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Abstract Artin’s conjecture states that supersingular K 3 surfaces over finite
fields have Picard number 22. In this paper, we prove Artin’s conjecture over
fields of characteristic p > 5. This implies Tate’s conjecture for K3 surfaces
over finite fields of characteristic p > 5. Our results also yield the Tate conjec-
ture for divisors on certain holomorphic symplectic varieties over finite fields,
with some restrictions on the characteristic. As a consequence, we prove the
Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite
fields of characteristic p > 5.
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1 Introduction

The goal of this paper is to study the Tate conjecture for varieties with
h*9 =1 over finite fields. The main result is the following. Recall that Artin
conjectured in [3] that the rank of the Néron-Severi group of a supersingular
K 3 surface over a finite field—in the sense of Artin, that is, a K3 surface
whose formal Brauer group has infinite height—has the maximal possible
value, that is, 22.

Theorem 1 Artin’s conjecture holds for supersingular K3 surfaces over al-
gebraically closed fields of characteristic p > 5.
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Let X be a smooth projective variety over a finite field k. Let £ be a prime
number different from the characteristic of k. Tate conjectured in [35] that the
Frobenius invariants of the space H Zi(x 7» Qe (7)) are spanned by cohomology
classes of algebraic cycles over k of codimension i. Using results of Nygaard-
Ogus in [26], Theorem 1 implies the following.

Corollary 2 The Tate conjecture holds for K3 surfaces over finite fields of
characteristic p > 5.

As a consequence of the main theorem of [23], this implies the following
finiteness result.

Corollary 3 Let k be a finite field of characteristic p > 5. There are only
finitely many K3 surfaces over k up to isomorphism.

With the extra assumption that p is large enough with respect to the degree
of a polarization of the K 3 surface, Theorem 1 is the main result of [24]. Our
strategy uses that of [24] as a starting point. In particular, we also use, as a key
geometric input, Borcherds’ construction of automorphic forms for O (2, n)
[7, 8], which allows one to find ample divisors supported on the Noether-
Lefschetz locus for K3 surfaces.

A key point of Maulik’s argument is to show that K3 surfaces have
semistable reduction in equal positive characteristic. This is where the re-
strictions on the characteristic of the base field appear. Maulik then proceeds
to showing that supersingular K3 are elliptic, which is enough to conclude
that they satisfy the Tate conjecture by a result of Artin in [3].

In this paper, we manage to circumvent the use of both semistable reduc-
tion for K 3 surfaces and Artin’s theorem on elliptic K 3 surfaces, thus offering
a direct proof of the Tate conjecture that gets rid of restrictions on the char-
acteristic of the base field that appeared in [24]. These arguments allow us
to prove the Tate conjecture for divisors on certain holomorphic symplectic
varieties in any dimension, where showing semistable reduction seems out
of reach at the moment, and where it is not clear what the analog of Artin’s
result might be.

Recall that a complex irreducible holomorphic symplectic variety is a com-
plex smooth, simply-connected variety X such that H%(X, .(2)2() is spanned by
a unique holomorphic form that is everywhere non-degenerate. An important
example is given by varieties of K3 type defined as the deformations of
the Hilbert scheme of points on a K3 surface, see [4]. The second singular
cohomology group of a complex irreducible holomorphic symplectic variety
is endowed with a canonical form called the Beauville-Bogomolov form, see
[4, 21].

We deduce Theorem 1 from the following result on the Tate conjecture for
higher-dimensional varieties, with some restrictions on p.
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Theorem 4 Let Y be a complex projective irreducible holomorphic symplec-
tic variety of dimension 2n with second Betti number by > 5. Let h be the
cohomology class of an ample line bundle on Y, let d = h*" and let q be the
Beauville-Bogomolov form.

Let p > 5 be a prime number. Assume that p is prime to d and that p > 2n.
Suppose that Y can be defined over a finite unramified extension of Q, and
that Y has good reduction at p. Assume also that q induces a non-degenerate
quadratic form on the reduction modulo p of the primitive lattice in the sec-
ond cohomology group of Y. Then the reduction X of Y at p satisfies the Tate
conjecture for divisors.

Remark At the moment, it is not known whether there exists a complex pro-
jective irreducible holomorphic symplectic variety with second Betti number
different from 7, 10, 22 and 23.

In the case of varieties of K 3" type, the assumptions of the theorem have
the following explicit form.

Corollary 5 Let Y be a complex polarized irreducible holomorphic symplec-
tic variety of K3" type. Let h be the cohomology class of an ample line
bundle on Y, and let d = q(h), where q is the Beauville-Bogomolov form.

Let p > 5 be a prime number. Assume that p is prime to d and that p > 2n.
Suppose that Y can be defined over a finite unramified extension of Q) and
that Y has good reduction at p. Then the reduction X of Y at p satisfies the
Tate conjecture.

Remark The assumption on p and the fact that Y is defined over an unrami-
fied extension of @, ensure that the Hodge to de Rham spectral sequence of
X degenerates at £ by [17].

Remark For K3 surfaces, Theorem 4 is weaker than Theorem 1. However,
proving Theorem 4 for fourfolds is a key step in removing the assumptions
on the characteristic of the base field to get Theorem 1. We strongly expect
that an extension of our method might relax the hypotheses on p even in the
higher-dimensional case.

Using the correspondence between cubic fourfolds and certain holomor-
phic symplectic varieties, we get the following instance of the Tate conjec-
ture.

Corollary 6 Let k be a finite field of characteristic p > 5, and let X be a
smooth cubic hypersurface in IP’Z. Then X satisfies the Tate conjecture for

cycles of codimension 2.
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Note that the Tate conjecture for cubic fourfolds and divisors on holomor-
phic symplectic varieties over number fields was proved by André in [1].

As in André’s work, we make heavy use of the Kuga-Satake correspon-
dence between Hodge structures of K 3 type and certain abelian varieties. We
use this correspondence as well as general ideas on the deformation of cycle
classes to prove the algebraicity of some cohomology classes. This type of ar-
gument is quite close in spirit to well-known results in Hodge theory around
questions of algebraicity of Hodge loci.

The main point, which appears in a slightly more involved form in Propo-
sition 22, is that while the Kuga-Sataka correspondence is not known to be
algebraic as predicted by the Hodge conjecture, its existence is enough to
provide mixed characteristic analogs of the Noether-Lefschetz loci, namely,
universal deformation spaces for pairs (X, @), where « is a suitable Galois-
invariant cohomology class. This allows one to study the lifting of such pairs
to characteristic zero.

