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A remark on uniform boundedness for Brauer groups

Anna Cadoret and Frangois Charles

ABSTRACT

The ¢-adic Tate conjecture for divisors on varieties over number fields is equivalent to
the finiteness of /-primary torsion in the Brauer group. We show that this finiteness
is actually uniform in 1-dimensional families for varieties that satisfy the ¢-adic Tate
conjecture for divisors, for example abelian varieties and K3 surfaces.

1. Introduction

1.1. Let k be a field of characteristic p > 0, and let k be a separable closure of k. Let X be
a smooth proper variety over k. For any prime number ¢ # p, consider the cycle class map

c1: Pie(X7) ® Qr — H* (X7, Q(1)).

The absolute Galois group Gal (E/ k:) of k acts naturally on the étale cohomology group
H?(X7,Q(1)), and the image of the cycle class map ¢; is contained in the group

| H(Xp @),
U

where U runs through the open subgroups of Gal (E/ k:) We say that X satisfies the ¢-adic Tate
conjecture for divisors if the image of c; is equal to the group above.

As is well known, the Tate conjecture for divisors is related to finiteness results for the Brauer
group. Indeed, given X and ¢ as above, X satisfies the /-adic Tate conjecture for divisors if and
only if for every subgroup U of finite index in Gal (E/ k:), the group

Br(X7)" ]

is finite.

1.2. In this paper, we investigate whether one might be able to find uniform bounds on the
Brauer groups above when the variety X varies in a family. Following Varilly-Alvarado’s conjec-
tures on K3 surfaces [Varl7, §4], such a question might be regarded as an analogue of results of
Manin [Man69], Faltings—Frey [Fre94], Mazur [Maz77] and Merel [Mer96] on uniform bounds for
the torsion of elliptic curves. Related boundedness results for families of smooth proper varieties
have been developed by Cadoret—Tamagawa [CT12, CT13, CT19, CT16]. It should be noted that
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A REMARK ON UNIFORM BOUNDEDNESS FOR BRAUER GROUPS

all the aforementioned results can only treat the case of 1-dimensional bases. Dealing with the
higher-dimensional case seems to be much harder, as rational points are not well understood on
varieties of dimension at least 2.

The main result of this paper is as follows.

THEOREM 1.2.1. Let k be a finitely generated field of characteristic zero. Let S be a curve
over k, and let m: X — S be a smooth proper morphism. Let £ be a prime number. Then for
every positive integer d, there exists a constant Cy satisfying the following property: for every
field extension k C K C k with degree [K : k] < d and every K-point s such that X, satisfies
the (-adic Tate conjecture for divisors,

|Br(X, ) SO < ¢y

Examples of projective varieties for which the Tate conjecture for divisors is known—and so
for which Theorem 1.2.1 applies—include abelian varieties and K3 surfaces [Fal83, Tat94].

In the case of certain 1-parameter families of abelian and K3 surfaces—which are actually
parametrized by Shimura curves—the theorem above was proved by Varilly-Alvarado—Viray
[VV17, Theorem 1.5, Corollary 1.6]. While their proof relies on deep arithmetic properties of
elliptic curves, Theorem 1.2.1 is derived as a consequence of the results of Cadoret-Tamagawa
in [CT13]. We will also prove a version of Theorem 1.2.1 that does not involve the Tate conjecture;
see Theorem 3.5.1.

Outline of the paper. Section 2 is devoted to some general statements and questions about
Brauer groups and their behavior in families. In Section 3, we prove Theorem 1.2.1 and its
unconditional variant.

Notation. 1If A is an abelian group and n is an integer, we write A[n] for the n-torsion subgroup
of A. If £ is a prime number, we write

Al = hi)nA[E ]
for the ¢-primary torsion subgroup of A and
Ty(A) := lgnA[Z ]

for its ¢-adic Tate module.

Let X be a smooth proper variety over a field k. We write Br(X) for the Brauer group of X,
that is, the étale cohomology group H?(X,G,,), and NS(X) for the Néron—Severi group of X,
that is, the image of Pic(X) in H?(X3, Q¢(1)), where k is a separable closure of k.

