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Abstract
We prove two results regarding Hodge structures appearing in the cohomology of complex
tori. First, we prove that if a polarizable Hodge structure appears in the cohomology of
a complex torus T , it appears in the cohomology of an abelian variety isomorphic to a
subquotient of T . Second, we prove a universality result for the Kuga–Satake construction
applied to Hodge structures of K3 type that might not be polarized.

1 Introduction

This note is devoted to studying those Hodge structures that appear in the cohomology of
complex tori. It is well-known that the functor which associates to a complex torus T its
first Betti cohomology group H1(T , Q) together with its natural Hodge structure of weight
1 is an equivalence of categories between the category of complex tori up to isogeny and the
category of rational Hodge structures of type {(1, 0), (0, 1)}. Furthermore, such a rational
Hodge structure comes from an abelian variety if and only if it admits a polarization, namely,
a rational bilinear form that satisfies the Hodge–Riemann positivity relations.

In general, we say that a Hodge structure V is abelian if it appears as a direct factor, up to
a Tate twist, of the cohomology of an abelian variety. Concretely, this means that V appears
as a direct factor of a Hodge structure of the form

H1(A, Q)⊗a ⊗ (H1(A, Q)∨)⊗b ⊗ Q(c),

where a, b and c are integers with a, b ≥ 0. Abelian Hodge structures are described in terms
of their Mumford–Tate groups in [8, Section 1].

Our first result shows that for a polarizable Hodge structure V to be of abelian type, it
suffices for V to appear in the cohomology of a complex torus T , without assuming that T
is an abelian variety. More precisely, we prove the following (see Theorem 3.1):
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Theorem 1.1 Let V be a pure polarizable Hodge structure. Let W be a Hodge structure of
type {(0, 1), (1, 0)} such that V is isomorphic to a subquotient of the Hodge structure

W ⊗a ⊗ (W ∨)⊗b ⊗ Q(c)

for some integers a, b, c with a, b ≥ 0. Then there exists a polarizable Hodge structure
W ′ which is isomorphic to a direct sum of subquotients of W , and an injection of Hodge
structures

V ↪−→W ′⊗a′ ⊗ (W ′∨)⊗b′ ⊗ Q(c′)

for some integers a′, b′, c′ with a′, b′ ≥ 0.

In particular, those polarizableHodge structures that appear in the cohomology of complex
tori always come from algebraic varieties.

An instance of Hodge structures that appear in the cohomology of complex tori is given
by the Kuga–Satake construction, first introduced in [4], that associates a Hodge structure
W of type {(0, 1), (1, 0)} to any Hodge structure V of K3 type endowed with a suitable
quadratic form. The Hodge structure W is polarizable if the quadratic form is a polarization,
and V is always a sub-Hodge structure of End(W ). We prove the following in Theorem 4.8
below – which we refer to for the notation:

Theorem 1.2 Let V be a Hodge structure of K3 type endowed with a Beauville–Bogomolov
quadratic form. Let T be a complex torus. Assume that there exist integers a, b and c together
with an injective morphism of Hodge structures

V ↪−→H1(T , Q)⊗a ⊗ (H1(T , Q)∨)⊗b ⊗ Q(c)

with a and b nonnegative.
Assume that the Mumford–Tate group of V is the full special orthogonal group SO(V ).

Then T contains a simple factor of the Kuga–Satake variety of V as a subquotient up to
isogeny.

In the situation where V is polarized, the universality theorem above is folklore and stated
for instance in [15, Proposition 6], and essentially contained in [5, 1.3], following results of
Satake [12], see also [3]. The result is also alluded to by Deligne in his paper [4].

Our arguments for the proof of Theorem 3.1 and Theorem 4.8 rely on the use ofMumford–
Tate groups and basic elements of the theory of reductive groups. In Sect. 2,we gather notation
and elementary or folklore results. Section 3 is devoted to the proof of Theorem 3.1, and
Sect. 4 proves Theorem 4.8.

2 Notation and preliminary results

2.1 Hodge structures

2.1.1We denote by S the Deligne torus, namely, the real algebraic group defined as the Weil
restriction of the multiplicative group Gm ,R to R. By definition, we have:

S(R) = C∗ and S(C) = C∗ × C∗.

We denote by

w : Gm ,R −→ S
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the morphism corresponding at the level of real points to the inclusion of R∗ in C∗, and by

μ : Gm ,C −→ SC � Gm ,C × Gm ,C

the cocharacter corresponding to the morphism z 	→ (z, 1).
2.1.2 Let V be a finite-dimensional vector space over Q. A Hodge structure on V is the

datum of a bigrading of the complex vector space VC:

VC =
⊕

p,q∈Z
V p,q

such that for all integers p, q , the spaces V p,q and V q,p are conjugate and the spaces
⊕

p+q=k

V p,q

are defined over Q for all integers k. Given a subset S of Z2, we say that V is of type S if
V p,q = 0 when (p, q) does not lie in S.

The Hodge structure is pure of some weight k if V p,q = 0 when p + q �= k. If n is an
integer, the Tate Hodge structure Q(n) is the unique pure Hodge structure of type (−n,−n)

on the rational vector space Q.1

The datum of an action of the torus S on the real vector space VR is equivalent to a
bigrading of the complex vector space VC:

VC =
⊕

p,q∈Z
V p,q

such that for all integers p, q , the spaces V p,q and V q,p are conjugate – here V p,q is the
subspace of VC on which C∗ acts through z−pz−q . Via the morphism w : Gm ,R → S, an
action of S on VR induces an action of Gm ,R on VR. This latter action is defined over Q if
and only if the spaces

⊕

p+q=k

V p,q

are defined over Q for all integers k, i.e., if and only if the bigrading above defines a Hodge
structure on V . Given an action h : S → GL(VR), the corresponding Hodge structure on V
is pure if and only if the morphism

h ◦ w : Gm ,R −→ GL(VR)

factors through the center of GL(V )R.
If V is a pure Hodge structure of weight k, a polarization of V is a morphism of Hodge

structures

φ : V ⊗Q V −→ Q(−k)

such that the bilinear form

VR ⊗ VR −→ R, (x, y) 	→ φR(x, h(i)y)

is positive definite.

