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ARITHMETIC AMPLENESS
AND AN ARITHMETIC BERTINI THEOREM

by François CHARLES

Abstract. – Let X be a projective arithmetic variety of dimension at least 2. If L is an ample

hermitian line bundle on X , we prove that the proportion of those effective sections � of L˝n such
that the divisor of � on X is irreducible tends to 1 as n tends to1. We prove variants of this statement
for schemes mapping to such an X .

On the way to these results, we discuss some general properties of arithmetic ampleness, including
restriction theorems, and upper bounds for the number of effective sections of hermitian line bundles
on arithmetic varieties.

Résumé. – Soit X une variété arithmétique projective de dimension au moins 2, et soit L un
fibré hermitien sur X . Si L est ample, on démontre que la proportion des sections effectives de Ln qui
définissent un diviseur irréductible surX tend vers 1 quand n tend vers1. On démontre également des
variantes de ce résultat pour des schémas admettant un morphisme vers X .

On prouve par ailleurs un certain nombre de propriétés générales de l’amplitude arithmétique,
autour notamment de théorèmes de restriction et d’estimées pour le nombre de sections effectives de
fibrés en droites hermitiens.

1. Introduction

1.1. Bertini theorems over fields

Let k be an infinite field, and let X be an irreducible variety over k with dimension at
least 2. Given an embedding of X in some projective space over k, the classical Bertini
theorem [23, Theorem 3.3.1] shows, in its simplest form, that infinitely many hyperplane
sections of X are irreducible.

In the case where k is finite, the Bertini theorem can fail, since the finitely many hyperplane
sections of X can all be reducible. As was first explained in [26] in the setting of smoothness
theorems, this phenomenon can be dealt with by replacing hyperplane sections with ample
hypersurfaces of higher degree. We can state the main result of [11]—see Theorem 1.6 in [11]
and the discussion in the proof of Theorem 6.1 below—as follows: let k be a finite field, let
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1542 F. CHARLES

X be a projective variety over k and letL be an ample line bundle onX . Let Y be an integral
scheme of finite type over k together with a morphism f W Y ! X . Assume that the image
of f has dimension at least 2. If Z is a subscheme of Y , write Zhoriz for the union of those
irreducible components of Z that do not map to a closed point of X . Then the set

P D
n
� 2

[
n>0

H 0.X;L˝n/; div.f ��/horiz is irreducible
o

has density 1, in the sense that

lim
n!1

jP \H 0.X;L˝n/j

jH 0.X;L˝n/j
D 1:

Here if S is a set, we denote by jS j its cardinality. When Y is a subscheme of X , we can
disregard the horizontality subscript.

1.2. The arithmetic case

In this paper, we deal with an arithmetic version of Bertini theorems as above. Let
X be an arithmetic variety, that is, an integral scheme which is separated, flat of finite type
over SpecZ. Assume thatX is projective, and letL be a relatively ample line bundle onX . As
is well known, sections of L over X are not the analogue of global sections of a line bundle
over a projective variety over a field. Indeed, it is more natural to consider a hermitian line
bundle L with underlying line bundle L and consider the sets

H 0
Ar.X ;L

˝n
/

of sections with norm at most 1 everywhere. We discuss ampleness for hermitian line bundles
in Section 2, which we refer to for definitions.

Given finite sets .Xn/n>0, and a subset P of
S
n>0Xn, say that P has density � if the

following equality holds:

lim
n!1

jP \Xnj
jXnj

D �:

The main result of this paper is the following arithmetic Bertini theorem. Again, given
a morphism of schemes f W Y ! X , and if Z is a subscheme of Y , we denote by Zhoriz

the union of those irreducible components of Z that do not map to a closed point of X .
If M D .M; jj:jj/ is a hermitian vector bundle and ı is a real number, write M.ı/ for
the hermitian vector bundle .M; e�ı jj:jj/. Write jj� jj1 for the sup norm of a section of a
hermitian vector bundle.

Theorem 1.1. – Let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X . Let Y be an integral scheme of finite type over SpecZ together with a
morphism f W Y ! X which is generically smooth over its image. Assume that the image
of Y has dimension at least 2. Let " be a positive real number. Then the setn

� 2
[
n>0

H 0
Ar.X ;L."/

˝n/; jj� jf .Y.C//jj1 � 1 and div.f ��/horiz is irreducible
o

has density 1 in
˚
� 2

S
n>0H

0
Ar.X ;L."/˝n/; jj� jf .Y.C//jj1 � 1

	
:
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ARITHMETIC AMPLENESS AND AN ARITHMETIC BERTINI THEOREM 1543

Recall that by definition, the condition � 2 H 0
Ar.X ;L."/˝n/ means

jj� jj1 � "
n:

Remark 1.2. – A Weil divisor is said to be irreducible if it comes from an integral
codimension 1 subscheme.

Remark 1.3. – The hypothesis that f is generically smooth over its image is necessary:
when f is the Frobenius morphism of a fiber Xp, all div.f ��/ have components with
multiplicities divisible by p. Of course, it holds when Y is flat over SpecZ. Without this
hypothesis on f , the conclusion is only that the support of div.f ��/ is irreducible for a
density 1 set of � .

An important special case of the theorem deals with the special case where f is dominant.
In this case, generic smoothness is automatic.

Theorem 1.4. – Let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X . Let Y be an integral scheme of finite type over SpecZ together with a
morphism f W Y ! X . Assume that the image ofY has dimension at least 2 and f is dominant.
Then the set n

� 2
[
n>0

H 0
Ar.X ;L

˝n
/; div.f ��/horiz is irreducible

o
has density 1 in

S
n>0H

0
Ar.X ;L

˝n
/.

Remark 1.5. – We will prove Theorem 1.1 as a consequence of Theorem 1.4. However,
the latter is a special case of the former. Indeed, with the notation of Theorem 1.1, when f is
dominant, if � 2 H 0

Ar.X ;L."/˝n, then the condition

jj� jf .Y.C//jj1 � 1

is equivalent to

jj� jj1 � 1;

i.e., � 2 H 0
Ar.X ;L

˝n
/.

The case where Y D X is particularly significant. We state it independently below. Most
of this paper will be devoted to its proof, and we will prove 1.1 and 1.4 as consequences.

Theorem 1.6. – Let X be a projective arithmetic variety of dimension at least 2, and let
L be an ample hermitian line bundle on X . Then the setn

� 2
[
n>0

H 0
Ar.X ;L

˝n
/; div.�/ is irreducible

o
has density 1 in

S
n>0H

0
Ar.X ;L

˝n
/.
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1544 F. CHARLES

Theorem 1.6 is stronger than the Bertini irreducibility theorem of [11, Theorem 1.1], as
we explain in Section 3. Note however that we use the results of [11] in our proofs.

In Theorem 1.6, the case where X has dimension at least 3—that is, relative dimension at
least 2 over SpecZ—is easier. Indeed, if p is a large enough prime number, we can apply the
Bertini irreducibility theorems over finite fields to the reduction of X modulo p, which with
moderate work is enough to prove the theorem. However, when X is an arithmetic surface,
Theorem 1.6 is genuinely different from its finite field counterpart. Note that the hardest case
of the main result of [11] is the surface case as well.

Theorem 1.1 should be compared to the Hilbert irreducibility theorem, which implies,
if L is very ample on the generic fiber of X and Y is flat over Z, the existence of many
sections � of L such that the generic fiber of div(f ��/ is irreducible. However, the Hilbert
irreducibility theorem does not guarantee that these sections have small norm. To our
knowledge, Theorem 1.1 does not imply the Hilbert irreducibility theorem, nor does it
follow from it.

1.3. Previous results and applications

Arithmetic Bertini theorems, in the setting of both general arithmetic geometry and
Arakelov geometry, have appeared in the literature. In [26], Poonen is able to prove a Bertini
regularity theorem for ample line bundles on regular quasi-projective schemes over SpecZ
under the abc conjecture and technical assumptions. The statement does not involve hermi-
tian metrics but still involves a form of density.

In [24], Moriwaki proves a Bertini theorem showing the existence of at least one effective
section of large powers of an arithmetically ample line bundle that defines a generically
smooth divisor—this was reproved and generalized in [19]. As a byproduct of our discussion
of arithmetic ampleness in Section 2 and Poonen’s result over finite fields, we will give a short
proof of a more precise version of this result.

Theorem 1.7. – LetX be a projective arithmetic variety with smooth generic fiber, and let
L be an ample hermitian line bundle on X . Then the setn

� 2
[
n>0

H 0
Ar.X ;L

˝n
/; div.�/Q is smooth

o
has density 1 in

S
n>0H

0
Ar.X ;L

˝n
/.

Of course, this result can be combined with Theorem 1.6 if X has dimension at least 2.

Weaker Bertini theorems over rings of integers in number fields have been used in higher
class-field theory, under the form of the Bloch-Raskind-Kerz approximation lemma proved
in [5, 28, 35, 21]—see [33, Lemme 5.2] for a discussion. These results can be obtained easily
as a special case of our Corollary 3.6 (or its variant corresponding to Theorem 1.1 for
Wiesend’s version)—this corollary allows us furthermore to control the cohomology class
of the irreducible subvarieties involved.

An arithmetic Bertini theorem has been proved by Autissier in [2, 3]. Counts of irreducible
divisors on arithmetic varieties have been provided by many authors, starting with Faltings
in [14].
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ARITHMETIC AMPLENESS AND AN ARITHMETIC BERTINI THEOREM 1545

Our Bertini theorem is expected to be used in its precise form in upcoming work of
Hrushovski on the model theory of number fields. We hope to discuss its applications to both
general Arakelov geometry and number-theoretic problems in future work.

1.4. Strategy of the proofs

The starting point of our proof is that, as in [11], the Bertini irreducibility theorem is
susceptible to a counting approach: to show that most divisors are irreducible, simply bound
the number of the reducible ones.

To carry on this approach, we need to translate in Arakelov geometry results from classical
geometry. The two key results in that respect are the study of restriction maps for powers
of ample hermitian line bundles we prove in 2.3 and bounds for sections of hermitian line
bundles on surfaces in 4.2. We hope that these results have independent interest.

Even with these tools at our disposal, we are not able to adapt the methods of [11], for
two reasons. First, the error terms in the various estimates we deal with (including arithmetic
Hilbert-Samuel) are big enough that we need a more involved sieving technique than in
[11] involving the analysis of simultaneous restriction of sections modulo infinite families
of subschemes. Second, given a section of a hermitian line bundle with reducible divisor on
a regular arithmetic surface, we need to construct a corresponding decomposition of the
hermitian line bundle, which involves constructing suitable metrics. The relevant analysis is
dealt with in 4.1 and can only be applied when suitable geometric bounds hold. To get a hold
of the geometry, we need a careful analysis dealing with infinite families of curves over finite
fields—coming from the reduction of our given arithmetic surface modulo many primes. This
is the content of 5.2.

1.5. Notation and definitions

If S is a set, we denote by jS j the cardinal of S .
If X is a scheme of finite type over SpecZ, we denote by X an the associated complex

analytic space.
By an arithmetic variety, we mean an integral scheme which is flat of finite type

over SpecZ. A projective arithmetic variety of dimension 2 is an arithmetic surface. If
X is a scheme over SpecZ and if p is a prime number, we will denote by Xp the reduction
of X modulo p. If f W X ! Y is a morphism of noetherian schemes, we say that an
irreducible component of X is vertical if its image is a closed point of Y , and horizontal if
not. We denote by Xhoriz the union of the horizontal components of X .

Let X be a complex analytic space. A hermitian vector bundle M D .M; jj:jj/ is a pair
consisting of a vector bundle M on X and a hermitian metric on the restriction of M to the
reduced subspace Xred. We require furthermore for the metric to be smooth, i.e., if X is of
pure dimension d , given any holomorphic map from the unit diskDd in Cd toX , the metric
pulled-back from X to Dd is smooth.

Let X be a scheme of finite type over SpecZ. A hermitian vector bundle M on X is a
pair M D .M; jj:jj/ where M is a vector bundle on X and jj:jj is a smooth metric on
the restriction of M to the complex space X .C/. If M is a hermitian vector bundle over a
scheme X of finite type over Z, we will denote byM the underlying vector bundle. Note that
if the generic fiberXQ is empty, i.e., ifX is vertical, a hermitian vector bundle onX is nothing
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1546 F. CHARLES

but a vector bundle. If M D .M; jj:jj/ is a hermitian vector bundle and ı is a real number,
write M.ı/ for the hermitian vector bundle .M; e�ı jj:jj/.

Let M be a hermitian vector bundle on a proper scheme X over Z. If � is a section of M
on X , we will often denote by jj� jj1 the sup norm of � , that is, � is the supremum of the
jj�.x/jj as x runs through all complex points of x. We will call jj� jj1 the norm of � .

If jj� jj1 � 1 (resp. jj� jj1 < 1), we say that � is effective (resp. strictly effective). We denote
by H 0

Ar.X ;M/ the set of effective sections of L, and write

h0Ar.X ;M/ D log jH 0
Ar.X ;M/j:

If XQ is generically reduced, then H 0
Ar.X ;M/ is finite. Note again that if XQ is empty, then

H 0
Ar.X ;M/ D H 0.X ;M/:

We say that a hermitian line bundle on X is effective if it has a regular effective section.

1.6. Outline of the paper

Section 2 is devoted to a general discussion of arithmetic ampleness. After setting defini-
tions, we recall aspects of the arithmetic Hilbert-Samuel theorem, taking care of error terms.
We then prove a number of results concerning the image of restriction maps for sections of
large powers of ample hermitian line bundles.

In the short Section 3, we make use of the previous section to discuss consequences and
variants of the main theorems. We prove Theorem 1.7.

In Section 4, we gather general results—both analytic and arithmetic—dealing with
hermitian line bundles on Riemann surfaces and arithmetic surfaces. We prove norm esti-
mates in the spirit of [10], and we prove a basic upper bound on the number of effective
sections for positive line bundles—in some sense—on arithmetic surfaces, making use of the
� -invariants of Bost, as well as a result on the effective cone of arithmetic surfaces.

Section 5 is devoted to the proof of Theorem 1.6, and Section 6 to the remaining theorems
of the introduction.
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2. Some results on arithmetic ampleness

In this section, we gather some results on ample hermitian line bundles on arithmetic vari-
eties. Most results are well-known and can be found in a similar form in the literature. Aside
from a precise statement regarding error terms in the arithmetic Hilbert-Samuel theorem,
our main original contribution consists in the results of 2.3 that deals with restriction maps
for sections of ample line bundles.

2.1. Definitions and basic properties

We recall basic properties of arithmetic ampleness as used in the work of Zhang [39].

