
Infinite-Dimensional Geometry of Numbers:

Hermitian Quasi-coherent Sheaves and Theta Finiteness

Jean-Benôıt Bost
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Introduction

0.1. The Analogy between Number Fields and Function Fields and Arakelov
Geometry

0.1.1. Since the end of the nineteenth century, the analogy between number fields, namely the
field extensions of Q of finite degree, and function fields in one variable, defined as the fields of
rational functions k(C) on an algebraic curve C over some base field k, has played a central role in
algebraic geometry and arithmetics.

The “arithmetization” of the theory of algebraic curves in the paper [DW82] by Dedekind and
Weber, and the work of Kronecker [Kro82], devoted in substance to schemes of finite type over
Z and their fields of rational functions — both published in 1882 — mark the beginning of the
“modern” developments of the analogy between number fields and function fields.1

During the first decades of the twentieth century, this analogy has been completed by the discov-
ery that, to make it more satisfactory, the embeddings of some number field K in the Archimedean
fields R and C — or more precisely, the associated “Archimedean places” — had to be put on the
same footing as the non-zero prime ideals of the ring of integers OK of K, or equivalently as the
associated embeddings of K in p-adic fields.

Indeed, only by adjoining the Archimedean places of K to the closed points of SpecOK does
one obtain an analogue of a smooth projective curve C over some base field k, and not of an affine
curve. In this improved analogy, the number field K plays the role of the function field k(C), the
set of Archimedean places of K admits as counterpart a non-empty finite set Σ of closed points of

C, and the “arithmetic curve” SpecOK corresponds to the affine curve
◦
C := C \ Σ.

This discovery crucially enters in the definition of the adeles of a number fields, and through
this path became extremely influential.2

1Establishing a precise history of the early phases of its exploration is a delicate task. Indeed this analogy appears

to have been for a long time a part of “mathematical folklore,” rather than the subject of academic publications.

For instance, in [Her79], when discussing the work of Chebyshev on continued fractions, Hermite mentions as
self-evident the analogy between (i) the ring Z, its fraction field Q, and the usual Archimedean absolute value, and

(ii) the ring C[X] of regular functions on the affine line A1
C, its fraction field C(X), and the absolute value on C(X)

attached to the valuation at the point at infinity.
Similarly the analogy between number fields and complex algebraic curve is mentioned by Hilbert in the twelfth

of his Mathematical Problems [Hil01] in an extremely suggestive (and intriguing) form, and to a large extent as
well-known.

2Hensel and his then doctoral student Hasse seem to have been the first to be fully aware of the importance of

considering simultaneously all the places — finite and Archimedean — of a number field. See [Hen13, Kap. XII]
and the Geleitwort in [Has75, p. viii-ix], where Hasse discusses the origins of his work on the “local-global principle”

for quadratic forms in [Has23, Has24], and reproduces the content of a postcard sent to him by Hensel in October
1920, where the role of the “prime at infinity” is emphasized.

To the best of our knowledge, the first published explicit mention of global results, involving all the places of
a number field and similar to classical results on algebraic curves and Riemann surfaces, is Weil’s article [Wei39].
Shortly thereafter, in a letter to his sister [Wei80], Weil attributes to Artin and Hasse the discovery of the significance

of Archimedean places.

vii
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0.1.2. The transfer to function fields of Diophantine problems — for instance the study of
rational points of algebraic varieties defined over number fields — has naturally led to investigate
the properties of algebraic varieties defined over a function field k(C) as above.3

To study such an algebraic variety V , say projective over k(C), one usually introduces a model
of V over C, namely a projective k-variety V equipped with a flat morphism V → C whose generic
fiber is isomorphic to V . If V has dimension n, then V has dimension n+1. For instance, the study
of curves over k(C) leads one to rely on the properties of surfaces over k.

This approach may be emulated when studying algebraic varieties over a number field K. A
model of a projective variety V over K is a scheme V projective and flat over OK such that the
K-scheme

VK := V ×SpecOK
SpecK

is isomorphic to V . If for instance V is curve, then V is a scheme of Krull dimension 2, a so-called
arithmetic surface.

Arakelov discovered how to bring into play the Archimedean places of K when pursuing this
approach, at least when V is an arithmetic surface: by relying on the Hermitian geometry of the
compact Riemann surface V(C) and of the analytic vector bundles over V(C), and on the theory of
Green functions over V(C).