1 Since we will need to use Tate Hodge structures of fractional weight, we find it more convenient to drop
the factor (2π i)n in the definition of Tate Hodge structures. Of course, this does not change the isomorphism
class of these Hodge structures.
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2.1.3 We denote by MT (V ) the smallest algebraic subgroup G of the algebraic group
GL(V ) over Q such that GR contains the image of h. The group MT (V ) is called the
Mumford–Tate group of the Hodge structure V . Let

h : S −→ MT (V )R

be the morphism that defines the Hodge structure on V . We denote by

wh : Gm ,Q −→ MT (V )

the morphism induced by h ◦ w. It is a central cocharacter if and only if V is pure.
2.1.4We will need to consider fractional Hodge structures. A fractional Hodge structure

on a finite-dimensional vector space V over Q is defined as the datum of a bigrading of the
complex vector space VC:

VC =
⊕

p,q∈Q
V p,q

such that for all rational numbers p, q , the spaces V p,q and V q,p are conjugate and the spaces
⊕

p+q=k

V p,q

are defined over Q for all rational numbers k. Given a subset S of Q2, we say that V is of
type S if V p,q = 0 when (p, q) does not lie in S.

If a is a rational number, the fractional Tate Hodge structure Q(a) is the unique pure
Hodge structure of type (−a,−a) on the rational vector space Q.

FractionalHodge structuresmaybeunderstood in termsof theDeligne torus as follows.Let
T be an algebraic torus. We denote by T̃ the universal covering of T , namely, the projective
system (Tn)n∈N\{0} where Tn = T for all positive n, N \ {0} is ordered by divisibility, and
the transition maps are

Tmn −→ Tn, x 	→ xm .

A fractional morphism from T to an algebraic group G is a morphism

φ : T̃ −→ G.

Such a morphism may be represented by an actual morphism

φn : Tn −→ G.

We denote by

w̃ : G̃m ,R −→ S̃

the morphism induced by w.
As in the case of usual Hodge structures, fractional Hodge structures on V correspond

bijectively to those fractional morphisms

h̃ : S̃ −→ GL(V )R

such that h̃ ◦ w̃ is defined over Q.
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Given a fractional morphism h̃ as above, we may find a positive integer n and a commu-
tative diagram

S̃
x 	→xn

��

h̃n

���
��

��
��

�� S̃

h̃
��

GL(V )R

inwhich h̃n comes from an actualmorphism hn : S → GL(V )R. TheHodge structure defined
by hn is the one obtained by replacing the indices (p, q) in the bigrading of VC with indices
(np, nq). Indeed, choosing n allows us to turn all the p and q into integers.

The smallest algebraic subgroup G of GL(V ) over Q such that GR contains the image
of hn does not depend on the choice of n, we will denote it again by MT (V ) and call it the
Mumford–Tate group of V .

2.1.5 Fractional morphisms and fractional Hodge structures appear through the following
elementary result.

Proposition 2.1 Let k be a field of characteristic zero, let T be an algebraic torus over k,

and let

h : T −→ H

be a morphism of algebraic groups over k. Let

p : G −→ H

be an isogeny. Then h lifts uniquely to a fractional morphism

h̃ : T̃ −→ G.

Proof The unicity statement is clear. To prove existence, we may replace both T and H with
the image of T in H , and G with the identity component of the preimage of h(T ) in G.

Since p has finite kernel, there exists a positive integer N such that the kernel K of p is
contained in the N -torsion subgroup of G. In particular, the morphism

G −→ G, x 	→ x N

factors through a morphism φ : T → G: the composition

G
p−→ T

φ−→ G

is x 	→ x N . Consider the composition

ψ : T
φ−→ G

p−→ T .

Then

ψ ◦ p : G −→ T

is the morphism p ◦ (φ ◦ p), i.e.

G
x 	→x N−→ G

p−→ T .

Consider the morphism

ψN : T −→ T , x 	→ x N .
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Then ψ ◦ p = ψN ◦ p, so that ψ = ψN as p is an epimorphism by e.g. [2, Lemma 2.1].
In particular, we obtain a commutative diagram

T

ψN

��

φ �� G

p

��
T

IdT �� T ,

and φ defines a fractional lift of IdT to G. 
�
In the remainder of this text, a Hodge structure is always meant in the classical sense,

namely, with an integral bigrading. We will always use the adjective “fractional” to refer to
fractional Hodge structures.

2.2 The reductive quotient of a Mumford–Tate group and the semisimplification of
a Hodge structure

Let V be a Hodge structure. Recall that V is said to be simple if all sub-Hodge structures
of V are isomorphic to 0 or V itself. We say that V is semisimple if V is isomorphic to a
direct sum of simple Hodge structures. It is well-known that polarizable Hodge structures
are semisimple and that their Mumford–Tate group is reductive.

In general, there exists an increasing filtration

0 = V0 ⊂ · · · ⊂ Vn = V

of V by sub-Hodge structures such that, for all i between 0 and n − 1, the quotient Hodge
structure

Vi+1/Vi

is simple. The direct sum

V ss :=
n−1⊕

i=0

Vi+1/Vi

is a semisimpleHodge structure by construction, and it is readily checked that its isomorphism
class does not depend on the choice of the filtration V•.

Let G be the Mumford–Tate group of V , and let h : S → GR be the morphism defining
the Hodge structure on V .

Proposition 2.2 The Hodge structure V is semisimple if and only if the Mumford–Tate group
G is reductive.

Proof The sub-Hodge structures of V are exactly the G-invariant subspaces of V . As a
consequence, V is semisimple as a Hodge structure if and only if V is semisimple as a
representation of G.