Definition 2.1. – LetX be a complex analytic space, and letL D .L; jj:jj/ be a hermitian
line bundle onX . We say thatL is semipositive if for any open subsetU ofX , and any section s
of L on U , the function � log jjsjj2 is plurisubharmonic on U .

Remark 2.2. – Since for any holomorphic function f , the function � log jf j2 is
harmonic, it is readily checked that L is semipositive if X admits a covering by open
subsets U such that there exists a nowhere vanishing section s of L on U such that the func-
tion � log jjsjj2 is plurisubharmonic on U . In particular, semipositivity is a local property
on X .

Definition 2.3. – Let X be a projective arithmetic variety, and let L be a hermitian line
bundle on X . We say that L is ample if L is ample, L is semipositive on X an and for any large
enough integer n, there exists a basis of H 0.X ;L˝n/ consisting of strictly effective sections.

Proposition 2.4. – Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X . Let M D .M; jj:jj/ be a hermitian vector bundle on X , and let
F be a coherent subsheaf of M. Then there exists a positive real number " such that for any
large enough integer n, there exists a basis ofH 0.X ;L˝n˝F/ � H 0.X ;L˝n˝M/ consisting
of sections with norm at most e�n".

Proof. – Since L is relatively ample, for any large enough integers a and b, the morphism

H 0.X ;L˝a/˝H 0.X ;L˝b ˝ F/! H 0.X ;L˝aCb ˝ F/

is surjective. As a consequence, for any two large enough integers a and b, and any positive
integer n, the morphism

H 0.X ;L˝a/˝n ˝H 0.X ;L˝b ˝ F/! H 0.X ;L˝anCb ˝ F/

is surjective.
Choose a large enough so that the space H 0.X ;L˝a/ has a basis consisting of sections

with norm at most ˛ for some ˛ < 1. Choose b1; : : : ; ba large enough integers that form a
complete residue system modulo l . We can assume that the maps

H 0.X ;L˝a/˝n ˝H 0.X ;L˝bi ˝ F/! H 0.X ;L˝anCbi ˝ F/

are surjective for all positive integer n and all i between 1 and a. Now choose bases for the
spaces H 0.X ;L˝bi ˝ F/ as i varies between 1 and a, and let ˇ be an upper bound for the
norm of any element of these bases. Taking products of elements of these bases, we find a
subspace of full rank in H 0.X ;L˝anCbi ˝F/ which has a basis whose elements have norm
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at most ˛nˇ. By [38, Lemma 1.7], this implies that H 0.X ;L˝anCbi ˝ F/ has a basis whose
elements have norm at most r˛nˇ, where r is the rank of H 0.X ;L˝anCbi ˝ F/.

The theory of Hilbert polynomials shows that the rank of H 0.X ;LanCbi / is bounded
above by a polynomial in an C bi . Since ˛ < 1, the number r˛nˇ decreases exponentially
as anCbi grows, which shows the result since any integer can be written as anCbi for some i
and n.

Corollary 2.5. – Let X be a projective arithmetic variety. Let L be an ample hermitian
line bundle onX and letM be a hermitian line bundle onX . Then for any large enough integer n,
the hermitian line bundle L˝n ˝M is ample if and only if it is semipositive.

Proof. – Since L is relatively ample, for any large enough integer n, the line bundle
L˝n ˝M is relatively ample and the morphisms

H 0.X ;L˝n ˝M/˝m ! H 0.X ; .L˝n ˝M/˝m/

are surjective for any positive integer m.

For large enough n, Proposition 2.4 guarantees that there is a basis forH 0.X ;L˝n˝M/

consisting of sections with norm at most e�n" for some positive number ". As a conse-
quence, we can find a subspace of full rank in H 0.X ; .L˝n ˝ M/˝m/ with a basis
consisting of sections with norm at most e�mn". By [38, Lemma 7.1], this implies that
H 0.X ; .L˝n ˝M/˝m/ itself has a basis whose elements have norm at most re�mn", where
r is the rank of H 0.X ; .L˝n ˝M/˝m/. Since again r is bounded above by a polynomial
in mn, this shows the result.

Corollary 2.6. – Let f W Y ! X be a morphism of projective arithmetic varieties, and
let L be an ample hermitian line bundle on X . Then there exists a positive real number " such
that for any large enough integer n, there exists a basis ofH 0.Y; f �L˝n/ consisting of sections
with norm bounded above by e�n".

Proof. – By the projection formula, for any integer k, we have a canonical isomorphism

H 0.Y; f �L˝k/ ' H 0.X ;L˝k ˝ f�OY/:

Since L is relatively ample, for any two large enough integers n and k, the map

H 0.X ;L˝n/˝H 0.X ;L˝k ˝ f�OY/! H 0.X ;L˝.nCk/ ˝ f�OY/

is surjective, which means that the natural map

H 0.X ;L˝n/˝H 0.Y; f �L˝k/! H 0.Y; f �L˝.nCk//

is surjective.

Fix a large enough integer k for the previous assumption to hold. By Proposition 2.4, the
spaceH 0.X ;L˝n/ admits a basis consisting of elements with norm decreasing exponentially
with n, which shows that the same property holds for H 0.Y; f �L˝.nCk//.

Corollary 2.7. – Let f be a finite morphism between projective arithmetic varieties. The
pullback of an ample hermitian line bundle by f is ample.
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Proof. – By the previous results, we only have to show that if f W X ! Y is a finite map
between complex projective varieties, and if L is a semipositive hermitian line bundle on Y ,
then f �L is semipositive.

LetU be an open subset of Y on whichL is trivial, and let s be a nowhere vanishing section
of L on U . Then f �s is a nowhere vanishing section of f �L on f �1.U /, and the function

� log jjf �sjj2 D .� log jjsjj2/ ı f

is plurisubharmonic on f �1.U /, being the composition of a holomorphic function and a
plurisubharmonic function. Remark 2.2 shows that f �L is semipositive.

Let n be a positive integer, and consider the complex projective space CPn. The line
bundleO.1/ on CPn is endowed with the Fubini-Study metric jj:jj defined as follows. Let x be
a point of CPn with homogeneous coordinates Œx0 W � � � W xn�. The fiber of O.1/ at x may be
identified with linear forms C.x0; : : : ; x1/! C: Endow the line C.x0; : : : ; x1/with the norm
induced by the standard hermitian norm on CnC1. Then the Fubini-Study metric on O.1/ is
the one that corresponds to the operator norm on linear forms.

The following is the basic example of an ample hermitian line bundle.

Proposition 2.8. – Let n be a positive integer, and let O.1/ be the hermitian line bundle
on PnZ corresponding to the line bundle O.1/ endowed with the Fubini-Study metric. Then for
any " > 0, the hermitian line bundle O.1/."/ is ample on PnZ.

Proof. – The line bundle O.1/ is ample on PnZ, and the Fubini-Study metric is known to
have positive curvature.

Let Xd00 � � �X
dn
n be a monomial of total degree d > 0, seen as a section of O.d/. With

respect to the Fubini-Study metric, if x is a point of CPn with homogeneous coordinates
Œx0 W � � � W xn�, we have

jjX
d0
0 � � �X

dn
n .x/jj D

jx
d0
0 � � � x

dn
n j

.jx0j2 C � � � C jxnj2/d=2
� 1:

This shows thatH 0.PnZ;O.d// has a basis consisting of sections of norm bounded above by 1,
and proves the result.

The following follows immediately from Proposition 2.8 and Corollary 2.7.

Corollary 2.9. – Let X be an arithmetic variety, and let L be a relatively ample line
bundle on X . Then there exists a metric jj:jj on LC, invariant under complex conjugation, such
that the hermitian line bundle .L; jj:jj/ is ample.

Proof. – Some positive power L˝n of L is the pullback of the line bundle O.1/ on some
projective space. By Proposition 2.8 and Corollary 2.7, the pullback of the Fubini-Study
metric, scaled by e�" for some " > 0, to L˝n gives L˝n the structure of an ample hermitian
line bundle.

Endow L with the hermitian metric jj:jj whose n-th power is the metric above. We get a
hermitian line bundle L D .L; jj:jj/ such that L˝n is ample. This implies that L is ample.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1550 F. CHARLES

2.2. Arithmetic Hilbert-Samuel

We turn to the arithmetic Hilbert-Samuel theorem, giving an estimate for h0Ar.X ;L
˝n
/,

where L is ample and n is large. This has been proved by Gillet-Soulé in [17, Theorem 8 and
Theorem 9] and extended by [39, Theorem (1.4)], see also [1] and [6]. In later arguments, we
will need an estimate for the error term in the arithmetic Hilbert-Samuel theorem. In the case
where the generic fiber of X is smooth, such an estimate follows from the work of Gillet-
Soulé and Bismut-Vasserot. The general case does not seem to be worked out. However, for
arithmetic surfaces, an argument of Vojta gives us enough information for our later needs.

We start with a proposition relating the Hilbert-Samuel function of a hermitian line
bundle and its pullback under a birational morphism.

Proposition 2.10. – Let f W Y ! X be a birational morphism of projective arithmetic
varieties, and letL be an ample hermitian line bundle onX . Then there exists a positive integer k
and a positive real number C such that for any integer n and any hermitian vector bundle M
on X , the following equality holds:

h0Ar.X ;L
˝n
˝M/ � h0Ar.Y; f

�.L˝n ˝M// � h0Ar.X ;L
˝.nCk/

˝M.C //:

Proof. – Pullback of sections induces an injective map

f � W H 0
Ar.X ;L

˝n
˝M/! H 0

Ar.Y; f
�.L˝n ˝M//;

which proves the first inequality.
The coherent sheaf H≀⇕.f�OY ;OX / is non-zero. As a consequence, there exists a positive

integer k such that the sheaf

H≀⇕.f�OY ;OX /˝ L˝k D H≀⇕.f�OY ;L˝k/

has a nonzero global section �. Since f is birational, the morphism

� W f�OY ! L˝k

is injective. IfU is an open subset of the compact complex manifoldX .C/ and n is an integer,
we endow the spaces

H 0.U;L˝n ˝M˝ f�OY/ D H 0.f �1.U /; f �L˝n ˝M/

and
H 0.U;L˝.nCk/ ˝M/

with the sup norm—which might take the value1. Since X .C/ is compact, we can find a
constant C such that the maps

�U W H
0.U; f�OY/! H0.U;L˝k/

all have norm bounded above by eC . As a consequence, all the maps

Id˝ �U W H 0.U;L˝n ˝M˝ f�OY/! H 0.U;L˝.nCk/ ˝M/

have norm bounded above by eC as well, and the induced map

H 0.Y; f �.L˝n ˝M//! H 0.X ;L˝.nCk/ ˝M/

has norm bounded above by eC . Since this map is injective, we have an injection

H 0
Ar.Y; f

�.L˝n ˝M//! H 0
Ar.X ;L

˝.nCk/
˝M.C //;
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which shows the second inequality.

We may now state some forms of the arithmetic-Hilbert-Samuel theorem. For the
purposes of this paper, the key statement is (iii). We will need the more precise estimate on
the error term it provides compared to (i).

Theorem 2.11. – LetX be a projective arithmetic variety of dimensiond , letL be an ample
hermitian line bundle on X , and let M be a hermitian vector bundle of rank r .

(i) As n tends to1, we have

h0Ar.X ;L
˝n
˝M/ D

r

d Š
Ldnd C o.nd /I

(ii) if XQ is smooth and the curvature form of L is positive, then

h0Ar.X ;L
˝n
˝M/ D

r

d Š
Ldnd CO.nd�1 logn/

as n tends to1;

(iii) if d D 2, then

h0Ar.X ;L
˝n
˝M/ �

r

2
L2n2 CO.n logn/

as n tends to1.

Proof. – The first statement can be found in [36, Corollary 2.7(1)]. It is a consequence of
the extension by Zhang in [39, Theorem (1.4)] of the arithmetic Hilbert-Samuel theorem of
Gillet-Soulé of [17, Theorem 8], together with [16, Theorem 1].

Let us prove the second statement. Choose a Kähler metric on X .C/, assumed to be
invariant under complex conjugation, and write �L2.L

˝n
˝M/ (resp. �sup.L

˝n
˝M/) for

the logarithm of the covolume ofH 0.X ;L˝n˝M/ for the associatedL2 norm (resp. for the
sup norm). Then by [17, Theorem 8], we have

�L2.L
˝n
˝M/ D

r

d Š
Ldnd CO.nd�1 logn/:

By the Gromov inequality as in for instance [36, Corollary 2.7(2)], this implies

�sup.L
˝n
˝M/ D

r

d Š
Ldnd CO.nd�1 logn/:

Consider the latticeƒ D H 0.X ;L˝n˝M/, endowed with the sup norm. Then sinceƒ is
generated by elements of norm strictly smaller than 1, the dual of ƒ does not contain any
nonzero element of norm smaller than 1. Furthermore, the geometric version of the Hilbert-
Samuel theorem shows that the rank of ƒ has the form O.nd�1/. By [16, Theorem 1], we
get ˇ̌

h0Ar.X ;L
˝n
˝M/ � �sup.L

˝n
˝M/

ˇ̌
D O.nd�1 logn/;

which proves the desired result.

We now prove the last statement. Let f W Y ! X be the normalization of X , so that f is
birational, finite, and Y has smooth generic fiber.

Since f is finite, the line bundle f �L is ample. Let L0 be f �L andM0
be f �M. Choose a

Kähler metric onY.C/, assumed to be invariant under complex conjugation, and again write
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�L2.L
0˝n
˝M0

/ for the logarithm of the covolume ofH 0.Y;L0˝n˝M0/ for the associated
L2 norm.