2. A question on uniform finiteness for Brauer groups

In this section, we recall the relationship between the Tate conjecture and finiteness of the Brauer
group. While the Tate conjecture is a qualitative statement, finiteness problems can be made
quantitative, which leads us to Question 2.2.1.

2.1. The following proposition provides the basic relationship between the ¢-adic Tate conjec-
ture and finiteness for Brauer groups.
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A. CADORET AND F. CHARLES

Let k be a field of characteristic p > 0. Let X be a smooth proper variety over k. Choose
a prime /¢ different from p. Let B := Br(X7) be the Brauer group of X, and set

Tp=TyB), Vi=Ty®Q, M :=T®QZ¢=Vy|T,.
For every integer n > 0, we can identify M,[¢"] with T'/¢".

The following proposition is well known to experts and can be found in various forms in the
literature; see, in particular, [Tan03], [SZ08, Lemma 2.3], [CS13, Proposition 4.1].

PRroPOSITION 2.1.1. The following assertions are equivalent:
(1) The ¢-adic Tate conjecture holds for divisors on X.
(2) The group BY[¢>] is finite for every open subgroup U C Gal(k/k).
(3) The group M is finite for every open subgroup U C Gal(k/k).
(4) One has T = 0 for every open subgroup U C Gal(k/k).
If these hold, then for every open subgroup U C Gal(E/k‘), one has
(5) |BYIe]] < [M{| + [H (X, Ze(L)) 0]

Proof. We first prove the equivalence of (2), (3) and (4). We can restrict ourselves to the case
where U is normal. More precisely, we show that for any given normal subgroup U C Gal(k / k:),
the following are equivalent:

(2) The group BY[¢>] is finite.
(3) The group MY is finite.
(4) TV =o.
If these hold, one has
(5) |BUIe]| < [ M|+ [H (X, Zo(1)) [€]].
For every positive integer n, the cohomology of the Kummer short exact sequence
1= pm =Gy, = Gy, — 1
induces an exact sequence
0 — NS(X7) ® Z/0" — H* (X7, pen) — BIE"] — 0.

Let K,y and C denote the kernel and cokernel of the natural map Ty — B[¢"]. We get a commu-
tative diagram with exact lines and columns

0 — ("NS(X;) ® Zy — NS(Xz) ® Zg — NS(Xg) © Z/0" 0

0 —=("H? (X3, Zy(1)) —H?* (X, Zo(1)) H (X, puen) H (X, Ze(1)) [0 —0

0 K, T B[] C 0
0 0 0
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A REMARK ON UNIFORM BOUNDEDNESS FOR BRAUER GROUPS

from which the snake lemma ensures that K, = ¢""1,, whence a short exact sequence
0— T, ®Z/" — B[("] — H3 (X7, Z,(1))[¢"] — 0.
Taking inductive limits and identifying Ty ® Z/¢™ ~ M|[¢"], we obtain a short exact sequence
0 — M, — B[(>°] — H*(X7, Ze(1))[£>°] = 0,
and taking U-invariants, we obtain an exact sequence
0 — MY — BY[¢>°] — H3(Xr, Ze(1))V[€>°]. (2.1)

This shows the equivalence (2) < (3) and that, in that case, statement (5) holds. For the
equivalence (3) < (4), let U; C GL(T}) denote the image of U C Gal(k/k) acting on T}, and
consider the exact sequence

01V - VY = MY S H\U,T)).

Since Uy is a compact ¢-adic Lie group, Hl(Ug, Ty) is a topologically finitely generated Z;-module
[Ser64, Proposition 9]. In particular, im(¢) is finite. The conclusion follows from the fact that
either TV = V¥ = 0 or VV/TY is infinite.