This method has the advantage of replacing degeneracy issues for family
of holomorphic symplectic varieties by similar problems for abelian varieties,
which are much easier to deal with. As a consequence, we do not use any of
the birational arguments of [24]. Of course, these results are deep and beauti-
ful in their own right.

The plan of the paper is the following. We start by explaining how the re-
sults stated above can all be reduced to Theorem 4 for supersingular varieties.

In Sect. 3, we gather some generalities around the deformation problems
we deal with and recall some results of [24]. We state and prove them in the
generality we need.

In order to facilitate the exposition, we show in Sect. 4 that, with the no-
tations of Theorem 4 when X is supersingular, the Picard number of X is at
least 2. We achieve this result by introducing a partial compactification of the
Kuga-Satake mapping in mixed characteristic and using arguments related to
the geometry of Hodge loci. Proposition 22 contains the main geometric idea.

In the last section of the paper, we prove Theorem 4 using the ideas of
Sect. 4 and an induction process. Some of the lifting results there might be
of independent interest. A surprising phenomenon is that the induction pro-
cess does not allow us to directly show the Tate conjecture. However, we are
able to use known cases of the Hodge conjecture for low-dimensional abelian
varieties to conclude the proof.

We learned that Keerthi Madapusi Pera has recently announced results on
the Tate conjecture for K3 surfaces when p? does not divide the degree of
a polarization. His proof seems to involve very different methods building
on recent advances on the theory of canonical integral models of Shimura
varieties.
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2 Preliminary reductions
2.1 Reduction to Theorem 4

In this section, we show how Theorem 1, Corollaries 5 and 6 can be deduced
from Theorem 4.

Proof of Corollary 5 Let X and Y be as in Corollary 5. We only need to show
that X and Y satisfy the hypotheses of Theorem 4, that is, that p is prime
to 4% and that the Beauville-Bogomolov form ¢ induces a non-degenerate
quadratic form on HQ(Y, L) prim @ L] pZ.

The second Betti number of Y is either 22 or 23, hence it is strictly larger
than 5. Since p > 2n and %q(h)” = h?", see for instance [28, 4.1.4],
p is prime to h?". Furthermore, the explicit description of the Beauville-
Bogomolov form on the lattice H 2(Y, Z) as in [4, Sect. 9] shows that the
g induces a non-degenerate quadratic form on H>(Y,Z) ® Z/pZ. Since p is
prime to g (h), g induces a non-degenerate quadratic form on H 2(Y,7) prim @
Z/pZ. O

Proof of Corollary 6 Let k be a finite field of characteristic at least 5, and let
X be a smooth cubic hypersurface in IP’Z. Let F be the Fano variety of lines
in X. It is a smooth projective variety of dimension 4 over k.

Let W be the ring of Witt vectors of &, and let K be the fraction field of W.
The hypersurface X lifts to a cubic hypersurface X over W. Taking the Fano
variety of lines gives a smooth lifting F of F' over W.

By results of Beauville-Donagi in [5], given an embedding of K into C,
the variety F¢ is of K3[?! type. If ¢ is the Beauville-Bogomolov form, and &
is the ample class on F¢ is the ample class corresponding to the Pliicker em-
bedding, then g (h) = 6. As a consequence, Corollary 5 shows that F' satisfies
the Tate conjecture for divisors.

Let ¢ be a prime number invertible in k. The incidence correspondence
between X and its variety of lines induces a morphism

¢ HY (X7, Qu(2)) > H*(Fz, Qe(1))

that is equivariant with respect to the Frobenius action on both sides.

In [5], Beauville and Donagi show that the corresponding morphism over
C induces an isomorphism between the primitive parts of the cohomology
groups. By the smooth base change theorem, ¢ induces an isomorphism be-
tween the primitive parts of H 4(XE’ Q¢(2)) and H 2(F;, Q¢ (1)) as well. Con-
sider the Poincaré dual of ¢

¥ H(Fr, Qe(3) . — H* (X, Qu(2))

prim prim’
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It is also induced by the incidence correspondence. In particular, it sends co-
homology classes of cycles of dimension 1 in F to classes of cycles of codi-
mension 2 in Xz.

By the hard Lefschetz theorem, and since F satisfies the Tate conjecture
for divisors, the group of Frobenius-invariant classes in H6(F;, Qr(3)) is
spanned by cohomology classes of cycles of dimension 1. This shows that
the Frobenius-invariant part of H 4(X;, Q¢(2)) is spanned by cohomology
classes of codimension 2 cycles and shows that cubic fourfolds satisfy the
Tate conjecture. O

We now show how Corollary 5 implies the Tate conjecture for K 3 surfaces
in any characteristic different from 2 and 3.

Proof of Theorem I Let S be a supersingular K 3 surface over a finite field k
of characteristic at least 5. Let S?! be the Hilbert scheme that parametrizes
length 2 zero-dimensional subschemes of S. By [19], S'! is a smooth projec-
tive variety of dimension 4.

The variety S'?! is the quotient of the blow-up of S x S along the diagonal
by the involution exchanging the two factors. By [4, Proposition 6], the sec-
ond cohomology group of S'?! is generated by the second cohomology group
of S and the class [ E'] of the exceptional divisor. As a consequence, S satisfies
the Tate conjecture if and only if S'! satisfies the Tate conjecture for divisors.

By [14], S lifts to a projective K 3 surface S over the ring W of Witt vectors
of k. The variety S'! lifts to the relative Hilbert scheme S'?l. Let K be the
fraction field of W, and fix an embedding of K into C. Let g be the Beauville-
Bogomolov form on H 2(S(E:2 1 Z), and let h be an ample cohomology class.
Letd =q(h).

For any large enough integer N, Nh — [E] is an ample cohomology class.
Since g(E) = —2, we have

g(Nh+ E)=N?d —2Nq(h,E) — 2.

If p divides N, then the variety Sg ! with the polarization given by Nh — [E]
satisfies the hypothesis of Theorem 4. This shows that § satisfies the Tate
conjecture. O

Remark The idea of finding prime-to- p polarizations on S'! in order to study
the Tate conjecture on § is somewhat reminiscent of Zarhin’s trick of finding
a principal polarization on (A x A)*, where A is an abelian variety, see [38].

Remark Note that the proof of Theorem 1 only requires the special case of

Theorem 4 in the supersingular case, that is, when the Galois action on the
second cohomology group of the reduction of X at p is trivial.
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2.2 The universal deformation space and reduction of Theorem 4 to the
supersingular case

Let us keep the notations of Theorem 4. By the theorem of Deligne and Illusie
in [17], the Hodge to de Rham spectral sequence of X degenerates. By upper
semicontinuity of cohomology groups, this implies that the Hodge numbers
of X and Y are the same. Using the universal coefficients theorem, it is easy
to check that the crystalline cohomology groups of X are torsion free.

