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Abstract
Let E and E 0 be two elliptic curves over a number field. We prove that the reduc-
tions of E and E 0 at a finite place p are geometrically isogenous for infinitely many
p, and we draw consequences for the existence of supersingular primes. This result is
an analogue for distributions of Frobenius traces of known results on the density of
Noether–Lefschetz loci in Hodge theory. The proof relies on dynamical properties of
the Hecke correspondences on the modular curve.

1. Introduction
The goal of this article is to prove the following theorem. Say that two elliptic curves
over a field k are geometrically isogenous if they are isogenous over an algebraic
closure of k.

THEOREM 1.1
Let k be a number field, and let E and E 0 be two elliptic curves over k. Then there
exist infinitely many finite places p of k such that the reductions Ep and E 0p of E and
E 0 modulo p are geometrically isogenous.

If k is the function field of a curve over a finite field and E;E 0 are both non-
isotrivial elliptic curves, then the analogous result is proved in [7, Proposition 7.3]—
the situation there is quite different due to the existence of the Frobenius morphism
on the base. Using Faltings’s isogeny theorem (see [16]) and the Cebotarev density
theorem, it is possible to show that if E and E 0 are not themselves geometrically
isogenous, then—after replacing k by a finite extension—the density of such primes
p is zero.

The above result is an arithmetic analogue of the following Hodge-theoretic the-
orem due independently to [29, Proposition 17.20] and [25] (see also [5]). If H is a
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Hodge structure of weight 2, then let �.H/ be the Picard number of H , that is, the
rank of the group of Hodge classes—integral classes of type .1; 1/—in H .

Let� be the unit disk in C, and letH be a nontrivial variation of Hodge structures
of weight 2 over � with Hodge number h2;0 D 1. Let M be the minimal value of the
integers �.Hs/ for s in �. Then the Noether–Lefschetz locus

NL.H/ WD
®
s 2�;�.Hs/ >M

¯
is dense in �. Note, however, that �.Hs/DM if s is very general in �.

In the arithmetic setting, � is replaced by a suitable open subset of the spec-
trum of the ring of integers in a number field k. In that setting, variations of Hodge
structures are replaced by representations of the absolute Galois group Gk of k, and
the Noether–Lefschetz locus is replaced by the set of primes at which some power
of the Frobenius has invariants which do not have a finite orbit under the whole
group Gk . Theorem 1.1 then deals with the Galois representation Hom.H 1.Ek;Z`/;

H 1.E 0
k
;Z`//. Indeed, by a theorem of Deuring [13], the reductions of E and E 0 at

a prime p are geometrically isogenous if and only if some power of the Frobenius at
p fixes a nonzero element of Hom.H 1.Ek;Z`/;H

1.E 0
k
;Z`//. Since we do not know

of an analogue of the Hodge-theoretic argument in this setting, let us offer a different
heuristic for Theorem 1.1.

Assume for simplicity that k is the field Q of rational numbers and that E
does not have complex multiplication. Then the Sato–Tate conjecture (now a theo-
rem proved in [4], [8], [21], [28] over totally real fields; see also [2], [3] for related
developments) predicts that as p varies among the prime numbers, the traces tp of the
Frobenius at p are roughly equidistributed between�2

p
p and 2

p
p. Assume that the

same holds for the traces t 0p associated to E 0, and that E and E 0 are not geometrically
isogenous. Then one might expect (see [20] for the case of totally real fields) that the
distributions of the tp and t 0p are independent, so that the probability that tp is equal
to t 0p is of the order of 1p

p
. By Tate’s isogeny theorem [27], tp and t 0p are equal if and

only if the reductions of E and E 0 modulo p are isogenous. Since the sum over all
prime numbers p of the 1p

p
diverges, it might be expected that there exist infinitely

many primes p such that the reduction of E and E 0 modulo p are isogenous.
It seems very difficult to turn the heuristic we just described into a proof. While

our proof of Theorem 1.1 can likely be made effective, the lower bounds on the num-
ber of p satisfying the conclusion is very far from the bounds that could be expected
from the discussion above. The techniques we use here are much easier than the ones
used in the aforementioned proof of the Sato–Tate conjecture. However, we empha-
size that Theorem 1.1 does not entail any assumption on the base field nor on the
existence of places of multiplicative reduction for E or E 0.
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Theorem 1.1 has consequences for the reduction modulo different primes of a
single elliptic curve.

COROLLARY 1.2
Let k be a number field, and let E be an elliptic curve over k. Then at least one of the
following statements holds.
(1) There exist infinitely many places p of k such that E has supersingular reduc-

tion at p.
(2) For any imaginary quadratic number fieldK , there exist infinitely many places

p of k such that the reduction of E modulo p acquires complex multiplication
by K after a finite extension of the ground field.

Recall that an elliptic curve over a finite field either has complex multiplication
by a quadratic imaginary field or is supersingular. A folklore expectation, related to
the Lang–Trotter conjecture (see [23]), is that both statements of the corollary above
should hold unless E has complex multiplication. The existence of infinitely many
supersingular primes has been addressed by Elkies [15], who managed to prove that
statement (1) is always true when k admits a real place. Very little seems to be known
about (2) or the general case of (1).

Our proof of Theorem 1.1 relies on the Arakelov geometry of the moduli space
of elliptic curves. The basic strategy is very simple: given a positive integer N , the
set of finite places p of k such that the reductions Ep and E 0p of E and E 0 modulo p

are related—after some base field extension—by a cyclic isogeny of degree N can be
expressed as the image in SpecZ of the intersection of an arithmetic curve in P1

Z
�P1

Z

with the graph of a Hecke correspondence tN . We need to show that we can obtain
infinitely many places this way as we let N vary.

Instead of the set-theoretic intersection, we can consider the intersection number
in the sense of Arakelov geometry. Knowing the height of the modular curves by work
of Cohen [10] and Autissier [1] makes it possible to show that the order of magnitude
of this intersection number is N logN , assuming that N has few prime factors for
simplicity. This reduces the proof of the theorem to bounding the local intersection
numbers at all places of k—finite or infinite. This turns out to be, in various forms, a
manifestation of the ergodicity of Hecke correspondences as proved in [9], though it
does not seem to follow directly from it.

As this sketch might suggest, our method of proof is related to the techniques of
Gross and Zagier in their celebrated result (see [19]). Instead of computing intersec-
tions of Hecke orbits for Heegner points, we are giving estimates for similar inter-
section numbers at arbitrary points of the modular curve. Our task is made much
simpler technically by the fact that we do not need to prove exact formulas for inter-



2042 FRANÇOIS CHARLES

section numbers on modular curves. As will be apparent in the article, our proof of
Theorem 1.1 should generalize to similar statements regarding the behavior of Hecke
correspondences on Shimura curves.

Our article has the following organization. Section 2 is devoted to setting up
notation and proving some basic—and certainly well-known—lemmas. In Section 3,
we show how Corollary 1.2 can be deduced from the main theorem, and we reduce
the main theorem to local statements. Sections 4 and 5 are devoted to the proofs of
these local statements.

2. Notation and preliminary results

2.1. Notation
Let X.1/ be the coarse moduli scheme of generalized elliptic curves as defined in
[12]. It is a smooth arithmetic surface over SpecZ. The modular invariant j provides
an isomorphism

j WX.1/! P1
Z
:

Let H be the Poincaré half-plane, and let H be the union of H with the set of cusps
Q [ ¹1º. There is a canonical isomorphism between the Riemann surfaces X.1/C
and H=�.1/. We will denote by � the standard coordinate on H. Let N be a positive
integer, and let X0.N / be the Deligne–Rapoport compactification of the coarse mod-
uli scheme which parameterizes cyclic isogenies of degreeN between elliptic curves.
It is a normal arithmetic surface over SpecZ. The two tautological maps from X0.N /

to X.1/ induce a self-correspondence tN of X.1/, called the Hecke correspondence
of orderN . Define eN DN…pjN .1C

1
p
/, where p runs over the prime divisors ofN .

The Hecke correspondence tN has bidegree .eN ; eN /.
Let M be the line bundle of modular forms of weight 12 on X.1/. The modular

form

�.�/D .2�/12q…n�1.1� q
n/;

with q D e2i�� induces a global section of M. It has a zero of order 1 at the cusp
j�1.1/ and does not vanish anywhere else. As a consequence,� induces an isomor-
phism j �O.1/

�
!M.

