of X. Then the set

P = {a € U HO(X, L®"), div(f*0)horiz is irreducible}
n>0
has density 1, in the sense that
. |PnHOX, L®)]

lim =

n—oo  |HO(X, L®")|
Here if S is a set, we denote by |S| its cardinality. When Y is a subscheme of X, we can
disregard the horizontality subscript.

1.2. The arithmetic case

In this paper, we deal with an arithmetic version of Bertini theorems as above. Let
X be an arithmetic variety, that is, an integral scheme which is separated, flat of finite type
over Spec Z. Assume that X is projective, and let £ be a relatively ample line bundle on X'. As
is well known, sections of £ over X are not the analogue of global sections of a line bundle
over a projective variety over a field. Indeed, it is more natural to consider a hermitian line
bundle £ with underlying line bundle £ and consider the sets

—=®
HY (X, L")
of sections with norm at most 1 everywhere. We discuss ampleness for hermitian line bundles

in Section 2, which we refer to for definitions.

Given finite sets (Xj)n>0, and a subset P of [ J
following equality holds:

2>0 Xn, say that P has density p if the
. PN Xy
lim —— =

n—o00 |Xn|

The main result of this paper is the following arithmetic Bertini theorem. Again, given
a morphism of schemes f : Y — X, and if Z is a subscheme of Y, we denote by Zpori,
the union of those irreducible components of Z that do not map to a closed point of X.
If M = (M,]||.]]) is a hermitian vector bundle and § is a real number, write M(§) for
the hermitian vector bundle (M, e~ %||.||). Write ||0||oo for the sup norm of a section of a
hermitian vector bundle.

THEOREM 1.1. — Let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X. Let Y be an integral scheme of finite type over SpecZ together with a
morphism Y — X which is generically smooth over its image. Assume that the image
of Y has dimension at least 2. Let € be a positive real number. Then the set

{a e |J HAX.Z@®"). 110] ;e lloo = 1and div(f*0)nori is irreducible}

n>0

. . 0 A
has density 1 in {o € U, Ha (X, L(e)®"), ||0|f(y(©)||oo <1}
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ARITHMETIC AMPLENESS AND AN ARITHMETIC BERTINI THEOREM 1543

Recall that by definition, the condition o € H (X, £(¢)®") means

llolleo = &".

REMARK 1.2. — A Weil divisor is said to be irreducible if it comes from an integral
codimension 1 subscheme.

REMARK 1.3. — The hypothesis that f is generically smooth over its image is necessary:
when f is the Frobenius morphism of a fiber X, all div(f*o) have components with
multiplicities divisible by p. Of course, it holds when Y is flat over Spec Z. Without this
hypothesis on f, the conclusion is only that the support of div(f*o) is irreducible for a
density 1 set of 0.

An important special case of the theorem deals with the special case where f is dominant.
In this case, generic smoothness is automatic.

THEOREM 1.4. — Let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X. Let Y be an integral scheme of finite type over SpecZ together with a
morphism f 1Y — X. Assume that the image of Y has dimension at least 2 and f is dominant.
Then the set

{rr e | J HL(X.Z®"), div(f*0)noriz is irreducible}

n>0

has density 1 in | J,.o HJ (X, Z®n).

n>0

REMARK 1.5. — We will prove Theorem 1.1 as a consequence of Theorem 1.4. However,
the latter is a special case of the former. Indeed, with the notation of Theorem 1.1, when f is
dominant, if o € HY (X, L(s)®", then the condition

1] sy llee =1

is equivalent to

llolloo = 1,

ie,o € HXT(X,ZW).

The case where ) = X is particularly significant. We state it independently below. Most
of this paper will be devoted to its proof, and we will prove 1.1 and 1.4 as consequences.

THEOREM 1.6. — Let X be a projective arithmetic variety of dimension at least 2, and let
L be an ample hermitian line bundle on X. Then the set

{e e | J HYLx.Z%"), div(o) s irreducible}

n>0

has density 1 in | J ng(X, Z®n).

n>0

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1544 F. CHARLES

Theorem 1.6 is stronger than the Bertini irreducibility theorem of [11, Theorem 1.1], as
we explain in Section 3. Note however that we use the results of [11] in our proofs.

In Theorem 1.6, the case where X’ has dimension at least 3—that is, relative dimension at
least 2 over Spec Z—is easier. Indeed, if p is a large enough prime number, we can apply the
Bertini irreducibility theorems over finite fields to the reduction of X modulo p, which with
moderate work is enough to prove the theorem. However, when X is an arithmetic surface,
Theorem 1.6 is genuinely different from its finite field counterpart. Note that the hardest case
of the main result of [11] is the surface case as well.

Theorem 1.1 should be compared to the Hilbert irreducibility theorem, which implies,
if £ is very ample on the generic fiber of X and Y is flat over Z, the existence of many
sections o of £ such that the generic fiber of div( f*0) is irreducible. However, the Hilbert
irreducibility theorem does not guarantee that these sections have small norm. To our
knowledge, Theorem 1.1 does not imply the Hilbert irreducibility theorem, nor does it
follow from it.

1.3. Previous results and applications

Arithmetic Bertini theorems, in the setting of both general arithmetic geometry and
Arakelov geometry, have appeared in the literature. In [26], Poonen is able to prove a Bertini
regularity theorem for ample line bundles on regular quasi-projective schemes over Spec Z
under the abc conjecture and technical assumptions. The statement does not involve hermi-
tian metrics but still involves a form of density.

In [24], Moriwaki proves a Bertini theorem showing the existence of at least one effective
section of large powers of an arithmetically ample line bundle that defines a generically
smooth divisor—this was reproved and generalized in [19]. As a byproduct of our discussion
of arithmetic ampleness in Section 2 and Poonen’s result over finite fields, we will give a short
proof of a more precise version of this result.

THEOREM 1.7. — Let X be a projective arithmetic variety with smooth generic fiber, and let
L be an ample hermitian line bundle on X. Then the set

{0 € U ng(X,Z@m), div(o)gis smooth}
n>0
has density 1 in | .o HY (X, Z®n).

n>0

Of course, this result can be combined with Theorem 1.6 if X’ has dimension at least 2.

Weaker Bertini theorems over rings of integers in number fields have been used in higher
class-field theory, under the form of the Bloch-Raskind-Kerz approximation lemma proved
in [5, 28, 35, 21}—see [33, Lemme 5.2] for a discussion. These results can be obtained easily
as a special case of our Corollary 3.6 (or its variant corresponding to Theorem 1.1 for
Wiesend’s version)—this corollary allows us furthermore to control the cohomology class
of the irreducible subvarieties involved.

An arithmetic Bertini theorem has been proved by Autissier in [2, 3]. Counts of irreducible
divisors on arithmetic varieties have been provided by many authors, starting with Faltings
in [14].
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ARITHMETIC AMPLENESS AND AN ARITHMETIC BERTINI THEOREM 1545

Our Bertini theorem is expected to be used in its precise form in upcoming work of
Hrushovski on the model theory of number fields. We hope to discuss its applications to both
general Arakelov geometry and number-theoretic problems in future work.

1.4. Strategy of the proofs

The starting point of our proof is that, as in [11], the Bertini irreducibility theorem is
susceptible to a counting approach: to show that most divisors are irreducible, simply bound
the number of the reducible ones.

To carry on this approach, we need to translate in Arakelov geometry results from classical
geometry. The two key results in that respect are the study of restriction maps for powers
of ample hermitian line bundles we prove in 2.3 and bounds for sections of hermitian line
bundles on surfaces in 4.2. We hope that these results have independent interest.

Even with these tools at our disposal, we are not able to adapt the methods of [11], for
two reasons. First, the error terms in the various estimates we deal with (including arithmetic
Hilbert-Samuel) are big enough that we need a more involved sieving technique than in
[11] involving the analysis of simultaneous restriction of sections modulo infinite families
of subschemes. Second, given a section of a hermitian line bundle with reducible divisor on
a regular arithmetic surface, we need to construct a corresponding decomposition of the
hermitian line bundle, which involves constructing suitable metrics. The relevant analysis is
dealt with in 4.1 and can only be applied when suitable geometric bounds hold. To get a hold
of the geometry, we need a careful analysis dealing with infinite families of curves over finite
fields—coming from the reduction of our given arithmetic surface modulo many primes. This
is the content of 5.2.

1.5. Notation and definitions

If S is a set, we denote by | S| the cardinal of S.

If X is a scheme of finite type over Spec Z, we denote by X?" the associated complex
analytic space.

By an arithmetic variety, we mean an integral scheme which is flat of finite type
over SpecZ. A projective arithmetic variety of dimension 2 is an arithmetic surface. If
X is a scheme over SpecZ and if p is a prime number, we will denote by &}, the reduction
of X modulo p. If f : X — Y is a morphism of noetherian schemes, we say that an
irreducible component of X is vertical if its image is a closed point of Y, and horizontal if
not. We denote by Xy, the union of the horizontal components of X.

Let X be a complex analytic space. A hermitian vector bundle M = (M, ||.||) is a pair
consisting of a vector bundle M on X and a hermitian metric on the restriction of M to the
reduced subspace Xi.q. We require furthermore for the metric to be smooth, i.e., if X is of
pure dimension d, given any holomorphic map from the unit disk D¢ in C¢ to X, the metric
pulled-back from X to D¢ is smooth.

Let X be a scheme of finite type over SpecZ. A hermitian vector bundle M on X is a
pair M = (M, ]||.||) where M is a vector bundle on X and ||.|| is a smooth metric on
the restriction of M to the complex space X (C). If M is a hermitian vector bundle over a
scheme X of finite type over Z, we will denote by M the underlying vector bundle. Note that
if the generic fiber Xy is empty, i.e., if X' is vertical, a hermitian vector bundle on X is nothing

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1546 F. CHARLES

but a vector bundle. If M = (M, ||.||) is a hermitian vector bundle and § is a real number,
write M(§) for the hermitian vector bundle (M, e7%][.]).

Let M be a hermitian vector bundle on a proper scheme X over Z. If o is a section of M
on X, we will often denote by ||0]|oo the sup norm of o, that is, ¢ is the supremum of the
|lo(x)]| as x runs through all complex points of x. We will call ||o || the norm of o.

If||o||eo < 1(resp. ||o||lco < 1), wesay that o is effective (resp. strictly effective). We denote
by H? (X, M) the set of effective sections of £, and write

h (X, M) = log |[HR, (X, M)|.
If Xy is generically reduced, then ng()( , M) is finite. Note again that if Xg is empty, then
H) (X, M) = H°(X, M).

We say that a hermitian line bundle on X is effective if it has a regular effective section.

1.6. Outline of the paper

Section 2 is devoted to a general discussion of arithmetic ampleness. After setting defini-
tions, we recall aspects of the arithmetic Hilbert-Samuel theorem, taking care of error terms.
We then prove a number of results concerning the image of restriction maps for sections of
large powers of ample hermitian line bundles.

In the short Section 3, we make use of the previous section to discuss consequences and
variants of the main theorems. We prove Theorem 1.7.

In Section 4, we gather general results—both analytic and arithmetic—dealing with
hermitian line bundles on Riemann surfaces and arithmetic surfaces. We prove norm esti-
mates in the spirit of [10], and we prove a basic upper bound on the number of effective
sections for positive line bundles—in some sense—on arithmetic surfaces, making use of the
f-invariants of Bost, as well as a result on the effective cone of arithmetic surfaces.

Section 5 is devoted to the proof of Theorem 1.6, and Section 6 to the remaining theorems
of the introduction.
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2. Some results on arithmetic ampleness

In this section, we gather some results on ample hermitian line bundles on arithmetic vari-
eties. Most results are well-known and can be found in a similar form in the literature. Aside
from a precise statement regarding error terms in the arithmetic Hilbert-Samuel theorem,
our main original contribution consists in the results of 2.3 that deals with restriction maps
for sections of ample line bundles.

2.1. Definitions and basic properties

We recall basic properties of arithmetic ampleness as used in the work of Zhang [39].

DEFINITION 2.1. — Let X be a complex analytic space, andlet L = (L, ||.||) be a hermitian
line bundle on X . We say that L is semipositive if for any open subset U of X, and any section s
of L on U, the function —log ||s||? is plurisubharmonic on U.

REMARK 2.2. — Since for any holomorphic function f, the function —log]|f|? is
harmonic, it is readily checked that L is semipositive if X admits a covering by open
subsets U such that there exists a nowhere vanishing section s of L on U such that the func-
tion —log||s||? is plurisubharmonic on U. In particular, semipositivity is a local property
on X.

DEFINITION 2.3. — Let X be a projective arithmetic variety, and let L be a hermitian line
bundle on X. We say that L is ample if L is ample, L is semipositive on X*® and for any large
enough integer n, there exists a basis of H°(X, L®") consisting of strictly effective sections.

PROPOSITION 2.4. — Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X. Let M = (M., ||.||) be a hermitian vector bundle on X, and let
F be a coherent subsheaf of M. Then there exists a positive real number ¢ such that for any
large enough integer n, there exists a basis of H*(X, L®" ® F) ¢ HY(X, L®" ® M) consisting
of sections with norm at most e "¢,

Proof. — Since L is relatively ample, for any large enough integers a and b, the morphism
HO(X,£%) @ HO(X, L% ® F) — H(X, L& @ F)
is surjective. As a consequence, for any two large enough integers a and b, and any positive
integer n, the morphism
HO(X, £8)®" @ HO(X, LB @ F) — HO(X, L2+ @ F)

is surjective.