The versal formal deformation space of X is smooth over the ring of Witt
vectors W. Indeed, by the Bogomolov-Tian-Todorov theorem [6, 36, 37], the
versal deformation space of Y, that is, in characteristic zero, is smooth of
dimension the dimension of H!(Y, Ty). It follows that the versal deforma-
tion space of X over W has relative dimension at least the dimension of
HY\(Y, Ty) ~ H'(Y, .Q)l,), which is equal to the dimension of H' (X, .Q)lf) ~
H'(X, Tx) since the Hodge to de Rham spectral sequence degenerates at E.
This implies that the versal formal deformation space of X is smooth over W

As a consequence of these results, the deformation theory of X is very
similar to the deformation theory of K3 surfaces. In a more precise way, the
second crystalline cohomology group of X is a K3 crystal as in [30]. The
results of [30], Sects. 1 and 2 on the versal deformation space of polarized
K3 surfaces, as well as the results of [29] hold without any change for the
deformation of X. We will freely refer to these results.

Definition 7 Let X be as in Theorem 4. We say that X is supersingular if
the Frobenius morphism acts on the second étale cohomology group of X
through a finite group. Otherwise, we say that X has finite height.

As in the case of K3 surfaces, the general results of [3] apply and show
that X is supersingular if and only if the formal Brauer group of X has finite
height. These remarks show that the proof of [26] gives without any change
the following theorem.

Theorem 8 (Nygaard-Ogus, [26]) Let X be as in Theorem 4. If X has finite
height, then X satisfies the Tate conjecture.

The supersingular case is thus the only remaining case of Theorem 4. The
proof of this case will be logically independent of the work of Nygaard-Ogus.
3 Deformation theory and the Kuga-Satake morphism

From now on, and through the remainder of this article, we will fix the follow-
ing notations. Let k be the algebraic closure of a finite field of characteristic
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p > 5. Let W be the ring of Witt vectors of k, and let K be the fraction field
of W. By abuse of notation, we will again denote by X the base change over
k of a variety satisfying the hypotheses of Theorem 4.

We assume that X is supersingular, that is, that the Frobenius morphism
acts on the second étale cohomology group of X through a finite group. Let
b = by(X) > 5 be the second Betti number of X (which is equal to the second
Betti number of Y by the smooth base change theorem). We will show that
the Néron-Severi group of X has rank b.

In this section, we gather results and notations around the deformation
space of X, the Kuga-Satake mapping in that setting, and the Noether-
Lefschetz locus. While some of these results are quite similar to those in
[24], and some are taken directly from there, we state them in our context and
sometimes give different proofs and constructions.

3.1 Deformation spaces

Let X — S be the formal versal deformation space of X over W. We showed
in Sect. 2.2 that the assumptions on X ensure that Sis formally smooth of
relative dimension » — 2 and that the deformation is universal.

Let L be the ample line bundle on X induced by the ample line bundle on Y
with cohomology class /. Since p is prime to 42", the class ¢ (L)" is nonzero
in H3%(X/k), which in turn implies that c¢; (L) doesn’t lie in F2H2,(X/k),
where F* is the Hodge filtration on de Rham cohomology.

Let T be the universal deformation space of the pair (X, L). By [30, Propo-
sition 2.3], T is formally smooth of relative dimension b — 3 over W. We also
denote by X — T the universal formal deformation of the polarized variety
(X, L).

By Artin’s algebraization theorem, we can find a smooth scheme T of fi-
nite type over W, and a smooth projective morphism 7 : X — T, together
with a relatively ample line bundle £ on X’ that extends the universal formal
deformation of the pair (X, L) over T'. After shrinking 7', we can assume that
7 is a universal deformation at every point.

The Beauville-Bogomolov form on Y is a rational multiple of the usual
intersection form on the primitive cohomology lattice by [4, p. 775, Remar-
que 2]. As a consequence, it descends to a quadratic form on the relative
primitive cohomology over T, for the étale as well as for the crystalline the-
ories. We will denote this extension by g as well.

3.2 Spin level structures
We briefly recall basic definitions about spin level structures, see [1, 24, 33]
to which we refer for further details. Let n > 3 be an integer, and assume n is

prime to p.
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Let L be an abstract lattice that is isomorphic to the primitive cohomology
lattice of ¥ endowed with the Beauville-Bogomolov quadratic form. Let

CSpin(L) = CSpin(L)(A ;) N Cl (L ® Z),

where Cl; (L) is the even part of the Clifford algebra of L.

Let K,” be the subgroup of CSpin(L) consisting of elements congruent to
1 modulo n, and let K"d be its 1mage in SO(L ® Z) If ¢ is a prime num-
ber, let sz be the ¢- adlc part of K . By assumption, g is a non-degenerate

quadratic form on L ® Z/pZ and by [1, 4.4], Kﬁfip is the whole special or-
thogonal group.

We say that w : X — T admits a spin level n structure if the algebraic fun-
damental group of 7 acts on primitive cohomology with £-adic coefficients
through the group Kﬁd for any ¢ such that szz is a proper subgroup of the
special orthogonal group, choosing a base point corresponding to the complex
lift Y of X.

After replacing T by an étale cover, we can and will assume that 7 : X —
T admits a spin level n structure.

3.3 The Kuga-Satake construction

The Kuga-Satake mapping plays a major role in this paper. We refer to [24],
as well as to the papers of André and Rizov [1, 34], for most definitions and
results. However, for reasons that will become clear below, we need to work
with a slightly different definition as follows.

Let V = H2(Y, Q)prim be the primitive part of the second Betti cohomol-
ogy group of the holomorphic symplectic variety Y, and let C be the Clifford
algebra of V. The classical Kuga-Satake construction, see [15] or [12] for
details, endows C with a polarized Hodge structure of weight 1. As a con-
sequence, there exists a polarized abelian variety A with H'(A, Q) ~ V as
polarized Hodge structures. The integer lattice in V determines A uniquely.

Let g be the dimension of A and d* be the degree of the polarization. An
explicit computation shows that d’ is prime to p, see [24, 5.1]. The polarized
abelian variety A is the Kuga-Satake variety of Y.