By Proposition 2.10, we can find a constant C and an integer k such that for any integer n
greater or equal to k, we have

(2.1) h0Ar.X ;L
˝n
˝M/ � h0Ar

�
Y;L0˝n�k ˝M0

.�C/
�
:

Applying the arithmetic Riemann-Roch theorem for n large enough so that the higher
cohomology groups of L0˝n ˝M0 vanish, we get the following equality:

�L2
�
L0˝n ˝M0

.�C/
�
�
1

2
Tn D

r

2
L2n2 CO.n/;

where by Tn we denote the analytic torsion of the hermitian vector bundle L0˝n ˝M0
. The

equality above is proved via the computations of [17, Theorem 8], or [15, Théorème 1]. In
contrast with the usual setting of Hilbert-Samuel, note that the curvature form of L0 might
not be positive everywhere, so that we cannot apply the estimates of [4] for Tn. However, since
the dimension of X is 2, we have

Tn D �
0
1;n.0/;

where �1 is the zeta function of the Laplace operator acting on forms of type .0; 1/with values
inL0˝n˝M0

.�C/. We can use an estimate of Vojta to control the analytic torsion Tn. Indeed,
by [34, Proposition 2.7.6], we have

�01;n.0/ � �Kn logn

for some constant K, so that

(2.2) �L2
�
L0˝n ˝M0

.�C/
�
D
r

2
L2n2 C

1

2
Tn CO.n/ �

r

2
L2n2 CO.n logn/:

Combining as above Gromov’s inequality, [16, Theorem 1], Corollary 2.6 and the
geometric version of Hilbert-Samuel, we can writeˇ̌

h0Ar

�
Y;L0˝n ˝M0

.�C/
�
� �L2

�
L0˝n ˝M0

.�C/
�ˇ̌
D O.n logn/;

which together with (2.2) gives the estimate

h0Ar

�
Y;L0˝n ˝M0

.�C/
�
�
r

2
L2n2 CO.n logn/:

From (2.1), we finally obtain

h0Ar.X ;L
˝n
˝M/ �

r

2
L2.n � k/2 CO.n logn/ �

r

2
L2n2 CO.n logn/:

2.3. Restriction of sections

Let k be a field, and let X be a projective variety over k. Let L be an ample line bundle
on X . If Y is any closed subscheme of X , consider the restriction maps

�n W H
0.X;L˝n/! H 0.Y;Lj˝nY /:

The map �n is surjective if n is large enough and, obviously, there are bijections between the
different fibers of �n when it is surjective.

In this section, we give arithmetic analogues of these results, looking at H 0
Ar instead

of H 0—this is Theorem 2.17. Furthermore, we show in Theorem 2.21 that the lower bound
on the dimension of the image of the restriction map can be given to be independent of Y .
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In the following, let X be a projective arithmetic variety, and let L be an ample hermitian
line bundle on X . If n is an integer, we denote by ƒn the space H 0.X ;L˝n/ endowed with
the sup norm, and we write rn for its rank. If R is a nonnegative real number, let Bn.R/ be
the closed ball of radius R in ƒn. In particular, we have

Bn.1/ D H
0.X ;L˝n/:

Let Bn.R/R be the closed ball of radius R in ƒn ˝ R. Let Vol denote the volume with
respect to the unique translation-invariant measure on ƒn ˝ R for which Vol.Bn.1/R/ D 1.

If I is a quasi-coherent sheaf of ideals on X , we write ƒIn for the subgroup H 0.X ;L˝n ˝ I/
of H 0.X ;L˝n/, endowed with the induced norm. We write rIn , Bn.R/I , Bn.R/IR, VolI for
the corresponding objects.

We gather a few results regarding point counting in the latticesƒIn . The following is a basic
estimate.

Lemma 2.12. – Let � be a positive real number. Let C be any real number. Then, as n goes
to infinity, we have, for any positive R,

VolI
�
Bn.RC Ce

�n�/IR
�
D Rr

I
n
�
1C CR�1rIn e

�n�
C o.R�1rIn e

�n�/
�
;

where the implied constant in o depends only on C .

Proof. – We write

VolI
�
Bn.RC Ce

�n�/IR
�
D .RC Ce�n�/r

I
n

D Rr
I
n exp

�
rIn log.1C CR�1e�n�/

�
D Rr

I
n exp

�
CR�1rIn e

�n�
C o.R�1rIn e

�n�/
�

D Rr
I
n
�
1C CR�1rIn e

�n�
C o.R�1rIn e

�n�/
�
:

Fix I as above. Let n be a large enough integer. By Proposition 2.4, we can find a positive
number "I , independent of n, and a basis �1; : : : ; �rIn ofƒIn such that jj�i jj1 � e�n"

I
for all

i 2 f1; : : : ; rIn g. Consider the fundamental domain

(2.3) DIn D
n rInX
iD1

�i�i j8i 2 f1; : : : ; ng; 0 � �i < 1
o
:

Proposition 2.13. – Let ˛ be a positive number with 0 < ˛ < 1. As n tends to1, we
have, for any R > e�n

˛
,

jBn.R/
I
jVolI.DIn / � R

rIn :

Proof. – Let n be a large enough integer. As � runs through the elements of ƒIn , the
sets � C DIn are pairwise disjoint and cover ƒIn ˝ R. Furthermore, the diameter of DIn is
bounded above by rIn e

�n"I . As a consequence, if � is any element of ƒIn , then

� CDIn � Bn.jj� jj1 C r
I
n e
�n"I /IR

and
.� CDIn / \ Bn.jj� jj1 � r

I
n e
�n"I /IR D ;:
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As a consequence, we have

VolI
�
Bn.R � r

I
n e
�n"I /IR

�
� jBn.r/

I
jVolI.DIn / � VolI

�
Bn.RC r

I
n e
�n"I /IR

�
:

By Riemann-Roch, the rank rIn grows at most polynomially in n. As a consequence,
R�1rIn e

�n�I goes to 0 as n goes to infinity, and Lemma 2.12 shows that both the left
and right terms are equivalent to Rr

I
n as n goes to infinity.

Proposition 2.14. – Let ˛ and � be positive real numbers with 0 < ˛ < 1. Let C be any
real number. Then, as n tends to1, there exists a positive real number �0 such that we have, for
any positive R > e�n

˛
, ˇ̌
jBn.RC Ce

�n�/I j � jBn.R/
I j
ˇ̌

jBn.R/I j
D O.e�n�

0

/;

where the implied constants depend on ˛; C and �.

Proof. – We assume that C is positive. The case where C is negative (or zero) can be
treated by the same computations.

Let �0 be a positive number strictly smaller than both "I and �. Since the � C DIn are
pairwise disjoint as � runs through the elements of ƒIn , we get, for large enough n�
jBn.RC Ce

�n�/I j � jBn.R/
I
j
�
VolI.DIn /

� VolI.Bn.RC Ce�n� C rIn e
�n"I /IR/ � VolI.Bn.R � rIn e

�n"I /IR/

� VolI.Bn.RC e�n�
0

/IR/ � VolI.Bn.R � e�n�
0

/IR/

� 2Rr
I
n�1rIn e

�n�0 ;

where in the last line we applied Lemma 2.12, using that R�1rIn e
�n�0 tends to 0 as n tends

to1.
Putting the previous estimate together with Proposition 2.13 and replacing �0 with a

smaller positive number, we get the desired result.

The following is a first step in controlling restriction maps.

Proposition 2.15. – Let ˛ be a positive number with 0 < ˛ < 1. There exists a positive
constant � such that for any large enough integer n, if N is any positive integer with N < en

˛
,

then the following statements hold:

(i) the map �n;N W H 0
Ar.X ;L

˝n
/! ƒn=Nƒn is surjective;

(ii) for any two s; s0in ƒn=Nƒn, we haveˇ̌
j��1n;N .s/j � j�

�1
n;N .s

0/j
ˇ̌

j��1n;N .s/j
� e�n�:

Proof. – Let rn be the rank of ƒn. Let n be a positive integer, which will be chosen large
enough, and let N be an integer bounded above by en

˛
.

By Proposition 2.4, we can find a positive number ", independent of n, and a basis
�1; : : : ; �rn ofƒn such that jj�i jj1 � e�n" for all i 2 f1; : : : ; rng. Any element ofƒn=Nƒn is
the image of an element of ƒn of the form

� D �1�1 C � � � C �rn�rn ;
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where the �i are integers between 0 and N � 1. We have

jj� jj1 < Nrne
�n"
� rne

n˛�n":

We know that rn is a polynomial in n for large enough n and ˛ < 1 by assumption, so
that any � as above is strictly effective for large enough n. This shows that the map �n;N is
surjective and proves (i).

We now proceed to the proof of (ii). Let n be a large enough integer. By the discussion
above, we can find a positive real number "0 such that for any large enough integer n, and
any s in ƒn=Nƒn, there exists an element �0 in ƒn with jj�0jj1 � e�n"

0

that restricts to s.
We have

��1n;N .s/ D f�0 CN� j � 2 ƒn; jj�0 CN� jj1 � 1g;

so that, up to replacing "0 by a smaller positive number

jBn.1=N � e
�n"0/j � j��1n;N .s/j � jBn.1=N C e

�n"0/j

and

(2.4)
ˇ̌
j��1n;N .s/j � j�

�1
n;N .s

0/j
ˇ̌
� jBn.1=N C e

�n"0/j � jBn.1=N � e
�n"0/j

for any two s; s0 in ƒn=Nƒn. We conclude by applying Proposition 2.14.

We need a variant of a theorem of Bost.

Proposition 2.16. – Let X be a reduced complex analytic space, Y a closed reduced
subspace ofX ,L an ample line bundle onX and jj:jj a semipositive smooth metric onL. Then for
any " > 0, any large enough integer n, and any s 2 H 0.Y; Lj

˝n

Y
/, we can find � 2 H 0.X;L˝n/

such that � jY D s and

jj� jj1 � e
"n
jjsjj1:

Proof. – If the metric jj:jj is positive, then this is the content of [8, Theorem A.1] (1). Since
L is ample, it admits a positive hermitian metric, so that we can find a smooth function
� W X ! R such that jj:jje�� is positive. Since jj:jj is semipositive, the metric jj:jje�ı� is
positive for any ı > 0.

Let " be a positive real number, and choose ı > 0 such that

8x 2 X; jı�.x/j � ":

Apply [8, Theorem A.1] to the line bundle L with the positive metric jj:jje�ı� : if n is large
enough, and s 2 H 0.Y; L˝n/, we can find � 2 H 0.X;L˝n/ such that � jY D s and

jj� jj1 � e
3"n
jjsjj1:

This shows the result.

The following is a key property of ample line bundles.

(1) The only assumption necessary in [8] is that YC and XC are reduced, see [27] for a statement that makes this
explicit.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1556 F. CHARLES

Theorem 2.17. – LetX be a projective arithmetic variety, and letL be an ample line bundle
on X . Let Y be a closed subscheme of X , such that YQ is reduced. If n is a positive integer, let

�n W H
0.X ;L˝n/! H 0.Y;Lj˝nY /

be the restriction map. For any positive ", define

ƒ"n D H
0
Ar.X ;L

˝n
/ \ ��1n

�
H 0

Ar.Y;L.�"/j
˝n

Y /
�
;

that is,ƒ"n is the space of effective sections � ofL˝n such that the restriction of � toY has norm
at most e�n". Write  n WD .�n/jƒ"n

: Then the following statements hold:

(i) for any large enough integer n, the restriction map

 n W ƒ
"
n ! H 0

Ar

�
Y;L.�"/j˝nY

�
is surjective;

(ii) there exists a positive constant � such that for any large enough integer n, and any two
s; s0 in H 0

Ar

�
Y;L.�"/j˝nY

�
, we haveˇ̌
j��1n .s/j � j��1n .s0/j

ˇ̌
j��1n .s/j

� e�n�I

(iii) � being chosen as above, for any s 2 H 0
Ar.Y;L.�"/j˝nY /, we haveˇ̌̌

��1n .s/ �
jƒ"nj

jH 0
Ar

�
Y;L.�"/˝n

�
j

ˇ̌̌
� e�n�j��1n .s/j:

Proof. – Fix " > 0. The group

f� 2 H 0
Ar.Y;L.�"/j

˝n

Y
/; jj�Cjj D 0g

is the torsion subgroup of H 0
Ar.Y;L.�"/j˝nY /, which we denote by H 0

Ar.Y;Lj˝nY /tor—note
that this group does not depend on " nor the hermitian metric. This is a finite group. Let
N be a positive integer with

NH 0
Ar.Y;Lj

˝n

Y
/tor D 0:

Assume n is large enough. The restriction map

�n W ƒn D H
0.X ;L˝n/! H 0.Y;Lj˝nY /

is surjective since L is relatively ample. The map

ƒn=Nƒn ! H 0
Ar.Y;Lj

˝n

Y
/tor

is well-defined and surjective as well. Applying Proposition 2.15, this shows that the image
of  n contains H 0

Ar.Y;Lj˝nY /tor.

Let s be an element of H 0
Ar.Y;L.�"/j˝nY /. Let "0 be a real number with 0 < "0 < ": Apply

Proposition 2.16 to the closed subspace YC ofXC. If n is large, we can find a section � ofL˝n
on XC with jj� jj1 � e�n"

0

and � jYC
D sC. Up to replacing � with � C � , and making "0

smaller, we may assume that � is a section of L˝n over XR, that is,

� 2 Bn.e
�n"0/R:
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Let I be the ideal of Y in X . The kernel of the—surjective when n is large enough—
restriction map

�n W ƒn ! H 0.Y;Lj˝nY /

is ƒIn . Let � 0 be an element of ƒn mapping to s. Then � 2 .ƒIn/R C �
0.

The fundamental domain DIn defined in (2.3) has diameter bounded above by rne�n"
I

—
note that rn � rIn : In particular, we can find � 00 2 ƒIn C �

0 with

jj� 00 � � jj1 � rne
�n"I ;

so that

jj� 00jj1 � e
�n"0
C rne

�n"I < 1

for large enough n. We have  n.�/C D sC, i.e.,  n.�/ � � is torsion. This shows that the
image of  n maps surjectively onto the quotient of H 0

Ar.Y;L.�"/j˝nY / by H 0
Ar.Y;Lj˝nY /tor.

Since we showed above that it contains H 0
Ar.Y;Lj˝nY /tor, this proves that  n is surjective.

Apply statement (i) after replacing L with L.�ı/, where ı > 0 is chosen small enough so
that L.�ı/ is ample. Then if " > ı and n is large enough, for any s 2 H 0

Ar.Y;L.�"/j˝nY /, we

can find �0 2 H 0
Ar.X ;L.�ı/˝n/ that restricts to s.

To prove (ii), we argue as in Proposition 2.15. Let s and �0 be as above. Then

 �1n .s/ D f�0 C � j� 2 ƒ
I
n ; jj�0 C � jj1 � 1g

and

jBn.1 � e
�nı/I j � j �1n .s/j � Bn.1C e

�nı/I :

Using Proposition 2.14 again, this proves (ii).

To prove (iii), write

jƒ"nj D
X

s2H0Ar.Y;L.�"/j
˝n

Y
/

j �1n .s/j;

so that for any large enough n and any s 2 H 0
Ar.Y;L.�"/j˝nY /, we haveˇ̌

jƒ"nj � j 
�1
n .s/j jH 0

Ar.Y;L.�"/j
˝n

Y
/j
ˇ̌
� e�n� j �1n .s/j jH 0

Ar.Y;L.�"/j
˝n

Y
/j:

We keep the notation of the theorem.