Choose a large enough so that the space H°(X, £L®%) has a basis consisting of sections
with norm at most « for some o < 1. Choose by, ..., b, large enough integers that form a
complete residue system modulo /. We can assume that the maps

HO(X,£®H)®n ® HO(X,,C@bi ® ‘7:) — HO(X,£®an+bi ® f)
are surjective for all positive integer n and all i between 1 and a. Now choose bases for the
spaces HO(X, L%V ® F) as i varies between 1 and a, and let B be an upper bound for the

norm of any element of these bases. Taking products of elements of these bases, we find a
subspace of full rank in H%(X, £L®"*bi @ F) which has a basis whose elements have norm

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1548 F. CHARLES

at most «” 8. By [38, Lemma 1.7], this implies that H°(X, L8+ ® F) has a basis whose
elements have norm at most ra” 8, where r is the rank of HO(X, £L®"+bi @ F).

The theory of Hilbert polynomials shows that the rank of H°(X, £%"+?i) is bounded
above by a polynomial in an + b;. Since & < 1, the number ra” 8 decreases exponentially
as an +b; grows, which shows the result since any integer can be written as an + b; for some i
and n. O

COROLLARY 2.5. — Let X be a projective arithmetic variety. Let L be an ample hermitian
line bundle on X and let M be a hermitian line bundle on X. Then for any large enough integer n,
the hermitian line bundle L=" ® M is ample if and only if it is semipositive.

Proof. — Since L is relatively ample, for any large enough integer n, the line bundle
L®" ® M is relatively ample and the morphisms

HO(X,,C®n ®M)®m — HO(X, (£®n ®M)®m)

are surjective for any positive integer m.

For large enough 1, Proposition 2.4 guarantees that there is a basis for H%(X, L®" ® M)
consisting of sections with norm at most e™"# for some positive number £. As a conse-
quence, we can find a subspace of full rank in HO(X,(£L®" ® M)®") with a basis
consisting of sections with norm at most e~™"¢. By [38, Lemma 7.1], this implies that
HO(X, (L®" @ M)®™) itself has a basis whose elements have norm at most re™""¢, where
r is the rank of H(X, (L®" ® M)®™). Since again r is bounded above by a polynomial
in mn, this shows the result. O

COROLLARY 2.6. — Let f : Y — X be a morphism of projective arithmetic varieties, and
let L be an ample hermitian line bundle on X. Then there exists a positive real number & such
that for any large enough integer n, there exists a basis of H°(Y, f*L®") consisting of sections
with norm bounded above by e™"¢.

Proof. — By the projection formula, for any integer k, we have a canonical isomorphism

HOY, f*L®) ~ HO(x, L® @ f,.0y).
Since L is relatively ample, for any two large enough integers n and k, the map
HO(X,£®n) ® HO(X,£®k ® f.0y) — HO(X,£®(n+k) ® fxOy)
is surjective, which means that the natural map
HO(X,£®n) ® HO(y’ f*[:@k) N I_]O(y7 f*ﬁ®(n+k))
is surjective.

Fix a large enough integer k for the previous assumption to hold. By Proposition 2.4, the
space H°(X, £®") admits a basis consisting of elements with norm decreasing exponentially
with n, which shows that the same property holds for HO(Y, f*£2®+K), O

COROLLARY 2.7. — Let f be a finite morphism between projective arithmetic varieties. The
pullback of an ample hermitian line bundle by f is ample.

4¢ SERIE - TOME 54 — 2021 — N° 6
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Proof. — By the previous results, we only have to show that if f : X — Y is a finite map
between complex projective varieties, and if L is a semipositive hermitian line bundle on Y,
then f*L is semipositive.

Let U be an open subset of Y on which L is trivial, and let s be a nowhere vanishing section
of L on U. Then f*s is a nowhere vanishing section of f*L on f~!(U), and the function

—logl|f*s|I> = (=log|ls[|*) o f
is plurisubharmonic on f~1(U), being the composition of a holomorphic function and a
plurisubharmonic function. Remark 2.2 shows that f*L is semipositive. O

Let n be a positive integer, and consider the complex projective space CP". The line
bundle O(1) on CP”" is endowed with the Fubini-Study metric ||.|| defined as follows. Let x be
a point of CPP* with homogeneous coordinates [xg : --- : x,]. The fiber of O(1) at x may be
identified with linear forms C(xy, ..., x;) — C. Endow the line C(xy, . .., x1) with the norm
induced by the standard hermitian norm on C**!. Then the Fubini-Study metric on O(1) is
the one that corresponds to the operator norm on linear forms.

The following is the basic example of an ample hermitian line bundle.

PROPOSITION 2.8. — Let n be a positive integer, and let O(1) be the hermitian line bundle
on P, corresponding to the line bundle O(1) endowed with the Fubini-Study metric. Then for
any € > 0, the hermitian line bundle O(1)(¢) is ample on IP7;.

Proof. — The line bundle O(1) is ample on P?, and the Fubini-Study metric is known to
have positive curvature.

Let X(')i0 ~~X,‘f" be a monomial of total degree d > 0, seen as a section of O(d). With
respect to the Fubini-Study metric, if x is a point of CP" with homogeneous coordinates
[xo : -1 xp], we have

do dn
|.X0 e xn < 1

(IX0l? + -+ + |xa[>)4/2
This shows that H°(P%, O(d)) has a basis consisting of sections of norm bounded above by 1,
and proves the result. O

d,
[1Xg0 -+ X (x)|| =

The following follows immediately from Proposition 2.8 and Corollary 2.7.

COROLLARY 2.9. — Let X be an arithmetic variety, and let L be a relatively ample line
bundle on X. Then there exists a metric ||.|| on L¢, invariant under complex conjugation, such
that the hermitian line bundle (L, ||.||) is ample.

Proof. — Some positive power £L®" of L is the pullback of the line bundle O(1) on some
projective space. By Proposition 2.8 and Corollary 2.7, the pullback of the Fubini-Study
metric, scaled by e~ for some & > 0, to LZ" gives L®" the structure of an ample hermitian
line bundle.

Endow £ with the hermitian metric ||.|| whose n-th power is the metric above. We get a
hermitian line bundle £ = (£, ||.||) such that £=" is ample. This implies that Z is ample. [J
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2.2. Arithmetic Hilbert-Samuel

We turn to the arithmetic Hilbert-Samuel theorem, giving an estimate for hgr()( , Z®n),
where £ is ample and 7 is large. This has been proved by Gillet-Soulé in [17, Theorem 8 and
Theorem 9] and extended by [39, Theorem (1.4)], see also [1] and [6]. In later arguments, we
will need an estimate for the error term in the arithmetic Hilbert-Samuel theorem. In the case
where the generic fiber of X' is smooth, such an estimate follows from the work of Gillet-
Soulé and Bismut-Vasserot. The general case does not seem to be worked out. However, for
arithmetic surfaces, an argument of Vojta gives us enough information for our later needs.

We start with a proposition relating the Hilbert-Samuel function of a hermitian line
bundle and its pullback under a birational morphism.

PrOPOSITION 2.10. — Let f : Y — X be a birational morphism of projective arithmetic
varieties, and let L be an ample hermitian line bundle on X. Then there exists a positive integer k
and a positive real number C such that for any integer n and any hermitian vector bundle M
on X, the following equality holds:

—®(n+k)

(X, 22" @ M) < hQ, (. f*(L>" ® M)) < S, (X, ® M(C)).

Proof. — Pullback of sections induces an injective map
£ L. L2 @ M) — HO, (V. £ @ M)).
which proves the first inequality.

The coherent sheaf H2l( f« Oy, Ox) is non-zero. As a consequence, there exists a positive
integer k such that the sheaf

HP(fOy, Ox) ® LEK = H(f Oy, LEF)
has a nonzero global section ¢. Since f is birational, the morphism
¢ fxOy — LBk

is injective. If U is an open subset of the compact complex manifold X' (C) and n is an integer,
we endow the spaces

HO(U.L®" @ M ® f.0y) = HO(f1(U), f*L®" @ M)
and
HO(U, L8O @ M)
with the sup norm—which might take the value co. Since X' (C) is compact, we can find a
constant C such that the maps

v : H(U, f20y) - HO(U. L)
all have norm bounded above by ¢€. As a consequence, all the maps
Id® ¢y : HOU, LZ" @ M ® f.0y) — HO(U, LE"HR) @ M)
have norm bounded above by e€ as well, and the induced map
HO, f*(L®" @ M)) — HO(X, LOU+0) @ M)
has norm bounded above by e€ . Since this map is injective, we have an injection

HY., (%" @ M) — H, (X, 2" @ M(C)),
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which shows the second inequality. O

We may now state some forms of the arithmetic-Hilbert-Samuel theorem. For the
purposes of this paper, the key statement is (iii). We will need the more precise estimate on
the error term it provides compared to (i).

THEOREM 2.11. — Let X be a projective arithmetic variety of dimension d, let L be an ample
hermitian line bundle on X, and let M be a hermitian vector bundle of rank r.

(1) As n tends to oo, we have
— — —d
h(X. T2 @ M) = %,c n? + o(n);
(ii) if Xg is smooth and the curvature form of L is positive, then
r

d!zdnd + 0% 'logn)

m (X, 2% @ M) =
as n tends to oco;
(iil) if'd = 2, then
W (X, L% @ M) > %Zznz + O(nlogn)
as n tends to oo.

Proof. — The first statement can be found in [36, Corollary 2.7(1)]. It is a consequence of
the extension by Zhang in [39, Theorem (1.4)] of the arithmetic Hilbert-Samuel theorem of
Gillet-Soulé of [17, Theorem 8], together with [16, Theorem 1].

Let us prove the second statement. Choose a Kéhler metric on X (C), assumed to be
invariant under complex conjugation, and write y;2 (Z®n ® M) (resp. Jsup (Z®n ® M)) for
the logarithm of the covolume of H%(X, " ® M) for the associated L2 norm (resp. for the
sup norm). Then by [17, Theorem 8], we have

XLZ(ZW M) = %_dnd + 0% logn).
By the Gromov inequality as in for instance [36, Corollary 2.7(2)], this implies

— — r—d
Aoup L2 @ M) = L%+ 0(n? ™ logn).

Consider the lattice A = H%(X, £L®" ® M), endowed with the sup norm. Then since A is
generated by elements of norm strictly smaller than 1, the dual of A does not contain any
nonzero element of norm smaller than 1. Furthermore, the geometric version of the Hilbert-
Samuel theorem shows that the rank of A has the form O(n¢~'). By [16, Theorem 1], we
get

—=®n _ —— —®n _ — _
W8 (XL @ M) — xup(L @ M)| = O(n?~"logn),
which proves the desired result.

We now prove the last statement. Let f : ) — X be the normalization of X, so that f is
birational, finite, and ) has smooth generic fiber.

Since f is finite, the line bundle f* L is ample. Let L be f*Land M be f*M. Choose a
Kahler metric on Y(C), assumed to be invariant under complex conjugation, and again write
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XL2 (Z/@m ® H’) for the logarithm of the covolume of H%(Y, £'®" ® M’) for the associated
L? norm.

By Proposition 2.10, we can find a constant C and an integer k£ such that for any integer n
greater or equal to k, we have

— - —Qn—k = —

2.1) WX, 22" @ M) = hQ (V. L' @ M (-C)).

Applying the arithmetic Riemann-Roch theorem for n large enough so that the higher
cohomology groups of £'®" ® M’ vanish, we get the following equality:

— — 1 r—
22 (%" @ M (=C)) — ST = E,cznz + o),
where by T,, we denote the analytic torsion of the hermitian vector bundle L% ® M. The
equality above is proved via the computations of [17, Theorem 8], or [15, Théoréme 1]. In
contrast with the usual setting of Hilbert-Samuel, note that the curvature form of Z might
not be positive everywhere, so that we cannot apply the estimates of [4] for 7;,. However, since
the dimension of X is 2, we have
Tw = §1,,(0),

where {; is the zeta function of the Laplace operator acting on forms of type (0, 1) with values
inZ®" ®/7/(—C ). We can use an estimate of Vojta to control the analytic torsion 7},. Indeed,
by [34, Proposition 2.7.6], we have

{1,(0) = —Knlogn

for some constant K, so that

en  — _ 1 _
22 y(C% @M (=C)) = L0 + =T, + O(n) > %Eznz + O(nlogn).