If V is semisimple, then the unipotent radical of G acts trivially on V . Since G acts
faithfully on V , this implies that G is reductive.

Conversely, if G is reductive, then any representation of G is semisimple, so that V is
semisimple. 
�

We can describe the Mumford–Tate group of the semisimplification of V in general.
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Proposition 2.3 The Mumford–Tate group of V ss may be identified with the reductive quotient
Gred of G. Under this identification, the morphism S → Gred

R
defining the Hodge structure

on V ss is the composition of h with the quotient map GR → Gred
R

.

Proof Consider an increasing filtration

0 = V0 ⊂ · · · ⊂ Vn = V

of V by sub-Hodge structures such that, for all i between 0 and n − 1, the quotient Hodge
structure

Vi+1/Vi

is simple. Then the spaces Vi are invariant under the action of G on V .
Let U be the unipotent radical of G. By assumption, the representation of G on Vi+1/Vi

is simple for all i , so that U acts trivially on Vi+1/Vi . As a consequence, the action of G
on V induces an action of the reductive quotient G/U = Gred on V ss. By functoriality, the
Hodge structure on V ss is defined by this action and the morphism

hss : S → Gred
R

defined as the composition of h with the quotient map GR → Gred
R

.

Since h has dense image in G, hss has dense image in Gred
R

. To prove that Gred is the
Mumford–Tate group of V , it remains to prove that the representation of Gred on V ss is
faithful, i.e., that the kernel of the action of G on

⊕n−1
i=0 Vi+1/Vi is the unipotent radical U .

Clearly, this kernel is normal and unipotent, so that it is contained in U , which finishes the
proof. 
�

3 Polarizable Hodge structures coming from complex tori are abelian

3.1 Statement of the theorem

The main theorem of this section is the following.

Theorem 3.1 Let V be a pure polarizable Hodge structure. Let W be a Hodge structure of
type {(0, 1), (1, 0)} such that V is isomorphic to a subquotient of the Hodge structure

W ⊗a ⊗ (W ∨)⊗b ⊗ Q(c)

for some integers a, b, c with a, b ≥ 0. Then there exists a polarizable direct factor W ′ of
the Hodge structure W ss and an injection of Hodge structures

V ↪−→W ′⊗a′ ⊗ (W ′∨)⊗b′ ⊗ Q(c′)

for some integers a′, b′, c′ with a′, b′ ≥ 0.

In particular, V appears in the cohomology of an abelian variety, sowe obtain the following
corollary.

Corollary 3.2 Let V be a polarizable Hodge structure. Let W be a Hodge structure of type
{(0, 1), (1, 0)} such that V is isomorphic to a subquotient of the Hodge structure

W ⊗a ⊗ (W ∨)⊗b ⊗ Q(c)

for some integers a, b, c with a, b ≥ 0. Then V is isomorphic to a direct factor of a Hodge
structure arising from the cohomology of an algebraic variety.
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3.2 Mumford–Tate groups of Hodge structures of weight 1

3.2.1We start with two elementary results. The first is well-known, and we include it for the
sake of reference.

Proposition 3.3 Let G1 and G2 be two reductive algebraic groups over a field k of character-
istic zero, and let V be a representation of G1 × G2 on a finite-dimensional k-vector space.
Then there exist finite-dimensional representations V1 and V2 of G1 and G2 respectively on
k-vector spaces, and a G1 × G2-equivariant surjective morphism

V1 ⊗ V2 −→ V .

Proof Let V1 be an irreducible factor of V considered as a representation of G1. Define

V2 = HomG1(V1, V ).

Then V2 may be considered as a representation of G2. The natural morphism

V1 ⊗k V2 −→ V

is G1 × G2-equivariant and nonzero, so that it is surjective. 
�
A fractional representation of Gm,C × Gm,C on a complex vector space V is equivalent

to the datum of a bigrading

V =
⊕

p,q∈Q
V p,q

of V . The type of the fractional representation V is the set of those pairs (p, q) such that
V p,q �= 0.

Proposition 3.4 Let W1, . . . , Wk be fractional, finite-dimensional complex representations
of Gm,C × Gm,C. Assume that the representation

W := W1 ⊗ . . . ⊗ Wk

of Gm,C × Gm,C has type {(0, 1), (1, 0)}.
Then there exists a unique integer i between 1 and k with the following property: for all

j �= i, there exists a rational number a j such that W j has type {(a j , a j )}. Furthermore,
there exists a rational number ai such that Wi has type {(ai + 1, ai ), (ai , ai + 1)}.
Proof If H is a complex representations of Gm,C × Gm,C, let l(H) denote the number of
those pairs of rational numbers (p, q) such that H p,q �= 0. It is readily checked that, for any
two nonzero fractional representations H and H ′, we have:

l(H ⊗Q H ′) ≥ l(H) + l(H ′) − 1.

In particular, we obtain:

2 = l(W ) = 1 +
k∑

i=1

(l(Wi ) − 1),

i.e.:
k∑

i=1

(l(Wi ) − 1) = 1.
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This implies that there exists a unique integer i between 1 and k such that l(Wi ) = 2, and
that l(W j ) = 1 for j �= k, which is equivalent to our assertion. 
�

3.2.2 Let W be a Hodge structure of type {(0, 1), (1, 0)}, and let G be the Mumford–Tate
group of W . We assume that G is reductive. By Proposition 2.2, this is equivalent to W being
semisimple.

Consider connected normal subgroups T , G1, . . . , Gr of G that commute pairwise such
that the following two conditions are satisfied:

(1) The multiplication map induces a central isogeny:

p : T × G1 × · · · × Gr −→ G.

Namely, p has finite, central kernel.
(2) For any i between 1 and r , there are no nontrivial characters Gi → Gm .