Elements of V act on C by multiplication on the left. This induces a canon-
ical primitive embedding of polarized Hodge structures

H*(Y, Z)prim — End(H' (A, Z)). (1)

Note that this canonical embedding only exists if we define the Kuga-
Satake variety using the full Clifford algebra C and not only its even part
C™ as in the references above. This is the reason we make this slight change
in definition. The Kuga-Satake variety associated to C is isogenous to the
square of the Kuga-Satake variety associated to C*.
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The following is an easy consequence of the construction of the Kuga-
Satake mapping.

Proposition 9 Let v be an element of H*(Y, Z) prim mapping to the endomor-
phism ¢ of H' (A, Z). Then ¢ o ¢ = q(v)ld g1 (4 7.

Proof By [1, 15], there exists a canonical morphism of algebras
C < End(H'(A,7))

where C is the Clifford algebra of H 2(y, Z)prim>» compatible with (1). This
proves the result. 0

3.4 The Kuga-Satake mapping

We now proceed to the construction of a Kuga-Satake mapping over the de-
formation space T'. First, let mg : Xx — Tk be the generic fiber of 7. Let
Ayg a.n be the moduli space of abelian varieties of dimension g with a polar-
ization of degree d’ 2 and a level n structure over W, and let Ag a.n,k beits
generic fiber.

The following result is proved in [1, Theorem 8.4.3], see also [34] for the
case of K3 surfaces. It follows from the fact that 7 : X — T admits a spin
level n structure.

Proposition 10 There exists a morphism
kg Tk — Ag a'.n K
which for a complex point t sends the variety X; to its Kuga-Satake variety.
Given any prime number £, there is a canonical primitive embedding of
L-adic sheaves on Tg

RZ, 70 Zo (D) prim — End(R}, ¥4 Z¢), 2)

where Reztn*Zg(l)prim is the relative primitive cohomology of m and  :
Ag — Tk is the abelian scheme over T induced by kg .

Remark The result of André is actually stated for the usual intersection pair-
ing on primitive cohomology. Since the Beauville-Bogomolov form ¢ is pro-

portional to this intersection pairing, the same result holds using ¢.

We can now use Proposition 6.1.2 of [34] to conclude that the Kuga-Satake
mapping extends to 7" and get the following.
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Proposition 11 The Kuga-Satake mapping kg extends uniquely to a mor-
phism

k:T— Agan-
3.5 Quasi-finiteness of the Kuga-Satake mapping
The following result is due to Maulik in the case X is a K3 surface.

Proposition 12 ([24], Proposition 5.10) The Kuga-Satake map « : T —
Ag @ n Is quasifinite.

The proof of Maulik can easily be adapted to our setting. For the sake of
completeness, let us however sketch a slightly more direct proof. We start
with the following analog of (2). We use the language of filtered Frobenius
crystals as in [24, Definition 6.3].

Proposition 13 Ler b be a k-point of T, and let B be the formal neighbor-
hood of b in T. Denote by  : A — T the Kuga-Satake abelian scheme asso-
ciated to X — T. There is a canonical primitive strict embedding of filtered
Frobenius crystals on B
Rzn*.Q

%5 (Dprim = End(R'y.2% 5). (3)

This morphism is compatible with (2) via the comparison theorems.

Remark Saying that the morphism above is strict means that the filtration on
the left side is induced by the filtration on the right side.

Proof Aside from the strictness property, this is proven in [24, Sect. 6]. First,
one argues that the morphism exists at the level of isocrystals by the com-
parison theorems of Andreatta-Iovita in [2]. To check that the morphism is
integral, one uses the theory of Fontaine-Messing in [20]. Note that these ar-
guments are general and do not use any property of the Beauville-Bogomolov
form contrary to the subtler Morita arguments of [24].

The morphism (3) is primitive because (2) is. Strictness of (3) can be
checked at the fibers, and is a general property of the theory of Fontaine-
Messing, see for instance [10, Proposition 3.1.1.1]. O

Proof of Proposition 12 This is an easy consequence of Proposition 13 as in
[24, 6.4]. O
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3.6 Period maps

One of the main points of this paper is that a large part of [24] can be car-
ried out at the level of period spaces. We briefly gather some results on period
maps for families of holomorphic symplectic varieties. André’s paper [1] con-
tains related results.

We first describe the period domain, and refer to [16, Sect. 1] for details.
Let V be a vector space over (Q of dimension b — 1, and let i/ be a non-
degenerate bilinear form on V of signature (2,5 — 3) on V. Let G be the
algebraic group SO(V, ¥), and let §2 be the period domain, that is,

2 ={weP(Ve), ¥ (®, w)=0and ¥ (w0, ®) > 0}.

To any w € §2, we can associate a polarized Hodge structure of weight 2 on
V such that F2V¢ = Cw. The period domain can be naturally identified with
a conjugacy class of morphisms 4 : S — Gg, where S is the Deligne torus.
The pair (G, §2) is a Shimura datum with reflex field Q.

Now let (L, ¥) be the lattice of Sect. 3.2, that is, a lattice isomorphic to
the primitive lattice of Y. We consider the Shimura datum above associated
toV=LRQ.

Let n > 3 be as before, and let S, be the Shimura variety defined over Q
such that

Suc=G(@\R2 x G(Af) /Ky,

Fix an embedding of K into C. Since X — T admits a level n spin struc-
ture, the classical period map takes the form of an étale morphism of quasi-
projective varieties

Jj:Tc— Suc.
The local Torelli theorem for holomorphic symplectic varieties in [4,
Théoreme 5] implies the following result.
Proposition 14 The map
j . T(C — Sn,(j
is étale.
The Kuga-Satake construction actually defines a morphism of Shimura va-
rieties
KS(C : Sn,C - Ag,d/,n,(C-
It is a finite morphism, defined over K by [1]. We get the following decom-
position of the Kuga-Satake mapping.
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Proposition 15 The Kuga-Satake mapping
kc:Tc — Ag,d’,n,(c
factorizes as K Sc o j, where
Jj:Tc— Suc

is étale and
KSc:Spc— Agdarnc

is finite.
Using the Kuga-Satake mapping, one can show the following.
Proposition 16 The period map j : Tc — S,.c is defined over K.

Proof This is almost contained in [1, Appendix 1]. In this paper, André stud-
ies the Kuga-Satake mapping K Sc : S,,c — Ag,q',»,c by proving it admits a
factorization K S¢c = p o s, where Sc is a Shimura variety of spinorial type
that parametrizes Kuga-Satake abelian varieties, s : S, ¢ is a section of a
canonical map of Shimura varieties Sc — Sy ,c—in particular, s is a closed
immersion—and p : S¢ — A, 4 »,c is defined by the aforementioned moduli
interpretation of Sc.