2 2
Combining as above Gromov’s inequality, [16, Theorem 1], Corollary 2.6 and the
geometric version of Hilbert-Samuel, we can write

S, (V. %" & M (=C)) — x12(L%" ® M (—=C))| = O(nlogn),
which together with (2.2) gives the estimate

W, V. 2% @ M (-C)) > gzznz + O(nlogn).
From (2.1), we finally obtain
W (X, L% @ M) > %Zz(n — k)% + O(nlogn) > %Zzn2 + O(nlogn). 0

2.3. Restriction of sections

Let k be a field, and let X be a projective variety over k. Let £ be an ample line bundle
on X.If'Y is any closed subscheme of X, consider the restriction maps

¢t HO(X, L®") — HO(Y, L|S").
The map ¢, is surjective if n is large enough and, obviously, there are bijections between the
different fibers of ¢, when it is surjective.
In this section, we give arithmetic analogues of these results, looking at HJ instead

of H%—this is Theorem 2.17. Furthermore, we show in Theorem 2.21 that the lower bound
on the dimension of the image of the restriction map can be given to be independent of Y.
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In the following, let X be a projective arithmetic variety, and let £ be an ample hermitian
line bundle on X. If n is an integer, we denote by A, the space H%(X, £L®") endowed with
the sup norm, and we write r,, for its rank. If R is a nonnegative real number, let B, (R) be
the closed ball of radius R in A,. In particular, we have

B,(1) = HO(X,Z®").
Let B, (R)r be the closed ball of radius R in A,, ® R. Let Vol denote the volume with
respect to the unique translation-invariant measure on A, ® R for which Vol(B,(1)r) = 1.
If 7 is a quasi-coherent sheaf of ideals on X', we write AZ for the subgroup H°(X, £L®" ® T)

of HO(X, £®"), endowed with the induced norm. We write rZ, B,(R)%, B,(R)Z, Vol* for
the corresponding objects.

We gather a few results regarding point counting in the lattices AZ. The following is a basic
estimate.

LEMMA 2.12. — Let n be a positive real number. Let C be any real number. Then, as n goes
to infinity, we have, for any positive R,
VolZ (B, (R + Ce™™ME) = R (1 + CR™'rZe™ + o(R™'rZe™™)),

where the implied constant in o depends only on C.

Proof. — We write
VolZ (By(R + Ce™™ME) = (R + Ce ")
= R exp (rFlog(1 + CR'e™))
= R exp (CR™'rFe™ + o(R™'rFe™))
= R (1 + CR™'rZe™ 4 o(R™'rTe™™)). O
Fix 7 as above. Let n be a large enough integer. By Proposition 2.4, we can find a positive

number &7, independent of 7, and a basis o1, . .., 0,7 of A} such that [0} |00 < e"¢" for all
iedl,..., r,{ }. Consider the fundamental domain

i
2.3) D,{:{ina,»wie{1,...,n},05x,-<1}.
i=1
PROPOSITION 2.13. — Let o be a positive number with 0 < a < 1. As n tends to oo, we
have, for any R > e™"%,
| By (R)[Vol™ (D) ~ R

Proof. — Let n be a large enough integer. As o runs through the elements of AZ, the
sets 0 + DI are pairwise disjoint and cover AZ ® R. Furthermore, the diameter of D} is
bounded above by rnIe_"sI. As a consequence, if o is any element of AZ, then
o+ DE C Bu(llolo + rfe™)E
and

— z
(@ + D) N Bu(llolloc —ry e ™ )i = 0.

n
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As a consequence, we have
Vol (B, (R — rfe™")Z) < |Bu(r)%|VolZ (DE) < VolX (Bu(R + rfe™)E).
By Riemann-Roch, the rank rZ grows at most polynomially in n. As a consequence,

R*IrnIe*"eI goes to 0 as n goes to infinity, and Lemma 2.12 shows that both the left
and right terms are equivalent to R asn goes to infinity. O

PROPOSITION 2.14. — Let a and n be positive real numbers with 0 < a < 1. Let C be any

real number. Then, as n tends to 0o, there exists a positive real number n' such that we have, for
any positive R > e,
|| B2 (R + Ce ™| — | By (R)*|]
|Bn(R)*|

where the implied constants depend on o, C and 1.

= 0(e™™),

Proof. — We assume that C is positive. The case where C is negative (or zero) can be
treated by the same computations.

Let 1’ be a positive number strictly smaller than both ¢ and 7. Since the 0 + DI are
pairwise disjoint as o runs through the elements of AZ, we get, for large enough n

(IB2(R + Ce™"")*| — | B, (R)*|) VoI* (D})
< Vol (B, (R + Ce™" + rZe™")I) — Vol? (B, (R — rfe "))
< VolZ (B (R + ¢ )Z) — VolZ (B, (R — e™""")E)
~ 2RI T
where in the last line we applied Lemma 2.12, using that R~'rZe """ tends to 0 as n tends
to o0o.

Putting the previous estimate together with Proposition 2.13 and replacing ' with a
smaller positive number, we get the desired result. O

The following is a first step in controlling restriction maps.

PROPOSITION 2.15. — Let a be a positive number with 0 < a < 1. There exists a positive
constant 1 such that for any large enough integer n, if N is any positive integer with N < e,
then the following statements hold:

(1) the map ¢ n : ng(X,Z@’”) — A,/ NA, is surjective;
(i) for any two s,5’in A/ NA,, we have
Ik O =l _ _,,
| v (9)]
Proof. — Let r,, be the rank of A,. Let n be a positive integer, which will be chosen large
enough, and let N be an integer bounded above by e”” .

By Proposition 2.4, we can find a positive number ¢, independent of n, and a basis
01,...,0r, of Ay such that ||0i||ec < e foralli € {l1,...,r,}. Anyelement of A,/ NA, is

the image of an element of A, of the form

0 =A01+ -+ A0,
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where the A; are integers between 0 and N — 1. We have

[l6]]oo < Nrpe ™8 < rne"af”s.

We know that r, is a polynomial in n for large enough n and @ < 1 by assumption, so
that any o as above is strictly effective for large enough n. This shows that the map ¢, x is
surjective and proves ().

We now proceed to the proof of (ii). Let n be a large enough integer. By the discussion
above, we can find a positive real number ¢’ such that for any large enough integer n, and
any s in A,/NA,, there exists an element og in A, with ||oo||lec < ¢ that restricts to s.
We have

¢pn(s) ={00 + No|o € Ay.|loo + Nolleo

so that, up to replacing &’ by a smaller positive number

|Ba(1/N = e < g, N (5)] < [ Ba(1/N +¢7)]

IA

1},

and
(2.4) |16 ) = 1y | < [Ba(1/N +e™")| = [Bu(1/N — ™)
for any two s, s” in A, /NA,. We conclude by applying Proposition 2.14. O

We need a variant of a theorem of Bost.

PROPOSITION 2.16. — Let X be a reduced complex analytic space, Y a closed reduced
subspace of X, L an ample line bundle on X and ||.|| a semipositive smooth metric on L. Then for
any € > 0, any large enough integer n, and any s € H°(Y, L|§’"), we can findo € H(X, L®")
such that Oly =5 and

llofleo < €*™|Is]loo-

Proof. — If the metric ||.|| is positive, then this is the content of [8, Theorem A.1](. Since
L is ample, it admits a positive hermitian metric, so that we can find a smooth function
¢ : X — R such that ||.||e™® is positive. Since ||.|| is semipositive, the metric ||.]|e™%? is
positive for any § > 0.

Let € be a positive real number, and choose § > 0 such that
Vx e X,|8¢(x)| <e.

Apply [8, Theorem A.1] to the line bundle L with the positive metric ||.||e~5¢: if n is large
enough, and s € H°(Y, L®"), we can find 0 € H°(X, L®") such that 0|, =sand

llolloo < € [Is]loo-

This shows the result. O
The following is a key property of ample line bundles.

(1 The only assumption necessary in [8] is that Y and X¢ are reduced, see [27] for a statement that makes this
explicit.
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THEOREM 2.17. — Let X be a projective arithmetic variety, and let L be an ample line bundle
on X. Let Y be a closed subscheme of X, such that Yy is reduced. If n is a positive integer, let

¢nt HO(X. L®") — H°(V. L")
be the restriction map. For any positive ¢, define
Ag = HY (X L") 0 ¢ (HE, (V. £(—0)|5").
that is, A, is the space of effective sections o of " such that the restriction of o to Y has norm
at most e "¢, Write Y, 1= (¢")|Aﬁ' Then the following statements hold:
(i) for any large enough integer n, the restriction map
Y A = HL (V. L(-0)| ")
is surjective;
(1) there exists a positive constant 1 such that for any large enough integer n, and any two
s, s in ng(y,Z(—a)@"), we have
162" =17 ] _ .
¢! (5)] B ’
(iii) n being chosen as above, for any s € HJ (Y, L(—¢) @”), we have
|AG
|HR (Y, L(—&)®")] ‘
Proof. — Fix ¢ > 0. The group
o € HL, (. Z(#)|Z". llocl| = 0}

is the torsion subgroup of H Xr(y,Z(—e)@”), which we denote by HY (V. E@”)tor—note
that this group does not depend on ¢ nor the hermitian metric. This is a finite group. Let
N be a positive integer with

<e g, (9)]-

oyt (s) —

NHR (V. L[5 or = 0.
Assume 7 is large enough. The restriction map
$n i An = H(X, LZ") > H' V. L")
is surjective since L is relatively ample. The map
An/NAy = H (Y, £15 ) eor

is well-defined and surjective as well. Applying Proposition 2.15, this shows that the image
of ¥, contains HY (V. L@")wr.

Let s be an element of HJ (Y, Z(—e)@”). Let &' be a real number with 0 < &’ < e. Apply

Proposition 2.16 to the closed subspace V¢ of X¢. If n is large, we can find a section o of £L®"
on X¢ with ||o|ec < e and oy, = sc. Up to replacing o with ¢ + @, and making &’

smaller, we may assume that o is a section of £L®" over AR, that is,

oeB, (e_ngl)]R.
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Let 7 be the ideal of Y in X. The kernel of the—surjective when n is large enough—
restriction map

$n Ay — H V. LIS")
is AZ. Let o’ be an element of A, mapping to s. Then o € (AL)g + o’

The fundamental domain D} defined in (2.3) has diameter bounded above by L
note that #” > rZ. In particular, we can find 6” € AZ + ¢’ with
llo” = 0lloo < rae™",
so that

0" |loo < €7 + rpe™" < 1

for large enough n. We have v, (0)c = sc, 1.€., ¥, (o) — o is torsion. This shows that the
image of v, maps surjectively onto the quotient of ng(y,Z(_g)@n) by ng(y, £| ?n) tor-
Since we showed above that it contains HJ (Y, L@" )tor, this proves that v, is surjective.

Apply statement (i) after replacing £ with £(—8), where § > 0 is chosen small enough so
that £(—8) is ample. Then if ¢ > § and # is large enough, for any s € ng(y, Z(_E)@n)’ we

can find o9 € HY (X, L(—8)®") that restricts to s.

To prove (ii), we argue as in Proposition 2.15. Let s and o be as above. Then
U, ' (s) = {00 + olo € AL, |joo + 0| < 1}

and
|Ba(1— ™| < [y, ()] < Bu(l + )T,

Using Proposition 2.14 again, this proves (ii).

To prove (iii), write

ALl = > ¥, ()],

SEHR(V.L(=0)|2")
so that for any large enough n and any s € HY (), Z(—s)@”), we have
AL = [ " ONHHR D L) $D1| < e [y, O HR V. L(=e) 8. O
We keep the notation of the theorem.

COROLLARY 2.18. — Let E be a subset of |~ ng(y,Z(—e)@”). Set

E = {o € U Af,,a|y € E}

n>0

Forany 0 < p <1, the set E has density p in |
density p in|J,~q AS.

HY (), Z(—s)@") if and only if E' has

n>0
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Proof. — For any positive integer n, define
— —=®
E,:=EnN ng(y,ﬁ(—g)lgn), E :=ENHY(X.L ')=E NAS.
Denoting by v, the restriction maps as before, we can write

Epl= > 1, ).

s€Ey,

Summing the estimate of Theorem 2.17, (iii) over all s € E, for large enough n, we can find
a positive constant n such that, for large enough n,

E
(A 1
[H (V. L(—) "]
and, dividing by |A| < |E,|,
MGl HGO.Z-e)Eml| =
Letting n tend to oo gives us the result we were looking for. O

As a special case of the theorem, we get the following.

COROLLARY 2.19. — Let X be a projective arithmetic variety, and let L be an ample line
bundle on X. Let Y be a closed subscheme of X lying over 7/ NZ for some positive integer N .
Then for any large enough integer n, the restriction map

—=®
o H(X. L) — HO(Y, L")
is surjective and there exists a positive constant n such that for any s € H°(Y, L®"), we have

—Q®n
HY (X.C
470 = AT LI o )
|[HO(Y, £|3")]
We now turn to uniform lower bounds on the image of restriction maps. We first deal with
a geometric result.

PROPOSITION 2.20. — Let S be a noetherian scheme, and let X be a projective scheme
over S. Let L be a line bundle on X, relatively ample over S. Let d be a positive integer. Then
there exists an integer N and a positive constant C such that for any point s of S, any closed
subscheme Y of X5 of dimension d, and any n > N, the image of the restriction map

HO(X;, £L%") — HO(Y, L£|®")

has dimension at least Cn®.

Proof. — Since S is noetherian, we can find an integer M such that for any point s of S
and any integer n > M, the restriction of L®" to X; is very ample.