If t 2C, then the modular form .t � j /� induces a global section of MC that has
a zero of order 1 at j�1.t/ and does not vanish anywhere else. More generally, let Y
be a horizontal divisor of relative degree d on X.1/ with YC D

P
i niyi , and assume

that no yi is a cusp. Then the modular form …i Œ.j.yi /� j /��
ni is a section of M˝d

with divisor Y .
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The Petersson metric on modular forms induces a Hermitian metric k � k on MC

such that ���.�/��D ˇ̌�.�/ˇ̌ˇ̌Im.�/ˇ̌6;
where j � j is the usual complex norm. This metric is L21-singular along the cusp
j�1.1/, following the terminology of [6, Section 3]. The line bundle M endowed
with the Petersson metric on MC is a Hermitian line bundle M on X.1/.

When working with fields equipped with a non-Archimedean valuation such that
the residue field has characteristic p > 0, we will often use the absolute value j � j such
that jpj D p�1 and the valuation v such that v.p/D 1. We will say that this absolute
value (resp., valuation) is normalized.

2.2. Intersection theory on modular curves
We will use generalized Arakelov intersection theory for arithmetic surfaces as in [6]
(see [6, Section 5] for the definitions and notation we are using; see also [1] for the
specific case we are considering). The height function with respect to M is denoted
by hM , and arithmetic degrees are denoted by ddeg. The starting point of the proof
is the formula giving the height of Hecke correspondences. The following is in [1,
Théorème 3.2] and was also proved in [10].

THEOREM 2.1
Let k be a number field with ring of integers Ok . Let Y be a horizontal 1-dimensional
integral subscheme of X.1/Ok such that YC does not meet j�1.1/. Let d D
Œk.Y / W k�. Then, as N goes to infinity, we have

hM.tN�Y /� 6dŒk WQ�eN log.N /: (2.1)

The estimate above can be rephrased in terms of intersections of divisors on
X.1/Ok . Let k be an algebraic closure of k. Let P D

P
i niPi be a zero-cycle on

X.1/Ok , where the Pi are closed points. The arithmetic degree of P is defined as

ddeg.P /D
X
i

ni logN.Pi /;

where N.Pi / is the cardinality of the residue field of Pi . Let Y and Z be two divisors
in X.1/. The arithmetic degree ddeg.Y:Z/ is defined as the arithmetic degree of the
intersection 0-cycle Y:Z.

Finally, let � be an embedding of k into C. If Z is any purely horizontal divisor
on X.1/Ok , then write ZC D

P
i niQi with Qi 2X.1/.C/. Assume that j.Qi /¤1

for all i , and let zi D j.Qi / 2C� P1.C/. Let d 0 be the sum of the ni . We denote by
s�Z the global section of M˝d

0

C
such that
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s�Z.�/D…i

��
zi � j.�/

�
�.�/

�ni :
Then the sections s�Z , as � varies through all embeddings of k into C, extend to a
section sZ of M˝d

0

over X.1/Ok . If Y is any purely horizontal divisor on X.1/ with
YC D

P
j mjPj , then write

s�Z.Y /D…j s
�
Z.Pj /

mj :

Let �1; : : : ; �r1 be the real embeddings of k, and let �r1C1; �r1C1; : : : ; �r1Cr2 ;
�r1Cr2 be the complex embeddings of k. We extend the �i to embeddings k!C. As
usual, set "i D 1 if 1� i � r1 and "i D 2 if r1 C 1� i � r1 C r2. Using the sections
s�Z to compute heights with respect to M, Theorem 2.1 gives the following.

COROLLARY 2.2
Let Y and Z be two purely horizontal divisors on X.1/Ok of relative degree d and
d 0, respectively. Assume that Y is effective and irreducible and that for any positive
integer N , the divisors tN�Y and Z do not have any common component. Then, as
N goes to infinity, we have

ddeg.Z:tN�Y /�
r1Cr2X
iD1

"i log
��s�iZ .tN�Y /��� 6dd 0Œk WQ�eN log.N /:

3. Local statements and proof of the main results
In this section, we reduce the proofs of Theorem 1.1 and Corollary 1.2 to local state-
ments which provide estimates for the terms appearing in Corollary 2.2. The proof of
these local estimates will be the core of the article.

Let us briefly explain the motivation for the estimates below. We will prove The-
orem 1.1 by showing that, for suitable large N , each individual local term in Corol-
lary 2.2 is negligible before the right-hand side, which is of the order of eN log.N /.
Let us consider the Archimedean term as an example. Let z and y be two complex
numbers that we consider as complex points of X.1/. If N is a positive integer, then
write the Hecke orbit of y, tN�y, as

tN�y D j.�1/C � � � C j.�eN /;

where the �i ’s belong to the Poincaré upper half-plane H. We are interested in com-
paring the quantity

eNX
iD1

log
�ˇ̌
z � j.�i /

ˇ̌���.�i /��� (3.1)

to eN log.N / as N goes to infinity.
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The equidistribution of Hecke points as proved in [9] suggests that the sum above
should be compared to the integral

eN

Z
�nH

log
�ˇ̌
z � j.�/

ˇ̌ˇ̌
�.�/

ˇ̌ˇ̌
Im.�/

ˇ̌6�dx dy
y2

;

with � D x C iy and � D PSL2.Z/. It is readily checked that the latter integral con-
verges, which suggests that the sum (3.1) is negligible before eN log.N /. The argu-
ment above is not correct, as the function we are integrating has a singularity at the
point j�1.z/. However, what the above computation shows is that the estimate we
are interested in amounts to controlling the best approximations of z by points in the
Hecke orbit of y. It might be possible to extend the estimates we obtain here so as to
study the behavior of the sum .3.1/, but we will be content with weaker estimates. In
the following, we write jtN�yj to denote the support of the Hecke orbit of y.

The three propositions below contain the estimates that allow the argument above
to go through. The first one deals with the places of bad reduction. From now on, we
identify X.1/ and P1

Z
via the j -invariant when convenient; in particular, we see k as

a subset of X.1/.k/ for any field k.

PROPOSITION 3.1
Let j � j be a non-Archimedean normalized absolute value on Q, and let C be the com-
pletion of Q with respect to j � j. Let y and z be two distinct points of C �X.1/.C /.
Assume that jyj> 1. Then there exists a positive integer n such that for any positive
integer N which is not a perfect square and is prime to n, the following inequality
holds:

8˛ 2 jtN�yj; max
�
1; jz�1 � ˛�1j

�
�max

�
1; jz�1j

�
: (3.2)

The following result should be seen as a very weak equidistribution result for
Hecke correspondences. For Archimedean valuations, it follows from [9]. For non-
Archimedean valuations and supersingular reduction, equidistribution has been
proved by Fargues (unpublished). For lack of reference, we provide a self-contained
argument for our easier result.

PROPOSITION 3.2
Let j � j be an absolute value on Q with residual characteristic p � 0, which we assume
to be normalized in the non-Archimedean case, and let C be the completion of Q with
respect to j � j. Let y and z be two distinct points of C � X.1/.C /. If the absolute
value j � j is not Archimedean, then assume furthermore that jyj � 1. Let "1 and "2 be
two positive real numbers. Then there exists a positive constant 	 such that, letting

By;z D
®
N 2N n .pN/;

ˇ̌®
˛ 2 jtN�yj; jz � ˛j � 	

¯ˇ̌
� "1eN

¯
;
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where elements in the Hecke orbit of y are counted with multiplicity, then the upper
density of By;z is at most "2; that is,

lim sup
n!1

1

n

ˇ̌
By;z \ ¹1; : : : ; nº

ˇ̌
� "2:

The last result goes beyond equidistribution. It shows that there cannot exist too
many Hecke orbits that contain very good approximations of a given point.

PROPOSITION 3.3
Let j � j be an absolute value on Q with residual characteristic p � 0, and let C be the
completion of Q with respect to j � j. Let y and z be two distinct points of C �X.1/.C /
such that y is not the j -invariant of a CM elliptic curve. If the absolute value j � j is
not Archimedean, then assume that it is normalized and that jyj � 1. LetD be a large
enough integer depending on y, z, and the chosen j � j, and define

SDy;z D
®
N 2N n .pN/

ˇ̌
9˛ 2 jtN�yj; j˛ � zj �N

�D
¯
:

Then

lim
n!1

1

n

ˇ̌
SDy;z \ ¹1; : : : ; nº

ˇ̌
D 0:

Remark 3.4
It is possible to give an explicit bound on D; for example, D � 20 suffices in the
Archimedean case (see Propositions 5.16 and 5.22).