Furthermore, André shows that Proposition 10 can be refined by showing
that k¢ : Tc — Ag 4/.»,c admits as well a factorization k¢ = p o k¢ for some
kc:Tc — g(c. -

By [1, Theorem 8.4.3 and Appendix 1], Sc is defined over K, and so are
Kc, p and s. We have

Kc=so0j.

Since s is a closed immersion, j is defined over K. O
3.7 Divisors on the period space

In this section, we recall a slightly adapted version of Theorem 3.1 of [24] that
proves the ampleness of some components of the Noether-Lefschetz locus in
the moduli space of polarized K 3 surfaces.

Recall that d = g(h), where h is the class of the polarization of X — T.
Let Lo be a lattice containing L such that the embedding L C L is isomor-
phic to the embedding of the primitive cohomology of Y into its full second
cohomology group. We also denote by & € L the image of the ample class
of Y.
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Let A be a rank 2 lattice of the form

A=(j g).

If its discriminant bd — a? is negative, let H, be the locus in the period do-
main §2 of points w such that there exists v € L with ¢ (v, v) =b, ¥ (v,h) =a
and ¥ (w, v) = 0.

By definition of Kﬁd , the divisor H 4 descends to a divisor D4 in S, c. We
will also denote by D 4 the divisor on the generic fiber of T obtained via the
period map.

Let A be the Hodge bundle on S, c. By definition, it is induced by the
tautological line bundle over the period space. The Hodge bundle pulls back
by the period map to the Hodge bundle on 7. Recall that the Hodge bundle
on T, which we denote by A as well, is defined as

A stronger version of Theorem 17 is stated in [24] for period spaces of
K 3 surfaces. The proof extends to give the following statement in the higher-
dimensional case. It relies in an essential way on Borcherds’ results in [7, 8].

Theorem 17 ([24], Theorem 3.1) There exist lattices Ay, ..., A, and a
Cartier divisor D supported on the D 4, such that

O(D) = 1%

for some positive integer a.

4 Partial compactifications of the moduli space and existence of a line
bundle

4.1 Making the Kuga-Satake mapping finite

One of the main results of [24], and one that we are wishing to avoid, is
the fact that families of supersingular K3 surfaces with semi-stable reduction
do not degenerate. The analogous result for supersingular abelian varieties is
well-known, see [31, Proof of Theorem 1.1.a], essentially because of the cri-
terion of Néron-Ogg-Shafarevich. As a consequence, the result for K3 sur-
faces, or more generally for varieties as in Theorem 4, would follow if the
Kuga-Satake mapping were finite.

@ Springer



The Tate conjecture for K3 surfaces over finite fields

In this section, we give a very simple construction of a canonical partial
compactification of T over which the Kuga-Satake mapping extends to a finite
morphism to Ag 4/ .

As in Proposition 15, the Kuga-Satake map « : T — A, 4 , admits a fac-
torization over C through

J:Tc— Suc
and
KSc:S5,.c — Ag,d/,n,C-

By Zariski’s main theorem, there exists a normal variety Tc over C con-
taining T¢ as an open subvariety such that j extends to a finite morphism
Tt — S, c. Since j is defined over K, we can assume that 7¢ and the map

ﬁg — Su.c

are defined over K. Let TK be a model of TC over K.

Let 7’ be the normal scheme over W defined by gluing the W-schemes T
and Tk along their common open subscheme Tx. By definition, the Kuga-
Satake map extends to a morphism

k' T — Ag,d/,n-

Since « is quasifinite by Proposition 12, «’ is quasifinite as well. The map
K Sc above is finite by Proposition 15. This proves that «’ is a finite morphism
when restricted to the generic fiber of 7".

Now applying Zariski’s main theorem, we can find a normal W-scheme T
and a dominant open immersion 7’ < T such that

k' T'— Ag arn
extends to a finite morphism
:T— Ag,df’,l.
We can summarize the preceding construction in the following statement.

Proposition 18 There exists a normal, separated W -scheme T, and a domi-
nant open immersion

1:T—>T
such that

1. The Kuga-Satake map k extends to a finite morphism

:T — Ag,d/,n-
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2. The generic fiber of k¥ o'i factorizes through the period map
j:Tc— Suc.

The second condition above shows that the complex points of T parametrize
Hodge structures of weight 2. Again, we denote by D, the divisor on the
generic fiber of T that is the inverse image of the divisor D 4 in S, c.

Remark Through the Kuga-Satake map, it should actually possible to give a
modular interpretation of the space 7 and of its special fiber. It is for instance
likely that the p-divisible group associated to the formal Brauer group of the
universal variety over T; actually extends to a p-divisible group over Tj.
However, one of the points of this paper is that this modular interpretation is
not needed.

4.2 The supersingular locus in 7
We start by defining the supersingular locus in 7.

Definition 19 The supersingular locus in T is the inverse image by & of the
locus of supersingular abelian varieties in Ag 47 .

The following is one of the main points of our proof. It is a straightforward
consequence of a result of Oort.

Proposition 20 The supersingular locus in T is projective.

Proof In the course of the proof of Theorem 1.1.a in [31], Oort proves that the
locus of supersingular abelian varieties in A, 4, is a projective subscheme

of A, 4,n. Since « is finite, the supersingular locus in T is projective. O

Over T, the supersingular locus above coincides with the locus of points
t such that the fiber X; of X at ¢ is supersingular, as the next proposition
shows. The analogous result in the ordinary case was proved by Nygaard in
[27, Proposition 2.5].

Proposition 21 Let X, be a fiber of w over a k-point of T . Then X; is super-
singular if and only if the Kuga-Satake abelian variety of X; is supersingular.

Proof Let £ be a prime number different from the characteristic of k. Let A
be the Kuga-Satake variety of X;. The varieties X; and A are defined over a
finite field ko. We denote by Gy, the absolute Galois group of ko. Let P =
H2(X,, Q¢(1))prim and let C(P) be the Clifford algebra associated to P. By
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standard properties of the Kuga-Satake construction, there is an isomorphism
of Gy,-modules

C(P) ~Endc(p)(H' (A, Q). 4)

We have to show that X, is supersingular if and only if A is.

Let us first assume that the dimension of P is even. By [9, Paragraphe 9,
n. 4, Corollaire after Théoreme 2], C(P) is a central simple algebra. Assume
that A is supersingular. Up to replacing ko by a finite extension, we can as-
sume that the Frobenius acts on H'(A, Q) by a scalar. Equation (4) then
shows that the Frobenius action on C (P) is trivial. Since P is a Frobenius in-
variant subspace of C(P), this shows that the Frobenius action on P is trivial
and implies that X; is supersingular.