In this way, after endowing V(C) and the line bundles over V — more precisely the complex
analytic line bundles over V(C) they define — with some Hermitian metric, Arakelov ([Ara74]),
then Faltings ([Fal84]) and Deligne ([Del87]) could extend to projective arithmetic surfaces various
classical results concerning projective surfaces over some base field.

In the “calculus on arithmetic surfaces” developed by Arakelov, Faltings, and Deligne, the
classical intersection numbers, with values in Z, between pairs of line bundles over a projective
surface over some field k are replaced by arithmetic intersection numbers, with values in R, attached
to pairs of Hermitian line bundles over projective arithmetic surfaces V as above — a Hermitian line
bundle over V being defined as a pair (L, ∥.∥) where L denotes a line bundle over the scheme V and
∥.∥ a (regular enough) Hermitian metric on the C-analytic line bundle LC on the compact Riemann
surface V(C) attached to the complex algebraic curve

VC := V ×SpecZ SpecC.

0.1.3. After this pioneering work concerning arithmetic surfaces, the Arakelov geometry of
higher dimensional schemes has been developed in several directions, which we want to briefly
recall.4

In Arakelov geometry, a central role is played by Hermitian vector bundles over schemes of
finite type over SpecZ. Recall that if V is a regular separated scheme of finite type over SpecZ,
a Hermitian vector bundle over V is a pair (E, ∥.∥) where E is vector bundle — that is, a locally
free coherent sheaf — over the scheme V, and where ∥.∥ is a C∞ Hermitian metric, invariant under
complex conjugation, on the C-analytic vector bundle Ean

C on the complex manifold V(C), deduced
from E by the base change Z ↪→ C and analytification.

For instance, when V is an arithmetic curve X := SpecOK defined by the ring of integers OK
of some number field K, the complex manifold X(C) is a finite set of cardinal [K : Q], namely the
set of field embeddings x : K −→ C.

3A remarkable instance of this line of thought has been the proof of Mordell conjecture for curves over function
fields; see [Man63], [Gra65], and [Sam66].

4We do not claim to give a complete view of Arakelov geometry — in particular of its developments during the
last decades — but only to provide some points of reference concerning its now classical part, in order to put in

perspective the content of this monograph.
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Consequently a Hermitian vector bundle over X is nothing but a pair:

E :=
(
E, (∥.∥x)x∈X(C)

)
,

where E is a finitely generated projective OK-module, and (∥.∥x)x∈X(C) a family, invariant under
complex conjugation, of Hermitian norms on the finite dimensional C-vector spaces:

Ex := E ⊗OK ,x C

deduced from E by the base changes x : OK → C.
Basic tensor operations on vector bundles — for instance the formation of direct sums, of

tensor products, of exterior and symmetric powers, of the dual... — still make sense for Hermitian
vector bundles. These operations are defined by their “classical version” applied to the underlying
vector bundles, equipped with the Hermitian metric defined by these same operations in Hermitian
geometry.

Similarly, if f : V ′ → V is a morphism of schemes of finite type over SpecZ as above, we may
define the pullback f∗E by f of some Hermitian vector E := (E, ∥.∥) over V as the Hermitian vector
bundle over V ′:

f∗E := (E′, ∥.∥′)
defined by the vector bundle over V ′:

E′ := f∗E,

equipped with the Hermitian metric ∥.∥′ defined as the pull-back of ∥.∥ by the map of complex
varieties fC : V ′

C → VC.5

A basic invariant of Hermitian vector bundles over SpecOK is their Arakelov degree. This is
a real number, defined as follows. When E is Hermitian line bundle – that is a Hermitian vector
bundle of rank 1 — it is defined by the expression:

(0.1.1) d̂egE := log |E/OKs| −
∑

x∈X(C)

log ∥s∥x,

valid for any s in E \ {0}. When the rank of E is arbitrary, it is defined by the equality:

d̂egE := d̂eg ΛrkEE.

When X is SpecZ, a Hermitian vector bundle E = (E, ∥.∥) over X is nothing but a Euclidean
lattice, defined by a free Z-module E of finite rank and some Euclidean norm ∥.∥ on the R-vector
space ER := E ⊗Z R. Then the Arakelov degree of E may be expressed in terms of the covolume
covolE of this Euclidean lattice:

(0.1.2) d̂egE = − log covolE.