Let s be a point of S, and let Y be a closed subscheme of X of positive dimension d. Let
k be an infinite field containing the residue field of s, and write X for the base change of X
to k.
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Since £®" is very ample on X; and k is infinite, we can find a d + 1-dimensional
subspace V C H°(X, £®") such that the restriction to Y of the rational map

¢: X -—>PV"

is dominant. Let ay,...,0, be a basis of V, and let Hy, be the divisor div(oy). Identify
the subspace of P(V*) defined by o9 # 0 to the standard affine space AZ with coordi-
nates xp, ..., Xz. Then the map ¢ is defined outside H,,—as certainly the base locus of V is
contained in Hy, and maps onto Ag.

For any positive integer r and any integer n > (r + 1)M, the line bundle L& (—rHy,) ~ L®"~™M
is very ample. In particular, we can find a section o of £®” that vanishes to the order r along
Hyo, but does not vanishon Y.

Let P € k[xy,...,xq4] be a polynomial of degree at most r, considered as a morphism
A¢ — Al. Since o vanishes to the order r along He, the section (P o ¢)o of L&, which is
a priori defined only outside Hy, defines a global section of £L®". Because o does not vanish
on Y, the restrictions (P o ¢)0|Y are linearly independent as sections of L®" ly as P varies.
In particular, the image of the restriction map

HO(X,L®") — HO(Y,L|®")

has dimension at least equal to the dimension of the space of polynomials of degree at most r

in x1,...,Xx4, so that it has dimension at least
r+d 1 4 -1
for any r with r + 1 < n/M. This proves the result. O

THEOREM 2.21. — Let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X. If' Y is a subscheme of X, let

$ny t HOX, LO") — HO(V.L|3")
be the restriction map.

There exists an integer N and a positive real number n such that for any n > N and any
closed subscheme Y of X of dimension d > 0, we have

| Ker(pny) N H (X, L")

A = 0(e™M),
|H? (X, L")

where the implied constant depends on X and L, butnoton'y.

Proof. — We only have to consider those ) that are irreducible. Let us first assume
that Y is flat over SpecZ. Let H,, be the kernel of the restriction map
Aw=HOX.LZ") - HO Y. L"),
and let k, be the corank of H,, i.e., the rank of the image of the restriction map. By

Proposition 2.20 applied to Xy and Vg, there exists a positive constant C, independent of Y,
such that if » is larger than some integer N, independent of ), then

(2.5) ky > Cn% 1.
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Up to enlarging N, Proposition 2.4 allows us to assume that for n > N, A, has a basis
consisting of elements with norm at most e™"¢ for some ¢ > 0. Forn > N, we can find
elements oy, ..., 0k, of A, that are linearly independent in A, /H,, and satisfy ||0;|]|oc < e7"¢
fori € {1,...,kn}.

Let 5 be a positive number smaller than ¢. Then for any 0 € H, N B,(1)r and any
integers Ay, ..., Ak, with |A;| <e"" fori € {1,...,k,}, we have

kn
o+ D Aiilleo < 1+ kpe ™€,
i=1
Furthermore, as o runs through the elements of H,, and A4,..., A, run through the inte-
gers, the o + Zfil A;o; are pairwise distinct. As a consequence, we have

enknn|H N By()g| < |Bn(1 + kne—n(s—fl))|.

Applying Proposition 2.14 and noting that k,, is bounded above by r;,, which is a polyno-
mial in n, we get

|Bn(1) N Hp| _

[Ba(D]

Together with (2.5), this shows the required estimate.

(e7"knm).

Now assume that Y is not flat over Z. Since Y is irreducible, it lies over a closed point p
of Spec Z. By Proposition 2.20, we can find an integer N and a constant C, independent of
and p, such that for any n > N, the kernel of the restriction map

HO(Xp, £%") — HO(V.L|3")

has codimension at least Cn¢ as a vector space over F,,. Let k, be this codimension. Then

(2.6) kn > Cn?.

Again, by Proposition 2.4, up to enlarging N, we can find a positive number ¢, depending
only on & and £, such that for any n > N, there exist sections o1, ..., 0%, of H Ox, £®™)
with ||0;||ee < e foralli € {1,...,k,},suchthat theimagesofoy,...,0x, in HO(Y, E@”)

are linearly independent over [F,.

Let H, be the kernel of the restriction map ¢, y. If o is an element of H,, and if
A1, ..., Ak, areintegers running through {0, ..., p—1}, theno +A 01+ - -+ Ay, 0, belongs
to H, if and only if all the A; vanish. Furthermore, the elements o + 1107 + -+ + Ak, 0%,
are pairwise disjoint. As a consequence, considering only those A; that are 0 or 1, we have

201 H, 0 HO (X, L2 < |Bu(1 + kne ™).

Again, applying Proposition 2.14 and noting that k,, is bounded above by r,, which is a
polynomial in n, we get

|Bn(1) N Hn| —k
— = 0(e™"7).
| Bn(1)]
Together with (2.6), this shows the required estimate. O
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3. Variants and consequences

3.1. The irreducibility theorem over finite fields

The arithmetic Bertini theorems we prove are stronger than their finite fields counterparts.
Since the latter are already known, we give only an example to illustrate how one can deduce
them.

PROPOSITION 3.1. — Assume Theorem 1.1. Let k be a finite field, and let X be an irreducible
projective variety over k of dimension at least 2. Let L be a very ample line bundle on X. Then
the set

{o € U H%(X,L®"), div(o) s irreducible}
n>0
has density 1in | J,., H°(X, L®").

n>0

Proof. — Since L is very ample, we can find a positive integer N and a closed embedding
i X — IP’IJCV such that L = i*O(1). Apply Theorem 1.1 to the composition

f:X—>P) > Py,
where K is a number field together with a finite prime p such that Og/p = k, and the line
bundle £ = (’)Pg (1)(e), & > 0, endowed with the Fubini-Study metric scaled by e~%.
K —
The hermitian line bundle £ is the pullback of O(1) by the finite map Py =~ — PJ. By
Proposition 2.8 and Corollary 2.7, £ is ample.

Since f(X) is supported over a closed point of Spec Z, Theorem 1.1 guarantees that the
set
{o € U ng(PgK,Zm), diV(a|X) is irreducible}

n>0

has density 1 in |J ng (IP’%K ,Z®n). By Corollary 2.18, the theorem holds. O

n>0

Note that since on a scheme X defined over a finite field, every line bundle is a hermitian
line bundle, and every section is effective, we can remove the flatness assumptions on the
theorems of the introduction and have uniform statements that cover both the results of this
paper and those of [11].

3.2. Generic smoothness
We first state the Bertini smoothness theorem of Poonen [26] in the form we need—see

[13] for the proof of this version.

THEOREM 3.2. — Let X be a smooth projective variety over a finite field k, and let L be an
ample line bundle on X . Then the density of those o € | .o H°(X, L®") such that div(o) is
smooth is equal to {x (1 + dim(X))_l, where {x is the zeta function of X.

Applying the above result together with the restriction results of Corollary 2.18, we find
the following.
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PROPOSITION 3.3. — Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X. Let p be a prime number such that X, is smooth over TFp.

Then the density of those 6 € |U,-o ng(X,Z@’”) such that diV(0|X ) is smooth is equal
P
10 £ (dim(X)) ™1, where ¢, is the zeta function of X,.
Proof. — We apply Corollary 2.18 to the subspace JJ = &), of X and the subset E
of U,=0 H O(XP,L@") consisting of sections with smooth divisor. Theorem 3.2 shows
523
that £ has density ¢, (1 + dim(&X,))~! = £,(dim(X))~!, which implies the result. O

We may prove Theorem 1.7.

Proof of Theorem 1.7. — In the situation of the theorem, we know that X), is smooth for
all large enough p. Furthermore, denoting again the zeta function of &), by {,, we have

plggo {p(x) =1

for any x > 1 by [30, 1.3]. This shows that the density of those o € | J,,-.o H2 (X, f®n) such

that there exists p with A}, smooth and div(0| X ) smooth is equal to 1. For any such o, the
P

divisor div(o)q is smooth, which proves the result. O

3.3. Irreducibility theorems with local conditions

We can give variants of the irreducibility theorems with conditions at prescribed
subschemes. For an easier formulation, we give them in the setting of Theorem 1.6.

PROPOSITION 3.4. — Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X. Let Zy be a finite subscheme of X, and let Z, be a positive-
dimensional subscheme of X. Choose a trivialization ¢ : L| 7 = Oz,, and let T be a subset

of H%(Z1,0z,). Then the density of those o € | ng(x,zm) such that g, belongs
to T (under the trivialization ¢ ) and o does not vanish identically on any component of Z, is
equal to

n>0

7|
|H%(Z1,0gz,)|
Proof. — By Corollary 2.18, the density of those o such that g, belongs to T is indeed
#. On the other hand, Theorem 2.21 ensures that the density of those o that do
|H(Z1,02)|

not vanish identically on any component of Z, is equal to 1. O

Given Theorem 1.6—proven in the last section of this paper—and Theorem 1.7, we find
the two following results.

COROLLARY 3.5. — Let X be a projective arithmetic variety of dimension at least 2, and let
L be an ample hermitian line bundle on X. Let Z1 be a finite subscheme of X, and let Z, be
a positive-dimensional subscheme of X. Choose a trivialization ¢ : LlZl ~ Ogz,, and let T be

a subset of H%(Z1,0gz,). Then the density of those o € | ngr(X,Z(@n) such that the
following conditions hold:

n>0

(1) 9|y, belongs to T (under the trivialization ¢ );
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(i1) o does not vanish identically on any component of Z,,
(i) div(o) is irreducible,
is equal to
7|
|H%(Z1,0gz,)|
COROLLARY 3.6. — Let X be a projective arithmetic variety with smooth generic fiber, and

let L be an ample hermitian line bundle on X. Let Z; be a finite subscheme of X, and let Z» be
a positive-dimensional subscheme of X. Choose a trivialization ¢ : £| 7, = Ogz,, and let T be

a subset of H%(Z1,0z,). Then the density of those o € |J HXI(X,Z@L) such that the
following conditions hold.:

n>0

(1) Ty, belongs to T (under the trivialization ¢ )
(i1) o does not vanish identically on any component of Z,,
(iti) div(o)q is smooth,
is equal to
7|
|H(Z1,02,)|

4. Preliminary estimates

This section gathers preliminary material on hermitian line bundles on arithmetic
surfaces, which will be used in the proof of Theorem 1.6. In 4.1, we give lower bounds
for the norm of products of sections of hermitian line bundles. In 4.2, we give an upper
bound for the number of effective sections of a hermitian line bundle in terms of its degree
with respect to a positive enough hermitian line bundle. Such a result is closely related to the
effective bounds of [37]. Our proof is better expressed in terms of the 8-invariants of Bost
[9], which we only consider in a finite-dimensional setting. In 4.3, we give an estimate for the
number of effective hermitian line bundles satisfying certain boundedness properties.

4.1. Norm estimates for sections of hermitian line bundles

Let X be a compact connected Riemann surface. Let w be a real semipositive 2-form of
type (1,1) on X with
/ w = 1.
X

1 _
——(0—0),
2i71( )

Define
dC

so that
dd° = 193,
T

Let s be a section of a hermitian line bundle on X. In what follows, we will write ||s]|| for
the function P + ||s(P)||.
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Let L = (L,]|.]|) be a hermitian line bundle on X. If s is a nonzero section of L, the
Lelong-Poincaré formula gives us the equality of currents
—dd*log||s|| = e1(L) — 8,
where ¢; (L) is the curvature form of L, D is the divisor of s and 8p is the current of
integration along D.
Define, following [10, (1.4.8)]

lIsllo =exp( [ loglls|le).
X

Since [y @ = 1, the following inequality holds:
[slo = 1I5]]oo-

Say that L is w-admissible, or admissible for short, if ¢; (L) is proportional to . If L is
admissible, then the Gauss-Bonnet formula shows

c1(L) = (deg L)w.

Let M be any line bundle on X . By the 93 lemma, we can find a hermitian metric||.|| on M
such that the hermitian line bundle (M, ||.||) is admissible. Given a nonzero global section s
of M, there exists a unique such metric such that ||s]|o = 1.

If D is an effective divisor on X, let op be the section of O(D) that is the image of 1
under the natural morphism Oy — O(D). The discussion above shows that there exists a
unique admissible hermitian line bundle O(D) = (O(D), ||.||) on X such that ||op|lo = 1.
Of course, if D; and D, are effective divisors, we have

O(Dy + D3) = O(D1) @ O(D»).

The functions op satisfy basic uniformities in the point P of X which are readily proved
by the following argument using Green functions.

PROPOSITION 4.1. — Endow X with a Riemannian metric with induced geodesic distance d.
Then there exist positive constants C,C’ and n such that the following inequalities hold:

(i) VP e X, |loplleo = C;
(ii) V(P. Q) € X x X, op(Q) = min(C'd(P, Q).1).

Proof. — Let A C X x X be the diagonal. Let o be a real closed form of type (1, 1)

on X x X of the form
a=pio+pio+ Y piBi A Pivi,
iel

where p; and p, are the two projections from X x X to X and the 8; (resp. y;) are 1-forms
on X. Choose the 8; and y; so that « is symmetric with respect to the involution of X x X
that exchanges the two factors, and that it is cohomologous to the class of the diagonal A
in the de Rham cohomology of X x X. By the do lemma, we can find a hermitian metric on
the line bundle O(A) with curvature form «. For any P in X, this hermitian metric induces
a hermitian metric on O(P) by restriction to {P} x X.
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Let o be the global section of O(A) corresponding to the constant function 1. For any P
in X, write tp for the section of O(P).

tp . O = oa(P, Q).
Then

—dd“log||tp|| = a|,,,  —8p = © = 8p,

which shows that the metric on O(P) coming from that on O(A) differs from the canon-
ical one defined above by a homothety. In particular, we can find a continuous function
X — R%, P+ A(P) such that

V(P Q) € X x X, |lop(Q)I| = A(P)|loa(P, Q)]|.