Conversely, if X; is supersingular, we can assume that the Frobenius mor-
phism acts trivially on P, hence on C(P) =~ Endc(p)(Hl(A, Q¢)). By the
bicommutant theorem, it acts on H' (A, Qy) by an element of C(P). Since it
commutes with the action of C(P), it acts through the center of C(P). Since
this center is trivial, Frobenius acts on H'(A, Q,) by a homothety. This im-
plies that A is supersingular.

In case the dimension of P is odd, the even part CT(P) of the Clifford al-
gebra C(P) is a central simple algebra by [9, Paragraphe 9, n. 4, Théoréme 3].
By standard properties of the Kuga-Satake construction, and up to replacing
ko by a finite extension, A is isogenous to the square of an abelian variety B
over ko, such that there is an isomorphism of G,-modules

CT(P)~Endc+py(H' (B, Q).

Here B is the Kuga-Satake variety used in [24]. We have to show that X,
is supersingular if and only if B is. The same argument as above shows this
equivalence. 0

4.3 The closure of some Hodge loci
The main result of this section is the key to avoiding the degeneration results
of [24]. We investigate the geometrical properties of the Zariski closure of the

Hodge locus D4 of Sect. 3.7 in T'.
Before stating the result, we introduce the following notation. If

()

is a lattice and N is a nonzero integer, let

d Na
AN = (Na NZb)'
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Note that there is an embedding of lattices Ay < A that sends the second
base vector v to Nv. As a consequence, with the notations of Sect. 3.7, the
divisor D 4, contains the divisor D 4.

Recall that by construction the family = : X — T contains X as a special
fiber.

Proposition 22 Let A be a lattice as in Sect. 3.7, and let D 4 be the Zariski
closure of D in T. Let C be the connected component of the supersingular
locus of T passing through the point of T corresponding to X.

If the intersection of C and D , is nonempty, then there exists a nonzero
integer N such that D 5 y contains the support of C.

Remark By the second part of Proposition 18 and the comment that follows,
we can view D4 as a divisor on the generic fiber of T, which is why the
statement above makes sense.

The proposition above is close in spirit to the statement of [3, Theo-
rem 1.1.a], and our point of view is somewhat similar to that of [13]. The
main idea of our argument is very simple and can be summarized as follows.

Assume that C actually parametrizes a family of supersingular polarized
varieties—this is not true as C does not need to lie in 7. Then the assumption
of the proposition means that there exists a polarized supersingular defor-
mation X¢ of X, together with a line bundle L9 on X such that the lattice
generated by Lo and the polarization in the Néron-Severi group of X is iso-
morphic to A.

Now consider the versal deformation space of (Xq, Lo) inside T. The ar-
guments from [14, Theorem 1.6] show that it is a divisor D in T which is flat
over W. By the argument of Artin above, see also [13, Theorem 1], and up

to replacing Ly by E? "" for some positive r, this divisor contains C, and the
intersection properties of L imply that its generic fiber is contained in D Ay
This implies the result.

In our situation, we do not know that C parametrizes a family of K3 sur-
faces. However, the Kuga-Satake map provides us with a family of supersin-
gular abelian varieties over C, which will be enough for our purposes. We
now proceed with the proof.

Proof By assumption, there exists a finite extension R of W with residue field
k and fraction field F', and an R-point P of T, such that the generic fiber of

P is an F-point ¢ of T lying on D4 and such that the special fiber of P is a
k-point 7y of C. Up to replacing A by A, and changing basis for A, we can

assume that
d 0
A= (2 0).
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This means that D, parametrizes varieties X with an element v €
H?(X, Z)prim such that g (v) = b.

Let w : A — Ty be the family of polarized abelian varieties obtained by
pulling back the universal family over A, 4 , by the Kuga-Satake map « of
Proposition 18. Using (1) of Sect. 3.3 and Proposition 11, the second base
element of A corresponds to an endomorphism ¢ of the polarized abelian
variety A, such that ¢ o ¢ is multiplication by b on A;.

Let D be the component of the intersection of D4 with TF such that, lo-
cally, D is the image in TF of the versal deformation space of the pair (A;, ¢).
In other words, D is the locus in Tr where ¢ deforms with A;.

The point ¢ specializes to fy. Let us write Ag for A;,. The endomorphism
¢ specializes to an endomorphism ¢q of Ag. There exists a positive integer
r such that the pair (Ao, p"¢o) deforms over C. Indeed, the generic fiber
Ay c) of the universal polarized abelian scheme A over C is supersingular by
Proposition 21, which implies that the cokernel of the specialization map

End(Ag(c)) — End(Aop)

is killed by a power of p. In particular, the pair (Ag, p"¢o) deforms to a pair
(A1, Y1) such that A; is the Kuga-Satake abelian variety associated to the
variety X itself over k. Note that 11 o ¥ is multiplication by p>"b on A;. Let
11 be the corresponding point of 7.

We want to study the versal deformation space of the pair (A, ¥1) by
making use of X. This can be done using the following canonical embedding

HZ (X)W prim <> End(H 2, (A1/ W) (5)

induced by (3). Given a lifting of the polarized variety X to characteristic
zero, the groups above are identified to relative de Rham cohomology groups,
and (5) is flat and respects the Hodge filtration.

Lemma 23 Let [y1] € End(HClrys(Al/W)) be the crystalline cohomology
class of ¥r1. Then [yr1] lies in the image of ch,ys (X1/W)prim by the morphism
(5).

Proof Since (5) is primitive by Proposition 13, its cokernel is torsion-free.
We can work with crystalline cohomology groups tensored with K and only
show that [v] lies in the image of chrys(Xl/K)'

Let B be the formal neighborhood of #y in 7. The formal scheme B is flat
over Spf(R) since T is flat over Spec(W). Recall the morphism of (3)

R*1.2% 2 (1)prim = End(R' ¢,.$2

X/B ;Z/§)'
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Let o be the cohomology class of ¢ in End(H L} r(A:/F)). By [22, Propo-

sition 8.9], there exists a unique flat section & of End(R lr, :4 /Bl /p]) over

§[1/p] passing through c.!

Since & is flat and & belongs to H?,(A;/F)pyim by assumption, & comes
from a section of Rzn*[);?/g[l/p](l)pr,-m[l/p] over §[1/p].