The three propositions above will be proved in the next section. We now explain
how they imply the main results of the article.

Proof of Theorem 1.1
We argue by contradiction and assume that there are only finitely many places p of k
as in Theorem 1.1. In particular, E and E 0 are not geometrically isogenous. We can
and will assume that E does not have complex multiplication—if both curves have
complex multiplication, the theorem is clear as there exist infinitely many primes of
supersingular reduction for both E and E 0 and any two supersingular elliptic curves
are geometrically isogenous.

Let S be a finite set of finite places of k containing the places p such that the
reductions of E and E 0 modulo p are smooth and geometrically isogenous as well as
the places of bad reduction for E or E 0. Up to enlarging k, we can assume that the
only places of bad reduction for E or E 0 are the places of multiplicative reduction.

Let y (resp., z) be the rational point of X.1/k corresponding to E (resp., E 0).
Let Y and Z be the Zariski closures of y and z in X.1/Ok , respectively. Let N be a
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positive integer. Since E and E 0 are not geometrically isogenous, Z and tN�Y have
no common component. By definition of tN , the geometric intersection points of Z
and tN�Y correspond precisely to the pairs consisting of a finite place p of k such
that there exists a cyclic isogeny of degree N between E�.p/ and E 0

�.p/
, where 
.p/

is an algebraic closure of the residue field of p.
We use the notation of Corollary 2.2 and get, as N goes to infinity,

ddeg.Z:tN�Y /�
r1Cr2X
iD1

"i log
��s�iZ .tN�Y /��� 6Œk WQ�eN log.N /:

Write Z:tN�Y D
P
i niPi , where the Pi are closed points of X.1/Ok . If p is a

finite place of k, then let us write degp.Z:tN�Y / for the sum
P
i ni logN.Pi / where

Pi runs through the closed points lying over p. By definition of S , we have that
degp.Z:tN�Y /D 0 if p does not belong to S . As a consequence, we get, as N goes
to infinity

X
p2S

degp.Z:tN�Y /�

r1Cr2X
iD1

"i log
��s�iZ .tN�Y /��� 6Œk WQ�eN log.N /: (3.3)

Given p in S , let j � jp be the corresponding normalized, non-Archimedean
absolute value on Q. If i is an integer between 1 and r1 C r2, then let j � ji be an
Archimedean absolute value on Q extending the absolute value on k defined by the
embedding �i of k in C. We restrict our attention to those integersN which are prime
to the residual characteristic of the p 2 S . Let p be an element of S . We have

degp.Z:tN�Y /D
X

˛2jtN�yj

log
j˛ � zjp

Max.1; j˛jp/Max.1; jzjp/
:

Here tN�y is seen as a set of eN distinct Q-points of X.1/—recall that E does not
have complex multiplication.

For any ˛ 2 jtN�yj, the valuation of y with respect to p is negative if and only if
the valuation of ˛ is. As a consequence, the above formula specializes to

degp.Z:tN�Y /D
X

˛2jtN�yj

Max
�
0;� log j˛ � zjp

�

if the valuation of y is nonnegative, and to

degp.Z:tN�Y /D
X

˛2jtN�yj

Max
�
0;� log j˛�1 � z�1jp

�

if the valuation of y is negative.
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Let A be the finite set consisting of the absolute values j � jp for p 2 S and of
the Archimedean absolute values j � ji . We apply Propositions 3.1, 3.2, and 3.3 to the
absolute values in A simultaneously. Let " be a positive real number that we will take
to be small enough. We first apply Proposition 3.1 simultaneously to the set Amult of
those non-Archimedean absolute values j � ja in A for which jyja > 1. We can find an
integer n such that if N is any positive integer which is not a square and is prime to
n, then

8˛ 2 jtN�yj; jz
�1 � ˛�1ja � jz

�1ja

for any non-Archimedean absolute value j � ja in Amult.
We now consider the absolute values j � ja that are Archimedean or satisfy

jyja � 1. Applying Proposition 3.2 to those simultaneously, we can find a positive
constant 	 and a set of integers B of upper density at most " such that for any j � ja
as above, and any positive integer N prime to the residual characteristic of j � ja, we
have

N …B H)
ˇ̌®
˛ 2 jtN�yj; jz � ˛ja � 	

¯ˇ̌
� "eN :

Finally, applying Proposition 3.3, for any D large enough and any of the finitely
many absolute values j � ja in A that are Archimedean or non-Archimedean and satisfy
jyja � 1, and taking into account that in the proposition we only considered those N
that are prime to at most jAj different primes, we have

lim sup
n!1

1

n

ˇ̌®
1�N � n

ˇ̌
8˛ 2 jtN�yj;8a 2Aj˛ � zja �N

�D
¯ˇ̌
�

1

2jAj
:

The discussion above shows that we can find infinitely many positive integers N
satisfying the following three properties:
(1) for any absolute value j � ja in Amult and any ˛ in tN�y, we have

jz�1 � ˛�1ja � jz
�1jaI

(2) for any absolute value j � ja in A nAmult, we haveˇ̌®
˛ 2 jtN�yj; jz � ˛ja � 	

¯ˇ̌
� "eN I

(3) for any absolute value j � ja in A nAmult and any ˛ in tN�y, we have

j˛ � zja �N
�D:

Let us spell out the consequences of these estimates for the intersection numbers
we are considering. Let j � ja be an absolute value in A. If j � ja is in Amult, then we can
write
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degp.Z:tN�Y /D
X

˛2tN�y

Max
�
0;� log j˛�1 � z�1ja

�
� eN log jzj: (3.4)

If j � ja is non-Archimedean and does not belong to Amult, then we have

degp.Z:tN�Y /D
X

˛2tN�y

Max
�
0;� log j˛ � zjp

�
� eN log.	�1/C "eND log.N /: (3.5)

If j � ja is Archimedean and corresponds to an embedding � of k in C, then choose,
for each ˛ in the N th Hecke orbit of y, an element �˛ 2H such that j.�˛/D �.˛/.
We have

log
��s�Z.tN�Y /��D X

˛2jtN�yj

log
�
j˛ � zja

���.�˛/���:
As the imaginary part of �˛ tends to1, the expression log.j˛ � zjak�.�˛/k/ tends
to 1 as well. Choose a compact set K 2 C such that log.j˛ � zjak�.�˛/k/ � 0 for
any ˛ outside K . Then we have

log
��s�Z.tN�Y /��� X

˛2jtN�yj\K

log
�
j˛ � zja

���.�˛/���

D
X

˛2jtN�yj\K

log
�
j˛ � zja

�
CO.eN /:

Going back to the above estimates, we find that

log
��s�Z.tN�Y /����"eND log.N /C .1� "/eN log.	/CO.eN /: (3.6)

We now plug in the estimates (3.4), (3.5), and (3.6) in the global degree estimate
(3.3) to find—after dividing by eN , comparing the higher order terms, and noting that
the "i are either 1 or 2—that

6Œk WQ��
�
jS nAmultj C 2.r1C r2/

�
"D: (3.7)

Since " can be chosen arbitrarily small, this is a contradiction.

Proof of Corollary 1.2
Assume that E has only finitely many places of supersingular reduction. Let K be an
imaginary quadratic extension of Q. We need to show that there exist infinitely many
places p of k such that the reduction of E modulo p has complex multiplication byK
after some finite extension of the ground field.
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Up to enlarging k, we can find an elliptic curve E 0 defined over k with complex
multiplication byK . If p is any place of k, then the reduction of E 0 modulo p is either
a supersingular elliptic curve or has complex multiplication by K . Since E has only
finitely many supersingular reductions, Theorem 1.1 applied to E and E 0 gives the
result.

4. Basic estimates
The goal of this section is to prove Proposition 3.1 and Proposition 3.2. The (more
involved) study of good approximations at the places of good reduction will be dealt
with in the next section.

4.1. Multiplicative reduction
We prove Proposition 3.1. It is a consequence of the following more precise result,
the proof of which is essentially contained in [26, Proposition 2.1].