Since (P, Q) + oa(P, Q) is a smooth section of O(A) that vanishes with the order 1
along A, this shows the result @, O

We will make use of the uniformity above to prove inequalities between norms. The
following is a variant of [10, Corollary 1.4.3].

PROPOSITION 4.2. — Let L = (L,||.||) be an admissible hermitian line bundle on X. Let
P be a point of X, and let s be a section of L. Then

degL
lIs(P)I| = lIsllo [lop[Io® ™
In particular, there exists a positive constant Cy such that

deg L
[Islloo = €7 ls]lo-

Proof. — We can assume that s is nonzero. Let D be the divisor of s. Define
g = —log|ls]]
and
gp = —log|lop||.
By Lelong-Poincaré, we have
dd°g = (deg L)w — 8p
and
dd°gp = w —8p.
The Stokes formula

[gdd”gp =/gpdd“’g
X b¢
gives us

-log|[s|lo 4 log|ls(P)|| = —deg L log|lop|lo + log|lop (D)]| = log|lop (D).

where, if D = )", n; P;, we wrote

llor (D) = [ Tllo ()" |I.
i
@ Actually, a straightforward computation shows that ||tp || is a constant function of P, so that A is constant.
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Since the degree of D is equal to the degree of L, we get the first inequality. The second one
follows from the first and Proposition 4.1. O

LEMMA 4.3. — Let L = (L, ||.||) be an admissible hermitian line bundle on X with positive
degree. Then for any section s of L, and any P in X, the following inequality holds:
18]l = Ca(deg L)||sop|[oo
where Cy is a positive constant depending only on X and .
Proof. — Let B be the ball {z € C||z| < 3}. Let (U;)ier be a finite cover of X by open
subsets such that there exist biholomorphic functions
fi :B —> Ui

and assume that X is covered by the f;({z € C||z| < 1}). Foralli € I, choose a smooth
function ¢; : B — R such that —dd“¢; = f;*w.

Since L is admissible, the curvature form of L is (deg L)w and for any i € I, we can find
an isomorphism of hermitian line bundles on B

fXL ~ (0,7,
where |.| is the standard absolute value and A = deg L.
Choose an element i € I, and a complex number z with |z| < 1 such that
|5 @)e™44 D = Is]]oo,
where f;*s(z) is considered as a complex number via the isomorphism above. By Proposi-
tion 4.1, we can find positive constants ¢ < A and n depending only on X and w such that
either |op(z)| > ¥ or,

VI eC| —z|= = = lop()l =

> |

Ifop(z) > %,then
oIl = llsop (£ GDII = FsCAEN = il

Assume on the contrary op(z) < % By the maximum principle, we can find a complex
number z’ with |z — z| = £ and | f;*s(z)| > | f;*s(2)|. In particular, |z| < 2 and

n M (2)—: (2 — n
lIsop|loo = [lsop (fi (DI = Tls|loe * @ E#1ED > =€ [I51]oo-
A deg L
where C is an upper bound for the differential of the ¢; on the ball {z € C||z| < 2} asi varies
through the finite set /. O

PROPOSITION 4.4. — Let L = (L, ||.||) and M = (M., ||.||) be two admissible hermitian
line bundles on X. Then for any two sections s and o of L and M respectively, the following
inequality holds:

lIslloollo]lo < (Ca(deg L + deg M)*EM |50 || oo,

where C, is a positive constant depending only on X and w.
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Proof. — Let D be the divisor of 0. Then M is isomorphic to O(D), and the hermitian
line bundles M and O(D), as well as the sections o and op differ by a homothethy. Since the
inequality we want to prove is invariant under scaling, we can assume that M = O(D) and
o=op.If D =3, n; P;, we have

o) =QOor) "

and
op = Mo},

so that the result follows from successive applications of Lemma 4.3. O

4.2. An upper bound for the number of sections

Let X be a projective arithmetic variety with smooth generic fiber. Choose a Kéhler
form on X(C) which is invariant under complex conjugation and has volume 1. If £ is
a hermitian line bundle on X, we write h3(X, £) for h}(H (X, L)), where the hermitian
vector bundle H ]‘32 (X, L) over SpecZ is endowed with the L2 norm induced by the Kihler
metric on X,

We will need a comparison result between the sup norm and the L? norm on the space of
sections of hermitian line bundles, which we will obtain through a minor generalization of
Gromov’s lemma [17, Lemma 30]. We follow the proof of Gillet-Soulé and start with a local
result.

In the following, if z is an element of C4, we write z1, ..., z4 € C for its coordinate, and,
forany k € {1,...,d}, we write zx = xi + iyx, where x; and yj are real.

LEMMA 4.5. — Let d be a positive integer, and let B be the open ball {z € C?||z| < 3}
in C2. Let ¢ be a real-valued smooth function on B, and let g be a smooth positive function
on B. Then there exists a positive constant C depending only on ¢ and g such that for any real
number A > 1, any holomorphic function f on B and any w in B with |w| < 1,

/“ ‘ / |z_w|<1|f(Z)|ze_2A¢(z)g(z)dx1 ceedyg > C|f(w)|ze_2/l¢(w)/x_2d~

Proof. — If A is an integer, the inequality is the “local statement” proved in the beginning
of the proof of [17, Lemma 30].

To prove our result, after adding a negative constant to ¢, we can assume that ¢ is negative
on the ball |z| < 2. Let C’ be a lower bound for the values of ¢ on the ball |z| < 2. If A > 11is
arbitrary, write A = n 4+ r, with 0 < r < 1. Then

e—2)t¢(z) — e—2nq§(z)e—2r¢(z) > e—2n¢(z)
for any z with |z| < 2, so that
/ B / |z—w\<1|f(z)|2eizk¢(z)g(z)dxl ce dyd z / B / |z—w|<1|f(Z)|2e72n¢(2)‘(’7(z)dxl a 'dyd

> C|f(w)|ze_2"¢(w)n_2d
> C |f(w) |26—21¢(w)62r¢(w)/\—2d

> CeZC/lf(w)|2e—2/1¢(w))L—2d )
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Replacing C with Ce2C’, we get the result. O

PROPOSITION 4.6. — Let X be a compact connected riemannian complex manifold of
dimension d, let @ be a real form of type (1,1) on X. Then there exists a positive constant C
such that for any hermitian line bundle L on X with positive degree and curvature form Aw with
|A| > 1, and any section s of L over X, we have

—d
lIsllz2 = CIA[™[s]]oo,

where ||s|| 2 denotes the L? norm of s with respect to the given metric on X .

In particular, if d = 1, there exists a positive constant C’ such that for any hermitian line
bundle L with curvature form proportional to w and positive degree, and any section s of L, we
have

[Is]lz2 = C"(deg £)7"[|s]]co-
Proof. — As above, let B be the open ball {z € C¢||z| < 3} in C?. Let (U;);; be a finite
cover of X by open subsets such that there exists biholomorphic functions
fi B — Ui

and assume that X is covered by the f;({z € C?||z| < 1}). Foranyi € I, we can find a
positive smooth function g; such that the pullback of the standard metric of X to B by f; is
gidxy---dyg.

For alli € I, choose a function ¢; on B such that —dd“¢; = f;*w. Let L be a hermitian
line bundle with curvature form Aw for some real number A with |A| > 1. Then, foranyi € I,
we can fix an isomorphism of hermitian line bundles

XL ~ (O, e i),

where |.| is the standard absolute value. Applying Lemma 4.5 (up to replacing ¢; by —¢; if A is
negative), we can find a positive constant K, independent of £, such that, given any section s
of £, foranyi € I and any w in B with |w| < 1, we have

f oot S @Pe M O g (2)dx - dya = K| fFs(w)Pe 22724,

where we consider f;*s as a holomorphic function via the local trivializations of L. This
inequality means

/|Z,w|<1IIS(fi(Z))Ilzg(Z)dxl coedyg = KA Is(fi w))| 2,
so that
lsI2, = / oy SCHEDIPEEx - dya = KIAT2Is(fi )P

for any w, which proves the first result.

The second result is a consequence of the first one and the Gauss-Bonnet formula. O

Given a real form w of type (1, 1), write lsi\cw (X) for the group of w-admissible hermitian
line bundles on X, that is, hermitian line bundles whose curvature form is proportional to w.
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ProPOSITION 4.7. — Let X be a regular projective arithmetic surface. Choose a Kdhler
form on X (C) which is invariant under complex conjugation, and let B be a hermitian line bundle
on X. Let w be areal form of type (1, 1) on X (C) with fX((C) w # 0. Assume that the following
conditions hold:

(i) Some positive power of B is effective;
(i) B.B>0;
(iii) If M is an effective hermitian line bundle on X, then B.M > 0.
Then for any effective M l;i\cw (X), we have

— BM)? _ _
WYX, M) < (22\%) + O(M.Blog(1 + M.B)) + O(deg Mg log(1 + deg Mg)) + O(1),

where the implied constants depend on X, B and w, but not on M.

REMARK 4.8. — Using the precise computations of [9, Chapter 3], it would be possible to
make the implied constants above effective.

REMARK 4.9. — If M is effective, then both B.M and deg M are nonnegative.

Proof. — Let M be an effective, w-admissible, hermitian line bundle. If Mg has degree
zero, then the curvature form of M vanishes, so that M is isomorphic to Oy and the
inequality of the proposition holds. We can assume that the degree of Mg is positive. Let
us write d for the degree of M.

After replacing B by a positive power, we can assume that B is effective. Let o be a nonzero
effective section of B with divisor D. We have an exact sequence of line bundles

0—>M®B®_1—>M—>M|D—>O,

in which the first map is multiplication by o and the second one is restriction of sections.
Taking global sections, we get an exact sequence

0> H' X MeB%° ) > H X, M) > HO(D,M|D).
The map of lattices
i HSX, M®BY ) - HY, (X, M)
is the multiplication by the section o, whose sup norm is bounded above by 1, so the operator

norm of i is bounded above by 1.
Endow HO(D,H|D) with the L2 norm

12, = 3 @I
zeD(C)

fors € HO(D, M| )~ Then for any section 7 of M over D, we have

1% 2 =7
cg g

2
21172

If 5 is a global section of M on X, then certainly we have, for the sup norms

lIslleo = [15]  lleo
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and consequently
2
s > —||s .
slloo = oo 5111172
By Proposition 4.6, with s as above, we have
lIsllz> = € d7 sl

where we recall that d is the degree of Mg and C is a positive constant independent of M.
We obtain

>
sllee 2 g5

In other words, the operator norm of the map of lattices

riHp (X, M) — H (D, M| ),

-1
dls| 1125

given by restricting sections to D is bounded above by C’d, where C’ is a positive constant
independent of M. In other words, the induced map of lattices

HY» (X, M) — H£2(D,H|D)(log C’' +logd)
has norm at most 1—here if A is a lattice and § a real number, we write A (8) for the lattice A
with the metric scaled by e~%. Note that from [9, Corollary 3.3.5, (2)], we have
hg(ng(D,ﬂb)(log C’ +logd)) < hg(D,ﬂb) + deg Dg(log C' + logd).

From the monotonicity and the subadditivity of #-invariants proved in [9, Proposi-
tion 3.3.2, Proposition 3.8.1], we get

(4.1) (X M) < W)X MB® ) + h3(D. M) ) + O(logd) + O(1),

where the implied constants are independent of M.
By [9, Proposition 3.7.1, Proposition 3.7.2], we have ®

hg(D, M| ) < max(deg M| ,0) + O(1) < M.B + O(1)
since we assumed that M.B > 0 and since D is the zero locus of an effective section of B.
Together with (4.1), we obtain
4.2) (X, M) <h)(X, M ® B®™) + MB + 0(logd) + O(1).
Now let m be the smallest integer such that mB.B > M.B, so that
m < |[M.B/BB] +1.

®—i .
as i runs from 0 to m — 1, we get

Applying the argument above inductively to £.B
M.B)?
2B.B

By construction, B.(M & B> ") < 0, so that condition (iii) ensures that M ® B° " is
not effective. By [9, Corollary 4.1.2], we get

WX, M®B® ") < 0(dlogd) + O(1)

43) WX, M) <hdX. MeB* ™) + + O(M.Blogd) + O(M.B) + O(1).

® In [9], hermitian vector bundles are only considered over the ring of integers of number fields. However, this
assumption is irrelevant, and can be removed by considering the pullback of ﬂ| pto the normalization of D.
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since the rank of H%(X, M ® B®™™) is certainly bounded above by O(d).
Finally, we have

_ B _ _
(4.4) hg()\,’,M) < — 4+ O(M.Blogd) + O(d logd) + O(M.B) + O(1),
which shows the result. O

COROLLARY 4.10. — Let X be a regular projective arithmetic surface, and let B be a
hermitian line bundle on X. Let w be a real form of type (1,1) on X (C) with fX(C) w # 0.
Assume that the following conditions hold:

(i) Some positive power of B is effective;
(i) B.B > 0;
(iii) If M is an effective hermitian line bundle on X, then B.M > 0.
Then for any effective M lgi\cw (X), we have
WS (X, M) < (ié\%z + O(M.Blog(M.B)) + O(deg Mg log(deg Mg)) + O(1),

where the implied constants depend on X and B, but not on M.