Note that the second condition above is satisfied if Gi is simple or Gi (R) is compact.
Let

h : S −→ G

be the morphism corresponding to the Hodge structure W , and let

h̃ : S̃ −→ T × G1 × · · · × Gr

be the unique fractional lift of h to T ×G1×· · ·×Gr provided by Proposition 2.1. We write

h̃ = h̃0 h̃1 . . . h̃r ,

where h̃0 : S̃ → T and h̃i : S̃ → Gi for 1 ≤ i ≤ r are the components of h̃.

Proposition 3.5 Let W ′ be a simple factor of the Hodge structure W . Then the following
statements hold:
(i) there exists at most one integer i in {1, . . . , r} such that Gi acts nontrivially on W ′.

Assume that Gi acts nontrivially on W ′.

(ii) There exists a rational number a such that the fractional Hodge structure on W ′ induced
by h̃i and the action of Gi on W ′ is of type

({(a + 1, a), (a, a + 1)}.
(iii) If Gi is simple, the natural surjection

π : G = MT (W ) −→ MT (W ′)

restricts to a central isogeny of Gi onto its image, and it induces an isomorphism

Gmπ(Gi ) � MT (W ′),

where Gm is identified with the group of homotheties in GL(W ′) ⊃ MT (W ′).

Note that as G is reductive, W is a direct sum of simple Hodge structures, so that W ′ is a
direct summand of W .
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Proof Via the central isogeny p, we may consider W ′ as a simple representation of T ×G1×
. . . × Gr . Proposition 3.3 guarantees that we may find an equivariant surjection

W0 ⊗ · · · ⊗ Wr −→ W ′, (1)

where W0 is a simple representation of T , and Wi is a simple representation of Gi for all i
between 1 and r .

For simplicity of notation, write T = G0. For any i between 0 and r , let Vi denote a simple
factor of the representation Wi,C of Gi,C. Then Wi,C is a direct sum of conjugates σ(Vi ) =
Vi ⊗C,σ C of the representation Vi under automorphisms σ of C. For any automorphisms
σ0, . . . , σr of C, the representation

σ0(V0) ⊗ · · · ⊗ σr (Vr ) (2)

is a simple representation of G0,C × · · · × Gr ,C, see e.g. [13, Corollary of Lemma 68], so
that the representation W ′

C
is a direct sum of representations of the form (2).

Any space σ(Vi ) carries via the fractional morphism h̃i a representation of SC =
Gm,C × Gm,C. It is readily checked that this representation is independent of the choice
of the automorphism σ of C.

Applying Proposition 3.4 and the irreducibility of the Vi , we see that there exists a unique
integer i between 0 and r such that for all j �= i , Vj has type {(a j , a j )} for some rational
number a j , and Vi has type {(ai + 1, ai ), (ai , ai + 1)} for some rational number ai .

Let j �= i be an integer between 1 and r . Since W j,C is isomorphic to a direct sum of
the σ(Vj ), it has type {(a j , a j )} as a representation of Gm,C × Gm,C. As a consequence, the
fractional Hodge structure on Wi induced by h̃i is isomorphic to a sum of copies of Q(a j ),
and G j acts on W j through a character. By assumption (2), this character is trivial, so that
a j = 0 and G j acts trivially on W j . This proves (i) and (ii).

With the notation of (iii), since Gi is simple, the restriction of the surjection π to Gi is a
central isogeny. The surjection

π : G = MT (W ) −→ MT (W ′)

maps all the G j to 1 for j �= i , and maps T to Gm by Proposition 3.4. This proves (iii). 
�
For any integer i between 1 and r , let Wi denote the sum of those simple direct factors of

W on which Gi acts nontrivially. For any j �= i , the group G j acts trivially on Wi .

Proposition 3.6 Let i1, . . . , ik be k distinct integers between 1 and r , and let Wi1,...,ik be the
direct factor

Wi1,...,ik = Wi1 ⊕ · · · ⊕ Wik

of the Hodge structure W . Let

π : G = MT (W ) −→ MT (Wi1,...,ik )

be the natural surjection. Then the restriction of π to the subgroup Gi1 . . . Gik of G is injective.

Proof Since W is semisimple, we may write

W = Wi1,...,ik ⊕ W ′,

as a direct sum of Hodge structures. By assumption, the group Gi1 . . . Gik acts trivially on
W ′. Since the representation of Gi1 . . . Gik on W is faithful by construction, this proves that
Gi1 . . . Gik acts faithfully on Wi1,...,ik , which proves the result. 
�
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3.3 Beginning of the proof

We keep the notation of Theorem 3.1 and start its proof.
3.3.1 After replacing V with V ⊗ Q(−c), we may assume that c = 0, i.e., that V is

isomorphic to a subquotient of the Hodge structure

W ⊗a ⊗ (W ∨)⊗b.

Denote by G (resp. H ) the Mumford–Tate group of W (resp. V ), and by

hG : S −→ GR

and

h H : S −→ HR

the corresponding morphisms from the Deligne torus S.
The group G acts naturally on the space W ⊗a ⊗ (W ∨)⊗b. Together with hG , this action

defines the Hodge structure on W ⊗a ⊗(W ∨)⊗b. Since V is a subquotient of W ⊗a ⊗(W ∨)⊗b,
the group G acts on V in such a way that the action of S on VR induced by hG defines the
Hodge structure on V . As a consequence, the action of G on V defines a morphism of
Mumford–Tate group p : G → H , and the diagram

S
hg ��

h H ���
��

��
��

� GR

pR
��

HR

is commutative.
By construction, the image of h H (C∗) in H(R) is Zariski-dense in G. As a consequence,

p is surjective.
3.3.2 Since V is polarizable, its Mumford–Tate group H is reductive. Let U be the unipo-

tent radical of G. Then p(U ) is a connected, unipotent subgroup of H . It is normal since p
is surjective. This proves that U is contained in the kernel of p and that p factors through the
reductive quotient Gred of G.