On the other hand, the endomorphism ; deforms by assumption over
C to an endomorphism {ﬁl of the abelian scheme .A/C. The crystalline co-
homology class [¢¥] of ¥ induces a section of the convergent isocrystal
RZJT* :@\/ﬁ(l)prim[l/p]\c-

By definition of «, we havE o = [¥];, under the various identifications.
By flatness, if ¢’ is a point of B[1/p] that specializes to the generic point ¢

~

of C, we get oy = [J]nc. By the remarks above, this implies the result. [

The preceding lemma allows us to control the deformation theory of the
pair (Ap, ¥1) as in the sketch of proof above. Indeed, standard deforma-
tion theory arguments and, for instance, Grothendieck-Messing theory as in
[25]—see also [11, Theorem 2.4] for a summary—shows that the obstruc-
tion to deforming | with A; is controlled by the group H?(X, Ox). As this
k-vector space is one-dimensional, the versal deformation space of (A, V)
is a divisor X in the formal neighborhood Toft;inT.

By the argument of [30, Theorem 2.9], no component of X' can dominate
the special fiber T;. Since the result is not stated as such in [30] as we do
not know a priori that 1| comes from a line bundle on X1, let us sketch how
Ogus’ proof works in our setting.

Ogus shows by a dimension count that T} contains an ordinary point. As
a consequence, if some component of X dominates T, then one can deform
(A1, 1) to a pair (A, ¥») where Aj is the Kuga-Satake variety of an ordi-
nary fiber of . There we can assume that ¥, is not divisible by p, and the
deformation arguments of [30, Proposition 2.2] give the result.

This shows that X is a flat divisor in 7". Furthermore, one of its components
contains the supersingular component C by assumption. As a consequence,
the Zariski closure of the generic fiber X'k of X' contains C.

We claim that Y'g is included in some D4, . First, let s be any complex
point of X'x. By definition, s corresponds to a polarized variety X and an
endomorphism v of its Kuga-Satake abelian variety .A,. Since v is a defor-
mation of ¥1, ¥ o v is multiplication by p* b on Ay. Furthermore, again by
assumption, the cohomology class of ¥ lies in the subspace H?(X, 7Z) prim Of
End(H'(A;, Z)).

IThe result of [22] above only works over a smooth base, and B [1/p] might not be smooth.

However, the abelian scheme A over B comes from the universal abelian scheme over Ag’d/’ o
which is smooth and where Katz’ result applies.
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Since the Kuga-Satake correspondence is induced by a Hodge class, the
cohomology class [v/] of i in Betti cohomology is a Hodge class. As a con-
sequence, it comes from a Hodge class in H 2(X, Z) prim» which shows by the
Lefschetz (1, 1) theorem that it is the cohomology class of a line bundle £ on
X. By Proposition 11, we have ¢ ([¥]) = g(c1(£)) = p* b. As a consequence,
the lattice generated by c¢;(£) and the polarization in the Néron-Severi group
of X is isomorphic to A ,r. This concludes the proof. g

In the course of the proof, we actually obtained the following result.

Proposition 24 Let ty be a k-point ty of T that lies on a component C of
the supersingular locus. Let  be an endomorphism of Ay, such that the
cohomology class of W acting on Hc.l,ys(A,O /W) belongs to the image of

ch,ys(X 10/ W)prim by the Kuga-Satake correspondence.

There exists a lattice A as in Sect. 3.1 and a positive integer r such that
the versal deformation space of (A, p" V) in T contains C and is contained
with the Zariski closure D 4 of the Noether-Lefschetz divisor Dy in T .

4.4 Finding one line bundle

Choose lattices A; and a divisor D supported on the D 4, as in the conclusion
of Theorem 17. There exists a positive integer a such that O(D) = A®4,

Proposition 25 Let D be the Zariski closure of D in T. Then the special fiber
Dy of D is an ample Q-Cartier divisor.

Proof Consider the Kuga-Satake mapping
KS(C . Sn’(c —> -Ag,d/,n,(C
of Sect. 3.6.

By the argument of [24, Proposition 5.8], if A 4 denotes the Hodge bundle
on A, 4, c., there exists a positive integer r such that

KSE()\.?{) — )\,®(2b_1r)’

where b is the second Betti number of X.
As a consequence, after pulling back to Tk, we can write

OMD) =ik ()

for some positive integers M and N—taking powers of line bundles to de-
scend the equality from 7¢ to Tk.
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Let U be the smooth locus of T — Spec W, and let D’ be the closure of
D in U. By Lemma 5.12 in [24], O(M D') = &*(2/})|u. Let s be a section of
K" ()»fX) over U with divisor M D’.

Since T is normal, the complement of U in T has codimension at most
2in T and s extends to a section of k* ()Lﬁ) over T. The divisor of s is the
closure of M D" in T, which precisely means that the divisor of s in T is M D
and shows that

OMD) =x*(2.5).
By [18, V.2.3], the Hodge line bundle A 4 is ample on Ay 4 , k. Since K

is finite, this proves that M D is an ample Cartier divisor and concludes the
proof. U

We now prove the following first step in the direction of Theorem 4. We
keep the notations as above.

Proposition 26 There exists a complex point t of T such that X; specializes
to X and has Picard number at least 2.

Proof Let x be the k-point of T corresponding to X. By [29, Theorem 15],
the supersingular locus in 7" is closed of dimension s =b —3 — E((b —
1)/2), where E is the integer part function. Indeed, the height of varieties
parametrized by X — T varies between 1 and E((b — 1)/2) if it is finite, and
the locus of points in T with height at least 4 has codimension 4 — 1. Together
with Proposition 20, this shows that there is a nontrivial proper s-dimensional
component C in the supersingular locus of T containing x. Note that s > 0
because b > 5.

Choose A; and D as above, and let D be as in the previous proposition.
By Proposition 25, some multiple of Dy is an ample Cartier divisor. As a
consequence, the intersection of D and C is not empty. By Proposition 22,
there exists a lattice A such that the Zariski closure of Dy in T contains C.
As a consequence, X is the specialization of a variety with Picard number at
least 2. |

5 Proof of Theorem 4

We now adapt the techniques of the preceding section to prove Theorem 4.
We keep the notations as above.

5.1 Lifting many line bundles to characteristic zero
In this section, we prove the following result.
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Proposition 27 Let x be the point of T corresponding to X, and let C be the
connected component of the supersingular locus of T containing x. There ex-
ist a k-point y of C and a complex point z of T with the following properties.

1. Under the identifications of Proposition 18, the point z specializes to y.
2. The weight 2 Hodge structure parametrized by z has Picard rank b — 3.

We start with a generalization of Proposition 22 to higher Picard numbers
which might be of independent interest. Before stating it, let us introduce
some notations.