Corollary 2.18. – Let E be a subset of
S
n>0H

0
Ar.Y;L.�"/j˝nY /. Set

E 0 WD
n
� 2

[
n>0

ƒ"n; � jY 2 E
o
:

For any 0 � � � 1, the set E has density � in
S
n>0H

0
Ar.Y;L.�"/j˝nY / if and only if E 0 has

density � in
S
n>0ƒ

"
n:
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Proof. – For any positive integer n, define

En WD E \H
0
Ar.Y;L.�"/j

˝n

Y
/; E 0n WD E

0
\H 0

Ar.X ;L
˝n
/ D E 0 \ƒ"n:

Denoting by  n the restriction maps as before, we can write

jE 0nj D
X
s2En

j �1n .s/j:

Summing the estimate of Theorem 2.17, (iii) over all s 2 En for large enough n, we can find
a positive constant � such that, for large enough n,ˇ̌̌

jE 0nj �
jEnj

jH 0
Ar.Y;L.�"/j˝nY /j

jƒ"nj
ˇ̌̌
� e�n�jE 0nj

and, dividing by jƒ"nj � jE
0
nj,ˇ̌̌
jE 0nj

jƒ"nj
�

jEnj

jH 0
Ar.Y;L.�"/j˝nY /j

ˇ̌̌
� e�n�:

Letting n tend to1 gives us the result we were looking for.

As a special case of the theorem, we get the following.

Corollary 2.19. – Let X be a projective arithmetic variety, and let L be an ample line
bundle on X . Let Y be a closed subscheme of X lying over Z=NZ for some positive integer N .
Then for any large enough integer n, the restriction map

�n W H
0
Ar.X ;L

˝n
/! H 0.Y;Lj˝nY /

is surjective and there exists a positive constant � such that for any s 2 H 0.Y;L˝n/, we haveˇ̌̌
��1n .s/ �

jH 0
Ar.X ;L

˝n
/j

jH 0.Y;Lj˝nY /j

ˇ̌̌
� e�n�j��1n .s/j:

We now turn to uniform lower bounds on the image of restriction maps. We first deal with
a geometric result.

Proposition 2.20. – Let S be a noetherian scheme, and let X be a projective scheme
over S . Let L be a line bundle on X , relatively ample over S . Let d be a positive integer. Then
there exists an integer N and a positive constant C such that for any point s of S , any closed
subscheme Y of Xs of dimension d , and any n � N , the image of the restriction map

H 0.Xs;L˝n/! H 0.Y;Lj˝nY /

has dimension at least Cnd .

Proof. – Since S is noetherian, we can find an integer M such that for any point s of S
and any integer n �M , the restriction of L˝n to Xs is very ample.

Let s be a point of S , and let Y be a closed subscheme of Xs of positive dimension d . Let
k be an infinite field containing the residue field of s, and writeXk for the base change ofXs
to k.
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Since L˝n is very ample on Xk and k is infinite, we can find a d C 1-dimensional
subspace V � H 0.X;L˝n/ such that the restriction to Y of the rational map

� W X 99K P.V �/

is dominant. Let �0; : : : ; �d be a basis of V , and let H1 be the divisor div.�0/. Identify
the subspace of P.V �/ defined by �0 ¤ 0 to the standard affine space Ad

k
with coordi-

nates x1; : : : ; xd . Then the map � is defined outsideH1—as certainly the base locus of V is
contained in H1, and maps onto Ad

k
.

For any positive integer r and any integer n � .r C 1/M , the line bundle L˝n.�rH1/ ' L˝n�rM
is very ample. In particular, we can find a section � of L˝n that vanishes to the order r along
H1, but does not vanish on Y .

Let P 2 kŒx1; : : : ; xd � be a polynomial of degree at most r , considered as a morphism
Ad
k
! A1

k
. Since � vanishes to the order r along H1, the section .P ı �/� of L˝n, which is

a priori defined only outsideH0, defines a global section of L˝n. Because � does not vanish
on Y , the restrictions .P ı �/� jY are linearly independent as sections of L˝njY as P varies.
In particular, the image of the restriction map

H 0.X;L˝n/! H 0.Y;Lj˝nY /

has dimension at least equal to the dimension of the space of polynomials of degree at most r
in x1; : : : ; xd , so that it has dimension at least 

r C d

d

!
D

1

dŠ
rd CO.rd�1/

for any r with r C 1 � n=M . This proves the result.

Theorem 2.21. – LetX be a projective arithmetic variety, and letL be an ample hermitian
line bundle on X . If Y is a subscheme of X , let

�n;Y W H
0.X ;L˝n/! H 0.Y;Lj˝nY /

be the restriction map.
There exists an integer N and a positive real number � such that for any n � N and any

closed subscheme Y of X of dimension d > 0, we have

jKer.�n;Y/ \H 0
Ar.X ;L

˝n
/j

jH 0
Ar.X ;L

˝n
/j

D O.e�n
d�/;

where the implied constant depends on X and L, but not on Y .

Proof. – We only have to consider those Y that are irreducible. Let us first assume
that Y is flat over SpecZ. Let Hn be the kernel of the restriction map

ƒn D H
0.X ;L˝n/! H 0.Y;Lj˝nY /;

and let kn be the corank of Hn, i.e., the rank of the image of the restriction map. By
Proposition 2.20 applied toXQ and YQ, there exists a positive constant C , independent of Y ,
such that if n is larger than some integer N , independent of Y , then

(2.5) kn � Cn
d�1:
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Up to enlarging N , Proposition 2.4 allows us to assume that for n � N , ƒn has a basis
consisting of elements with norm at most e�n" for some " > 0. For n � N , we can find
elements �1; : : : ; �kn ofƒn that are linearly independent inƒn=Hn and satisfy jj�i jj1 � e�n"

for i 2 f1; : : : ; kng.

Let � be a positive number smaller than ". Then for any � 2 Hn \ Bn.1/R and any
integers �1; : : : ; �kn with j�i j � en� for i 2 f1; : : : ; kng, we have

jj� C

knX
iD1

�i�i jj1 � 1C kne
�n."��/:

Furthermore, as � runs through the elements of Hn, and �1; : : : ; �kn run through the inte-
gers, the � C

Pkn
iD1 �i�i are pairwise distinct. As a consequence, we have

enkn�jH \ Bn.1/Rj �
ˇ̌
Bn.1C kne

�n."��//
ˇ̌
:

Applying Proposition 2.14 and noting that kn is bounded above by rn, which is a polyno-
mial in n, we get

jBn.1/ \Hnj

jBn.1/j
D O.e�nkn�/:

Together with (2.5), this shows the required estimate.

Now assume that Y is not flat over Z. Since Y is irreducible, it lies over a closed point p
of SpecZ. By Proposition 2.20, we can find an integerN and a constantC , independent ofY
and p, such that for any n � N , the kernel of the restriction map

H 0.Xp;L˝n/! H 0.Y;Lj˝nY /

has codimension at least Cnd as a vector space over Fp. Let kn be this codimension. Then

(2.6) kn � Cn
d :

Again, by Proposition 2.4, up to enlargingN , we can find a positive number ", depending
only on X and L, such that for any n � N , there exist sections �1; : : : ; �kn of H 0.X ;L˝n/
with jj�i jj1 � e�n" for all i 2 f1; : : : ; kng, such that the images of �1; : : : ; �kn inH 0.Y;Lj˝nY /

are linearly independent over Fp.

Let Hn be the kernel of the restriction map �n;Y . If � is an element of Hn, and if
�1; : : : ; �kn are integers running through f0; : : : ; p�1g, then �C�1�1C� � �C�kn�kn belongs
to Hn if and only if all the �i vanish. Furthermore, the elements � C �1�1 C � � � C �kn�kn
are pairwise disjoint. As a consequence, considering only those �i that are 0 or 1, we have

2kn jHn \H
0
Ar.X ;L

˝n
/j � jBn.1C kne

�n"/j:

Again, applying Proposition 2.14 and noting that kn is bounded above by rn, which is a
polynomial in n, we get

jBn.1/ \Hnj

jBn.1/j
D O.e�kn�/:

Together with (2.6), this shows the required estimate.
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3. Variants and consequences

3.1. The irreducibility theorem over finite fields

The arithmetic Bertini theorems we prove are stronger than their finite fields counterparts.
Since the latter are already known, we give only an example to illustrate how one can deduce
them.

Proposition 3.1. – Assume Theorem 1.1. Let k be a finite field, and letX be an irreducible
projective variety over k of dimension at least 2. Let L be a very ample line bundle on X . Then
the set

f� 2
[
n>0

H 0.X;L˝n/; div.�/ is irreducibleg

has density 1 in
S
n>0H

0.X;L˝n/.

Proof. – Since L is very ample, we can find a positive integer N and a closed embedding
i W X ! PN

k
such that L D i�O.1/. Apply Theorem 1.1 to the composition

f W X ! PNk ! PNOK ;

where K is a number field together with a finite prime p such that OK=p D k, and the line
bundle L D OPNOK

.1/."/, " > 0, endowed with the Fubini-Study metric scaled by e�".

The hermitian line bundle L is the pullback of O.1/ by the finite map PNOK ! PNZ . By
Proposition 2.8 and Corollary 2.7, L is ample.

Since f .X/ is supported over a closed point of SpecZ, Theorem 1.1 guarantees that the
set n

� 2
[
n>0

H 0
Ar.P

N
OK ;L

˝n
/; div.� jX / is irreducible

o
has density 1 in

S
n>0H

0
Ar.P

N
OK ;L

˝n
/. By Corollary 2.18, the theorem holds.

Note that since on a scheme X defined over a finite field, every line bundle is a hermitian
line bundle, and every section is effective, we can remove the flatness assumptions on the
theorems of the introduction and have uniform statements that cover both the results of this
paper and those of [11].

3.2. Generic smoothness

We first state the Bertini smoothness theorem of Poonen [26] in the form we need—see
[13] for the proof of this version.

Theorem 3.2. – Let X be a smooth projective variety over a finite field k, and let L be an
ample line bundle on X . Then the density of those � 2

S
n>0H

0.X;L˝n/ such that div.�/ is
smooth is equal to �X

�
1C dim.X/

��1, where �X is the zeta function of X .

Applying the above result together with the restriction results of Corollary 2.18, we find
the following.
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Proposition 3.3. – Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X . Let p be a prime number such that Xp is smooth over Fp.
Then the density of those � 2

S
n>0H

0
Ar.X ;L

˝n
/ such that div.� jXp

/ is smooth is equal

to �p.dim.X //�1, where �p is the zeta function of Xp.

Proof. – We apply Corollary 2.18 to the subspace Y D Xp of X and the subset E
of
S
n>0H

0.Xp;Lj˝nXp / consisting of sections with smooth divisor. Theorem 3.2 shows

that E has density �p.1C dim.Xp//�1 D �p.dim.X //�1, which implies the result.

We may prove Theorem 1.7.

Proof of Theorem 1.7. – In the situation of the theorem, we know that Xp is smooth for
all large enough p. Furthermore, denoting again the zeta function of Xp by �p, we have

lim
p!1

�p.x/ D 1

for any x > 1 by [30, 1.3]. This shows that the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/ such

that there exists p with Xp smooth and div.� jXp
/ smooth is equal to 1. For any such � , the

divisor div.�/Q is smooth, which proves the result.

3.3. Irreducibility theorems with local conditions

We can give variants of the irreducibility theorems with conditions at prescribed
subschemes. For an easier formulation, we give them in the setting of Theorem 1.6.

Proposition 3.4. – Let X be a projective arithmetic variety, and let L be an ample
hermitian line bundle on X . Let Z1 be a finite subscheme of X , and let Z2 be a positive-
dimensional subscheme of X . Choose a trivialization � W LjZ1 ' OZ1 , and let T be a subset

of H 0.Z1;OZ1/. Then the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/ such that � jZ1

belongs
to T (under the trivialization �) and � does not vanish identically on any component of Z2 is
equal to

jT j

jH 0.Z1;OZ1/j
:

Proof. – By Corollary 2.18, the density of those � such that � jZ1
belongs to T is indeed

jT j

jH0.Z1;OZ1 /j
: On the other hand, Theorem 2.21 ensures that the density of those � that do

not vanish identically on any component of Z2 is equal to 1.

Given Theorem 1.6—proven in the last section of this paper—and Theorem 1.7, we find
the two following results.

Corollary 3.5. – LetX be a projective arithmetic variety of dimension at least 2, and let
L be an ample hermitian line bundle on X . Let Z1 be a finite subscheme of X , and let Z2 be
a positive-dimensional subscheme of X . Choose a trivialization � W LjZ1 ' OZ1 , and let T be

a subset of H 0.Z1;OZ1/. Then the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/ such that the

following conditions hold:

(i) � jZ1
belongs to T (under the trivialization �);
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(ii) � does not vanish identically on any component of Z2;

(iii) div.�/ is irreducible,

is equal to
jT j

jH 0.Z1;OZ1/j
:

Corollary 3.6. – Let X be a projective arithmetic variety with smooth generic fiber, and
let L be an ample hermitian line bundle on X . LetZ1 be a finite subscheme of X , and letZ2 be
a positive-dimensional subscheme of X . Choose a trivialization � W LjZ1 ' OZ1 , and let T be

a subset of H 0.Z1;OZ1/. Then the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/ such that the

following conditions hold:

(i) � jZ1
belongs to T (under the trivialization �);

(ii) � does not vanish identically on any component of Z2;

(iii) div.�/Q is smooth,

is equal to
jT j

jH 0.Z1;OZ1/j
:

4. Preliminary estimates

This section gathers preliminary material on hermitian line bundles on arithmetic
surfaces, which will be used in the proof of Theorem 1.6. In 4.1, we give lower bounds
for the norm of products of sections of hermitian line bundles. In 4.2, we give an upper
bound for the number of effective sections of a hermitian line bundle in terms of its degree
with respect to a positive enough hermitian line bundle. Such a result is closely related to the
effective bounds of [37]. Our proof is better expressed in terms of the � -invariants of Bost
[9], which we only consider in a finite-dimensional setting. In 4.3, we give an estimate for the
number of effective hermitian line bundles satisfying certain boundedness properties.

4.1. Norm estimates for sections of hermitian line bundles

Let X be a compact connected Riemann surface. Let ! be a real semipositive 2-form of
type .1; 1/ on X with Z

X

! D 1:

Define

d c D
1

2i�
.@ � @/;

so that

dd c D
i

�
@@:

Let s be a section of a hermitian line bundle on X . In what follows, we will write jjsjj for
the function P 7! jjs.P /jj.
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Let L D .L; jj:jj/ be a hermitian line bundle on X . If s is a nonzero section of L, the
Lelong-Poincaré formula gives us the equality of currents

�dd c log jjsjj D c1.L/ � ıD;

where c1.L/ is the curvature form of L, D is the divisor of s and ıD is the current of
integration along D.