Consider the faithful representation W ss of Gred. It is semisimple of type {(0, 1), (1, 0)}.
Via the surjection Gred → H , consider V as a representation of Gred. By [6, Chapter I,
Proposition 3.1(a)], the representation V ofGred is isomorphic to a direct factor of (W ss)⊗a′ ⊗
(W ss,∨)⊗b′

for some nonnegative integers a′ and b′. In particular, the Hodge structure V is
isomorphic to a direct factor of (W ss)⊗a′ ⊗ (W ss,∨)⊗b′

.
By the previous two paragraphs, we may replace G by its reductive quotient Gred and

W by its semisimplification W ss. From now on, we assume that G is reductive and W is
semisimple.

3.3.3We apply the results of Sect. 3.2. Let Z be the identity component of the center of G
and let Gder be the derived subgroup of G. The multiplication map induces a central isogeny

Z × Gder −→ G.

Additionally, the group Gder is semisimple.
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Let Z ′ be the identity component of the center of H and consider the diagram

Z × Gder ��

��

G

p

��
Z ′ × Hder �� H ,

where the leftmost vertical map respects the product structure. The horizontal maps are
surjective with finite kernel, and the rightmost vertical map is surjective. This implies that
the surjection G → H induces a surjection Z → Z ′. As a consequence, we may find
connected subgroups T and G1 of Z such that the multiplication map

T × G1 −→ Z

is an isogeny, and the composition

G1 −→ Z −→ Z ′/wh H (Gm)

is an isogeny.
By [5, Proposition 1.1.14], the group

(Z ′/wh H (Gm))(R)

is compact. As a consequence, the group G1(R) is compact.
Let (Gi )2≤i≤r denote the minimal connected normal subgroups of Gder. Then the Gi are

simple normal subgroups of G that commute pairwise, and the multiplication map induces a
central isogeny

q : T × G1 · · · × Gr −→ G.

After possibly reordering the groups Gi , we may find an integer k ≥ 1 such that, for any
i between 1 and k, the morphism

p|Gi : Gi −→ H

is an isogeny onto its image, and, for any i between k + 1 and r , p maps Gi to the identity
element of H . In particular, the restriction of p ◦ q to G1 × · · · × Gk is surjective onto
H/wh H (Gm).

Lemma 3.7 For any integer j between 2 and k, conjugation by hG(i) on GR induces a Cartan
involution of G j,R, namely, the group

{g ∈ G j (C), g = h(i)gh(i)−1}
is compact.

Proof LetC (resp.C ′) denote the involution of GR (resp. HR) given by conjugation by hG(i)
(resp. h H (i)). Since G j is a normal subgroup of G, G j,R is stable under C .

By construction, the restriction of p ◦ q to G j defines an isogeny of G j onto a closed
subgroup of the adjoint group H ad of H . In particular, it defines an isogeny from the group

G(C)
j (R) := {g ∈ G j (C), g = C(g)}

onto a closed subgroup of

H ad,(C ′)(R) := {h ∈ H ad(C), h = C ′(h)}.
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Since V is polarizable, [5, Proposition 1.1.14] shows thatC ′ is a Cartan involution of H ad
R
.

This proves that G(C)
j (R) is compact. 
�

Proposition 3.8 Let j be an integer between 1 and k, and let W ′ be a simple direct factor of
the Hodge structure W such that G j acts nontrivially on W ′. Then W ′ is polarizable.

Proof Let

π : G = MT (W ) −→ MT (W ′)

denote the natural surjection. Let

h′ : S −→ MT (W ′)R

be the morphism defining the Hodge structure on W ′, so that h′ = π ◦ h.

Proposition 3.5 shows that MT (W ′) is equal to Gmπ(G j ), where Gm is identified with
the group of homotheties of W ′. Together with Lemma 3.7 in case j ≥ 2 and by construction
if j = 1, this implies that h′(i) is a Cartan involution of MT (W ′)/wh′(Gm), so that W ′ is
polarizable, see [4, Proposition 2.11] or [10, Proposition 3.2]. 
�

For any integer j between 1 and r , let W j denote the sum of those simple direct factors
of the Hodge structure W on which G j acts nontrivially. Let Wp be the Hodge structure

Wp =
k⊕

j=1

W j .

Note that Proposition 3.5 shows that the Wi do not intersect, so that Wp is a sub-Hodge
structure of W . Note also that the groups G j act trivially on Wp for any j > k.

Corollary 3.9 The Hodge structure Wp is polarizable.

Proof This is a formal consequence of Proposition 3.8. 
�
Note that the surjections

G = MT (W ) −→ MT (Wp)

and

G −→ H = MT (V )

endow both V and Wp with actions of G.

3.4 Proof of Theorem 3.1

Proposition 3.10 There exists nonnegative integers a′ and b′, and a linear injection

φ : V ↪−→W ⊗a′
p ⊗ (W ∨

p )⊗b′

that is equivariant with respect to the action of the subgroup G1 . . . Gk of G.

Proof Proposition 3.6 shows that Wp is a faithful representation of the reductive group
G1 . . . Gk . The result follows from [6, Chapter I, Proposition 3.1(a)]. 
�
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Proof of Theorem 3.1 To prove Theorem 3.1, it suffices to show that there exists an integer c′
such that the injection φ of Proposition 3.10 induces an injection of Hodge structures

ψ : V ↪−→W ⊗a′
p ⊗ (W ∨

p )⊗b′ ⊗ Q(c′).

As both V and W ⊗a′
p ⊗ (W ∨

p )⊗b′
are pure Hodge structures, this is in turn equivalent to

proving that for any simple sub-Hodge structure V ′ of V , there exists an integer c′ such that
φ induces an injection of Hodge structures

V ′ −→ W ⊗a′
p ⊗ (W ∨

p )⊗b′ ⊗ Q(c′).