Proof. — From Proposition 4.7 and [9, Theorem 4.1.1], we find that the inequality holds if
one replaces hgr (X, M) with hOAr 12X, M)—this expression being defined as the logarithm

of the number of sections of M with L? norm bounded above by 1. Choosing the Kihler
form on X to have volume 1, we have

W (X, M) < 1Y 2(X, M),
which finishes the proof. O

REMARK 4.11. — In [37, Theorem A], Yuan and Zhang prove an explicit upper bound
for 1 (X, M) from which one can deduce—via log-concavity of volumes—special cases of
our inequality.

4.3. An upper bound for the number of effective hermitian line bundles

LEMMA 4.12. — Let X be a projective arithmetic surface, and let L be an ample hermitian
line bundle on X. If M is an effective hermitian line bundle on X which is not isomorphic to O x,
then

LM > 0.

Proof. — Let s be an effective section of M, and let D be the divisor of s. Then by the
formula [12, (6.3.2)], we have

Zﬂ:@ww[ log|lsclle1 @),
X (C)

where h denotes the height with respect to D. The first term is nonnegative since L is
ample, and vanishes if and only if D = 0. Since s is effective and the curvature form of £ is
semipositive—and positive on a Zariski-dense open subset of X'(C) as L¢ is ample—the
second term is nonnegative as well, and vanishes if and only if the norm of s is identically 1.
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As a consequence, for £.M to vanish, it is necessary for M to have a nowhere vanishing
section of norm identically 1, i.e., to be isomorphic to O ». O

PROPOSITION 4.13. — Let X be a projective arithmetic surface, and let L be an ample
hermitian line bundle on X. Let w be a semipositive real form of type (1,1) on X(C) with
/ x(©) @ # 0. Let N be a subgroup of the group Picy, (X)) of w-admissible hermitian line bundles

on X. Assume that the intersection of N with Ker(l;i\cw (X) — Pic(X)) ~ R is discrete. Then
N isagroup of finite type. Let p be the rank of N, and let N denote the subspace of N consisting
of effective line bundles. As n tends to oo, we have

(M € Nea| LM < n}| = O(n®).

Proof. — The abelian group Pic(X) is finitely generated by [29]—see [20] for a modern
proof—so that the image of N in Pic(X) is a group of finite type. Since the intersection of N
with Ker(ﬁi\ca, (X) — Pic(&X)) is discrete, it is of finite type as well, which proves that N is a
group of finite type.

The linear form on N
M LM
extends to a linear form on N := N ® R which we still denote by

a— Lo

Let N.g be the closure of Neg in N ® R. Lemma 4.12 shows that the linear form above is
nonnegative on Neg, SO it is nonnegative on N .

Our assumption on N guarantees that the first chern class map
—~ —1
¢y : Picy, (X) - CH (X)
extends to an injection
—1
C1,R : N®R— CHR(X),

—1
where CH (X) is the arithmetic Chow group with real coeflicients defined in [7, 5.5]. Indeed,
we have an exact sequence

0 — (N N Ker(Pic, (X) — Pic(X))) ® R - N ® R — Pic(X) ® R,
and the first term can be identified with R by assumption.

By the Hodge index theorem of Faltings [14] and Hriljac [18] as stated in [7, Theorem 5.5,
(2)], the intersection pairing on (/ZI\{;g (X) is non-degenerate: it has signature (+, = ).
Since w is semipositive and | x@ @ # 0, there exists an ample line bundle H in Pic,, ().
Then H.H > 0, so that the intersection pairing on Pic, (X) is non-degenerate as well.

In particular, if x is a nonzero element of Ny, we can find a hermitian line bundle
M € Pic,(X) with M.x < 0. If n is a large enough integer, Corollary 2.5 shows that
" ® M is ample, so that the discussion above guarantees the inequality

(Z®n Q M).x =nLl.x + M.x > 0.

This shows that £.x is positive.
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The linear form x ~ L.x is positive on the complement of the origin in the closed
cone N .¢. As a consequence, the number of integral points x of N g with £.x < n is bounded
above by a quantity of the form O(n”), where p is the rank of N. O

5. Irreducible ample divisors on arithmetic surfaces

5.1. Setup and an easy estimate

In this section, we prove Theorem 1.6 for arithmetic surfaces.

Let f : X — SpecZ be a projective arithmetic surface, and £ an ample line bundle on X.
If n is a large enough integer, we want to give an upper bound for the number of sections
of £%" that define a divisor which is not irreducible. We will give three different bounds that
depend on the geometry and the arithmetic of the irreducible components of that divisor.

In the statement below, X is not assumed to be regular, but heights are still well-defined,
see [39, (1.2)].

1
2
proportion of those elements s of ng (X,E®”) that vanish on some Weil divisor D of X with

hz(D) < n® goes to zero as n goes to infinity.

PROPOSITION 5.1. — Let a be a real number with 0 < «a < 5. If n is an integer, the

Proof. — Assume that n is large enough. By [25, Theorem B], the number of divisors D
on X with hz(D) < n® is bounded above by e€"** for some positive constant C. By
Theorem 2.21, we can find positive constants C’ and 7 such that for any D as above,
the proportion of those elements s of Hj (X ,Z®n) that vanish on D is bounded above
by C’e ™7,

As a consequence, the proportion of those s that vanish on any D with hz(X) < n®is
bounded above by

C/eana —nn ,

which goes to zero as n goes to infinity. O

5.2. Degree bounds and reduction modulo p

Let f : X — SpecZ be as above. We want to investigate irreducible divisors on the
fibers of f above closed points and derive global consequences. Our goal here is to prove
Proposition 5.6.

Since X is reduced, we can find a non-empty open subset S of SpecZ such that the
restriction fg : Xs — S has reduced fibers.

Let r be the number of irreducible components of the geometric generic fiber of f. Up
to shrinking S, we may assume that if 5 is any geometric point of S, then the number
of irreducible components of Xy is exactly r. Since X is reduced by assumption, this is
equivalent to the fact that the specialization map induces a bijection between the components
of Xg and those of A%.

The degree of Lg equals rd, where d is the degree of the restriction of £ to a component
of Ag. Write £, for the restriction of £ to &j.

If X is a reduced scheme, and C is an irreducible component of X, we will always consider
C as a closed subscheme of X, endowed with its reduced structure.
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LEMMA 5.2. — Let C be an integral projective curve over a perfect field, with arithmetic
genus pa(C). Let L be a line bundle on C. Then

h(C,L) = 1= pa(C) + deg(L)
and equality holds if the degree of L is strictly bigger than p,(C).

Proof. — The first statement follows directly from the Riemann-Roch theorem. To prove
the second one, consider the normalization 7 : C — C of C. Then C is smooth over the
base field k, and its genus is bounded above by the arithmetic genus p,(C) of C.

Since C is reduced, it is Cohen-Macaulay, so that the dualizing sheaf wc,¢ of C is
Cohen-Macaulay by [32, Tag 0BS2]. In particular, it is torsion-free, so that the morphism
n*oc/k — o i 1s injective. Now assume that the degree of £ is strictly bigger than p,(C).
In particular, we have

deg(n*L) > deg(wg /x)
and
h'(C.L) = h°(C, LY ®op wc/k) < h°(C.7* LY ®ox wg ;) = 0.
By Riemann-Roch, we have
ho(C, L) = (L) =1 — pa(C) + deg(L). O

LEMMA 5.3. — Let p be a prime number corresponding to a point in S, and let E be
an algebraic closure of Fp,. If C is an irreducible component of X,, let rc be the number
of irreducible components of Gy, and if k is a positive integer, let Ny (C) be the number of
irreducible divisors of degree k on C. Then the following holds as k tends to oco.

1 rck
[Nrck(€) = 2 p"*[ = 0(p™2),
where the implied constants only depend on fs : Xs — S.

Proof. — The r¢ irreducible components of Cy,, are all defined over IF,rc, and they form
a single orbit under Galois. Denote them by Ci, ..., C,.. The Lang-Weil estimates of [22]
give us the inequality, for any positive integer k:

, rek
IC1(Fyrei)| — p"¥| = O(p 7).

where the implied constants only depend on the degree of an embedding of C; into some
projective space—in particular, it only depends on fs. As a consequence, if M, is the number
of elements in Cy (F ¢« ) with residue field exactly F - «, we have:

| My = ¥ < Y ipisk PCT+ O p 2 ) = Okp 7).

Now assume that r¢k is strictly larger than the degree of the residue field of any singular
point of C—this degree can be bounded independently of C as fs is generically smooth.
Irreducible divisors of degree rck on C are in one-to-one correspondence irreducible divisors
of degree k on C;/F,rc , which in turn are in one-to-one correspondence with Galois orbits
over IF,r¢ of elements of Cy (IFpkrc) with residue field exactly Forek. As a consequence, we
have |

Ne(C€) = £ Mg,

which proves the lemma. O
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LeEmMA 5.4. — There exists a positive integer N with the following property: for any prime
number p corresponding to a point in S, any irreducible component C of X, and anyn > N,
the restriction map

0 ® 0 ®
HY(Xp, L") — H(C, L")

is surjective.

Proof. — Since the result certainly holds if N is allowed to depend on p by general
vanishing results for ample line bundle, we may replace S by any nonempty open subset,
which we will do along the proof.

Choose a finite flat map S’ — S such that the irreducible components of the generic fiber
of Xs» — § are geometrically ireducible. In particular, our assumption on s guarantees that
the irreducible components of the fiber of Xs» — S’ over any closed point s” are geometri-
cally irreducible, and are the intersection of an irreducible component of X with Xy .

Let s’ be a point of S” over p, and let Cy be the union of irreducible components of X/
corresponding to C. Up to shrinking S, we may assume that Cy, as a reduced scheme, is the
intersection of Xy and some union C of irreducible components of Xs/. Let Z¢ be the sheaf
of ideals on X defining C. Then the sheaf of ideals defining Cy is Z¢ B0y, Ox,, . Note that
there are only finitely many possibilities for C.

Let k be a positive integer such that £®¥ has a nonzero section. Up to shrinking S, we
may assume that this section does not vanish along any component of a fiber of Xss — §’.
Consider the map

b/ XS/ —> S/
If n is large enough and since L is relatively ample, relative vanishing guarantees that the
coherent sheaf on §
RIJT*(,C@M ®OXS’ Ic)
is zero. Pick a positive N once and for all such that the vanishing above holds for
n=N,...,N + k — 1. Then after shrinking S once again, we may assume that the vanishing
above implies
H' (X LN ®0,  Tc) = 0

fori =0,...,k—1.

Now since £® has a nonzero section over Xy, we have an exact sequence, for any

integer n,
0 — L%®" ®OXS’ Icr — £®n+k ®OXS’ Tcr — K —0,
where K is a coherent sheaf supported on a zero-dimensional subscheme of Xy . In particular,
the map
H' (X, L¥" ®0,, Tcr) = H' (X, L2 R0, , Tc)
is onto and the right-hand term vanishes as soon as the left-hand one does. Finally, we have
found N, independent of C and p, such that for alln > N, we have

HI(XS’MC@n ®OXS/ IC/) = O’
which implies that the map
H(X,,L2") — H°(C.LS")

is surjective. U
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PROPOSITION 5.5. — Let p be a prime number corresponding to a point in S, and let L, be
the restriction of L to X,,. Let C be an irreducible component of X, and let rc be the number
of irreducible components of C,-

Let B be a real number with 0 < 8 < 1. There exist positive constants A and B, depending
only on B and Xs — S but not on p, such that for any n > A, the proportion of those sections s
of H°(X,, LE’”) that do not vanish identically on C and such that div(s) has an irreducible

component of degree at least rc (nd — n?) lying on C is at least BnP=1.

Proof. — Our assumption on p guarantees that C is reduced. The degree of £, on C
equals rcd. Let n be a large enough positive integer. Let & be an integer such that
nrcd > rck. Let D be an irreducible divisor of degree rck on C. Then the number of
sections of Ef’" over C that vanish on D is equal to the number of sections of Eff’" (-=D)
over C, which, according to Lemma 5.2, is bounded below by

pl—pa(c)-i-nrcd—rck

Assume that rck > %n rcd. Then a nonzero section of q?” over C vanishes on at most

one irreducible divisor of degree rck. Applying Lemma 5.3, it follows that the number of
nonzero sections of Ef?” over C that vanish on some irreducible divisor of degree rck is
bounded below by

1 1

£pl—pa(C)+nrcd(1 _ 0(p—%rck)) _ EPer,
the last term taking care of the zero section being counted multiple times.

Assume now that
rck <nrcd — ps(C).
Then the term above is bounded below by
1

ﬁl’

1—pa(C)+nrcd

for large enough n.