Define, following [10, (1.4.8)]

jjsjj0 D exp
� Z

X

log jjsjj!
�
:

Since
R
X
! D 1; the following inequality holds:

jjsjj0 � jjsjj1:

Say that L is !-admissible, or admissible for short, if c1.L/ is proportional to !. If L is
admissible, then the Gauss-Bonnet formula shows

c1.L/ D .degL/!:

LetM be any line bundle onX . By the @@ lemma, we can find a hermitian metric jj:jj onM
such that the hermitian line bundle .M; jj:jj/ is admissible. Given a nonzero global section s
of M , there exists a unique such metric such that jjsjj0 D 1.

If D is an effective divisor on X , let �D be the section of O.D/ that is the image of 1
under the natural morphism OX ! O.D/. The discussion above shows that there exists a
unique admissible hermitian line bundle O.D/ D .O.D/; jj:jj/ on X such that jj�Djj0 D 1.
Of course, if D1 and D2 are effective divisors, we have

O.D1 CD2/ D O.D1/˝O.D2/:

The functions �P satisfy basic uniformities in the point P of X which are readily proved
by the following argument using Green functions.

Proposition 4.1. – EndowX with a Riemannian metric with induced geodesic distance d .
Then there exist positive constants C;C 0 and � such that the following inequalities hold:

(i) 8P 2 X; jj�P jj1 � C I

(ii) 8.P;Q/ 2 X �X; �P .Q/ � min.C 0d.P;Q/; �/:

Proof. – Let � � X � X be the diagonal. Let ˛ be a real closed form of type .1; 1/
on X �X of the form

˛ D p�1! C p
�
2! C

X
i2I

p�1ˇi ^ p
�
2i ;

where p1 and p2 are the two projections from X � X to X and the ˇi (resp. i ) are 1-forms
on X . Choose the ˇi and i so that ˛ is symmetric with respect to the involution of X � X
that exchanges the two factors, and that it is cohomologous to the class of the diagonal �
in the de Rham cohomology of X �X . By the @@ lemma, we can find a hermitian metric on
the line bundle O.�/ with curvature form ˛. For any P in X , this hermitian metric induces
a hermitian metric on O.P / by restriction to fP g �X .
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Let �� be the global section ofO.�/ corresponding to the constant function 1. For anyP
in X , write �P for the section of O.P /.

�P W Q 7! ��.P;Q/:

Then
�dd c log jj�P jj D ˛jfP g�X � ıP D ! � ıP ;

which shows that the metric on O.P / coming from that on O.�/ differs from the canon-
ical one defined above by a homothety. In particular, we can find a continuous function
X ! R�C; P 7! �.P / such that

8.P;Q/ 2 X �X; jj�P .Q/jj D �.P /jj��.P;Q/jj:

Since .P;Q/ 7! ��.P;Q/ is a smooth section of O.�/ that vanishes with the order 1
along �, this shows the result (2).

We will make use of the uniformity above to prove inequalities between norms. The
following is a variant of [10, Corollary 1.4.3].

Proposition 4.2. – Let L D .L; jj:jj/ be an admissible hermitian line bundle on X . Let
P be a point of X , and let s be a section of L. Then

jjs.P /jj � jjsjj0 jj�P jj
degL
1 :

In particular, there exists a positive constant C1 such that

jjsjj1 � C
degL
1 jjsjj0:

Proof. – We can assume that s is nonzero. Let D be the divisor of s. Define

g D � log jjsjj

and

gP D � log jj�P jj:

By Lelong-Poincaré, we have

dd cg D .degL/! � ıD

and

dd cgP D ! � ıP :

The Stokes formulaZ
X

g dd cgP D

Z
X

gP dd
cg

gives us

- log jjsjj0 C log jjs.P /jj D � degL log jj�P jj0 C log jj�P .D/jj D log jj�P .D/jj;

where, if D D
P
i niPi , we wrote

jj�P .D/jj D
Y
i

jj�.Pi /
ni jj:

(2) Actually, a straightforward computation shows that jj�P jj0 is a constant function of P , so that � is constant.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1566 F. CHARLES

Since the degree of D is equal to the degree of L, we get the first inequality. The second one
follows from the first and Proposition 4.1.

Lemma 4.3. – Let L D .L; jj:jj/ be an admissible hermitian line bundle on X with positive
degree. Then for any section s of L, and any P in X , the following inequality holds:

jjsjj1 � C2.degL/jjs�P jj1;

where C2 is a positive constant depending only on X and !.

Proof. – Let B be the ball fz 2 Cj jzj < 3g. Let .Ui /i2I be a finite cover of X by open
subsets such that there exist biholomorphic functions

fi W B ! Ui

and assume that X is covered by the fi .fz 2 Cj jzj < 1g/. For all i 2 I , choose a smooth
function �i W B ! R such that �dd c�i D f �i !.

Since L is admissible, the curvature form of L is .degL/! and for any i 2 I , we can find
an isomorphism of hermitian line bundles on B

f �i L ' .O; e���i /;

where j:j is the standard absolute value and � D degL.

Choose an element i 2 I , and a complex number z with jzj < 1 such that

jf �i s.z/je
���i .z/ D jjsjj1;

where f �i s.z/ is considered as a complex number via the isomorphism above. By Proposi-
tion 4.1, we can find positive constants " < � and � depending only on X and ! such that
either j�P .z/j �

�
�

or,

8z0 2 C; jz0 � zj D
"

�
H) j�P .z

0/j �
�

�
:

If �P .z/ �
�
�

, then

jjs�P jj1 � jjs�P .fi .z//jj �
�

�
jjs.fi .z//jj D

�

degL
jjsjj1:

Assume on the contrary �P .z/ <
�
�

. By the maximum principle, we can find a complex
number z0 with jz0 � zj D "

�
and jf �i s.z

0/j � jf �i s.z/j: In particular, jz0j < 2 and

jjs�P jj1 � jjs�P .fi .z
0//jj �

�

�
jjsjj1e

��.�i .z/��i .z
0//
� e�C

�

degL
jjsjj1;

whereC is an upper bound for the differential of the �i on the ball fz 2 Cj jzj < 2g as i varies
through the finite set I .

Proposition 4.4. – Let L D .L; jj:jj/ and M D .M; jj:jj/ be two admissible hermitian
line bundles on X . Then for any two sections s and � of L and M respectively, the following
inequality holds:

jjsjj1jj� jj0 � .C2.degLC degM//degM
jjs� jj1;

where C2 is a positive constant depending only on X and !.
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Proof. – Let D be the divisor of � . Then M is isomorphic to O.D/, and the hermitian
line bundlesM andO.D/, as well as the sections � and �D differ by a homothethy. Since the
inequality we want to prove is invariant under scaling, we can assume that M D O.D/ and
� D �D . If D D

P
i niPi , we have

O.D/ D
O
i

O.Pi /
˝ni

and
�D D …i�

ni
Pi
;

so that the result follows from successive applications of Lemma 4.3.

4.2. An upper bound for the number of sections

Let X be a projective arithmetic variety with smooth generic fiber. Choose a Kähler
form on X .C/ which is invariant under complex conjugation and has volume 1. If L is
a hermitian line bundle on X , we write h0

�
.X ;L/ for h0

�
.H 0

L2
.X ;L//, where the hermitian

vector bundle H 0
L2
.X ;L/ over SpecZ is endowed with the L2 norm induced by the Kähler

metric on X .
We will need a comparison result between the sup norm and the L2 norm on the space of

sections of hermitian line bundles, which we will obtain through a minor generalization of
Gromov’s lemma [17, Lemma 30]. We follow the proof of Gillet-Soulé and start with a local
result.

In the following, if z is an element of Cd , we write z1; : : : ; zd 2 C for its coordinate, and,
for any k 2 f1; : : : ; dg, we write zk D xk C iyk , where xk and yk are real.

Lemma 4.5. – Let d be a positive integer, and let B be the open ball fz 2 Cd j jzj < 3g

in Cd . Let � be a real-valued smooth function on B, and let g be a smooth positive function
on B. Then there exists a positive constant C depending only on � and g such that for any real
number � � 1, any holomorphic function f on B and any w in B with jwj < 1,Z

� � �

Z
jz�wj<1

jf .z/j2e�2��.z/g.z/dx1 � � � dyd � C jf .w/j
2e�2��.w/��2d :

Proof. – If � is an integer, the inequality is the “local statement” proved in the beginning
of the proof of [17, Lemma 30].

To prove our result, after adding a negative constant to �, we can assume that � is negative
on the ball jzj < 2. Let C 0 be a lower bound for the values of � on the ball jzj < 2. If � > 1 is
arbitrary, write � D nC r , with 0 � r < 1. Then

e�2��.z/ D e�2n�.z/e�2r�.z/ � e�2n�.z/

for any z with jzj < 2, so thatZ
� � �

Z
jz�wj<1

jf .z/j2e�2��.z/g.z/dx1 � � � dyd �

Z
� � �

Z
jz�wj<1

jf .z/j2e�2n�.z/g.z/dx1 � � � dyd

� C jf .w/j2e�2n�.w/n�2d

� C jf .w/j2e�2��.w/e2r�.w/��2d

� Ce2C
0

jf .w/j2e�2��.w/��2d :
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Replacing C with Ce2C
0

, we get the result.

Proposition 4.6. – Let X be a compact connected riemannian complex manifold of
dimension d , let ! be a real form of type .1; 1/ on X . Then there exists a positive constant C
such that for any hermitian line bundle L onX with positive degree and curvature form �! with
j�j > 1, and any section s of L over X , we have

jjsjjL2 � C j�j
�d
jjsjj1;

where jjsjjL2 denotes the L2 norm of s with respect to the given metric on X .

In particular, if d D 1, there exists a positive constant C 0 such that for any hermitian line
bundle L with curvature form proportional to ! and positive degree, and any section s of L, we
have

jjsjjL2 � C
0.degL/�1jjsjj1:

Proof. – As above, let B be the open ball fz 2 Cd j jzj < 3g in Cd . Let .Ui /i2I be a finite
cover of X by open subsets such that there exists biholomorphic functions

fi W B ! Ui

and assume that X is covered by the fi .fz 2 Cd j jzj < 1g/. For any i 2 I , we can find a
positive smooth function gi such that the pullback of the standard metric of X to B by fi is
gi dx1 � � � dyd .

For all i 2 I , choose a function �i on B such that �dd c�i D f �i !. Let L be a hermitian
line bundle with curvature form �! for some real number �with j�j > 1. Then, for any i 2 I ,
we can fix an isomorphism of hermitian line bundles

f �i L ' .OB ; e���i j:j/;

where j:j is the standard absolute value. Applying Lemma 4.5 (up to replacing �i by��i if � is
negative), we can find a positive constantK, independent of L, such that, given any section s
of L, for any i 2 I and any w in B with jwj < 1, we haveZ

jz�wj<1
jf �i s.z/j

2e���i .z/g.z/dx1 � � � dyd � Kjf
�
i s.w/j

2e���i .w/j�j�2d ;

where we consider f �i s as a holomorphic function via the local trivializations of L. This
inequality meansZ

jz�wj<1
jjs.fi .z//jj

2g.z/dx1 � � � dyd � Kj�j
�2d
jjs.fi .w//jj

2;

so that

jjsjj2
L2
�

Z
jz�wj<1

jjs.fi .z//jj
2g.z/dx1 � � � dyd � Kj�j

�2d
jjs.fi .w//jj

2

for any w, which proves the first result.

The second result is a consequence of the first one and the Gauss-Bonnet formula.

Given a real form ! of type .1; 1/, write cPic!.X / for the group of !-admissible hermitian
line bundles onX , that is, hermitian line bundles whose curvature form is proportional to !.
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Proposition 4.7. – Let X be a regular projective arithmetic surface. Choose a Kähler
form onX .C/which is invariant under complex conjugation, and letB be a hermitian line bundle
on X . Let ! be a real form of type .1; 1/ on X .C/ with

R
X .C/ ! ¤ 0. Assume that the following

conditions hold:

(i) Some positive power of B is effective;

(ii) B:B > 0;

(iii) If M is an effective hermitian line bundle on X , then B:M � 0:

Then for any effective M 2 cPic!.X /, we have

h0� .X ;M/ �
.B:M/2

2B:B
CO.M:B log.1CM:B//CO.degMQ log.1C degMQ//CO.1/;

where the implied constants depend on X , B and !, but not on M.

Remark 4.8. – Using the precise computations of [9, Chapter 3], it would be possible to
make the implied constants above effective.

Remark 4.9. – If M is effective, then both B:M and degMQ are nonnegative.

Proof. – Let M be an effective, !-admissible, hermitian line bundle. If MQ has degree
zero, then the curvature form of M vanishes, so that M is isomorphic to OX and the
inequality of the proposition holds. We can assume that the degree of MQ is positive. Let
us write d for the degree of MQ.

After replacingB by a positive power, we can assume thatB is effective. Let � be a nonzero
effective section of B with divisor D. We have an exact sequence of line bundles

0!M˝ B˝�1 !M!MjD ! 0;

in which the first map is multiplication by � and the second one is restriction of sections.
Taking global sections, we get an exact sequence

0! H 0.X ;M˝ B˝�1/! H 0.X ;M/! H 0.D;MjD/:

The map of lattices

i W H 0
L2
.X ;M˝ B˝�1/! H 0

L2
.X ;M/

is the multiplication by the section � , whose sup norm is bounded above by 1, so the operator
norm of i is bounded above by 1.