Indeed, if this holds, then c′ is independent of V ′ by purity. We pick such a V ′.
Let H ′ be the image of the subgroup G1 . . . Gr in H . Then the multiplication map induces

an isogeny

wh(Gm) × H ′ −→ H ,

and we may lift h H : S → HR to a fractional morphism

h̃′ : S̃ −→ wh(Gm)R × H ′
R
.

We denote by h̃ H ′ : S̃ → H ′
R
the component of h̃′ mapping to H ′

R
.

Since V ′ is simple, the group wh H (Gm) acts on V ′ by a homothety. This proves that the
Hodge structure on V ′ coincides up to a twist by some Q(c′) with the fractional Hodge
structure on V ′ induced by h̃ H ′ .

Similarly, consider the lift of hG to a fractional morphism

h̃ : S̃ −→ (Z × G1 × · · · × Gr )R,

as well as its component h̃1,...,k : S̃ −→ (G1 × · · · × Gk)R.

By construction, Z acts through a character on Wp , and Gk+1, . . . , Gr all act trivially
on Wp . Consequently, the same argument as above shows that if W ′

p is a simple sub-Hodge
structure of Wp , the Hodge structure on W ′

p coincides up to a twist by some Q(d ′) with the

fractional Hodge structure on W ′
p induced by h̃1,...,k .

Finally, the previous paragraph implies that if W ′′ is a simple sub-Hodge structure of
W ⊗a′

p ⊗ (W ∨
p )⊗b′

, the Hodge structure on W ′′ coincides up to a twist by some Q(e′) with
the fractional Hodge structure on W ′′ induced by h̃1,...,r .

The equivariance of φ with respect to the action of G1 . . . Gk proves that φ defines a
morphism between the fractional Hodge structures on V and W ⊗a′

p ⊗ (W ∨
p )⊗b′

defined by

h̃ H ′ and h̃1,...,k respectively. This finishes the proof of Theorem 3.1. 
�

4 Universality of the Kuga–Satake construction

4.1 The Kuga–Satake construction

4.1.1We recall briefly the Kuga–Satake construction in the context of Hodge structures that
are not necessarily polarizable. We refer to [4] and [7, Chapter 4] for more details, see in
particular [7, Chapter 4, Remark 2.3] for the non polarized case.

Definition 4.1 A Hodge structure of K3 type is a pure Hodge structure V of weight 0, of
type {(1,−1), (0, 0), (−1, 1)} with dim V 1,−1 = 1.
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ABeauville–Bogomolov form on V is a nondegenerate quadratic form q on V that induces
a morphism of Hodge structures

q : V ⊗ V −→ Q

and is definite positive on the real part of V 1,−1 ⊕ V −1,1.

Note that a Beauville–Bogomolov form does not define a polarization on V in general. If
X is a compact hyperkähler manifold, the Hodge structure H2(X , Q) is of K3 type, endowed
with a natural Beauville–Bogomolov form, see [1].

Let V be a Hodge structure of K3 type endowed with a Beauville–Bogomolov form. The
natural morphism

h : S −→ GL(V )R

defining the Hodge structure on V factors through the special orthogonal group SO(V )R.
LetC(V ) denote theClifford algebra of V ,C+(V ) its even part.We regard V as a subspace

of C(V ). Let CSpin(V ) denote the Clifford group of V , defined as the algebraic group of
invertible elements g of C+(V ) such that

gV g−1 = V .

Conjugation by elements of CSpin(V ) defines a surjection

CSpin(V ) −→ SO(V )

with kernel reduced to the scalars. The computation of [7, Chapter 4, 2.1] shows that the
morphism h lifts uniquely to a morphism

h′ : S −→ CSpin(V )R.

Consider the representation of the groupCSpin(V ) onC+(V ) bymultiplication on the left.
By [4, Proposition 4.5], the Hodge structure induced by h′ and this representation on C+(V )

has type {(0, 1), (1, 0)}. This is the Kuga–Satake Hodge structure associated to (V , q). It is
known to be polarizable if q defines a polarization on V . We denote it by HK S .

4.1.2 Let n be the dimension of V . The dimension of the algebra C+(V ) is 2n−1. By e.g.
[4, 3.4], we may understand the representation of CSpin(VC) on C+(VC) by multiplication
on the left as follows.

If n is odd, then C+(VC) is a direct sum of 2(n−1)/2 copies of the spin representation,
which is irreducible of dimension 2(n−1)/2.

If n is even, then C+(VC) is a direct sum of 2n/2−1 copies of the direct sum of the two
half-spin representations, which are both irreducible of dimension 2n/2−1.

Assume that the Mumford–Tate group of the Hodge structure V is the full special orthog-
onal group SO(V ). Considering the commutative diagram

S
h′

��

h

���
��

��
��

��
� CSpin(V )R

��
SO(V )R

in which the vertical map is surjective shows that the Mumford–Tate group of HK S is the
group CSpin(V ). In particular, it is reductive, so that the Hodge structure HK S is semisimple.
We want to give a description of the simple factors of HK S . The simple factors of HK S are
exactly the simple factors of the representation of Cspin(V ) on HK S .
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Lemma 4.2 Let H and H ′ be two nonisomorphic simple factors of the Hodge structure HK S.
Then n is even, then the representation of CSpin(VC) on HC is a direct sum of copies of

one of the half-spin representations, and the representation of CSpin(VC) on H ′
C

is a direct
sum of copies of the other half-spin representation.

Proof Since H and H ′ are nonisomorphic and simple, there are no nonzero CSpin(V )-
equivariant morphisms from H to H ′. As a consequence, there are no nonzero CSpin(VC)-
equivariant morphisms from HC to H ′

C
. This immediately implies the result by the above

description of the representation HK S,C of CSpin(VC). 
�
The following theorem is an elaboration on [14, Section 8].

Theorem 4.3 Let δ be the discriminant of the quadratic form q. Then the following holds.

(i) If n is odd, then there exists a simple Hodge structure H and a positive integer such that

HK S � H⊕N .