Now, assume that X satisfies the (-adic Tate conjecture for divisors. Then, since NS(X7) is
a finitely generated abelian group ([Nér52, Théoreme 2, p. 145, [BJGT 71, Exposé XIII, 5.1]),
we can find an open subgroup Uy of Gal(E/k) such that the action of Uy on NS(Xy) is trivial,
and the map

NS(Xp) ® Qp — H*(X5, Qe(1))Y

is onto for every open subgroup U of Uy. Furthermore, [Tat94, Proposition (5.1)] shows that as
a consequence of the ¢-adic Tate conjecture for X, the exact sequence of U-modules

0 — NS(X7) ® Q¢ — H* (X7, Qu(1)) — Vo — 0

is split, so that the surjectivity above implies VEU = 0. Since T} is a torsion-free Zy-module, this
implies TEU = 0. Since this vanishing holds for any small enough open subgroup U of Gal (E/ k:),
it holds for any open subgroup U of Gal(k/k). This shows the implication (1) = (4). For the
converse implication, let Uy C Gal (E/ k:) be an open subgroup such that

H*(X7,Qq(1))% = U H*(X7,Qq(1)Y.
(Gal(k/k):U]<oo
Since TKUO = 0 implies VZUO = 0, we obtain an isomorphism
(NS(X5) @ Qo) = H?(Xg, Qu(1))™,
hence, a fortiori, an isomorphism NS(X7) ® @g%Hz(XE, Qq(1))Y. O

2.2. With Proposition 2.1.1 in mind, we offer the following question on uniform boundedness
for Brauer groups, which we view as an enhancement of the f-adic Tate conjecture for divisors.
Theorem 1.2.1 settles the case where S is 1-dimensional for those points that satisfy the ¢-adic
Tate conjecture.

Question 2.2.1. Let k be a finitely generated field of characteristic zero, and let ¢ be a prime.
Let S be a quasi-projective variety over k. Let m: X — S be a smooth projective morphism.
Then for any positive integer d, there exists a constant Cy satisfying the following property: for
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A. CADORET AND F. CHARLES

any field extension k C K C k of degree [K : k] < d and any K-point s € S(K), we have
}BI‘(XS E)Gal(%/k) Moo] ‘ <0y,

For d = 1, Question 2.2.1 is closely related to (the ¢-adic Tate conjecture for divisors and) the
Bombieri-Lang conjecture (see, for example, [Bru20, Conjecture 1.8]). More precisely, assuming
that the X, for s € S(k), satisfy the f-adic Tate conjecture for divisors, Question 2.2.1 would
follow from the following Galois-theoretic conjecture. For every integer C' > 1, let S<Y(k) be the
set of all s € S(k) such that the image of Gal(k/k) acting on H?(X5, Q) is open of index at
most C in the image of 71(S), and let SS¢X(k) be the complement of S<C (k) in S(k). Then we
have the following.

CONJECTURE 2.2.2. There exists an integer C' > 1 such that SSX(k) is not Zariski dense in S.

When S is a curve, Conjecture 2.2.2 is a special case of the main result of [CT12]. We explain
the relationship between the general case of Conjecture 2.2.2 and the Bombieri-Lang conjecture.
One can always construct a strictly increasing sequence of integers C,,, for n > 0, and a projective
system

o= Syl =S = Spo1 =

of étale covers of S with the property that the image of S, (k) in S is SSEX(k) (see [CT12,
§3.1.2]). So proving that S<UX(k) is not Zariski dense in S for C large enough amounts to
proving that S, (k) is not Zariski dense in S,, for n > 0. According to the Bombieri-Lang
conjecture, this would follow from the fact that S,, is of general type for n > 0. While the
Bombieri-Lang conjecture is still completely open, proving that .S,, is of general type for n > 0
seems to be a more tractable problem. The projective system (S,) can indeed be regarded as
a generalization of towers of Shimura varieties. In this setting, Brunebarbe recently obtained
an asymptotic hyperbolicity result (implying the general type property); see [Bru20] and the
references therein, as well as [AV18].

As a concrete example, we now explain how a positive answer to the question above in the
case of families of K3 surfaces—for which the Tate conjecture is known—yields a positive answer
to the ¢-primary version of Conjecture 4.6 of Vérilly-Alvarado in [Varl7].

PROPOSITION 2.2.3. Assume that Question 2.2.1 has a positive answer for families of K 3 surfaces.
Let d be a positive integer, and let A be a lattice. Then there exists a positive constant Cy such
that for any degree d number field k with algebraic closure k and any K3 surface X over k with
NS(X7) ~ A, the following inequality holds:

Using Theorem 1.2.1, we see that Proposition 2.2.3 is a consequence of the following result.