A first instance of arithmetic intersection numbers is provided by the logarithmic height :

(0.1.3) hL := V (K) −→ R.

associated to a Hermitian line bundle L over a projective OK-scheme V of generic fiber V := VK .
It is defined by the relation:

(0.1.4) hL(P ) := d̂egP ∗L,

for every point P in the set V (K) of K-rational points of V , which according to the projectivity of
V may be identified with the set V(OK) of sections of the structural morphism V → SpecOK .

Indeed P ∗L is a Hermitian line bundle over SpecOK , and we may consider its Arakelov degree,
the real number defined by (0.1.1) with E := P ∗L. The heights defined by (0.1.4) constitute a

5In other words, for any P ′ ∈ V ′(C), the Hermitian norm ∥.∥′
P ′ on the fiber E′

P ′ of E′
C ≃ f∗C(EC) coincides with the

norm ∥.∥f(P ′) on the fiber EC,f(P ′) of EC when one takes into account the canonical isomorphism E′
C,P ′ ≃ EC,f(P ′).
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refined version of the height formalism which plays a central role in classical proofs of Diophantine
geometry and transcendence theory.

More generally, as established by Gillet and Soulé ([GS90a, GS90b]), to Hermitian vector
bundles on a flat projective regular scheme V over an arithmetic curve SpecOK , we may attach

their arithmetic characteristic classes in the arithmetic Chow groups ĈH
•
(V), and consider the

image of suitable products of these by the “arithmetic degree map”:

(0.1.5) d̂eg : ĈH
d
(V) −→ R

— where d denotes the Krull dimension of V – which is a generalization of the Arakelov degree of
Hermitian line bundles over arithmetic curves defined by (0.1.1). The real numbers so defined by
means of arithmetic intersection theory — the so-called arithmetic intersection numbers — may be
seen as higher dimensional generalizations of the refined classical heights (0.1.3) defined by (0.1.4)
(see for instance [Fal91] and [BGS94]).

0.1.4. Consider a regular flat projective scheme over an arithmetic curve:

π : V −→ X := SpecOK ,

and assume that the complex manifold:

V(C) :=
∐

x∈X(C)

Vx(C)

is equipped with a C∞ positive volume form µ, invariant under complex conjugation.

Then, to every Hermitian vector bundle E := (E, ∥.∥) over V, we may associate its direct image
over X:

(0.1.6) πµ∗E :=
(
π∗E, (∥.∥x)x∈X(C)

)
,

namely the Hermitian vector bundle over X defined as follows.

In the right hand side of (0.1.6), π∗E denotes the direct image of the sheaf E over V by the
morphism of schemes π, and is equivalently defined by the OK-module:

π∗E(X) := Γ(V, E),

which is finitely generated and torsion free, hence projective.

Besides, for every field embedding x ∈ X(C), the finite dimensional vector space:

(π∗E)x = Γ(V, E)x ≃ Γ(Vx, Ex)

is endowed with the L2-norm ∥.∥x defined by the Hermitian norm ∥.∥Vx(C) on the complex vector
bundle Ex over Vx and the volume form µ|Vx(C). Namely, for every s ∈ Γ(Vx, Ex), we let:

(0.1.7) ∥s∥2x :=

∫
Vx(C)

∥s(x)∥2 dµ(x).

The rank of the direct image πµ∗E is the dimension dimK Γ(VK , EK) of the space of sections
of EK over the smooth projective K-scheme VK . Computing the dimension of spaces of sections of
vector bundles over projective varieties is a basic problem in classical algebraic geometry. A solution
to this problem — or more properly to a “derived variant” of it — is provided by the Grothendieck-
Hirzebruch-Riemann-Roch theorem, which expresses the Euler-Poincaré characteristic:

χ(VK , EK) := dimK R
•Γ(VK , EK) =

∑
i≥0

(−1)i dimK H
i(VK , EK)

in terms of intersections numbers attached to characteristic classes of EK and TVK
.
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Similarly the arithmetic Riemann-Roch theorem6 provides an expression for a derived variant

of the Arakelov degree d̂eg πµ∗E, namely for:

(0.1.8) d̂egR•πω∗E = d̂eg detR•πω∗E,

the Arakelov degree of the determinant of the cohomology of E, detR•π∗E, equipped with the
Quillen metrics attached to the Hermitian metrics ∥.∥|Vx(C) and to some Kähler forms ωx on the
complex manifolds Vx(C) inducing the volume forms µ|Vx(C). This expression for the real number

d̂egR•πω∗E involves the arithmetic intersection numbers of arithmetic characteristic classes attached
to E and to TV/X := (TV/X , ω).