PROPOSITION 4.1
Let v be a non-Archimedean valuation on Q, and let C be the completion of Q at v.
Let x be a rational number and write x D a

b
, where a and b are relatively prime

integers. Let E be an elliptic curve over C , and assume that v.j.E// is negative.
Write v.j.E//D c

d
, where c and d are relatively prime integers. Let N be a positive

integer such that
(1) N is not a perfect square;
(2) N is prime to abcd .
Let E 0 be the quotient of E by a subgroup of order N . Then

v
�
j.E 0/

�
¤ x:

Proof
Since the valuation of j.E/ is negative, E is isomorphic to a Tate curve. Thus, as
rigid analytic spaces,

E.C/'
C �

qZ

for some q 2 C �, with

v.q/D�v
�
j.E/

�
:

Let N be any positive integer. Let � be an N th root of q, and let ! be a primitive N th
root of unity. Then the subgroups of E of order N are of the form

!tZ.!s�r/Z

qZ
;
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where r , s, and t are positive integers such that rt DN and s < t . As in [26, Propo-
sition 2.1], the map x 7! xr induces an isomorphism

C �

!tZ.!s�r/Z
'

C �

.!s�r/rZ
D

C �

.!rs�r
2
/Z

so that the valuation of j.E 0/ is

v
�
j.E 0/

�
D�v.!rs�r

2

/D�
r2

N
v.q/D

r

t
v
�
j.E/

�
:

Now we can assume that N satisfies the assumptions of Proposition 4.1 and that
v.j.E 0//D x. This means that

rbc D tad:

Since N D rt is prime to abcd , this implies that r D t , which is a contradiction since
N is not a square by assumption.

Proof of Proposition 3.1
Let v be the valuation corresponding to the absolute value j � j. Let E be an elliptic
curve over C with j.E/D y, and let x be the valuation of z. With the notation of
Proposition 4.1, let nD abcd . Then if N is any positive integer prime to n which is
not a perfect square, then Proposition 4.1 shows that any ˛ in jtN�yj satisfies v.˛/¤
x D v.z/. As a consequence, we have

jz�1 � ˛�1j � jz�1j:

This proves the result.

4.2. Equidistribution
The goal of this section is to prove Proposition 3.2. We use the notation of the propo-
sition. If the absolute value j � j is Archimedean, then the result follows from the main
theorem of Clozel, Oh, and Ullmo [9].

We now assume that j � j is non-Archimedean. Let p be the residue characteristic.
The assumptions on y and z ensure that we can find a complete discrete valuation ring
W whose fraction field is a subfield of C , and whose residue field is an algebraically
closed field of characteristic p, as well as two elliptic curves E and E 0 over W such
that j.E/ D y and j.E 0/ D z. Let � be a uniformizing parameter of W . If n is a
nonnegative integer, then let Wn be the ring Wn D W=�nC1. Let v be the additive
valuation on W such that v.�/ D 1. Since the valuation of y is nonnegative, so is
the valuation of any ˛ in a Hecke orbit of y. If the valuation of z is negative, this
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implies jz � ˛j D jzj and the result follows. As a consequence, we can assume that
the valuation of z is nonnegative.

Denote by Hn the group

Hn DHomWn.E;E
0/

that consists of morphisms from the reduction of E modulo �nC1 to that of E 0.
The restriction maps HnC1 ! Hn are injective for any n � 0 (see, e.g., [11, The-
orem 2.1]). As a consequence, we consider the sequence .Hn/n�0 as a decreas-
ing sequence of subgroups of H0. Grothendieck’s existence theorem implies that
the intersection H D

T
n�0Hn is equal to the group HomW .E;E

0/ of morphisms
defined over W considered as a subgroup of H0. Let q be the natural positive definite
quadratic form on H0 defined by q.f / D deg.f /. Let us state a basic estimate for
number of points in lattices.

LEMMA 4.2
Let "1 and "2 be two positive real numbers. There exists a positive integer n such that
the set of integers

Bn D
®
N 2N;

ˇ̌
q�1.N /\Hn

ˇ̌
� "1N

¯
has upper density at most "2.

Proof
General results on the endomorphism groups of elliptic curves show that the groups
Hn are free modules of rank 1; 2, or 4. If the rank of the Hn is at most 2, then let ı
be a positive real number such that the balls of radius ı in Hn ˝ R with respect to
q centered at the points of Hn are pairwise disjoint. Write B.0;R/ for the open ball
of radius R and center 0 in Hn ˝ R, and write A.0;R;R0/ for the open annulus in
Hn˝R consisting of the elements x 2Hn˝R such that R < q.x/ < R0. Write v for
the Euclidean volume in Hn˝R. Then

v
�
B.0; ı/

�ˇ̌
q�1.N /\Hn

ˇ̌
� v

�
A.0;
p
N � ı;

p
N C ı/

�
DO.

p
N/;

so that, for any fixed n, jq�1.N /\Hnj DO.
p
N/ as N goes to infinity. As a conse-

quence, we can assume that the Hn have rank 4.
The intersection H of the Hn has rank at most 2, as it is equal to the group of

morphisms between two elliptic curves over a field of characteristic zero. Since there
are only finitely many lattices of bounded index in H0, the index of Hn in H0 goes
to infinity with n.

Now we have, by the same volume computation as before,
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h 2H0

ˇ̌
q.h/�N

¯ˇ̌
DO.N 2/:

Furthermore, it is an easy exercise to show that for any positive n, we have

lim
N!1

j¹h 2H0 j q.h/�N ºj

j¹h 2Hn j q.h/�N ºj
D ŒH0 WHn�:

It follows that for any positive real number ", and any n large enough, the following
estimate holds for all N large enough:ˇ̌®

h 2Hn
ˇ̌
q.h/�N

¯ˇ̌
� "N 2: (4.1)

Fix such an integer n, and let "1 and Bn be as in the statement of the lemma. We can
write, for any integer N large enough,ˇ̌®

h 2Hn
ˇ̌
q.h/�N

¯ˇ̌
�

X
k2Bn;k�N

ˇ̌®
q�1.k/\Hn

¯ˇ̌
�

X
k2Bn;k�N

"1k

� "1
jBNn j.jB

N
n j C 1/

2
; (4.2)

with BNn DBn \ ¹1; : : : ;N º. The estimates (4.1) and (4.2) show that we can write

2"N 2 � "1jB
N
n j

2:

By choosing " small enough so that 2" � "1"22, the estimate above shows that, for
suitable n and for all N large enough, we have jBNn j � "2N . This proves the result.

Proof of Proposition 3.2
We keep the above notation. Let N be an integer prime to p. Then the group scheme
EŒN � defined as the kernel of multiplication by N is étale over W since N is prime
to p. Since the residue field of W is algebraically closed by assumption, EŒN � is
isomorphic to the constant group .Z=NZ/2. In other words, the N -torsion points of
E are defined over W .

Let ˛ be a point in the Hecke orbit tN�y of y. Since EŒN � is defined over W ,
there exists an elliptic curve E˛ over W with j -invariant ˛ together with a cyclic
isogeny E!E˛ of degreeN . If n is a positive integer and F is an elliptic curve over
W , then denote by Fn the reduction of F modulo �nC1.

Proposition 2.3 of [18] states that we have the equality

v.˛ � z/D
X
n�0

j Ison.E˛;E 0/j

2
;
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where Ison.E˛;Eˇ / denotes the set of isomorphisms from E˛;n to E 0n. Let n be the
largest integer such that E˛;n and E 0n are isomorphic. Since the group of automor-
phisms of an elliptic curve over W=�nC1 has cardinality at most 24, we have

nC 1�
1

12
v.˛ � z/: (4.3)

Choose an isomorphism E˛;n!E 0n. The composition

En!E˛;n!E 0n

is an element h˛ 2 q�1.N /\Hn. The isogeny h˛ determines ˛ as the j -invariant of
E=Ker.h˛/. This shows that for any positive integer n, we haveˇ̌®

˛ 2 jtN�yj; v.˛ � z/� 12.nC 1/
¯ˇ̌
�
ˇ̌
q�1.N /\Hn

ˇ̌
:

Choose n as in Lemma 4.2, and then also let 	 be a positive real number such that
jz � ˛j � 	 implies that v.z � ˛/� 12.nC 1/ for any ˛ in W . Since for any positive
N , eN �N , Lemma 4.2 shows that the set

By;z D
®
N 2N n .pN/;

ˇ̌®
˛ 2 jtN�yj; jz � ˛j � 	

¯ˇ̌
� "1eN

¯
has upper density at most "2. This proves the result.