PROPOSITION 2.2.4. There exists a positive integer N with the following property: Let A be
a lattice. There exists a smooth projective family of K3 surfaces mpy: X — S over a quasi-
projective base S over QQ, depending only on A, such that given any field k of characteristic
zero with algebraic closure k and any K3 surface X over k with NS(X%) ~ A, there exist an
extension K/k of degree N and a K-point s of S with Xs ~ Xf.

We start with a lemma. If L is a line bundle on a K3 surface X, write ¢;(L) for its class in
NS(X) ~ Pic(X).
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A REMARK ON UNIFORM BOUNDEDNESS FOR BRAUER GROUPS

LEMMA 2.2.5. There exists a positive integer N with the following property: Let A be a lattice.
There exists a positive integer 65, depending only on A, such that for any field k with algebraic
closure k and any K3 surface X over k with NS(X) ~ A, there exist an extension K/k of
degree N and an ample line bundle L on Xy with c1(L)? = 6,.

Proof. Given any integer n, there exist only finitely many finite groups that can occur as sub-
groups of GL,(Z). Since the continuous action of any profinite group on a discrete finitely
generated abelian group factors through a finite quotient, and since the Néron—Severi group of
any K3 surface is free of rank at most 22, this shows that there exist finitely many finite groups
that can occur as the image of Gal(k/k) — NS(Xp) for a K3 surface X over a field k with
algebraic closure k.

In particular, there exists an integer N, independent of X and k, with the following property:
for any k, k and X as above, there exists a Galois extension k C K C k of degree at most N
such that the action of Gal(k/k) on NS(X7) factors through Gal(K/k).

Let X be a K3 surface over a field k with algebraic closure k such that NS(Xz) ~ A. By
[LMS14, Lemma 2.3.2], there exists a constant Cy, depending only on A, such that there exists
an ample line bundle L on X7 with ¢; (L)? = C. Write a = ¢1(L). Then, N being as above, we
can find a Galois extension K of k of degree N such that « is Gal(k/K)-invariant.

Consider the exact sequence coming from the Hochschild—Serre spectral sequence and Hil-
bert’s Theorem 90

0 — NS(Xg) — NS(X;) @ *5) 5 Br(K) — Br(Xk).
The zero-cycle co(X) on X has degree 24 and induces a morphism Br(Xg) — Br(K) such
that the composition Br(K) — Br(Xg) — Br(K) is multiplication by 24. This shows that the
cokernel of the map NS(Xf) — NS(X7)G2!*/K) is killed by 24. As a consequence, we can find a
line bundle L on X with ¢;(L) = 24a.

The pullback of L to Xt is f®24, which is ample. Since ampleness is a geometric property, L
itself is ample. We have ¢;(L)? = 242Cy =: §,, which depends only on A. O

Proof of Proposition 2.2.4. Apply Lemma 2.2.5 to find an integer N such that for X as in the
proposition, there exist an extension K of k of degree N and an ample line bundle L on X with
c1(L)? = §, where § depends only on A.

By Kollar-Matsusaka’s refinement of Matsusaka’s big theorem [KM83], and since the canon-
ical bundle of a K3 surface is trivial by definition, we can find integers ¢« and r, depending only
on A, such that L% is very ample and induces an embedding of X into a projective space of
dimension at most r as a subvariety of degree at most §i>. The existence of the Hilbert scheme
(or the theory of Chow forms) allows us to conclude. t

3. Proof of Theorem 1.2.1 and its unconditional variant
Let k be a finitely generated field of characteristic zero.

3.1. Let S be a smooth, separated and geometrically connected variety over k, with generic
point n. If s is a point of S, we will always write s for a geometric point lying above s.

Let w: X — S be a smooth proper morphism. For every prime /, let
pe: m1(S) = GL(H?(X7, Qe(1)))
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denote the corresponding representation.! Let K be a field, and let s be a K-point of S. We
write 7(s) for the absolute Galois group of K considered with its natural map to m1(S), and we
also write py for the representation of 7 (s) obtained by composing the above with 71 (s) — 71(S).

Let S§™ denote the set of all points s of S with value in a field such that pe(m(s)) is an
open subgroup of pg(m1(S)). Let S§* be the complement of SF™". In other words, SF™ is the
set of points s such that the Zariski closures of py(71(s)) and pg(m1(S)) have the same neutral
component. Note that the generic point 7 always belongs to SF™".