Summing over all those k such that rck > nrcd — ren®, we find that the number of those
elements s of H%(X), L?") such that div(s) has an irreducible component of degree at least
nrcd — n® is at least

1
nﬂ pl—pa(C)-i-nrcd(l +0(1))
2nd

as n goes to infinity, the implied constants depending only on 8, p,(C) and the ones occur-
ring in Lemma 5.3. Since p,(C) is the genus of some reunion of irreducible components of
the geometric generic fiber of X', the implied constants only depend on 8 and X'.

By Lemma 5.2, if nrcd > p,(C), we have

h°(C.LE") =1 — pa(C) + nred.

This shows that the proportion of those sections s of Lf?" over C such that div(s) has an
irreducible component of degree at least nrcd —ren® is at least Bn#~! for some constant B
as in the statement of the proposition.

By Lemma 5.4, after choosing n large enough, this implies the desired statement. O

We can now prove the main result of 5.2.
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PROPOSITION 5.6. — Inthe situation of 5.1, let B be a real number withQ < 8 < 1. Then the
proportion of those elements o of H (X, Z®n) such that div(o)q has an irreducible component
on Xg of degree at least n deg Lo — rn® goes to 1 as n goes to infinity.

Proof. — Let y be a real number with 1 — 8 < y < 1. Let n be a large enough
integer. Letting ¢ be the largest integer smaller than n?, let pq,..., p; be the r smallest primes
corresponding to points of S, and let N be their product. By the prime number theorem, we
have p; ~ ilogi ast — oo, so that p; < 2ilogi for large enough i, and, when ¢ is large
enough:

(5.1) N < Qtlogt) = 0™,

where y’ is any real number with y < y’ < 1.
Write A, for H°(X, £%") and let Xy — SpecZ/NZ be the reduction of X modulo N.
The exact sequence defining Xy is

0—-NOxy - Ox = Ox, — 0,
hence the exact sequence
0— Ap/NA, - H°(Xn,L®") - HY(X,L2")[N] — 0.
If n is large enough, then H (X, £L®") = 0 and we have
(5.2) HO(XN,L%") = A, /NA,.
The scheme Xy is the disjoint union of the X,,,, 1 <i < t. As a consequence, we have
HO(xy.L®") = ] Hx,.L%").
1<i<t

Given a prime number p that corresponds to a point of S, let E, be the subset
of H%(X,, £®") described by Proposition 5.5: E,, is the set of sections s of H(X,, L®")
such that there exists an irreducible component C of X, such that Cr, has r¢ irreducible
components, the restriction of s to C is not identically zero and vanishes along an irreducible
divisor D, of degree at least rc (nd — nb).

By Proposition 5.5, if n is greater than A, the proportion of those elements s of H%(Xy, L&)
such that s does not project to £, foranyi € {1,...,t} is bounded above by

(1= BnP™Y > (1= BnP™\)" = exp(—=Bn?B~1 4 o(n”*B71)) = o(1)
since y + B — 1 > 0, so that as n goes to infinity, the proportion of those elements
of H%(Xy, £L®") that project to at least one of the E,, goes to 1.

By Proposition 2.15 which we may apply thanks to (5.1), and by (5.2), the proportion of
those elements of ng(x,zm) that restrict to E,, for some i € {I,...,f} goesto 1 asn
goes to infinity. We claim that these elements satisfy the condition of the proposition we are
proving.

Let p be a prime number that corresponds to a point of S. Let o be a section of £®”
over X such that the restriction of o to &, belongs to E,. Let C be a component of &}, such
that Cr, has r¢ irreducible components, and let D, be an irreducible divisor of degree at
least rc (nd —nP) on C such that o vanishes on D,.
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We can find an irreducible component D of div(o) with D| Xy = D, If n is large enough,
we can assume that no component of (Dl’)@ lies on two distinct irreducible components
of Cﬂ—it is enough to require that n is large enough compared to the degree of the residue
fields of the intersection points of any two components of CE‘ As a consequence, the degree
of the restriction of D, to any of the rc components of Cr, is at least nd — n?. Since Xp is
irreducible, the degree of the restriction of Dg to any component of Ag is at least nd — nb
as well, so that the degree of Dg is at least

r(nd —nﬁ) = ndeg[,@—rnﬂ.

This is what we needed to prove. O

5.3. End of the proof

We can finish the proof of Theorem 1.6 in the case where X is an arithmetic surface. We
will state this intermediate result in Proposition 5.10 below. The strategy follows roughly the
outline of the proof of [11, Proposition 4.1] which deals with the corresponding result over
finite fields.

Let 7 : X — X be a resolution of singularities of X'. Recall that we denoted by r the
number of irreducible components of X. Then the complex curve X is the disjoint union
of r smooth, connected components.

Define B = 7*L. Let w be the first Chern class of B. Then w is semipositive. We say that
a hermitian line bundle on X is admissible if it is w-admissible, and we write I/’i\cw (;YV ) for the
group of isomorphism classes of w-admissible hermitian line bundles on X

We have an exact sequence

0 — R — Picy, (X) — Pic(X) — 0.
We fix once and for all a subgroup N of lg.i?:a, (X ) such that the following conditions hold:
(1) N is a group of finite type;
(i) N surjects onto Pic(X) and contains the class of B;
(iii) N N Ker(Pic,(X) — Pic(X)) has rank 1.

Such a group N certainly exists since Pic(j(v ) is a group of finite type. Note that these condi-
tions mean that N is a discrete cocompact subgroup of lg.i\ca, (;\,7 ). In particular, there exists a
positive constant C such that for any admissible hermitian line bundle M = (M, |.||) on X,
there exists a hermitian metric ||.|| on M such that (M, ||.||") belongs to N and the norms
[I.|| and ||.]|" satisfy the inequality

(53) CTHLI =1L = CILHI-

The following result is classical in the geometric setting: big divisors are (rationally) the
sum of ample divisors and effective divisors.

LEMMA 5.7. — The hermitian line bundle B satisfies the conditions of Proposition 4.7.
Furthermore, there exists a positive integer k, and line bundles A and € on X which are ample
and effective respectively, such that
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Proof. — Since L is ample, some power of £ is effective, and so is the same power of B. We
also have B.B = L.L > 0. Finally, let M be an effective line bundle on X, let s be a nonzero
effective section of M, and let D be the divisor of s. Then

BM = hy(D) — /~ log [|sclz*c1 (Z).
X (C)

Considering an effective section of some power of B that does not vanish along any compo-
nent of D—which exists since large powers of £ are generated by their effective sections—we
see that first term is nonnegative. The second one is nonnegative as well since ¢; (£) is semi-
positive on X'. This shows the first statement of the proposition.

Let A be an effective ample line bundle on X, let o be a section of A and let H be the
divisor of 0. Let H' be the schematic image 7 (H ). Since £ is ample, we can find an integer &
and a nonzero section s; of £L®¥1 that vanishes on H’. We can write

n*s1 = ooy,
where o, is a section of B®¥1 @ A®~1. Choose a large enough integer k,, and let s, be a
nonzero section of £8%2 with small enough norm. Writing o> = 7*s,, we have

n*(s152) = 00102,

. . . e =8k +ky) _—®—1 .
and 0105 is an effective section of the hermitian line bundle B 1+k2) ® A~ , which proves

the result. O
Let @ and B be real numbers with0 < § < « < % If n is a positive integer, let H, be the
subset of H/?“(X , f®n) consisting of those effective sections o of %" such that:
(i) o does not vanish on any Weil divisor D of X with h7(D) < n®;
(i1) there exists an irreducible component D of div(o) such that
deg(Dg) > ndeglg — rnf.

Use Lemma 5.7 to find a positive integer k with

where A is ample and £ is effective.

LEMMA 5.8. — The set\J,~ o H,, has density 1in |, ng(X,ng).

n>0

Proof. — This is a direct consequence of Proposition 5.1 and Proposition 5.6. O

LEMMA 5.9. — Let 8,y be any real numbers with0 < B <y < 6 < «. Let n be a large
enough integer, and let o be an element of H,, such that div(o) is not irreducible. Then we can
find hermitian line bundles £, and L, on X, and sections

o; € HO(X, L)),
i = 1,2, with the following properties.
(i) L1 and L, belong to N ;
(i) ||oilloo < €™ i =1,2;

(iii) n® < £,.B <nB.B—n’;
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(iv) £,.A < knB.B;
W) L1 ® L, ~ B
(vi) up to the isomorphism above, 6102, = ©.

Proof. — Let D be the divisor of 7 *o. Since the divisor of ¢ is not irreducible, D is not
irreducible either and we can write

D = D; + D,,

where the D; are nonzero effective divisors on the regular scheme X such that both Weil
divisors 74« (D7) and 7« (D5) are nonzero. Since div(o) has an irreducible component of
generic degree bounded below by n deg Lo — rn#, and since

5.4 deg D19 +deg Dy o = ndegLg,
we can assume, up to exchanging D and D5,

(5.5) ndeg Lo —rnP < deg Dy g < ndegLy.
(5.6) 0 < deg Dy g < rnf.

We can also assume that no component of Dy is contracted by the morphism 7 : X—>Xx—
simply by replacing D, by the sum of D, and all those contracted components of Dy,
which are all supported above closed points of SpecZ. Let £; be the line bundle O %(D;)
fori = 1,2. Then we can identify £; ® £, with B%®", and we can find sections o; of £; with
div(o;) = D; such that 0 = 0105.

Recall that we defined w as ¢, (B). We consider the norms ||.||o with respect to w. Consider
the unique hermitian metric ||.||5, on £, which is admissible with respect to o, scaled so that
lo2]lo0 = 1.

By (5.3), we can find a metric ||.|| on £, such that £, := (L5, ||.||) belongs to N and
(5.7) C™' <lozllo < C.
Endow £; with the unique hermitian metric such that
B” =L, L,
as hermitian line bundles on X , where we write £; for the induced hermitian line bundles.
Since B belongs to N by assumption, so do £; and £,. This makes sure that conditions (i),
(v) and (vi) of the lemma are satisfied.
Since ||0||oo < 1, we have

(5.8 llozllo = Cllalllolloz]lo = Cllollo = C.

The inequalities (5.4), (5.6) imply, via Proposition 4.4 the following estimate, since
llo2llo = C ™" and [|o]|oo < 1:

llo1]loo < €71 (nCs deg Lg)™

for some constant C» depending only on X and £. Similarly, (5.6) and Proposition 4.2 give
us, for some constant C, depending only on X and L:

B
lloz2lloo = CC{™ .
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For any y > §, and any n large enough, this ensures that condition (ii) is satisfied.

We now turn to condition (iii). For i = 1,2, choose a nonzero effective section s; of
some power ZW of £ such that the divisor of 7*s; has no common component with D;.
Computing the height ha (D;) using the section 7*s; of Ew, we get:

hE®Z (Di) = /’lZ@z (JT*(D,')).
and
hzee(Di) = Lhoge(ma(D;)) = €n®.
Write

EZi.EzhEW(Di)—E/ log||o;||@ zﬁn“—K/ log||o;||w
X(C) X(©)

and use log ||0;||co < nY. We find

(5.9) Li.B>n%—n"degLy > n?

for any large enough n since 8, y < «. Since
L1.B+ L,.B=nB.B,

this proves that (iii) holds.

Let us prove condition (iv). Since B is isomorphic to A ® £, we have

LiA=kL;.B—L;.E

fori = 1,2, so that

(5.10) L1 A=kL1.B—L1.E =knBB—kLy.B—L.E.

Let 7 be a nonzero effective section of &, with divisor D,. Then we have
L8 =g, (D)= [ togllellen @,
X(©)

Since the degree of £; is nonnegative, the form ¢;(£;) is a nonnegative multiple of , and
since t is effective, we have

—/~ log|l7ller(Z1) = 0.
X (C)

By assumption, no component of the divisor Dy of o7 is contracted by the resolution 7.
Furthermore, the definition of the set H,, guarantees that if C is any component of D1, then
the height of 7, (C) with respect to £ is bounded below by n%. This implies that if  is large
enough, the divisors Dy and D, have no component in common, so that

hz,(D;) = —deg D, glog|lo1|| = —deg D, qn”
and, as a consequence,
(5.11) L1.€ > —n” deg&y.
Putting the inequalities (5.11) and (5.9) together with (5.10), we obtain
L1 A<knBB+n"deg€y—kn'.

Since £ is ample, B.B = L.L is positive, and since y < §, this shows that condition (iv) of
the lemma is satisfied as soon as n is large enough. O
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We can finally prove the key result of this paper via a counting argument.

PROPOSITION 5.10. — Let X be an integral projective arithmetic surface, and let L be an
ample hermitian line bundle on X. Then the set

{o € U ng(x,Z@’”), div(o) is irreducible}
n>0

has density 1.

Proof. — Choose§ and y with § < y < § < «. Lemma 5.8 shows that theset | J,,. , H,, has
density 1in HJ (X ,Z®n), so that we only have to prove that the set of those o in |, H,,
with reducible divisor has density 0 in HXI(X , Z®n). Let Z,, be this set.

Let n be large enough so that Lemma 5.9 applies. To any o in Z,, we can associate
hermitian line bundles £; and £,, together with respective sections o and o>, so that the
conditions (i) — (vi) of the lemma hold. Since ¢ = 0,05, the data of the £; and o; fori = 1,2
determine o.