5. Bounding the best approximations
The goal of this section is to prove Proposition 3.3. We handle the case of non-
Archimedean valuations and Archimedean valuations separately. The non-
Archimedean case is proved in Proposition 5.15, and the Archimedean case—which
reduces to the study of the usual absolute value on C—is Proposition 5.22. We need to
show that, given two points y and z of X.1/.C /, there exist sufficiently many Hecke
orbits of y that do not contain elements that are too close to z—with precise estimates
to be given below. Our argument is the following. We will show that the only way two
different Hecke orbits of y can both contain very good approximations of z is if y is
very close to a CM point whose ring of endomorphisms has small discriminant. Since
distinct CM points of small discriminant cannot be too close to one another, this will
allow us to find Hecke orbits of y that do not contain very good approximations of z.

Before getting to the actual proofs, we record some elementary results. If L is
a quadratic lattice—that is, a free Abelian group of finite rank endowed with a posi-
tive definite, integral-valued quadratic form—then let disc.L/ denote its discriminant,
which is well defined as an element of Z.

LEMMA 5.1
Let E and E 0 be two isogenous CM elliptic curves over an algebraically closed field
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of characteristic zero. Consider End.E/ and Hom.E;E 0/ as quadratic lattices with
respect to the quadratic form f 7! deg.f /. Then we haveˇ̌

disc
�
End.E/

�ˇ̌
�
ˇ̌
disc

�
Hom.E;E 0/

�ˇ̌
:

Proof
Let f WE!E 0 be a cyclic isogeny, and consider the morphism

˛ WHom.E;E 0/! End.E/; � 7!b� ı f;
where b� W E 0! E is the isogeny dual to �. Then for any � 2 Hom.E;E 0/, we have
deg.˛.�//D deg.f /deg.�/. In particular, we haveˇ̌

disc
�
˛
�
Hom.E;E 0/

��ˇ̌
D deg.f /2

ˇ̌
disc

�
Hom.E;E 0/

�ˇ̌
:

If n is a positive integer, then let Œn� denote multiplication by n on E . Then for Œn�
to belong to the image of ˛, it is necessary that the kernel of f be included in the
kernel of Œn�. Since the kernel of Œn� is isomorphic to .Z=nZ/2 as an Abelian group,
for Œn� to belong to the image of ˛, the group .Z=nZ/2 needs to contain an element
of order deg.f /. In particular, deg.f / must divide n and the cokernel of ˛ must have
cardinality at least deg.f /. Finally, writingˇ̌

disc
�
˛
�
Hom.E;E 0/

��ˇ̌
D
ˇ̌
disc

�
End.E/

�ˇ̌ˇ̌
Coker.˛/

ˇ̌2
�
ˇ̌
disc

�
End.E/

�ˇ̌
deg.f /2

proves the result.

We record a proof of the following elementary lemma without any regard to the
optimality of the constants involved.

LEMMA 5.2
Let L be a rank 2 lattice with positive definite quadratic form q and discriminant ı.
Then for any positive integer n, we have

ˇ̌®
N � n

ˇ̌
9l 2L;q.l/DN

¯ˇ̌
� 1C 4

p
2nC

8n
p
ı
:

Proof
By an abuse of notation, we write q for both the quadratic form and the associated
bilinear form. Lagrange reduction for rank 2 lattices shows that we can find a basis
.e; f / for L such that 2jq.e; f /j � q.e/� q.f /. Let a and b two integers. Then

q.aeC bf /D a2q.e/C b2q.f /C 2abq.e; f /�
1

2

�
a2q.e/C b2q.f /

�
:



2056 FRANÇOIS CHARLES

In particular, q.ae C bf / � n implies that a2q.e/ � 2n and b2q.f / � 2n. This
implies in particular that the set ¹.a; b/ j q.aeC bf /� nº has cardinality at most

ˇ̌®
.a; b/

ˇ̌
q.aeC bf /� n

¯ˇ̌
�
�
1C

2
p
2np
q.e/

��
1C

2
p
2np

q.f /

�

� 1C 4
p
2nC

8np
q.e/q.f /

:

The discriminant ı of L is

ıD q.e/q.f /� q.e; f /2 � q.e/q.f /:

Since of course we haveˇ̌®
N � n

ˇ̌
9l 2L;q.l/DN

¯ˇ̌
�
ˇ̌®
.a; b/

ˇ̌
q.aeC bf /� n

¯ˇ̌
;

this finishes the proof.

Putting the two lemmas above together, we find the following statement.

PROPOSITION 5.3
Let E and E 0 be two CM elliptic curves over an algebraically closed field of char-
acteristic zero. Let ı be the discriminant of the lattice End.E/. Then for any positive
integer n, we haveˇ̌®

N � n
ˇ̌
9� 2Hom.E;E 0/;deg.�/DN

¯ˇ̌
� 1C 4

p
2nC

8n
p
ı
:

5.1. The non-Archimedean case
We start with the case where j � j is supposed to be non-Archimedean, and we let v be
an additive valuation associated to j � j. Let p be the residual characteristic of v, and
assume that j � j and v are normalized, so that jpj D p�1 and v.p/D 1.

We begin with a discussion of some deformation-theoretic results. Let W be a
complete discrete valuation subring of C with algebraically closed residue field. Let
� be a uniformizing parameter of W . If n is a nonnegative integer, then let Wn be the
ring Wn DW=�nC1. Let e be the ramification index, so that v.�/D e�1. Now let E
be an elliptic curve over W . We write En for the reduction of E modulo �nC1. Let
Gn be the group

Gn D EndWn.E/:

If n < 0, then we write Gn D G0. As in Section 4.2, we consider the sequence
.Gn/n�0 as a decreasing sequence of subgroups of G0. Write q for the positive defi-
nite quadratic form on G0 defined by q.f /D deg.f /.
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PROPOSITION 5.4
Assume that E0 is supersingular, and let n be a nonnegative integer. The multiplica-
tion by p maps Gn into GnCe , and the induced map

Gn=GnCe!GnCe=GnC2e

is injective.

Proof
We reproduce an argument in the proof of [17, Proposition 3.3]. Serre–Tate theory
and deformation theory of formal groups shows that we have a natural injection

Gn=GnCe ,!H 2
�bE; .�nC1/=.p�nC1/�;

where bE is the formal completion of E at the origin (see also [24, Section 2]). Now
since .p/D .�e/, multiplication by p induces an isomorphism

H 2
�bE; .�nC1/=.p�nC1/�!H 2

�bE; .�nCeC1/=.p�nC2eC1/�:
This proves the proposition by considering the commutative diagram

Gn=GnCe H 2
�bE; .�nC1/=.p�nC1/�

GnCe=GnC2e H 2
�bE; .�nCeC1/=.p�nC2eC1/�

While lifting endomorphisms of elliptic curves, we will consider the following
property.

Definition 5.5
Let ˛ … Z be an algebraic integer. Note that ˛ satisfies condition (P) if the index of
the ring ZŒ˛� in its integral closure in QŒ˛� is prime to p.

If � is an endomorphism of an elliptic curve over a scheme, then it makes sense
to ask whether � satisfies condition (P).

LEMMA 5.6
Let E1 and E2 be two elliptic curves over a field, and let � WE1!E2 be an isogeny
of degree prime to p. Let ˛ be a self-isogeny of E1 satisfying condition (P). Then
� ı ˛ ıb� WE2!E2 satisfies condition (P).
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Proof
We have b� ı � D N IdE1 and � ı b� D N IdE2 . As a consequence, there is an endo-
morphism of rings

End.E1/˝ZŒ1=N �! End.E2/˝ZŒ1=N �; x 7! � ı x ı
1

N
b�:

In particular, since N is prime to p, if ˛ satisfies condition (P), then 1
N
� ı ˛ ıb� does

as well, and so does � ı ˛ ıb�.

LEMMA 5.7
Let ˛ be an algebraic integer such that QŒ˛� is an imaginary quadratic field. Let d be
the discriminant of the characteristic polynomial of ˛; that is, d D t2 � 4N , where t
is the trace of ˛ and N its norm.
(1) Assume that p is odd. Then ˛ satisfies condition (P) if and only if p2 does not

divide d .
(2) Assume that pD 2. If ˛ satisfies condition (P), then 16 does not divide d .

Proof
Write d D r2d 0, where d 0 is square-free and r is an integer. If d is congruent to
1 modulo 4, then the ring of integers of QŒ˛� has discriminant equal to d 0. As a
consequence, the index of ZŒ˛� in this ring of integers is equal to r . Similarly, if d 0 is
congruent to 2 or 3 modulo 4, this index is equal to r=2 since the corresponding ring
of integers has discriminant 4d 0. This shows the result, since the p-adic valuation of
d 0 is at most 1.