Let A be a nondegenerate lattice containing a primitive element / of square
d. We denote by Z 4 the locus in S, ¢ of points s such that if H; is the weight
2 Hodge structure on L corresponding to s, there exists an embedding of A
in the Néron-Severi group of Hy; mapping / to the class of the polarization. In
case the rank of A is 2, we recover the divisor D 4 we used above. As before,
Z 4 is defined over Q.

Proposition 28 Ler x be the point of T corresponding to X and let C be
a component of the supersingular locus in T passing through x. Then there
exists a lattice A of rank E((b — 1)/2) such that the Zariski-closure of Z 4 in
T contains C.

Corollary 29 The variety X admits a lift to a polarized variety of Picard rank
at least E((b — 1)/2) in characteristic 0.

Proof of Proposition 28 We prove by induction on n < E((b — 1)/2) that
there exists a lattice A of rank n such that the Zariski closure of Z4 in T
contains C. We will argue as in Proposition 22, which deals with the rank 2
case.

Letn < E((b — 1)/2) be a positive integer, and assume that there exists a
lattice A of rank n such that the Zariski-closure of Z 4 in T contains C. Let us
first remark that Z 4 is itself a union of Shimura subvarieties of S,,, associated
to the orthogonal of copies of A in the lattice L. As such, its components are
Shimura varieties of orthogonal type corresponding to a lattice of signature
2,b—2—n).

The Noether-Lefschetz locus on Z 4 is a countable union of divisors satis-
fying the following analog of Theorem 17. Let A’ be a nondegenerate rank
n + 1 lattice containing A. The variety Z 4/ is naturally a divisor in Z 4. The
proof of [24, Theorem 3.1] translates immediately to show that the analog of
Theorem 17 holds for the divisors Z 4/ in Z 4.

We can now use the ampleness arguments of Proposition 25, working this
time with the Zariski closure Z 4 of Z 4 in T, to show that there exists a lattice
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A’ of rank n + 1 containing A such that the intersection of Z 4 and C is not
empty.”

At this point, we can repeat the proof of Proposition 22 to show that some
Z 4 actually contains the support of C. The only step that does not go through
is the following. Let X; be a fiber of 7 over a k-point ¢ of T with an embed-
ding of A in Pic(X;), and let (X}, S) be an irreducible component of a versal
k-deformation of the pair (X;, A) in T. We need to show that the geometric
generic fiber A% is ordinary with Picard group of rank n. This is a generaliza-
tion of [30, Theorem 2.9].

We first remark that by standard deformation theory, the dimension of Z 4
is at least b — 2 — n. On the other hand, Ogus shows in [30, Theorem 2.9] that
the dimension of the non-ordinary locus in S is at most max(n, b — 3 — n).
Since n < E((b — 1)/2), this shows that A7 is ordinary. Usual deformation
theory of ordinary K3 crystals allows us to conclude that S is of dimension
b — 2 — n and that the conclusion holds. O

Proof of Proposition 27 Let us show by inductionon n <b —3 — E((b —
1)/2) that there exists a nondegenerate lattice A of rank E((b — 1)/2) +n
such that the intersection of Z 4 with C is a non-empty subscheme C 4 of C
of dimension atleastb—3—E((b—1)/2)—n.Forn=b—-3—-E((b—1)/2),
this gives the conclusion of Proposition 27.

For n = 0, this is the statement of Proposition 28, since C is of dimension
b—3—E({(b—1)/2). Assume that the result we just stated holds for some
n<b—3—E((b—1)/2). As in the proof of Proposition 28 above, since the
dimension of C, is positive, we can find a nondegenerate lattice A’ of rank
n + 1 containing A such that Z 4, has non-empty intersection C 4 with C 4.
Since the dimension of C 4 is atleastb —3 — E((b—1)/2) — n, the dimension
of Cyqrisatleast b —3 — E((b — 1)/2) — (n + 1). This concludes the proof
of Proposition 27. g

5.2 From Picard rank b — 3 to Picard rank b
In this section, we show how to derive Theorem 4 from Proposition 27.
Proof of Theorem 4 We start with a Hodge-theoretic lemma.

Lemma 30 Let H be a weight 2 polarized Hodge structure with h*° = 1.
Assume that the codimension of the space of Hodge classes in H is at most 3.
Let A be the Kuga-Satake variety of H together with a polarization, and let

p:End(H'(A,Q)) — End(H'(A, Q))

2The only difference with Proposition 25 is that Z 4 is not normal a priori. However, one can
work on the normalization of Z 4 and carry on with the proof.
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be the orthogonal projector onto H. Then p is induced by an algebraic cor-
respondence on (A x A)?.

Proof We can write H = H' @ V as polarized Hodge structures, where H' is
of dimension at most 3 and V is contained in the space of Hodge classes
of H. Standard computations show that the Kuga-Satake variety of H is
isogenous—in a functorial way—to a power of the Kuga-Satake variety asso-
ciated to H'. As a consequence, we can assume that the dimension of H is at
most 3.

First assume that the dimension of H is exactly 3. In that case, A is an
abelian variety of dimension 23! = 4. However, we know that A is isoge-
nous to the square of the Kuga-Satake variety obtained by considering the
even Clifford algebra of H. It follows that A is isogenous to the square of an
abelian surface. In particular, (A x A)? is isomorphic to a product of abelian
surfaces and satisfies the Hodge conjecture by the main result of [32]. This
proves the theorem, as the projector p is indeed given by a Hodge class.

If the dimension of H is 2, A is an abelian surface—that is actually isoge-
nous to the square of an elliptic curve—and the same proof applies. U

We now use the notations of Proposition 27, and we want to prove that
the Picard rank of X is b. Let A, be the Kuga-Satake variety of the weight 2
Hodge structure H, parametrized by z. By assumption, A, has good, super-
singular reduction at p. Let Ay be this smooth reduction. By the preceding
lemma, we have an algebraic correspondence of codimension 2 on (A, x A;)?
which acts as the orthogonal projector

p:End(H'(A;,Q)) — End(H'(A;, Q))

onto H,.

The correspondence p specializes to a correspondence py on (A x Ay)z.
By the smooth base-change theorem, the image of p, acting on crystalline
cohomology is (b — 1)-dimensional. Furthermore, since A, is supersingular,
its crystalline cohomology is spanned by algebraic cycles. In particular, we
can find endomorphisms vy, ..., ¥,_1 of Ay that lie in the image of p and
span the image of p.

By Proposition 24, the v; deform to classes of line bundles on X spanning
the primitive cohomology of X. This concludes the proof of Theorem 4. [
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