3.2. We start with the following proposition, which will allow us to compare the Galois-invariant
part of Brauer groups of points in S§°".

PROPOSITION 3.2.1. For every s € S§*", the natural specialization maps NS(X5) — NS(X5) and
Br(X7) — Br(Xs) are isomorphisms. In particular, if X, satisfies the (-adic Tate conjecture for
divisors, then Xy satisfies the (-adic Tate conjecture for divisors for all ' € S5,

Proof. For every prime ¢, consider the commutative specialization diagram with exact rows

0 — NS(Xy5) ® Zp — H*( X5, Zp (1)) — Ty (Br(X5)) —= 0

| | |

0 —NS(X5) ® Zp — H*(X5, Zp (1)) — T (Br(Xs)) —0.

By the smooth base change theorem, the middle vertical map is an isomorphism, so that the
leftmost vertical map is injective and the rightmost vertical map is surjective. Since this holds
for every ¢, the specialization map NS(X7) — NS(X5) is injective.

Let U be an open subgroup of p;(m;(s)) acting trivially on NS(X5) and such that NS(X5) ®Z,
injects into H?*(X5,Z,(1))Y. Since s € S5, the subgroup U is open in py(71(S)); hence,

U N pe(m1(S%)) is open in py(mi(S7)) - (3.1)

Choose an embedding k C C. We may assume 5 € S(C). Let [L] € NS(X5), where L is
a line bundle on X5. From (3.1) and comparison between the analytic and étale sites, we see
that the image c; (L) of [L] in H?(X5,Q(1)) is invariant under a finite index subgroup of m; (S¢)
corresponding to a finite étale cover Si of Sc. Fix a smooth compactification YS(EZ of X St
The theorem of the fixed part and the degeneration of the Leray spectral sequence show that
H?(X5,Q(1))™%) is a sub-Hodge structure of H2(Xs, Q(1)) onto which the Hodge structure
H? (YS(/C ,Q(1)) surjects. The semisimplicity of the category of polarized Hodge structures ensures
that ¢1(L) can be lifted to a Hodge class in HQ(YS{C, Q(1)). By the Lefschetz (1,1) theorem, this
implies that some multiple of [L] can be lifted to an element of NS(X35). As a consequence, the
specialization map

has torsion cokernel. Since for any prime number ¢, both cycle class maps to #’-adic cohomology

have torsion-free cokernel (as the f-adic Tate modules are torsion-free), the specialization map
is surjective, so it is an isomorphism.

IThe choice of base points for étale fundamental groups will play no part in what follows; we ignore such choices
systematically and do not mention base points in the notation.
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Finally, for every prime ¢ and positive integer n, consider the specialization diagram

0 —> NS(X3) ® Z/"Z — H2( X, i) — Br(Xy)[¢'s"] — 0

| | |

0 — NS(X5) ® Z/0"Z — H*(X, pgm) — Br(X5)[("] ——0.

Both the leftmost and the middle vertical maps are isomorphisms, so the rightmost one is an
isomorphism as well. Since the Brauer groups are torsion, this proves that the specialization map
on Brauer groups is an isomorphism. This concludes the proof of the first part of the assertion
in Proposition 3.2.1. The second part of the assertion is a formal consequence of the first. O

3.3. For every open normal subgroup U C py(m1(5)), let Sy C S denote the set of all points s
with value in a field such that py(71(s)) D U. The set Sy is well defined since pp(m1(s)) is well
defined up to conjugation by an element of py(m1(5)) and U is normal in py(m1(S)). By definition,
Sy C SF" and SF™ is the union of the Sy as U runs through all normal open subgroups of

pe(m1(S))-
PROPOSITION 3.3.1. Let U C p;y(m1(S)) be a normal open subgroup.

(1) If there exists an sg € S§™ such that the variety X, satisfies the (-adic Tate conjecture for
divisors, then for every s € Sy, there exists a constant Cy > 1 such that

|Br(X5)™ &[] < Cp .