LEMMA 5.8
Assume that E0 is supersingular, and let � be an element of Gn n Z for some non-
negative integer n. Write N D �.q/. Then there exists a nonnegative integer k with
pk �N and an element ˛ 2Gn�ke such that the following hold:
(1) ˛ satisfies condition (P);
(2) pk˛ 2 ZŒ��;
(3) q.˛/� 1C 3N .

Proof
Let d D pkd 0 be the index of ZŒ�� in its integral closure, where d 0 is prime to p.
Since the discriminant of ZŒ�� is bounded above by N 2, d is bounded above by N ,
and hence pk �N .

Since E0 is supersingular, its ring of endomorphisms G0 is a maximal order in a
quaternion algebra over Q ramified at p and1. In particular, G0˝Zp is the unique
maximal order in the quaternion algebra over Qp , so that any element of G0 ˝ Q



ISOGENIES BETWEEN PAIRS OF ELLIPTIC CURVES 2059

with integral norm and trace lies in G0 ˝ Zp . Note that for any ˛ 2 G0 such that
ZpŒ��� ZpŒ˛�, ˛ satisfies condition (P) if and only if�

ZpŒ˛� W ZpŒ��
�
D pk:

Let x be a generator of the integral closure of ZŒ�� in QŒ�� � G0 ˝ Q. Then
x 2G0˝Zp . This means that there exists an integer n, prime to p, such that ˛ WD nx
belongs toG0. By construction, we have ZpŒ��� ZpŒ˛� and ˛ satisfies condition (P);
that is, �

ZpŒ˛� W ZpŒ��
�
D pk:

Up to multiplying once again ˛ by an integer prime to p, we may assume that pk˛
belongs to ZŒ��. For any ˇ 2 ZŒ��, we have�

ZpŒ˛C ˇ� W ZpŒ��
�
D pk;

so that ˛Cˇ satisfies condition (P). As a consequence, we may replace ˛ with ˛Cˇ.
In particular, we may assume that ˛D C�� with 0� ;�� 1, so that q.˛/� 1C
N C 2

p
N � 1C 3N . Finally, we know that � 2Gn so that pk˛ 2Gn. Proposition

5.4 shows that ˛ 2Gn�ke .

We now state a lifting lemma for endomorphisms satisfying condition (P).

LEMMA 5.9
For some n� 4e, let �n W En! En be an isogeny satisfying condition (P). Then the
pair .En�4e; �n�4e/ lifts uniquely to a pair .ECM; �CM/ over W .

Proof
On the tangent space Lie.En/, �n induces multiplication by an element wn in
W=�nC1. As an application of Lubin–Tate theory, it is proved in [18, Proposition 2.7]
that condition (P) guarantees that the pair .En; �n/ lifts uniquely to a pair
.ECM; �CM/,1 where ECM is an elliptic curve over W and �CM W ECM ! ECM is a
cyclic isogeny of degree N , as soon as the equation

X2 � Tr.�n/X C q.�n/D 0

has a solution w in W that is congruent to wn modulo �nC1. Lemma 5.7 shows
that the discriminant Tr.�n/2 � 4q.�n/ is not divisible by p4. Hensel’s lemma as in
[14, Theorem 7.3] shows that there exists a solution w in W of the equation above

1The assumption in [18] is actually that ZŒ�n� is integrally closed in its fraction field. However, for the proof to
go through, one only needs for the index of ZŒ�n� in its integral closure to be prime to p.
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that is congruent to wn modulo �nC1�4e . The discussion above shows that the pair
.En�4e; �n�4e/ lifts uniquely to a pair .ECM; �CM/ over W .

As a consequence of Lemma 5.8, we deduce the following statement.

PROPOSITION 5.10
Assume that E0 is supersingular. Let n� 4e be an integer, and let �n W En!En be
an isogeny of degree N which is not in Z. Let k be the largest integer with pk �N .
Then there exists an isogeny ˛ W En�ke! En�ke , satisfying condition (P), such that
the pair .En�.4Ck/e; ˛n�.4Ck/e/ lifts uniquely to a pair .ECM; �CM/ overW . Further-
more, we can assume that ˛ has degree at most 1C 3N .

We give a lower bound for the distance between CM elliptic curves.

PROPOSITION 5.11
Let M1 and M2 be two positive integers. Let E1 and E2 be two elliptic curves over
W with self-isogenies of degree M1 and M2, respectively, both satisfying condition
(P). Assume that E1 and E2 are not isomorphic, and let n be a nonnegative integer
such that E1;n and E2;n are isomorphic over Wn. Then

p2n � 4M1M2:

Proof
Let n be the largest integer such that E1;n and E2;n are isomorphic. We can assume
that n� 0—that is, that the reductions of E1 and E2 modulo � are isomorphic over
the field k DW=� to the elliptic curve E=k.

Let us first assume that E is an ordinary elliptic curve. Then since the endomor-
phism ring of E1 has index prime to p in its integral closure, the index of End.E1/ in
End.E/ is prime to p as well. Basic deformation theory then shows that both groups
are equal; that is, by Serre–Tate theory (see, e.g., [22]) E1 is the canonical lifting
of E . Similarly, E2 is the canonical lifting of E as well, which is impossible since we
assumed that E1 and E2 are not isomorphic. As a consequence, we can assume that
E is a supersingular elliptic curve, and we fix an isomorphism from the reduction of
E1 over Wn to that of E2.

Let �1 and �2 be the formal Zp-modules E1Œp1� and E2Œp1� over W . If m is
any positive integer, then let Endm.�i / be the group of endomorphisms of �i over
Wm for i D 1; 2. Choose an isomorphism � W E1;n! E2;n. Using � , we make the
identification

Endn.�1/D Endn.�2/:
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Now let Oi D EndW .�i /, and letD D End1.�1/D End1.�2/. As subgroups ofD, we
have O1 ¤ O2, for instance, by [17, Proposition 2.1]. Both O1 and O2 are saturated
inD, and we have Oi Œ

1
p
�DQpŒ�i � for i D 1; 2. Since Oi contains the endomorphism

group of Ei , it is integrally closed.
Gross [17] computed the endomorphism groups above and showed the equality,

for any positive integer m,

Endm.�i /DOi C p
mD:

As a consequence, we have, as subgroups of D,

O1C p
nD DO2C p

nDI

in particular, we have

O1=p
nO1 DO2=p

nO2

as subgroups of D=pnD.
Since O1 and O2 are commutative algebras, the formula above shows that the

commutator Œ�1; �2� belongs to pnD, so that its reduced norm is divisible by p2n.
However, since �2 does not belong to O1, it does not belong to O1Œ

1
p
� since �2 is

integral over Zp and O1 is integrally closed in its fraction field. Since O1Œ
1
p
� is its own

commutant in the quaternion algebra DŒ 1
p
�, this means that the commutator Œ�1; �2�

is not zero. In particular, its reduced norm is at least p2n. Now by assumption the
reduced norm of �1 (resp., �2) inD isM1 (resp.,M2). As a consequence, the reduced
norm of Œ�1; �2� is at most 4M1M2. Finally, we get

4M1M2 � p
2n:

COROLLARY 5.12
Let E be an elliptic curve over W , and let n and N be positive integers. Assume that

p2n > 4N 2:

Then there exists at most one elliptic curve ECM over W admitting an isogeny of
degree at most N satisfying condition (P), and such that En 'ECM;n.

We can now proceed to a proof of Proposition 3.3. Let us fix some notation. Let y
and z be as in Proposition 3.3. We may assume that the valuation of z is nonnegative.
The assumptions on y and z ensure that we can find a complete discrete valuation
ring W as above, as well as two elliptic curves E and E 0 over W such that j.E/D y
and j.E 0/D z. By assumption, E is not a CM elliptic curve.
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Write once again En and E 0n for the reductions of E and E 0 modulo �nC1,
respectively. Define Hn D HomWn.En;E

0
n/, and consider .Hn/n�0 as a decreasing

sequence of sublattices of H0 endowed with quadratic form q given by the degree.
Write again Gn D EndWn.En/, and write q for the degree quadratic form on Gn as
well.

PROPOSITION 5.13
Assume that E0 is ordinary. For any nonnegative integer n, define

Sn D
®
N � 0

ˇ̌
9� 2HomWn.En;E

0
n/;deg.�/DN

¯
:

Then the upper density of Sn tends to zero as n tends to1.

Proof
We may assume that E0 and E 00 are isogenous, so that E 00 is ordinary as well. By
assumption, the lattices Hn all have rank 2. Since the two curves E and E 0 are not
isomorphic, the intersection of the Hn is zero, so that the discriminant of the lattices
Hn tends to1 with n. Lemma 5.2 allows us to conclude the proof.