We will give an upper bound for the number of elements ¢ in Z,, by estimating the number

of possible L; and o;. In other words, we will count the number of triples (L1,01,02), where
—= . N =~ . . .= — —®—1
L1 is a hermitian line bundle on X, o, is a section of £, and, setting £, := B®n ® L? ,

05 is a section of £,, so that
(i) £, and £, belong to N;
(i) [loi|| <™ i =1,2;
(iii) n® < £,.B <nB.B—n®;
(iv) £,.A<knB.B.
Below, when using the O notations, implied constants only depend on X > XL Ao, B.6,y.
Let £, be a hermitian line bundle as above, and write i := £;.1, so that
n® <i < nB.B—n’.
We want to bound the number of sections of £ that have norm at most e””, that is, the

number of effective sections of £; (n”). First remark that deg L1, < ndegBg as the degree
of £1,g and £, g are both nonnegative and have sum n deg Bg. Furthermore, we have

Li(n")B=i+n"Oz%(1).B=0(n)
sincey <4 < 1.
Corollary 4.10 gives us
~ = (i + Kn?)?
5.12 ]’10 X,E nY ST-FOI’IIOI’Z,
(5.12) Ar(X, L1(n")) BE (nlogn)
where K is the constant O 5(1).B.
Similarly, we have
(nB.B—i+ Kn)?

0 Y 7 _(nV)) <
(5.13) W (X, o)) < .

+ O(nlogn).
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Adding (5.12) and (5.13), we find, recalling that 0 < y < 1:

~_ ~_ 1 ,—— 2i(nB.B—1i)

B (X, Ly(n”)) + hQ (X, Lr(n”)) < =n*BB—-"——— 2
Ar(X L1 (7)) + ha (X, L2(n”)) < i N

2K?n? +2KB.Bn'tY

nT A EABE T L Omlogn)
2B.B
< anE.E— m + O0m't).

2 B.B

Sincen® <i <nB.B-— n‘s, we have
i(”E_E__i) > pl+8 _ U 2
B.B o B.B
and, since 26 <1 <1+,

~ ~ 1 —
RO (X, L1(n”)) + hQ (X, La(n)) < znzB.B —n't L om't).

We now count the number of possible £;. Let ¢ > 0 be such that O(¢) belong to N.
Let k(n) be the smallest positive integer such that k(n)t > nY?. Then the hermitian line
bundle £; (k(n)t) is effective, belongs to N, and we have

L1(k(n)t).A = 0@)

since y < 1. As a consequence of Proposition 4.13, this shows that the number of possible
L,—or equivalently, £, (k(n)t)—appearing in the triples above is bounded by O(n”), where
p is the rank of N.

The estimates above show that we have the following inequality:
1 ,—— | [
log|Z,| < O(plogn) + EnzB.B—nH‘g +0m'tY) = EnZB.B —n'"t L om't).

However, Theorem 2.11, (iii) shows that we have

1

no (X, L") > §n22.2+ O(nlogn) = %nZE.BJr O(nlogn).

Since § > y, these two inequalities prove that  J,,.., Z, has density 0in H) (X, f®n), which
proves the proposition. O

6. Proofs of the main results

The goal of this section is to give a proof of Theorem 1.1. We will deduce it from its special
case Theorem 1.6
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6.1. Proof of Theorem 1.6

We first state the Bertini irreducibility theorem of [11] in the form that we will need.

THEOREM 6.1. — Let k be afinite field, and let X be a projective variety over k. Let L be an
ample line bundle over X . Let Y be an integral scheme of finite type over k, andlet f : Y — X be
amorphism which is generically smooth onto its image. Assume that the dimension of the closure
of f(Y) is at least 2. Then the set of those o € | J, .o H°(X, L®") such that div(f*0)noriz is
an irreducible Cartier divisor has density 1.

n>0

Proof. — This is almost a special case of [11, Theorem 1.6]. There, the result is given when
X is a projective space and L = O(1). This means that—unfortunately—{[11] can formally
only be applied to the situation where L is very ample. However, the proofs of [11] apply
with no change when projective space is replaced by an arbitrary projective scheme with a
distinguished ample line bundle.

A second difference between our statement and that of [11, Corollary 1.4] is that we claim
that we can require div(f*o) to be irreducible as a Cartier divisor: the underlying scheme
is irreducible and has no multiple component, whereas the statement in [11] only states
irreducibility.

The fact that for a density 1 of ¢, the divisor div(c) has no multiple component follows
from arguments in [11]. Indeed, since Y is reduced and k is perfect, there is a dense open
subset U of Y that is smooth over k£ and such that f lu is smooth onto its image. By [11,
Lemma 3.3], for a density 1 of sections o, all the components of div( f*0 )noriz intersect U,
and by [11, Lemma 3.5], for a density 1 of o, the intersection div( f *o) N U is smooth outside
a finite number of points, so that it does not have any multiple component. O

LEMMA 6.2. — Let X be a projective arithmetic variety of dimension at least 2, and let L be
an ample hermitian line bundle on X. Then the set

{o € U ngr(X , Z®n), div(o) has no vertical component}
n>0

has density 1.

Proof. — If X is an arithmetic surface, the result follows from Proposition 5.10. Let d be
the relative dimension of X’ over Spec Z, and assume that d > 2.

Apply Theorem 2.21 where Y runs through the irreducible components of the fibers of X
over closed points of Spec Z. Since these components have dimension d, we find that for any
small enough ¢ > 0, the proportion of these elements o of Hy (X, Z®n) such that div(o) has
a vertical component over some prime p with p < exp(en?) is bounded above by a quantity
of the form

O(exp(en® —nn?)) = o(1).
as n goes to infinity.

We now show that for most o € ng(X , Z®n), div(o) does not have any vertical compo-
nent above a large prime.

Let C C X be a closed arithmetic curve, flat over Spec Z, such that for any large enough
prime p, the intersection of C with any irreducible component of the fiber X, of X above p

is nonempty. Let n be a positive integer, and let o be an element of HY (X, Z®n). If div(o)
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does not contain C, and if it has a vertical component above a prime p, then div(c) and C
intersect at a point above p, so that

nhz(C) = hz®n (C) = logp.
In particular, for such a o, we have p < exp(nhz(C)).

By Theorem 2.21, the proportion of those o € ng(X,ZW) that vanish on C tends
to 0 as n tends to infinity. In particular, the proportion of those 6 € HY (X ,Z®n) such
that div(o) has a vertical component above a prime p > exp(nhz(C)) goes to 0 as n goes to
infinity.

Together with the above estimate, this shows the result. O

Proof of Theorem 1.6. — If X is an arithmetic surface, then the result was proved in
Proposition 5.10. Assume that X’ has dimension at least 3. Let p be a prime number large
enough so that ), is reduced, and specialization indices a bijection between the irreducible
components of A and those of A . Let Xp, , be an irreducible component of &, endowed
with the reduced structure.

Let n be a positive integer, and let o be a global section of £L®". If D is a horizontal
component of div(c), then D intersects all components of A7, so that D intersects X, .
This shows that for any section o of £L®" if div(0| X ) is irreducible as a Weil divisor, then

WP

div(o) has a single component that is flat over Z.
Now we have the following results:

() the density of those 0, € |J
Cartier divisor is 1;

H°(X,,p, L2") such that div(o,) is an irreducible

n>0

(ii) the density of those o € (o HA (X, Z®n) such that div(o) does not have a vertical

component is 1.

n>0

Indeed, (i) follows from Theorem 6.1 with X = Y, and (ii) is Lemma 6.2. By the discussion
above, if o satisfies (i) and (ii), then div(o) is irreducible. Finally, Corollary 2.18 shows that
the density of those 0 € | ..o Ha (X, Z®n) such that the restriction of o to Xy, , satisfies (i)
is 1. This proves the result. O

6.2. Proof of Theorem 1.1

In this section, we deduce Theorem 1.4 from Theorem 1.6, following the arguments of [11,
Section 5]. We then prove Theorem 1.1 as a consequence.

In the following, fix a projective arithmetic variety X', together with an ample hermitian
line bundle L.

LeEmMMA 6.3. — Let Y be an irreducible scheme of finite type over SpecZ, together with a
morphism f Y — X. Let U be an open dense subscheme of Y. Then for all o in a density 1
subset of | J ng (x, Z®n), we have the equivalence

n>0

div(f *0)noriz is irreducible < (div(f*o) N U)poriz is irreducible.
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Proof. — This is analogous to [11, Lemma 3.3]. The implication
div( f*0)noriz is irreducible = (div(f*0) N U)noriz is irreducible

always holds. We prove the reverse implication.

Let D be an irreducible component of ) \ U whose image under f is positive-
dimensional—meaning by definition that D is a component of (Y \ U )noriz- By Theorem 2.21,
the density of those 0 € | J,,-o H (X, Z®n) that vanish identically on f(D) is zero.

Now assume that o does not vanish identically along any component of (¥ \ U)noriz—
this is a condition satisfied by a density 1 set of sections by the paragraph above. Then
any horizontal component of div( f *0)poriz meets U, which implies that the Zariski closure
of (div(f™0) N U)noriz 18 div(f *0)noriz-

In particular, for those o, the implication

n>0

(div(f*0) N U)poriz 18 irreducible = div( f * 0 )noriz is irreducible
holds. =

LEMMA 6.4. — Let Y and Z be two irreducible schemes that are flat, of finite type
over Spec Z. Let
7Y —>Z
be a finite étale morphism, and let
viZ->X
be a morphism that has relative dimension s at all points of Z. Assume that the dimension of the

closure of Y (Z) in X is at least 2. Then for all o in a density 1 subset of | ) ngr(X, Z®n),
we have the implication

n>0

div(y*o)is irreducible = div(r*vy*0) is irreducible.

Proof. — We follow the argument of [11, Lemma 5.1]. Irreducibility is more difficult to
achieve if we replace ) by a finite cover. As a consequence, we may assume that 7 is a Galois
étale cover. Let G be the corresponding Galois group. Let m be the dimension of ¥ (Z).

If z isa closed point of Z, let |z| be the cardinality of the residue field of z and let F, denote
the conjugacy class in G associated to the Frobenius. We claim that for a density 1 set of o,
the conjugacy classes F, cover all conjugacy classes of G as z runs through the closed points
of div(y*o).

Indeed, let C be such a conjugacy class. Let U be a normal, dense affine open subset of Z.
By the Chebotarev density theorem of [31, Theorem 9.11] applied to #=1(U) — U, the
number of closed points z of U with |z] <t and F, = C is equivalent to

|C| ts+m
E (s +m)logt
ast tends to co. Let Ec; be the set of those z.

By the Lang-Weil estimates, since the fibers of i have all dimension s, the number of
points z with |z| < ¢ in a given fiber of ¢ above a closed point is bounded above by a quantity
of the form

at®,
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for some positive «, so that | (Ec,)| is bounded below by a quantity of the form
tm
ﬁl
ogt
for some positive f. Note that if x € ¥ (Ec,), then |x| < 1.
Fix ¢ large enough. Theorem 2.17 shows that the density of those o € | J,».o H (X, Z®n)
that do not vanish on any element of ¥ (Ec,) is equal to

n>0

"=

1
Myey(gey(1—|x]7h) < (1 —7HPr"/loet = eXP<_ﬁ - (1 +0(1))>’

log

which tends to zero as ¢ tends to oo since m > 2. As a consequence, the density of those o
such that ¢ *o vanishes at a closed point z with F, = C is 1, which proves the claim.

Now let 0 € U,o9 HS.(X ,Z®n) such that div(y*o) is irreducible and contains
closed points z such that the F, cover all conjugacy classes of G. Then #~'div(y*o) =
div(z*y *0) is irreducible. This proves the lemma. O

Proof of Theorem 1.4. — We follow the argument of [11, Lemma 5.2]. By Lemma 6.3, we
can replace ) by any dense open subscheme. As a consequence, we can assume that f factors
as

y_*.z V. x

where 7 is finite étale, Z is an open subset of some affine space A% and ¥ is the projection
onto X—indeed, the function field of ) is a finite separable extension of a purely transcen-
dental extension of the function field of X.

By Lemma 6.3 and Lemma 6.4, for o in a density 1 subset of | J H/gr(é\’ ,Z®n), the
implication

n>0

div(o) is irreducible = div( f*0)nori 18 irreducible

holds. By Theorem 1.6, the divisor div(o) is irreducible for ¢ in a density 1 subset of
Unso H2 (X, Z®"), which proves the result. O

Proof of Theorem 1.1. — We first assume that ) is not flat over SpecZ. Then f : Y — X
factors as

y-Ix, o x

for some prime number p. By Theorem 6.1, the density of those s € (J,~o H(X,, L®")
such that div(f,"s)noriz is irreducible is equal to 1. Applying Corollary 2.18 to L(e) proves
the theorem.

We now assume that ) is flat over SpecZ. Let )’ be the Zariski closure of f()) in X.
Then ) is a projective arithmetic variety, and the restriction of £ to )’ is ample by Corol-
lary 2.7. Furthermore, the map fy» : Y — )’ is dominant by assumption. Theorem 1.4
guarantees that the density of the set E consisting of those o € |J,-o HS. (V' f®n) such
that div( f;,a)horiz is irreducible is equal to 1. Applying Corollary 2.18 to L(g) proves the
theorem. O
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