Endow H 0.D;MjD/ with the L2 norm

jjt jj2
L2
D

X
z2D.C/

jjt .z/jj2

for t 2 H 0.D;MjD/. Then for any section t of M over D, we have

jjt jj21 �
1

degDQ
jjt jj2

L2
:

If s is a global section of M on X , then certainly we have, for the sup norms

jjsjj1 � jjsjD
jj1
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and consequently

jjsjj1 �
1

degDQ
jjsjD
jj
2
L2
:

By Proposition 4.6, with s as above, we have

jjsjjL2 � C d
�1
jjsjj1;

where we recall that d is the degree of MQ and C is a positive constant independent of M.
We obtain

jjsjjL2 �
C

degDQ
d�1jjsjD

jj
2
L2
:

In other words, the operator norm of the map of lattices

r W H 0
L2
.X ;M/! H 0

L2
.D;MjD/;

given by restricting sections to D is bounded above by C 0d , where C 0 is a positive constant
independent of M. In other words, the induced map of lattices

H 0
L2
.X ;M/! H 0

L2
.D;MjD/.logC 0 C log d/

has norm at most 1—here ifƒ is a lattice and ı a real number, we writeƒ.ı/ for the latticeƒ
with the metric scaled by e�ı . Note that from [9, Corollary 3.3.5, (2)], we have

h0� .H
0
L2
.D;MjD/.logC 0 C log d// � h0� .D;MjD/C degDQ.logC 0 C log d/:

From the monotonicity and the subadditivity of � -invariants proved in [9, Proposi-
tion 3.3.2, Proposition 3.8.1], we get

(4.1) h0� .X ;M/ � h0� .X ;M˝ B˝�1/C h0� .D;MjD/CO.log d/CO.1/;

where the implied constants are independent of M.
By [9, Proposition 3.7.1, Proposition 3.7.2], we have (3)

h0� .D;MjD/ � max.degMjD; 0/CO.1/ �M:B CO.1/

since we assumed that M:B � 0 and since D is the zero locus of an effective section of B.
Together with (4.1), we obtain

(4.2) h0� .X ;M/ � h0� .X ;M˝ B˝�1/CM:B CO.log d/CO.1/:

Now let m be the smallest integer such that mB:B >M:B, so that

m � bM:B=B:Bc C 1:

Applying the argument above inductively to L:B˝�i as i runs from 0 to m � 1, we get

(4.3) h0� .X ;M/ � h0� .X ;M˝ B˝�m/C
.M:B/2

2B:B
CO.M:B log d/CO.M:B/CO.1/:

By construction, B:.M˝ B˝�m/ < 0, so that condition (iii) ensures that M˝ B˝�m is
not effective. By [9, Corollary 4.1.2], we get

h0� .X ;M˝ B˝�m/ � O.d log d/CO.1/

(3) In [9], hermitian vector bundles are only considered over the ring of integers of number fields. However, this
assumption is irrelevant, and can be removed by considering the pullback ofMjD to the normalization ofD.
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since the rank of H 0.X ;M˝ B˝�m/ is certainly bounded above by O.d/:
Finally, we have

(4.4) h0� .X ;M/ �
.M:B/2

2B:B
CO.M:B log d/CO.d log d/CO.M:B/CO.1/;

which shows the result.

Corollary 4.10. – Let X be a regular projective arithmetic surface, and let B be a
hermitian line bundle on X . Let ! be a real form of type .1; 1/ on X .C/ with

R
X .C/ ! ¤ 0.

Assume that the following conditions hold:

(i) Some positive power of B is effective;

(ii) B:B > 0;

(iii) If M is an effective hermitian line bundle on X , then B:M � 0:

Then for any effective M 2 cPic!.X /, we have

h0Ar.X ;M/ �
.B:M/2

2B:B
CO.M:B log.M:B//CO.degMQ log.degMQ//CO.1/;

where the implied constants depend on X and B, but not on M.

Proof. – From Proposition 4.7 and [9, Theorem 4.1.1], we find that the inequality holds if
one replaces h0Ar.X ;M/ with h0

Ar;L2
.X ;M/—this expression being defined as the logarithm

of the number of sections of M with L2 norm bounded above by 1. Choosing the Kähler
form on X to have volume 1, we have

h0Ar.X ;M/ � h0Ar;L2.X ;M/;

which finishes the proof.

Remark 4.11. – In [37, Theorem A], Yuan and Zhang prove an explicit upper bound
for h0Ar.X ;M/ from which one can deduce—via log-concavity of volumes—special cases of
our inequality.

4.3. An upper bound for the number of effective hermitian line bundles

Lemma 4.12. – Let X be a projective arithmetic surface, and let L be an ample hermitian
line bundle onX . IfM is an effective hermitian line bundle onX which is not isomorphic toOX ,
then

L:M > 0:

Proof. – Let s be an effective section of M, and let D be the divisor of s. Then by the
formula [12, (6.3.2)], we have

L:M D hL.D/ �

Z
X .C/

log jjsCjjc1.L/;

where hL denotes the height with respect to D. The first term is nonnegative since L is
ample, and vanishes if and only if D D 0. Since s is effective and the curvature form of L is
semipositive—and positive on a Zariski-dense open subset of X .C/ as LC is ample—the
second term is nonnegative as well, and vanishes if and only if the norm of s is identically 1.
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As a consequence, for L:M to vanish, it is necessary for M to have a nowhere vanishing
section of norm identically 1, i.e., to be isomorphic to OX :

Proposition 4.13. – Let X be a projective arithmetic surface, and let L be an ample
hermitian line bundle on X . Let ! be a semipositive real form of type .1; 1/ on X .C/ withR
X .C/ ! ¤ 0. LetN be a subgroup of the group cPic!.X / of !-admissible hermitian line bundles

on X . Assume that the intersection of N with Ker.cPic!.X /! Pic.X // ' R is discrete. Then
N is a group of finite type. Let� be the rank ofN , and letNeff denote the subspace ofN consisting
of effective line bundles. As n tends to1, we haveˇ̌

fM 2 NeffjL:M � ng
ˇ̌
D O.n�/:

Proof. – The abelian group Pic.X / is finitely generated by [29]—see [20] for a modern
proof—so that the image ofN in Pic.X / is a group of finite type. Since the intersection ofN
with Ker.cPic!.X /! Pic.X // is discrete, it is of finite type as well, which proves that N is a
group of finite type.

The linear form on N

M 7! L:M
extends to a linear form on NR WD N ˝ R which we still denote by

˛ 7! L:˛:

Let N eff be the closure of Neff in N ˝ R. Lemma 4.12 shows that the linear form above is
nonnegative on Neff, so it is nonnegative on N eff.

Our assumption on N guarantees that the first chern class map

c1 W cPic!.X /!dCH
1
.X /

extends to an injection

c1;R W N ˝ R!dCH
1

R.X /;

where dCH
1

R.X / is the arithmetic Chow group with real coefficients defined in [7, 5.5]. Indeed,
we have an exact sequence

0! .N \Ker.cPic!.X /! Pic.X ///˝ R! N ˝ R! Pic.X /˝ R;

and the first term can be identified with R by assumption.

By the Hodge index theorem of Faltings [14] and Hriljac [18] as stated in [7, Theorem 5.5,

(2)], the intersection pairing on dCH
1

R.X / is non-degenerate: it has signature .C;�;�; : : :/.
Since ! is semipositive and

R
X .C/ ! ¤ 0, there exists an ample line bundle H in cPic!.X /.

Then H:H > 0, so that the intersection pairing on cPic!.X / is non-degenerate as well.

In particular, if x is a nonzero element of N eff; we can find a hermitian line bundle
M 2 cPic!.X / with M:x < 0. If n is a large enough integer, Corollary 2.5 shows that
L˝n ˝M is ample, so that the discussion above guarantees the inequality

.L˝n ˝M/:x D nL:x CM:x � 0:

This shows that L:x is positive.
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The linear form x 7! L:x is positive on the complement of the origin in the closed
coneN eff:As a consequence, the number of integral points x ofN eff withL:x � n is bounded
above by a quantity of the form O.n�/, where � is the rank of N .

5. Irreducible ample divisors on arithmetic surfaces

5.1. Setup and an easy estimate

In this section, we prove Theorem 1.6 for arithmetic surfaces.
Let f W X ! SpecZ be a projective arithmetic surface, and L an ample line bundle on X .

If n is a large enough integer, we want to give an upper bound for the number of sections
of L˝n that define a divisor which is not irreducible. We will give three different bounds that
depend on the geometry and the arithmetic of the irreducible components of that divisor.

In the statement below, X is not assumed to be regular, but heights are still well-defined,
see [39, (1.2)].

Proposition 5.1. – Let ˛ be a real number with 0 < ˛ < 1
2

. If n is an integer, the

proportion of those elements s of H 0
Ar.X ;L

˝n
/ that vanish on some Weil divisor D of X with

hL.D/ � n
˛ goes to zero as n goes to infinity.

Proof. – Assume that n is large enough. By [25, Theorem B], the number of divisors D
on X with hL.D/ � n˛ is bounded above by eCn

2˛
for some positive constant C . By

Theorem 2.21, we can find positive constants C 0 and � such that for any D as above,
the proportion of those elements s of H 0

Ar.X ;L
˝n
/ that vanish on D is bounded above

by C 0e�n�.
As a consequence, the proportion of those s that vanish on any D with hL.X / � n˛ is

bounded above by
C 0eCn

2˛�n�;

which goes to zero as n goes to infinity.

5.2. Degree bounds and reduction modulo p

Let f W X ! SpecZ be as above. We want to investigate irreducible divisors on the
fibers of f above closed points and derive global consequences. Our goal here is to prove
Proposition 5.6.

Since X is reduced, we can find a non-empty open subset S of SpecZ such that the
restriction fS W XS ! S has reduced fibers.

Let r be the number of irreducible components of the geometric generic fiber of f . Up
to shrinking S , we may assume that if s is any geometric point of S , then the number
of irreducible components of Xs is exactly r . Since Xs is reduced by assumption, this is
equivalent to the fact that the specialization map induces a bijection between the components
of XQ and those of Xs .

The degree of LQ equals rd , where d is the degree of the restriction of L to a component
of XQ. Write Lp for the restriction of L to Xp.

IfX is a reduced scheme, andC is an irreducible component ofX , we will always consider
C as a closed subscheme of X , endowed with its reduced structure.
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Lemma 5.2. – Let C be an integral projective curve over a perfect field, with arithmetic
genus pa.C /. Let L be a line bundle on C . Then

h0.C;L/ � 1 � pa.C /C deg.L/

and equality holds if the degree of L is strictly bigger than pa.C /.

Proof. – The first statement follows directly from the Riemann-Roch theorem. To prove
the second one, consider the normalization � W eC ! C of C . Then eC is smooth over the
base field k, and its genus is bounded above by the arithmetic genus pa.C / of C .

Since C is reduced, it is Cohen-Macaulay, so that the dualizing sheaf !C=k of C is
Cohen-Macaulay by [32, Tag 0BS2]. In particular, it is torsion-free, so that the morphism
��!C=k ! !eC=k is injective. Now assume that the degree of L is strictly bigger than pa.C /.
In particular, we have

deg.��L/ > deg.!eC=k/
and

h1.C;L/ D h0.C;L_ ˝OC !C=k/ � h
0.eC ; ��L_ ˝OeC !eC=k/ D 0:

By Riemann-Roch, we have

h0.C;L/ D �.L/ D 1 � pa.C /C deg.L/:

Lemma 5.3. – Let p be a prime number corresponding to a point in S , and let Fp be
an algebraic closure of Fp. If C is an irreducible component of Xp, let rC be the number
of irreducible components of CFp , and if k is a positive integer, let Nk.C / be the number of
irreducible divisors of degree k on C . Then the following holds as k tends to1:ˇ̌

NrC k.C / �
1

k
prC k

ˇ̌
D O.p

rC k

2 /;

where the implied constants only depend on fS W XS ! S .

Proof. – The rC irreducible components of CFp are all defined over FprC , and they form
a single orbit under Galois. Denote them by C1; : : : ; CrC . The Lang-Weil estimates of [22]
give us the inequality, for any positive integer k:ˇ̌

jC1.FprC k /j � p
rC k

ˇ̌
D O.p

rC k

2 /;

where the implied constants only depend on the degree of an embedding of C1 into some
projective space—in particular, it only depends on fS . As a consequence, ifMk is the number
of elements in C1.FprC k / with residue field exactly FprC k , we have:ˇ̌

Mk � p
rC k

ˇ̌
�
P
i jk;i¤k p

rC i CO.
P
i jk p

rC i

2 / D O.kp
rC k

2 /:

Now assume that rCk is strictly larger than the degree of the residue field of any singular
point of C—this degree can be bounded independently of C as fS is generically smooth.
Irreducible divisors of degree rCk onC are in one-to-one correspondence irreducible divisors
of degree k on C1=FprC , which in turn are in one-to-one correspondence with Galois orbits
over FprC of elements of C1.FpkrC / with residue field exactly FprC k . As a consequence, we
have

Nk.C / D
1

k
Mk ;

which proves the lemma.
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Lemma 5.4. – There exists a positive integer N with the following property: for any prime
number p corresponding to a point in S , any irreducible component C of Xp, and any n � N ,
the restriction map

H 0.Xp;L˝np /! H 0.C;L˝np /

is surjective.

Proof. – Since the result certainly holds if N is allowed to depend on p by general
vanishing results for ample line bundle, we may replace S by any nonempty open subset,
which we will do along the proof.

Choose a finite flat map S 0 ! S such that the irreducible components of the generic fiber
of XS 0 ! S are geometrically ireducible. In particular, our assumption on s guarantees that
the irreducible components of the fiber of XS 0 ! S 0 over any closed point s0 are geometri-
cally irreducible, and are the intersection of an irreducible component of XS 0 with Xs0 .

Let s0 be a point of S 0 over p, and let Cs0 be the union of irreducible components of Xs0
corresponding to C . Up to shrinking S , we may assume that Cs0 , as a reduced scheme, is the
intersection of Xs0 and some union C of irreducible components of XS 0 . Let IC be the sheaf
of ideals on X defining C. Then the sheaf of ideals defining Cs0 is IC ˝OXS0 OXs0 . Note that
there are only finitely many possibilities for C.

Let k be a positive integer such that L˝k has a nonzero section. Up to shrinking S , we
may assume that this section does not vanish along any component of a fiber of XS 0 ! S 0.
Consider the map

� W XS 0 ! S 0

If n is large enough and since L is relatively ample, relative vanishing guarantees that the
coherent sheaf on S

R1��.L˝n ˝OXS0 IC/
is zero. Pick a positive N once and for all such that the vanishing above holds for
n D N; : : : ; N C k � 1. Then after shrinking S once again, we may assume that the vanishing
above implies

H 1.Xs0 ;L˝NCi ˝OXS0 IC 0/ D 0
for i D 0; : : : ; k � 1.

Now since L˝k has a nonzero section over Xs0 , we have an exact sequence, for any
integer n,

0! L˝n ˝OXS0 IC 0 ! L˝nCk ˝OXS0 IC 0 ! K! 0;

whereK is a coherent sheaf supported on a zero-dimensional subscheme ofXs0 . In particular,
the map

H 1.Xs0 ;L˝n ˝OXS0 IC 0/! H 1.Xs0 ;L˝nCk ˝OXS0 IC 0/
is onto and the right-hand term vanishes as soon as the left-hand one does. Finally, we have
found N , independent of C and p, such that for all n � N , we have

H 1.Xs0 ;L˝n ˝OXS0 IC 0/ D 0;

which implies that the map

H 0.Xp;L˝np /! H 0.C;L˝np /

is surjective.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1576 F. CHARLES

Proposition 5.5. – Let p be a prime number corresponding to a point in S , and let Lp be
the restriction of L to Xp. Let C be an irreducible component of Xp, and let rC be the number
of irreducible components of CFp .