PROPOSITION 5.14
Assume that E0 is supersingular. Let N1 and N2 be two positive integers, the product
of which is not a perfect square. Let n be a nonnegative integer such that there exists
�1; �2 2 Hn with q.�1/ D N1, q.�2/ D N2. Let k be the largest integer such that
pk � N1N2. Then there exists a CM elliptic curve ECM, together with an isogeny
satisfying condition (P), of degree at most 1 C 3N1N2, such that ECM;n�.4Ck/e '

En�.4Ck/e .

Proof
The composition � D b�1 ı �2 is an element of Gn. We have q.�/ D N1N2. Since
it is not a perfect square, � does not belong to Z. By Proposition 5.10, we get the
result.

Combining Propositions 5.14 and 5.11, we obtain the following.

PROPOSITION 5.15
If D is a positive integer, then define

SD D
®
N 2N n pN

ˇ̌
9n� 0;pn �ND and 9� 2Hn; q.�/DN

¯
:

If D > 9C 4e, then the density of SD is zero.
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Proof
By Proposition 5.13, we may assume that E0 is supersingular. Let M be a large
enough integer. We may assume that SD contains at least two integers N1;N2 such
that N1N2 is not a perfect square and

p
M �N1;N2 �M . By definition, we can find

n� 0 such that pn �MD=2 and �1; �2 2Hn with q.�1/DN1; q.�2/DN2. We can
apply Proposition 5.14 and find an elliptic curve ECM over W such that
(1) ECM admits a self-isogeny ˛ of degree at most 3M 2, satisfying condition (P);
(2) En�.4Ck/e 'ECM;n�.4Ck/e ,
where k is the largest integer such that pk �N1N2. Note that since D > 9C 4e, we
have

p2.n�.4Ck/e/ � p2n.N1N2/
�2ep�8e �MDM�4ep�8e � 4M 9

for any large enoughM , which shows, via Corollary 5.12, thatECM is the only elliptic
curve over W satisfying the two conditions above.

We now use the curve ECM to bound the cardinality of SD \ ¹
p
M; : : : ;M º.

Let N be any element of SD \ ¹
p
M; : : : ;M º. By assumption, we can find n with

pn �MD=2 and �N W En! E 0n of degree N . In particular, we find an isogeny of
degree N , which we denote by �N as well:

�N WECM;n�.4Ck/e!E 0n�.4Ck/e:

Let K0 be the kernel of �N . Then since N is prime to p, K0 lifts uniquely to a
subgroup K of ECM. Define E 0CM D ECM=K and write  N for the quotient map
 N WECM!E 0CM. Then we have that
(1) E 0CM admits a self-isogeny of degree at most 3M 4, satisfying condition (P);
(2) E 0CM;n�.4Ck/e 'E

0
n�.4Ck/e

.
The second point is obvious by construction. For the first, note that

b ı ˛ ı WE 0CM!E 0CM

is a self-isogeny of E 0CM of degree at most N 2M 2 �M 4. Lemma 5.6 shows that it
satisfies condition (P). Since D > 9C 4e, we have once again

p2.n�.4Ck/e/ �MDM�4ep�8e � 4M 9

for any large enough M . This shows that E 0CM is the only elliptic curve over W
satisfying the two conditions above.

We just constructed an injective map

SD \ ¹
p
M; : : : ;M º!Hom.ECM;E

0
CM/; N 7! N

such that q. N /D N . Let ıCM be the discriminant of ECM. Proposition 5.3 implies
the inequality
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ˇ̌
SD \ ¹1; : : : ;M º

ˇ̌
� 1C 4

p
2M C

8M

ıCM
C
p
M: (5.1)

The elliptic curve E is not CM, and we proved En�.4Ck/e ' ECM;n�.4Ck/e . Our
assumption on D guarantees that n � .4C k/e tends to infinity with M , and ECM

takes infinitely many values as n grows. Since there are only finitely many CM elliptic
curves over C with bounded discriminant, this shows that ıCM goes to infinity with n.
Equation (5.1) allows us to conclude the proof.

Using (4.3), Proposition 5.15 gives us the following statement, which is a more
precise form of the non-Archimedean part of Proposition 3.3.

PROPOSITION 5.16
Define SDy;z as in Proposition 3.3. If D > 12 � .8C 4e/D 96C 32e, then SDy;z has
density 0.

5.2. The Archimedean case
We now transpose the results of our preceding question to the Archimedean setting,
following the same strategy—the reader will compare Proposition 5.14 and Corol-
lary 5.20, as well as Propositions 5.11 and 5.21. We work over the field of complex
numbers, and we let j � j be the usual absolute value on C.

We start with two elementary lemmas.

LEMMA 5.17
Let � be an element of H. Let N be a positive integer, and let a, b, c, d be integers
with ad � bc DN . Let

f WH!H; z 7!
azC b

czC d
:

Let � be a compact subset of H. Then there exists a positive constant c1 depending
only on � such that�

�; f .�/
�
2�2 H) Max

�
jaj; jbj; jcj; jd j

�
� c1
p
N:

Proof
We keep the notation of the statement. Then, for any � 2H, we have

Imf .�/D
N Im.�/

jc� C d j2
:

As a consequence, the inequality

Im.�/� inf
�2	

Im.�/ > 0
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implies that jc� C d j � 
p
N for some constant  depending only on �. Since the

imaginary part of � is positive, this implies the required estimate on c, and conse-
quently on d . Furthermore, since jc�Cd j � 

p
N , we can find a constant � depend-

ing only on � such that ja� C bj � �
p
N , which provides the required estimates for

a and b as well.

LEMMA 5.18
Let us keep the notation of Lemma 5.17, and assume that f ¤ IdH. Then there exist
positive constants "2, c2 depending only on � such that

ˇ̌
� � f .�/

ˇ̌
�
"2

N

H) 9�0 2H; f .�0/D �0 and j� � �0j � c2
p
N
ˇ̌
� � f .�/

ˇ̌
:

Proof
We leave it to the reader to show that, if c D 0 and "2 is chosen small enough, then
there is no � 2H satisfying

ˇ̌
� � f .�/

ˇ̌
�
"2

N
:

We now assume that c ¤ 0. In that case, f has two fixed points in C, �0 and � 00. We
can write

ˇ̌
� � f .�/

ˇ̌
D
jcjj� � �0jj� � �

0
0j

jc� C d j
:

Lemma 5.17 proves that jcj and jd j are bounded above by c1
p
N for some constant

c1 depending only on �. It is readily shown—once again by choosing "2 to be small
enough—that the existence of � 2H with

ˇ̌
� � f .�/

ˇ̌
�
"2

N

implies that �0 and � 00 are complex conjugates and are not real numbers. We can
assume that �0 is in H. As a consequence, we have j� � � 00j � Im.�/. Putting these
estimates together gives the result.

PROPOSITION 5.19
Let y be an element of C � X.1/.C/. Then there exist positive constants c3 and "3
such that for any integer N > 1 and any ˛ 2 jtN�yj such that

jy � ˛j �
"3

N
;
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there exists a CM elliptic curve E0 over C with a cyclic self-isogeny of degreeN such
that ˇ̌

y � j.E0/
ˇ̌
� c3
p
N jy � ˛j:

Proof
Let � be an element of H with j.�/D y. Let ";C be positive real numbers such that
for any z 2C�X.1/.C/ with jz � yj � ", we can find � 0 with j.� 0/D z and

C�1jy � zj � j� � � 0j � C jy � zj:

The preimage of tN�y by j is exactly the set of elements a�Cb
c�Cd

2H, with	
a b

c d



2 SL2.Z/

	
˛ ˇ

0 ı



; (5.2)

where ˛, ˇ, and ı are three integers with no common factor and ˛ı D N , ˛ � 1,
0� ˇ < ı.

Let us consider ˛ 2 jtN�yj with jy � ˛j � ". We can write ˛ D j. a�Cb
c�Cd

/ with

a; b; c; d as in (5.2) and j� � a�Cb
c�Cd
j � C�1jy � ˛j. Now choose "2 as in

Lemma 5.18—taking � to be a connected component of the inverse image by j of
the closed ball of center y and radius "—and assume that jy�˛j � C "2

N
. We can find

�0 2H such that

�0 D
a�0C b

c�0C d
(5.3)

and j� � �0j � C 0
p
N jy � ˛j, where C 0 is a positive constant depending only on y.