(2) Assume that the Zariski closure Gy of py(m1(S)) is connected. Then there exists a constant
Cy > 1 such that for every s € Sy,

[Br(X5)™ )6 : Br(Xy)™ )] < Gy

Proof. Write B = Br(X5), Ty = Ty(B), Vo = Ty ® Q¢ and My, = V; /1.

By the second part of Proposition 3.2.1 and Proposition 2.1.1, the group BY[¢*] is finite.
By the first part of Proposition 3.2.1, the specialization map B — Br(X5) is an isomorphism,
which is obviously Galois equivariant. In particular, since py(71(s)) contains U, we have a natural
injection

Br(X5)™ &) [¢°] < BY[¢>].
This shows statement (1).
Let s € Sy. From the exact sequence (2.1), we find

0 — M7 ) o pmE ] BmS ] 5 Q - 0,

where @ is a subquotient of H3(Xz,Z,(1))[¢*°] and M7Tl /M7r1 injects into M, /M7r1 by
the definition of Sy. In particular, statement (2) follows from Lemma 3.3.2 below. O

Let T be a free Zyp-module of rank r, and let II be a closed subgroup of GL(T"). Write again
V=T®Q and M =T & Qy/Z¢ ~ V/T For any positive integer n, we can identify M[¢"] with
T ® Z/"Z. Let Gy denote the Zariski closure of II in GL(V').

LEMMA 3.3.2. Assume that Gy is connected. Then for every normal open subgroup U C 11, the
index of MY in MV is finite.

Note that the assumption that Gy is connected is necessary, as can be shown by considering
the r = 1 case with II acting through a finite quotient and U being trivial.
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Proof. Since Gy is connected, we have VUV = Vil and TV = TN VY = TN VT = T The
commutative diagram with exact lines

0—— yi/7n MLy, T)
L
0—— VU1V MU L HY(U, T)

yields an isomorphism

MY /MM ~ im(8y) /im(6yp o res) .
In particular, the group MY /MU is a quotient of im(d;;), and the conclusion follows from the
fact that im(dy) is finite as a torsion submodule of HY(U, T). O

3.4. For every positive integer d, define

Write Sggegd and Sy ; accordingly. The following key result is a reformulation of [CT13, Theo-
rem 1.1 and Remark 3.1.2(1)].

Fact 3.4.1. Assume that S is a curve. Then for every positive integer d, the image of S7°C; in S
is finite, and there exists an open subgroup Uy of pg(m1(S)) such that Sggegnd C Su,-

Proof of Theorem 1.2.1. Without loss of generality, we may replace k with a finite field extension
and S with its reduced subscheme. Also, by Proposition 2.1.1, we may replace S with an open
subscheme. Working separately on each connected component, we may assume that S is a smooth,
separated and geometrically connected variety over k. Let Uy be an open subgroup of pg(m(S))
as in Fact 3.4.1. Let s € S¢4 be such that X satisfies the ¢-adic Tate conjecture for divisors.

If s € S, then Fact 3.4.1 and Proposition 3.3.1(1) yield [Br(X5)™®)[¢>]| < Cy, for some
constant Cpy, depending only on Uy.

If s € 57, then, by Fact 3.4.1, there are only finitely many possibilities for the image sq of s
in S. Since py(m1(sp)) is an f-adic Lie group, it has only finitely many open subgroups of index
at most d. The intersection of all these open subgroups is an open subgroup Uy(sg) contained
in pg(m1(s)). By construction,

Br(X5)™®)[£>°] ¢ Br(Xg)Va(0)[¢>].
From Proposition 2.1.1 applied to Xj,, it follows that Br(Xz)Y4(s0)[¢>] is finite. O

3.5. Using statement (2) of Proposition 3.3.1 instead of statement (1) in the proof above, one
obtains the following unconditional variant of Theorem 1.2.1.

THEOREM 3.5.1. Let k be a finitely generated field of characteristic zero, and let S be a quasi-
projective curve over k. Let w: X — S be a smooth proper morphism. Then for every prime £
such that the Zariski closure of the image of m(S) acting on H?( X7, Qy(1)) is connected and for
every positive integer d, there exists a constant Cy satisfying the following property: for every
s € szld,

[Br(X5)™®)[0>] : Br(X7)™ & [¢=]] < Cy.
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