In a related vein, a comprehensive theory of arithmetically ample Hermitian line bundles has
been developed, notably by Zhang [Zha92, Zha95]. It relates the positivity properties of the heights
attached to a Hermitian line bundles L over a projective regular scheme V over SpecOK with the

existence of elements of small norms in the Hermitian vector bundles πµ∗L
⊗n

attached as above to

the large positive powers L
⊗n

of L, and admit striking applications to Diophantine geometry.7

0.1.5. The developments of Arakelov geometry discussed in the last paragraphs constitute beau-
tiful counterparts of some of the deepest results of classical algebraic geometry, concerning algebraic
schemes over some base field. It turns out that most of these results require some assumptions
of regularity and projectivity, and are actually counterparts of classical results concerning smooth
projective varieties over a field.

These assumptions of projectivity are directly related to the fact that, to define a non trivial
arithmetic degree map (0.1.5), the scheme V has to be proper over SpecZ. Moreover the compactness
of the complex manifold V(C) is crucial in the analytic construction behind the definition of the
Arakelov degree (0.1.8) of the determinant of the cohomology: the definition of the Quillen metric
uses the fact that the Laplacians of the ∂-operators associated to the complex analytic vector bundle
Ean

C over V(C) have well-behaved zeta functions, and their construction in terms of the associated
heat kernels relies on the compactness of V(C).

In the present state of technology, these analytic constructions make sense on complex analytic
manifolds, and not on singular analytic spaces, and consequently require the smoothness of the
complex scheme:

VC :=
∐

x∈X(C)

Vx,

or equivalently of the generic fiber VK of V.

0.2. Hermitian Quasi-coherent Sheaves over Arithmetic Curves and the Theta
Invariants h0θ and h1θ

0.2.1. It is rather intriguing that, while deep results of classical algebraic geometry — concern-
ing algebraic schemes over some base field k — have been transferred to the arithmetic framework of
Arakelov geometry, often by relying on sophisticated results of analysis on complex compact mani-
folds,8 many basic constructions of algebraic geometry have no analogue in this framework yet, due
to these requirements of regularity and projectivity.

6Established in [GS92] by Gillet and Soulé, who relied on the analytic work of Bismut and Lebeau [BL91]; see
also [Fal92].

7See for instance [Zha98] for a survey and references concerning arithmetic ampleness and its applications.

Since then, the theory has been expanded both to more general settings and weaker notions of positivity. See for
instance [YZ21] for a general exposé in the adelic setting, with applications to general equidistribution results and

the Mordell-Lang conjecture as in [Küh21, DGH21].
8See [Bis98] for a survey of advances concerning analytic torsion, motivated to a large extent by the proof of

the arithmetic Riemann-Roch theorem and its generalizations.
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Consider for instance the following problems, which will provide a rationale for the constructions
we pursue in this monograph: what should play the role, in Arakelov geometry, of affine schemes
of finite type over the base field k, or of vanishing criteria for higher cohomology groups over some
possibly non-regular or non-projective algebraic k-schemes ?

The geometric model for these “arithmetic affine schemes” would be affine schemes V of finite
type over k that are fibered over the smooth projective curve C, namely that are endowed with a
morphism of k-schemes:

f : V −→ C.

Then f is clearly an affine morphism of finite type. Conversely, according to Serre’s affineness
criterion, for any affine morphism of finite type f as above, the schemes V is an affine k-scheme
(necessarily of finite type) if and only if, for every coherent sheaf C over V , the following cohomology
group vanishes:

H1(V, C) ≃ H1(C, f∗C),
or equivalently, if this holds for every coherent ideal subsheaf C of OV .

Observe that, in the framework of 0.1.1 above, where the curve C is endowed with a non-empty
finite set Σ of closed points (which play the role of Archimedean places, and whose complement
◦
C := C \Σ plays the role of SpecOK), an affine morphism f : V → C determines the following data:

(i) a morphism between affine k-schemes:

f̊ := f
|
◦
V

:
◦
V := f−1(

◦
C) −→

◦
C;

(ii) for every x ∈ Σ, the base change:

fx := fÔC,x
: V̂x := VÔC,x

−→ Spec ÔC,x

of f to the completion ÔC,x of the discrete valuation ring OC,x.