There exists r ∈ {1, 2} such that the representation of CSpin(VC) on HC is a direct sum
of r copies of the spin representation. If r = 1, then H has dimension 2(n−1)/2 and
N = 2(n−1)/2. If r = 2, then H has dimension 2(n+1)/2 and N = 2(n−3)/2.

(ii) If n is even and (−1)n/2δ is not a square in Q, then there exist a simple Hodge structure
H and a positive integer such that

HK S � H⊕N .

There exists r ∈ {1, 2} such that the representation of CSpin(VC) on HC is a direct
sum of r copies of the direct sum of the two half-spin representations. If r = 1, then
H has dimension 2n/2 and N = 2n/2−1. If r = 2, then H has dimension 2n/2+1 and
N = 2n/2−2.

(iii) If n is even and (−1)n/2δ is a square in Q, then there exist two nonisomorphic simple
Hodge structures H and H ′, and a positive integer N such that

HK S � (H ⊕ H ′)⊕N .

There exists a positive integer r ∈ {1, 2} such that the representation ofCSpin(VC) on HC

is a direct sum of r copies of one of the half-spin representations, and the representation
of CSpin(VC) on H ′

C
is a direct sum of r copies of the other half-spin representation. If

r = 1, then H and H ′ have dimension 2n/2−1 and N = 2n/2−1. If r = 2, then H and
H ′ have dimension 2n/2 and N = 2n/2−2.

In [14], it is shown that all the situations above do occur.

Proof Lemma 4.2 shows that there are at most two nonisomorphic simple factors of the
Hodge structure HK S , and that if n is odd, there is only one simple factor.

Weproceed to investigate the structure of the endomorphismalgebra of theHodge structure
HK S . Since the Mumford–Tate group of HK S is CSpin(V ), we have:

EndHodge(HK S) = EndCSpin(V )(C
+(V )),

where CSpin(V ) acts on the Clifford algebra C+(V ) by multiplication on the left. This latter
algebra is computed in [14, Theorem 7.7].

Assume that n is odd. Then

EndHodge(HK S) � M2(n−3)/2(D),
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where D is a quaternion algebra over Q. This proves that, in case (i), we have

HK S � H⊕2(n−3)/2
or HK S � H⊕2(n−1)/2

depending on whether or not D is split. Accordingly, the dimension of H is either 2(n+1)/2

or 2(n−1)/2, so that H is the sum of 1 or 2 copies of the spin representation. This is the case
described in (i).

Assume that n is even and (−1)n/2δ is not a square in Q. Then

EndHodge(HK S) � M2n/2−1(D),

where D is a quaternion algebra over Q(
√

(−1)n/2δ).

If D is split, then we argue as above to show that

HK S � H⊕2n/2
,

where H is simple and HC is isomorphic to the sum of two copies of the sum of the two
half-spin representations.

If D is nonsplit, then

HK S � H⊕2n/2−2,

where H is simple and HC is isomorphic to the sum of the two half-spin representations.
This is the case described in (ii).

Assume that n is even and (−1)n/2δ is a square in Q. Then

EndHodge(HK S) � M2n/2−2(D) × M2n/2−2(D),

where D is a quaternion algebra over Q.

If D is split, then

EndHodge(HK S) � M2n/2−1(Q) × M2n/2−1(Q),

so that

HK S � (H ⊕ H ′)⊕2n/2−1
,

where H and H ′ are two nonisomorphic simple factors of HK S . Lemma 4.2 shows that HC

is a sum of copies of one of the half-spin representation, and H ′
C
a sum of copies of the other.

The structure of the representation HK S,C implies that HC is actually isomorphic to one of
the half-spin representations, and H ′

C
to the other.

If D is nonsplit, the same argument shows that

HK S � (H ⊕ H ′)⊕2n/2−2
,

where H and H ′ are two nonisomorphic simple factors of HK S , HC is isomorphic to the sum
of two copies of one of the half-spin representation, and H ′

C
to the sum of two copies of the

other. This is the case described in (iii). 
�
Example 4.4 Let T be a very general complex torus of dimension 2, and let

V = H2(T , Q)

endowed with the quadratic form q given by cup-product. Then (V , q) is isomorphic to the
sum of three copies of the hyperbolic plane, so that the discriminant δ of q is −1. Since V
is 6-dimensional, this proves that we are in the situation of (iii) above. It is possible to show
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that the simple factors of HK S are H1(T , Q) and its dual, which are nonisomorphic—note
that T is not an abelian variety. The reader may consult [11] for the related case of abelian
surfaces.

Example 4.5 Let X be a holomorphic symplectic variety. Then H2(X , Q) endowed with its
Beauville–Bogomolov quadratic form q is a Hodge structure of K3 type. The quadratic form
q has signature (3, b2(X) − 3), where b2(X) is the dimension of H2(X , Q). Let δ be the
discriminant of q .

Assume that b2(X) is odd, and V = H2(X , Q). Then we are in case (i) and the unique
simple factor of HK S has dimension 2(b2(X)+1)/2 or 2(b2(X)−1)/2.

Assume that b2(X) is divisible by 4, and V = H2(X , Q). Then δ is negative, and
(−1)b2(X)/2δ is negative, so that we are in case (i i) and the unique simple factor of HK S has
dimension 2b2(X)/2 or 2b2(X)/2+1.

Assume that b2(X) is even, X is equipped with an ample line bundle, and V is the
orthogonal of the polarization in H2(X , Q). Then we are in case (i) and the unique simple
factor of HK S has dimension 2b2(X)/2−1 or 2b2(X)/2.

Assume that b2(X) is congruent to 3 modulo 4, X is equipped with an ample line bundle,
and V is the orthogonal of the polarization in H2(X , Q). Then the discriminant of the
restriction of q to V is positive, so that we are in case (i i) again, and the unique simple factor
of HK S has dimension 2(b2(X)−1)/2 or 2(b2(X)+1)/2.

Two special cases in even dimension are as follows.