Let ˇ be a real number with 0 < ˇ < 1. There exist positive constants A and B, depending
only on ˇ andXS ! S but not on p, such that for any n � A, the proportion of those sections s
of H 0.Xp;L˝np / that do not vanish identically on C and such that div.s/ has an irreducible
component of degree at least rC .nd � nˇ / lying on C is at least Bnˇ�1:

Proof. – Our assumption on p guarantees that C is reduced. The degree of Lp on C
equals rCd . Let n be a large enough positive integer. Let k be an integer such that
nrCd � rCk. Let D be an irreducible divisor of degree rCk on C . Then the number of
sections of L˝np over C that vanish on D is equal to the number of sections of L˝np .�D/

over C , which, according to Lemma 5.2, is bounded below by

p1�pa.C/CnrCd�rC k :

Assume that rCk > 1
2
nrCd . Then a nonzero section of L˝np over C vanishes on at most

one irreducible divisor of degree rCk. Applying Lemma 5.3, it follows that the number of
nonzero sections of L˝np over C that vanish on some irreducible divisor of degree rCk is
bounded below by

1

k
p1�pa.C/CnrCd .1 �O.p�

1
2 rC k// �

1

k
prC k ;

the last term taking care of the zero section being counted multiple times.
Assume now that

rCk � nrCd � pa.C /:

Then the term above is bounded below by

1

2k
p1�pa.C/CnrCd

for large enough n.
Summing over all those k such that rCk � nrCd�rCnˇ , we find that the number of those

elements s of H 0.Xp;L˝np / such that div.s/ has an irreducible component of degree at least
nrCd � n

ˇ is at least

nˇ
1

2nd
p1�pa.C/CnrCd .1C o.1//:

as n goes to infinity, the implied constants depending only on ˇ, pa.C / and the ones occur-
ring in Lemma 5.3. Since pa.C / is the genus of some reunion of irreducible components of
the geometric generic fiber of X , the implied constants only depend on ˇ and X .

By Lemma 5.2, if nrCd > pa.C /, we have

h0.C;L˝np / D 1 � pa.C /C nrCd:

This shows that the proportion of those sections s of L˝np over C such that div.s/ has an
irreducible component of degree at least nrCd � rCnˇ is at least Bnˇ�1 for some constant B
as in the statement of the proposition.

By Lemma 5.4, after choosing n large enough, this implies the desired statement.

We can now prove the main result of 5.2.
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Proposition 5.6. – In the situation of 5.1, letˇ be a real number with 0 < ˇ < 1. Then the
proportion of those elements � ofH 0

Ar.X ;L
˝n
/ such that div.�/Q has an irreducible component

on XQ of degree at least n degLQ � rn
ˇ goes to 1 as n goes to infinity.

Proof. – Let  be a real number with 1 � ˇ <  < 1. Let n be a large enough
integer. Letting t be the largest integer smaller than n , let p1; : : : ; pt be the t smallest primes
corresponding to points of S , and letN be their product. By the prime number theorem, we
have pi � i log i as t ! 1, so that pi � 2i log i for large enough i , and, when t is large
enough:

(5.1) N � .2t log t /t D O.en
0

/;

where  0 is any real number with  <  0 < 1:
Write ƒn for H 0.X ;L˝n/ and let XN ! SpecZ=NZ be the reduction of X modulo N .

The exact sequence defining XN is

0! NOX ! OX ! OXN ! 0;

hence the exact sequence

0! ƒn=Nƒn ! H 0.XN ;L˝n/! H 1.X ;L˝n/ŒN �! 0:

If n is large enough, then H 1.X ;L˝n/ D 0 and we have

(5.2) H 0.XN ;L˝n/ D ƒn=Nƒn:

The scheme XN is the disjoint union of the Xpi , 1 � i � t . As a consequence, we have

H 0.XN ;L˝n/ D
Y
1�i�t

H 0.Xpi ;L
˝n/:

Given a prime number p that corresponds to a point of S , let Ep be the subset
of H 0.Xp;L˝n/ described by Proposition 5.5: Ep is the set of sections s of H 0.Xp;L˝n/
such that there exists an irreducible component C of Xp, such that CFp has rC irreducible
components, the restriction of s toC is not identically zero and vanishes along an irreducible
divisor Dp of degree at least rC .nd � nˇ /:

By Proposition 5.5, if n is greater than A, the proportion of those elements s of H 0.XN ;L˝n/
such that s does not project to Epi for any i 2 f1; : : : ; tg is bounded above by

.1 � Bnˇ�1/t � .1 � Bnˇ�1/n


D exp.�BnCˇ�1 C o.nCˇ�1// D o.1/

since  C ˇ � 1 > 0, so that as n goes to infinity, the proportion of those elements
of H 0.XN ;L˝n/ that project to at least one of the Epi goes to 1.

By Proposition 2.15 which we may apply thanks to (5.1), and by (5.2), the proportion of
those elements of H 0

Ar.X ;L
˝n
/ that restrict to Epi for some i 2 f1; : : : ; tg goes to 1 as n

goes to infinity. We claim that these elements satisfy the condition of the proposition we are
proving.

Let p be a prime number that corresponds to a point of S . Let � be a section of L˝n
over X such that the restriction of � to Xp belongs to Ep. Let C be a component of Xp such
that CFp has rC irreducible components, and let Dp be an irreducible divisor of degree at

least rC .nd � nˇ / on C such that � vanishes on Dp.
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We can find an irreducible componentD of div.�/ withDjXp
D Dp. If n is large enough,

we can assume that no component of .Dp/Fp lies on two distinct irreducible components
of CFp—it is enough to require that n is large enough compared to the degree of the residue
fields of the intersection points of any two components of CFp . As a consequence, the degree

of the restriction of Dp to any of the rC components of CFp is at least nd � nˇ . Since XQ is

irreducible, the degree of the restriction of DQ to any component of XQ is at least nd � nˇ

as well, so that the degree of DQ is at least

r.nd � nˇ / D n degLQ � rn
ˇ :

This is what we needed to prove.

5.3. End of the proof

We can finish the proof of Theorem 1.6 in the case where X is an arithmetic surface. We
will state this intermediate result in Proposition 5.10 below. The strategy follows roughly the
outline of the proof of [11, Proposition 4.1] which deals with the corresponding result over
finite fields.

Let � W eX ! X be a resolution of singularities of X . Recall that we denoted by r the
number of irreducible components of XC. Then the complex curve eXC is the disjoint union
of r smooth, connected components.

Define B D ��L: Let ! be the first Chern class of B. Then ! is semipositive. We say that
a hermitian line bundle on eX is admissible if it is !-admissible, and we write cPic!.eX / for the
group of isomorphism classes of !-admissible hermitian line bundles on eX .

We have an exact sequence

0! R! cPic!.eX /! Pic.eX /! 0:

We fix once and for all a subgroup N of cPic!.eX / such that the following conditions hold:

(i) N is a group of finite type;

(ii) N surjects onto Pic.eX / and contains the class of B;

(iii) N \Ker.cPic!.eX /! Pic.eX // has rank 1.

Such a group N certainly exists since Pic.eX / is a group of finite type. Note that these condi-
tions mean that N is a discrete cocompact subgroup of cPic!.eX /. In particular, there exists a
positive constant C such that for any admissible hermitian line bundleM D .M; jj:jj/ on eX ,
there exists a hermitian metric jj:jj0 on M such that .M; jj:jj0/ belongs to N and the norms
jj:jj and jj:jj0 satisfy the inequality

(5.3) C�1jj:jj � jj:jj0 � C jj:jj:

The following result is classical in the geometric setting: big divisors are (rationally) the
sum of ample divisors and effective divisors.

Lemma 5.7. – The hermitian line bundle B satisfies the conditions of Proposition 4.7.
Furthermore, there exists a positive integer k, and line bundles A and E on eX which are ample
and effective respectively, such that

B˝k ' A˝ E :
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Proof. – SinceL is ample, some power ofL is effective, and so is the same power of B. We
also have B:B D L:L > 0: Finally, let M be an effective line bundle on eX , let s be a nonzero
effective section of M, and let D be the divisor of s. Then

B:M D hB.D/ �

Z
eX .C/ log jjsCjj��c1.L/:

Considering an effective section of some power of B that does not vanish along any compo-
nent ofD—which exists since large powers ofL are generated by their effective sections—we
see that first term is nonnegative. The second one is nonnegative as well since c1.L/ is semi-
positive on X . This shows the first statement of the proposition.

Let A be an effective ample line bundle on eX , let � be a section of A and let H be the
divisor of � . LetH 0 be the schematic image �.H/. SinceL is ample, we can find an integer k1
and a nonzero section s1 of L˝k1 that vanishes on H 0. We can write

��s1 D ��1;

where �1 is a section of B˝k1 ˝ A˝�1: Choose a large enough integer k2, and let s2 be a
nonzero section of L˝k2 with small enough norm. Writing �2 D ��s2, we have

��.s1s2/ D ��1�2;

and �1�2 is an effective section of the hermitian line bundle B˝.k1Ck2/˝A˝�1;which proves
the result.

Let ˛ and ˇ be real numbers with 0 < ˇ < ˛ < 1
2

. If n is a positive integer, let H 0n be the

subset of H 0
Ar.X ;L

˝n
/ consisting of those effective sections � of L˝n such that:

(i) � does not vanish on any Weil divisor D of X with hL.D/ � n
˛;

(ii) there exists an irreducible component D of div.�/ such that

deg.DQ/ � n degLQ � rn
ˇ :

Use Lemma 5.7 to find a positive integer k with

B˝k ' A˝ E ;

where A is ample and E is effective.

Lemma 5.8. – The set
S
n>0H

0
n has density 1 in

S
n>0H

0
Ar.X ;L

˝n
/.

Proof. – This is a direct consequence of Proposition 5.1 and Proposition 5.6.

Lemma 5.9. – Let ı;  be any real numbers with 0 < ˇ <  < ı < ˛. Let n be a large
enough integer, and let � be an element of H 0n such that div.�/ is not irreducible. Then we can
find hermitian line bundles L1 and L2 on eX , and sections

�i 2 H
0.eX ;Li /;

i D 1; 2, with the following properties:

(i) L1 and L2 belong to N ;

(ii) jj�i jj1 � en

; i D 1; 2;

(iii) nı � L1:B � nB:B � nı ;
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(iv) L1:A � knB:B;

(v) L1 ˝ L2 ' B˝n;

(vi) up to the isomorphism above, �1�2 D � .

Proof. – Let D be the divisor of ��� . Since the divisor of � is not irreducible, D is not
irreducible either and we can write

D D D1 CD2;

where the Di are nonzero effective divisors on the regular scheme eX such that both Weil
divisors ��.D1/ and ��.D2/ are nonzero. Since div.�/ has an irreducible component of
generic degree bounded below by n degLQ � rn

ˇ , and since

(5.4) degD1;Q C degD2;Q D n degLQ;

we can assume, up to exchanging D1 and D2,

n degLQ � rn
ˇ
� degD1;Q � n degLQ;(5.5)

0 � degD2;Q � rnˇ :(5.6)

We can also assume that no component ofD1 is contracted by the morphism � W eX ! X—
simply by replacing D2 by the sum of D2 and all those contracted components of D1,
which are all supported above closed points of SpecZ. Let Li be the line bundle O eX .Di /
for i D 1; 2. Then we can identify L1 ˝L2 with B˝n, and we can find sections �i of Li with
div.�i / D Di such that � D �1�2.

Recall that we defined! as c1.B/. We consider the norms jj:jj0 with respect to!. Consider
the unique hermitian metric jj:jj�2 onL2 which is admissible with respect to !, scaled so that

jj�2jj�2;0 D 1:

By (5.3), we can find a metric jj:jj on L2 such that L2 WD .L2; jj:jj/ belongs to N and

(5.7) C�1 � jj�2jj0 � C:

Endow L1 with the unique hermitian metric such that

B˝n D L1 ˝ L2
as hermitian line bundles on eX , where we write L1 for the induced hermitian line bundles.
Since B belongs to N by assumption, so do L1 and L2. This makes sure that conditions (i),
(v) and (vi) of the lemma are satisfied.

Since jj� jj1 � 1, we have

(5.8) jj�2jj0 � C jj�1jjj0jj�2jj0 D C jj� jj0 � C:

The inequalities (5.4), (5.6) imply, via Proposition 4.4 the following estimate, since
jj�2jj0 � C

�1 and jj� jj1 � 1:

jj�1jj1 � C
�1.nC2 degLQ/

rnˇ

for some constant C2 depending only on X and L. Similarly, (5.6) and Proposition 4.2 give
us, for some constant C2 depending only on X and L:

jj�2jj1 � CC
rnˇ

1 :
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For any  > ˇ, and any n large enough, this ensures that condition (ii) is satisfied.

We now turn to condition (iii). For i D 1; 2, choose a nonzero effective section si of

some power L˝` of L such that the divisor of ��si has no common component with Di .

Computing the height h
B˝`

.Di / using the section ��si of B˝`, we get:

h
B˝`

.Di / D hL˝`
.��.Di //:

and

h
B˝`

.Di / D ` hL˝`
.��.Di // � `n

˛:

Write

`Li :B D hB˝`.Di / � `
Z
X .C/

log jj�i jj! � `n˛ � `
Z
X .C/

log jj�i jj!

and use log jj�i jj1 � n : We find

(5.9) Li :B � n˛ � n degLQ � n
ı

for any large enough n since ı;  < ˛. Since

L1:B C L2:B D nB:B;

this proves that (iii) holds.

Let us prove condition (iv). Since B˝k is isomorphic to A˝ E , we have

Li :A D kLi :B � Li :E

for i D 1; 2, so that

(5.10) L1:A D kL1:B � L1:E D knB:B � kL2:B � L1:E :

Let � be a nonzero effective section of E , with divisor D� . Then we have

L1:E D hL1.D� / �
Z
eX .C/ log jj� jjc1.L1/:

Since the degree of L1 is nonnegative, the form c1.L1/ is a nonnegative multiple of !, and
since � is effective, we have

�

Z
eX .C/ log jj� jjc1.L1/ � 0:

By assumption, no component of the divisor D1 of �1 is contracted by the resolution � .
Furthermore, the definition of the setH 0n guarantees that if C is any component ofD1, then
the height of ��.C / with respect to L is bounded below by n˛. This implies that if n is large
enough, the divisors D1 and D� have no component in common, so that

hL1.D� / � � degD�;Q log jj�1jj � � degD�;Qn

and, as a consequence,

(5.11) L1:E � �n deg EQ:

Putting the inequalities (5.11) and (5.9) together with (5.10), we obtain

L1:A � knB:B C n deg EQ � k nı :

Since L is ample, B:B D L:L is positive, and since  < ı, this shows that condition (iv) of
the lemma is satisfied as soon as n is large enough.
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We can finally prove the key result of this paper via a counting argument.