Since a; b; c; d are chosen as in (5.2), (5.3) shows that j.�0/ is the j -invariant of an
elliptic curve E0 with a cyclic self-isogeny of degree N . Now writingˇ̌

y � j.E0/
ˇ̌
� C�1j� � �0j � C

�1C 0
p
N jy � ˛j

concludes the proof.

As in the non-Archimedean case, we get the following.

COROLLARY 5.20
Let y and z be two elements of C � X.1/.C/. Then there exist positive constants
c3, "3 depending only on y and z such that for any two distinct positive integers
N1;N2 > 1, and any .˛;ˇ/ 2 jtN1�yj � jtN2�yj such that

max
�
j˛ � zj; jˇ � zj

�
�

"3

N1N2
;
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there exists a CM elliptic curve E0 over C with a cyclic self-isogeny of degree at most
N1N2 such that ˇ̌

y � j.E0/
ˇ̌
� c3

p
N1N2j˛ � ˇj:

Proof
Since ˛ belongs to jtN1�yj, y belongs to jtN1�˛j. Furthermore, since N1 and N2 are
distinct, the elements of jtN1�ˇj are all elements of some jtN�yj for some positive
integer N with 1 <N �N1N2.

As a consequence of Proposition 5.19, it is enough to show that, if j˛ � zj and
jˇ � zj are smaller than a constant depending only on y and z, then there exists
ˇ0 2 jtN1�ˇj such that jy�ˇ0j � c03j˛�ˇj, where c03 is a positive constant depending
only on y and z. Since y is the Hecke orbit tN1�˛, we can write y D j. a�˛Cb

c�˛Cd
/,

where �˛ is an element of H with j.�˛/ D ˛ and a; b; c; d are as in (5.2)—with
N being replaced by N1 of course. Now we can find �ˇ 2 H with j.�ˇ / D ˇ and
j�˛ � �ˇ j � C j˛ � ˇj for some positive constant C depending only on z.

Since homographies preserve the hyperbolic distance on H, the hyperbolic dis-
tance between y and a�ˇCb

c�ˇCd
is equal to that between ˛ and ˇ. By writing ˇ0 D

j.
a�ˇCb

c�ˇCd
/ and noting that the hyperbolic distance on H and the usual distance on

C � X.1/.C/ are equivalent via j on neighborhoods of � and j.�/D y, we get the
inequality

jy � ˇ0j � c03j˛ � ˇj;

where c03 depends only on y and z. By construction, ˇ0 belongs to jtN1�ˇj, which
allows us to conclude the proof.

The following easy result shows that CM points of X.1/ cannot be too close to
one another.

PROPOSITION 5.21
Let � be a compact subset of C�X.1/.C/. Let M1;M2 > 1 be two integers, and let
E1;E2 be two CM elliptic curves over C with cyclic self-isogenies of degree M1 and
M2, respectively. Assume that j.E1/ and j.E2/ belong to �. If E1 and E2 are not
isomorphic, then ˇ̌

j.E1/� j.E2/
ˇ̌
� c4.M1M2/

�1;

where c4 is a positive constant depending only on the compact set �.

Proof
As before, and since we are working over a compact set, we only have to prove that
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if � is any compact subset of H, then for any �1; �2 2� such that j.�i /D j.Ei / for
i D 1; 2, we have

j�1 � �2j � C.M1M2/
�1=2.

p
M1C

p
M2/

�1

for some positive constant C depending only on the compact set �.
Since E1 has a cyclic self-isogeny of degree M1, we have

�1 D
˛1�1C ˇ1

�1�1C ı1
;

where the matrix 	
˛1 ˇ1

�1 ı1



2M2.Z/

has determinant M1 and is not a homothety. In particular, �1 ¤ 0. By Lemma 5.17,
j�1j is bounded above by K1

p
M1, where the positive constant K1 depends only on

the compact set �. Now we can write

�1 D
˛1 � ı1C i

p
�1

2�1
;

with �1 D 4M1 � .˛1C ı1/
2 � 4M1. Computing �2 the same way, we find that

j�1 � �2j �
ˇ̌
Im.�1/� Im.�2/

ˇ̌
D
ˇ̌̌p�1
2�1

�

p
�2

2�2

ˇ̌̌
;

where�1 and�2 are positive integers bounded above by 4M1 and 4M2, respectively,
and, by Lemma 5.17, �1 and �2 are integers whose absolute value is bounded above
by c1

p
M1 and c1

p
M2, respectively, for some positive constant c1 depending only

on �. We can write

j�1 � �2j �
�2
p
�1 � �1

p
�2

2�1�2
�

1

2�1�2.�2
p
�1C �1

p
�2/
� .4c41M1M2/

�1:

Indeed, note that j
p
a�
p
bj � 1

p
aC
p
b

for any two distinct positive integers a and b.

Combining the estimates of Corollary 5.20 and Proposition 5.21, we obtain the
following statement, analogous to Proposition 5.15.

PROPOSITION 5.22
Let D be a positive integer, and let y; z be points in C�X.1/.C/. Define
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SDy;z D
®
N 2N

ˇ̌
9˛ 2 jtN�yj; j˛ � zj �N

�D
¯
:

Assume that y is not the j -invariant of a CM elliptic curve. Then for D � 20, SDy;z
has density zero.

Proof
Let M be a large enough integer. Fix y and z as above. We can assume that there
exist two distinct integers N1;N2 2 SDy;z with

p
M �N1;N2 �M . We get elements

˛ 2 jtN1�yj and ˇ 2 jtN2�yj with

j˛ � zj �N�D1 � n�D=2; jˇ � zj �N�D2 �M�D=2:

In particular, we have j˛ � ˇj � 2M�D=2. Since D=2 > 2, Corollary 5.20 shows that
we can find an elliptic curve ECM with a cyclic self-isogeny of degree at most n2 such
that ˇ̌

y � j.ECM/
ˇ̌
� c3M

1�D=2 (5.4)

for some positive constant c3. Since 1�D=2 <�4, Proposition 5.21 shows that ECM

is uniquely defined.
We now use the curve ECM to bound the cardinality of SDy;z \ ¹1; : : : ;M º. Let

N be any element of SDy;z with
p
M � N �M . By assumption, there exists an ele-

ment ˛N of jtN�yj such that j˛N � zj �M�D=2. Write y D j.�y/. We can find a
homography f W � 7! a�Cb

c�Cd
such that ˛N D j.f .�y// and ad � bc D N . Applying

Lemma 5.17 with a compact neighborhood of a given preimage �z of z by j , we find
a constant c1 such that jaj; jbj; jcj; jd j are bounded above by c1

p
n.

Using (5.4), we can find an element �CM of H such that

j�CM � �y j � C3M
1�D=2

for some positive constant C3. Let � 0 D f .�CM/, and let E 0CM be the corresponding
elliptic curve. Then the bound on the coefficients of f guarantees the inequalityˇ̌

j.� 0/� z
ˇ̌
�K
p
MM 1�D=2 DKM .3�D/=2

for some positive constant K . At that point, we copy the end of the proof of Proposi-
tion 5.15. By construction, E 0CM is a CM elliptic curve with a cyclic isogeny

 N WECM!E 0CM

of degree N . Let ˛ W ECM! ECM be a cyclic self-isogeny of degree at most n2. We
get a self-isogeny

 N ı ˛ ıd N WE 0CM!E 0CM
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of degree N 2 deg.˛/. In particular, E 0CM admits a cyclic self-isogeny of degree at
most M 4. Again, since .3�D/=2 < �8, Proposition 5.21 shows that E 0CM is deter-
mined by this last condition—in particular, it is independent of N 2 SDy;z \

¹
p
M; : : : ;M º.
We just constructed an injective map

SDy;z \ ¹
p
M; : : : ;M º!Hom.ECM;E

0
CM/; N 7! N

such that q. N /D N . Let ıCM be the discriminant of ECM. Proposition 5.3 implies
the inequality

ˇ̌
SDy;z \ ¹1; : : : ;M º

ˇ̌
� 1C 4

p
2M C

8M

ıCM
C
p
M: (5.5)

Since y is not the j -invariant of a CM elliptic curve, the estimate (5.4) and Propo-
sition 5.21 imply that ECM takes infinitely many values as n grows. Since there are
only finitely many CM elliptic curves over C with bounded discriminant, this shows
that ıCM goes to infinity with n. Equation (5.5) allows us to conclude the proof.
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