4.2 A preliminary group-theoretic result

LetVC be a finite-dimensional complex vector space endowedwith a nondegenerate quadratic
form qC. Let u and v be two elements of V with

q(u) = q(v) = 1

and

q(u, v) = 0.

Let

ν : Gm,C −→ SO(VC), z 	→ ν(z)

be the cocharacter that acts on u (resp. v) by multiplication by z (resp. z−1) and acts trivially
on the orthogonal of the 2-plane generated by u and v.

It is readily checked that the action of Gm,C on Lie SO(VC) through ν and the adjoint
action factors through the characters z, z−1 and 1. As a consequence of [5, 1.2.5], see also
[9, 2.3], we may attach to the conjugacy class of ν a special vertex of the Dynkin diagram
of SO(VC) as follows. Choose a maximal torus T of SO(VC) through which ν factors, S a
basis for the root system of T , R+ the corresponding set of positive roots. After conjugating
ν, we may assume that the integers 〈α, ν〉 are nonnegative for α ∈ R+. Then there exists a
unique simple root α for which

〈α, ν〉 = 1.

The corresponding vertex of the Dynkin diagram of SO(VC) is the special vertex associated
to ν.
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Lemma 4.6 The special vertex associated to ν is the leftmost vertex of the Dynkin diagram
of SO(VC).

Proof We assume that the dimension of VC is an even number 2m, the odd case being similar.
Consider a basis e1, . . . , em, f1, . . . , fm of VC with e1 = u, f1 = v, and, for all i, j ,

q(ei , e j ) = q( fi , f j ) = 0

and

q(ei , f j ) = δi
j .

Let T be the maximal torus of SO(VC) consisting of diagonal matrices with diagonal coef-
ficients

(t1, . . . , tm, t−1
1 , . . . , t−1

m )

and identify the ti with characters of T . Then we may take for R+ the simple roots

α1 = t1/t2, . . . , αn−1 = tn−1/tn, αn = tn−1tn .

We obtain

〈α1, ν〉 = 1

and

〈αi , ν〉 = 0

for i > 1. This proves that the special vertex corresponds to the simple root α1. 
�
We keep the notation above.

Proposition 4.7 Let

G1,C −→ SO(VC)

be an isogeny of complex algebraic groups and let

ν̃ : G̃m,C −→ G1,C

be the fractional cocharacter of G1,C lifting ν. Let W be a simple representation of G1,C

such that the action of G̃m,C on W via ν̃ has only two weights a and a + 1 for some rational
number a. Then G1,C is the universal cover of SO(VC). Furthermore, if dim VC is odd, then
W is the spin representation of G1, and, if dim VC is even, W is one of the two half-spin
representations of G1.

Proof The classification of all complex representations of G1 as in the statement of the
proposition is due to Satake [12], and is explained in [5, 1.3.5–1.3.9]. In the end, table 1.3.9
there, or the last table in [12] proves the result—indeed, Lemma 4.6 proves that, with the
notation of Deligne, we are only considering the diagrams Bn and DR

n . The reader may
also consult [9, Section 2 and Section 10] for a more detailed discussion, where the Dynkin
diagram equipped with a special vertex is denoted by Dn(1). 
�
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4.3 The goal of this section is to prove the following result.

Theorem 4.8 Let V be a Hodge structure of K3 type, of dimension n, let q be a Beauville–
Bogomolov form for V and let T be a complex torus. Assume that there exist integers a, b
and c together with an injective morphism of Hodge structures

V ↪−→H1(T , Q)⊗a ⊗ (H1(T , Q)∨)⊗b ⊗ Q(c)

with a and b nonnegative.
Assume that the Mumford–Tate group of V is the full special orthogonal group SO(V ).

Then T contains a simple factor of the Kuga–Satake variety of V as a subquotient up to
isogeny.

In particular, the dimension of T is at least 2n/2−2 if n is even, and 2(n−3)/2 if n is odd.
If n is even and (−1)n/2δ is not a square in Q, where δ is the discriminant of q, then the
dimension of T is at least 2n/2−1.

Proof Let H = H1(T , Q), and let G be the Mumford–Tate group of H . By assumption, the
Mumford–Tate group of V is reductive. Arguing as in Sect. 3.3.2, we may replace H with
its semisimplification and assume that G is reductive.

Let g be the Lie algebra of G. As in Sect. 3.3.1, we obtain a surjection

p : G −→ SO(V ) = MT (V )

and a commutative diagram

S
hG ��

h

���
��

��
��

�� GR

pR
��

SO(V )R

where h and hG are the morphisms defining the Hodge structures on V and H respectively.
Let

ν : Gm,C −→ SO(V )C

be the cocharacter defined as the composition

Gm,C
μ−→ SC

hC−→ SO(V )C.

We may find connected normal subgroups G1 and G2 that commute such that the multi-
plication map G1 × G2 → G is an isogeny and the restriction of p to G1 is an isogeny onto
SO(V ). Let

h̃ : S −→ (G1 × G2)R

be the fractional lift of hG , and let h̃1 be the component of h̃ mapping to G1,R.
By Proposition 3.5, we may find a nonzero sub-Hodge structure H1 of H such that the

fractional Hodge structure induced by h̃1 on H1 has type {(a + 1, a), (a, a + 1)} for some
rational number a. In particular, the fractional cocharacter

ν̃ : Gm,C −→ G1,C

obtained by lifting ν has only two weights a and a + 1 on the representation H1,C of G1,C.
If the dimension n of V is odd (resp. even), Proposition 4.7 shows that H1 contains the spin

representation (resp. one of the half-spin representations). In particular, there is a nonzero
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CSpin(VC)-equivariant morphism from H1,C to HK S,C, so that is a nonzero CSpin(V)-
equivariant morphism from H1 to HK S . In particular, these two Hodge structures have a
nonzero simple factor in common.

The statement on the dimension on T is now a direct consequence of Theorem 4.3. 
�
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