Proposition 5.10. – Let X be an integral projective arithmetic surface, and let L be an
ample hermitian line bundle on X . Then the set

f� 2
[
n>0

H 0
Ar.X ;L

˝n
/; div.�/ is irreducibleg

has density 1.

Proof. – Choose ı and  withˇ <  < ı < ˛. Lemma 5.8 shows that the set
S
n>0H

0
n has

density 1 in H 0
Ar.X ;L

˝n
/, so that we only have to prove that the set of those � in

S
n>0H

0
n

with reducible divisor has density 0 in H 0
Ar.X ;L

˝n
/. Let Zn be this set.

Let n be large enough so that Lemma 5.9 applies. To any � in Zn, we can associate
hermitian line bundles L1 and L2, together with respective sections �1 and �2, so that the
conditions .i/�.vi/ of the lemma hold. Since � D �1�2, the data of theLi and �i for i D 1; 2
determine � .

We will give an upper bound for the number of elements � inZn by estimating the number
of possible Li and �i . In other words, we will count the number of triples .L1; �1; �2/, where
L1 is a hermitian line bundle on eX , �1 is a section of L1, and, setting L2 WD B˝n ˝ L˝�11 ,
�2 is a section of L2, so that

(i) L1 and L2 belong to N ;

(ii) jj�i jj � en

; i D 1; 2;

(iii) nı � L1:B � nB:B � nı ;

(iv) L1:A � knB:B.

Below, when using the O notations, implied constants only depend on eX ! X ;L;A; ˛; ˇ; ı;  .

Let L1 be a hermitian line bundle as above, and write i WD L1:B, so that

nı � i � nB:B � nı :

We want to bound the number of sections of L1 that have norm at most en


, that is, the
number of effective sections of L1.n /. First remark that degL1;Q � n degBQ as the degree
of L1;Q and L2;Q are both nonnegative and have sum n degBQ. Furthermore, we have

L1.n /:B D i C nO eX .1/:B D O.n/
since  < ı < 1:

Corollary 4.10 gives us

(5.12) h0Ar.
eX ;L1.n // � .i CKn /2

2B:B
CO.n logn/;

where K is the constant O eX .1/:B.

Similarly, we have

(5.13) h0Ar.
eX ;L2.n // � .nB:B � i CKn /2

2B:B
CO.n logn/:
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Adding (5.12) and (5.13), we find, recalling that 0 <  < 1:

h0Ar.
eX ;L1.n //C h0Ar.

eX ;L2.n // � 1

2
n2B:B �

2i.nB:B � i/
2B:B

C
2K2n2 C 2KB:Bn1C

2B:B
CO.n logn/

�
1

2
n2B:B �

i.nB:B � i/
B:B

CO.n1C /:

Since nı � i � nB:B � nı , we have

i.nB:B � i/
B:B

� n1Cı �
1

B:B
n2ı

and, since 2ı < 1 < 1C  ,

h0Ar.
eX ;L1.n //C h0Ar.

eX ;L2.n // � 1

2
n2B:B � n1Cı CO.n1C /:

We now count the number of possible L1. Let t > 0 be such that O.t/ belong to N .
Let k.n/ be the smallest positive integer such that k.n/t � n . Then the hermitian line
bundle L1.k.n/t/ is effective, belongs to N , and we have

L1.k.n/t/:A D O.n/

since  < 1. As a consequence of Proposition 4.13, this shows that the number of possible
L1—or equivalently, L1.k.n/t/—appearing in the triples above is bounded byO.n�/, where
� is the rank of N .

The estimates above show that we have the following inequality:

log jZnj � O.� logn/C
1

2
n2B:B � n1Cı CO.n1C / D

1

2
n2B:B � n1Cı CO.n1C /:

However, Theorem 2.11, (iii) shows that we have

h0Ar.X ;L
˝n
/ �

1

2
n2L:LCO.n logn/ D

1

2
n2B:B CO.n logn/:

Since ı >  , these two inequalities prove that
S
n>0Zn has density 0 inH 0

Ar.X ;L
˝n
/, which

proves the proposition.

6. Proofs of the main results

The goal of this section is to give a proof of Theorem 1.1. We will deduce it from its special
case Theorem 1.6
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6.1. Proof of Theorem 1.6

We first state the Bertini irreducibility theorem of [11] in the form that we will need.

Theorem 6.1. – Let k be a finite field, and letX be a projective variety over k. LetL be an
ample line bundle overX . LetY be an integral scheme of finite type over k, and letf W Y ! X be
a morphism which is generically smooth onto its image. Assume that the dimension of the closure
of f .Y / is at least 2. Then the set of those � 2

S
n>0H

0.X;L˝n/ such that div.f ��/horiz is
an irreducible Cartier divisor has density 1.

Proof. – This is almost a special case of [11, Theorem 1.6]. There, the result is given when
X is a projective space and L D O.1/. This means that—unfortunately—[11] can formally
only be applied to the situation where L is very ample. However, the proofs of [11] apply
with no change when projective space is replaced by an arbitrary projective scheme with a
distinguished ample line bundle.

A second difference between our statement and that of [11, Corollary 1.4] is that we claim
that we can require div.f ��/ to be irreducible as a Cartier divisor: the underlying scheme
is irreducible and has no multiple component, whereas the statement in [11] only states
irreducibility.

The fact that for a density 1 of � , the divisor div.�/ has no multiple component follows
from arguments in [11]. Indeed, since Y is reduced and k is perfect, there is a dense open
subset U of Y that is smooth over k and such that f jU is smooth onto its image. By [11,
Lemma 3.3], for a density 1 of sections � , all the components of div.f ��/horiz intersect U ,
and by [11, Lemma 3.5], for a density 1 of � , the intersection div.f ��/\U is smooth outside
a finite number of points, so that it does not have any multiple component.

Lemma 6.2. – LetX be a projective arithmetic variety of dimension at least 2, and let L be
an ample hermitian line bundle on X . Then the setn

� 2
[
n>0

H 0
Ar.X ;L

˝n
/; div.�/ has no vertical component

o
has density 1.

Proof. – If X is an arithmetic surface, the result follows from Proposition 5.10. Let d be
the relative dimension of X over SpecZ, and assume that d � 2.

Apply Theorem 2.21 where Y runs through the irreducible components of the fibers of X
over closed points of SpecZ. Since these components have dimension d , we find that for any
small enough " > 0, the proportion of these elements � ofH 0

Ar.X ;L
˝n
/ such that div.�/ has

a vertical component over some prime p with p � exp."n2/ is bounded above by a quantity
of the form

O.exp."n2 � �nd // D o.1/;

as n goes to infinity.

We now show that for most � 2 H 0
Ar.X ;L

˝n
/, div.�/ does not have any vertical compo-

nent above a large prime.
Let C � X be a closed arithmetic curve, flat over SpecZ, such that for any large enough

prime p, the intersection of C with any irreducible component of the fiber Xp of X above p

is nonempty. Let n be a positive integer, and let � be an element of H 0
Ar.X ;L

˝n
/. If div.�/
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does not contain C , and if it has a vertical component above a prime p, then div.�/ and C
intersect at a point above p, so that

nhL.C / D hL˝n.C / � logp:

In particular, for such a � , we have p � exp.nhL.C //:

By Theorem 2.21, the proportion of those � 2 H 0
Ar.X ;L

˝n
/ that vanish on C tends

to 0 as n tends to infinity. In particular, the proportion of those � 2 H 0
Ar.X ;L

˝n
/ such

that div.�/ has a vertical component above a prime p > exp.nhL.C // goes to 0 as n goes to
infinity.

Together with the above estimate, this shows the result.

Proof of Theorem 1.6. – If X is an arithmetic surface, then the result was proved in
Proposition 5.10. Assume that X has dimension at least 3. Let p be a prime number large
enough so that Xp is reduced, and specialization indices a bijection between the irreducible
components of XQ and those of XFp . Let X0;p be an irreducible component of Xp, endowed
with the reduced structure.

Let n be a positive integer, and let � be a global section of L˝n. If D is a horizontal
component of div.�/, then D intersects all components of XQ, so that D intersects X0;p.
This shows that for any section � of L˝n, if div.� jX0;p

/ is irreducible as a Weil divisor, then

div.�/ has a single component that is flat over Z.

Now we have the following results:

(i) the density of those �p 2
S
n>0H

0.X0;p;L˝n/ such that div.�p/ is an irreducible
Cartier divisor is 1;

(ii) the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/ such that div.�/ does not have a vertical

component is 1.

Indeed, (i) follows from Theorem 6.1 with X D Y , and (ii) is Lemma 6.2. By the discussion
above, if � satisfies (i) and (ii), then div.�/ is irreducible. Finally, Corollary 2.18 shows that
the density of those � 2

S
n>0H

0
Ar.X ;L

˝n
/ such that the restriction of � to X0;p satisfies (i)

is 1. This proves the result.

6.2. Proof of Theorem 1.1

In this section, we deduce Theorem 1.4 from Theorem 1.6, following the arguments of [11,
Section 5]. We then prove Theorem 1.1 as a consequence.

In the following, fix a projective arithmetic variety X , together with an ample hermitian
line bundle L.

Lemma 6.3. – Let Y be an irreducible scheme of finite type over SpecZ, together with a
morphism f W Y ! X . Let U be an open dense subscheme of Y . Then for all � in a density 1
subset of

S
n>0H

0
Ar.X ;L

˝n
/, we have the equivalence

div.f ��/horiz is irreducible, .div.f ��/ \ U/horiz is irreducible:
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Proof. – This is analogous to [11, Lemma 3.3]. The implication

div.f ��/horiz is irreducible H) .div.f ��/ \ U/horiz is irreducible

always holds. We prove the reverse implication.
Let D be an irreducible component of Y n U whose image under f is positive-

dimensional—meaning by definition thatD is a component of .YnU/horiz. By Theorem 2.21,
the density of those � 2

S
n>0H

0
Ar.X ;L

˝n
/ that vanish identically on f .D/ is zero.

Now assume that � does not vanish identically along any component of .Y n U/horiz—
this is a condition satisfied by a density 1 set of sections by the paragraph above. Then
any horizontal component of div.f ��/horiz meets U , which implies that the Zariski closure
of .div.f ��/ \ U/horiz is div.f ��/horiz.

In particular, for those � , the implication

.div.f ��/ \ U/horiz is irreducible H) div.f ��/horiz is irreducible

holds.

Lemma 6.4. – Let Y and Z be two irreducible schemes that are flat, of finite type
over SpecZ. Let

� W Y ! Z
be a finite étale morphism, and let

 W Z ! X
be a morphism that has relative dimension s at all points ofZ. Assume that the dimension of the
closure of  .Z/ in X is at least 2. Then for all � in a density 1 subset of

S
n>0H

0
Ar.X ;L

˝n
/,

we have the implication

div. ��/ is irreducible H) div.�� ��/ is irreducible:

Proof. – We follow the argument of [11, Lemma 5.1]. Irreducibility is more difficult to
achieve if we replace Y by a finite cover. As a consequence, we may assume that � is a Galois
étale cover. Let G be the corresponding Galois group. Let m be the dimension of  .Z/.

If z is a closed point ofZ, let jzj be the cardinality of the residue field of z and letFz denote
the conjugacy class in G associated to the Frobenius. We claim that for a density 1 set of � ,
the conjugacy classes Fz cover all conjugacy classes ofG as z runs through the closed points
of div. ��/.

Indeed, let C be such a conjugacy class. LetU be a normal, dense affine open subset ofZ.
By the Chebotarev density theorem of [31, Theorem 9.11] applied to ��1.U / ! U , the
number of closed points z of U with jzj � t and Fz D C is equivalent to

jC j

jGj

t sCm

.s Cm/ log t

as t tends to1. Let EC;t be the set of those z.
By the Lang-Weil estimates, since the fibers of  have all dimension s, the number of

points z with jzj � t in a given fiber of above a closed point is bounded above by a quantity
of the form

˛t s;
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for some positive ˛, so that j .EC;t /j is bounded below by a quantity of the form

ˇ
tm

log t

for some positive ˇ. Note that if x 2  .EC;t /, then jxj � t .

Fix t large enough. Theorem 2.17 shows that the density of those � 2
S
n>0H

0
Ar.X ;L

˝n
/

that do not vanish on any element of  .EC;t / is equal to

…x2 .EC;t /.1 � jxj
�1/ � .1 � t�1/ˇt

m= log t
D exp

�
� ˇ

tm�1

log t
.1C o.1//

�
;

which tends to zero as t tends to1 since m � 2. As a consequence, the density of those �
such that  �� vanishes at a closed point z with Fz D C is 1, which proves the claim.

Now let � 2
S
n>0H

0
Ar.X ;L

˝n
/ such that div. ��/ is irreducible and contains

closed points z such that the Fz cover all conjugacy classes of G. Then ��1div. ��/ D
div.�� ��/ is irreducible. This proves the lemma.

Proof of Theorem 1.4. – We follow the argument of [11, Lemma 5.2]. By Lemma 6.3, we
can replaceY by any dense open subscheme. As a consequence, we can assume that f factors
as

Y � // Z
 
// X ;

where � is finite étale, Z is an open subset of some affine space AsX and  is the projection
onto X—indeed, the function field of Y is a finite separable extension of a purely transcen-
dental extension of the function field of X .

By Lemma 6.3 and Lemma 6.4, for � in a density 1 subset of
S
n>0H

0
Ar.X ;L

˝n
/, the

implication

div.�/ is irreducible H) div.f ��/horiz is irreducible

holds. By Theorem 1.6, the divisor div.�/ is irreducible for � in a density 1 subset ofS
n>0H

0
Ar.X ;L

˝n
/, which proves the result.

Proof of Theorem 1.1. – We first assume that Y is not flat over SpecZ. Then f W Y ! X
factors as

Y
fp
// Xp // X

for some prime number p. By Theorem 6.1, the density of those s 2
S
n>0H

0.Xp;L˝n/
such that div.f �p s/horiz is irreducible is equal to 1. Applying Corollary 2.18 to L."/ proves
the theorem.

We now assume that Y is flat over SpecZ. Let Y 0 be the Zariski closure of f .Y/ in X .
Then Y 0 is a projective arithmetic variety, and the restriction of L to Y 0 is ample by Corol-
lary 2.7. Furthermore, the map fY 0 W Y ! Y 0 is dominant by assumption. Theorem 1.4
guarantees that the density of the set E consisting of those � 2

S
n>0H

0
Ar.Y 0;L

˝n
/ such

that div.f �Y 0�/horiz is irreducible is equal to 1. Applying Corollary 2.18 to L."/ proves the
theorem.
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