Moreover these data satisfy the following compatibility condition:

(iii) if we denote by k(C)x the fraction field of ÔC,x (or equivalently, the x-adic completion of

k(C)), then the k(C)x-schemes
◦
V ⊗

O(
◦
C)
k(C)x and V̂x ⊗ÔC,x

k(C)x may be identified and

the morphisms f̊k(C)x and fx,k(C)x coincide.9

Descent theory shows that the data of an affine morphism of finite type f : V → C is actually

equivalent to the data of an affine morphism of finite type f̊ :
◦
V →

◦
C and, for every x ∈ Σ, of an

affine morphism of finite type fx : V̂x → Spec ÔC,x, together with some “glueing data” as in (iii)
above; see for instance [BLR90, Section 6.2, Example D].

Moreover the coherent sheaves C over V and their direct images f∗C over C admit a similar

description in terms of coherent sheaves over the schemes
◦
V and V̂x and of their direct images over

◦
C and Spec ÔC,x, for x in Σ.

0.2.2. When looking for arithmetic counterparts of affine varieties, in the definition of which
Archimedean places would be taken into account, one is led by the previous discussion to introduce
the following variations on the construction in 0.1.4 above.10

9These morphisms are the morphisms from
◦
V ⊗

O(
◦
C)

k(C)x ≃ V̂x ⊗ÔC,x
k(C)x to Spec k(C)x deduced from f̊

and fx by base change to k(C)x.
10The constructions in this subsection will be developed in full generality in [BCa]. The simplified framework

of the next paragraphs should already provide a fair idea of the Diophantine setting where the formalism developed

in this monograph applies.
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Consider an affine scheme:

π : V −→ X := SpecOK
flat of finite type over X := SpecOK , that for simplicity we will assume to be integral, and a
Hermitian vector bundle E := (E, ∥.∥) over V, defined by a vector bundle E over V and by some
continuous Hermitian metric ∥.∥, invariant under complex conjugation, on the complex analytic
vector bundle Ean

C on the reduced analytic space:

Van
C = V(C) =

∐
x∈X(C)

Vx(C),

defined by the smooth complex scheme VC := V ⊗C Z.
Assume furthermore that we are given a family (Kx)x∈X(C), invariant under complex conjuga-

tion, of holomorphically convex compact subsets of the Stein spaces Vx(C), and a family (µx)x∈X(C),
invariant under complex conjugations, of positive Radon measures on the compact sets the Kx’s,
the supports of which contain the Shilov boundaries of the Kx’s.

The morphism π : V → SpecOK plays the role of the morphism f̊ :
◦
V →

◦
C in 0.2.1 above, and

the pairs (Vx,Kx) may be seen as complex avatars of the pairs defined by the k(C)x-scheme

Vk(C)x :=
◦
V ⊗

O(
◦
C)
k(C)x ≃ V̂x ⊗ÔC,x

k(C)x

and by the affinoid in the associated rigid analytic space over the complete valued field k(C)x which

is attached to the model V̂x of Vk(C)x over ÔC,x.
Then we may consider the pair:

πµ∗E :=
(
π∗E, (∥.∥x)x∈X(C)

)
defined by a construction similar as the one in 0.1.4 above. Namely, π∗E is the quasi-coherent sheaf
over SpecOK defined as the “classical” direct image by the morphism of schemes π. It is defined
by the OK-module Γ(V, E), which, in general, is not a finitely generated OK-module.11 However it
is easily seen to be countably generated. Moreover, for every x ∈ X(C), ∥.∥x is the L2- Hermitian
seminorm on the complex vector space:

Γ(V, E)x ≃ Γ(Vx, Ex)

defined by (0.1.7).

The “Arakelovian direct image” πµ∗E plays the role of the direct image f∗C considered in the
geometric situation of 0.2.1 above, in the special case when the coherent sheaf C is locally free.

This leads us to consider Hermitian quasi-coherent sheaves over the arithmetic curve X — which
we define as pairs:

F :=
(
F, (∥.∥x)x∈X(C)

)
,

where F a countably generated OK-module, and where (∥.∥x)x∈X(C) is a family, invariant under
complex conjugation, of Hermitian seminorms on the C-vector spaces Fx := F ⊗OK ,x C — and to
look for invariants attached to these pairs that would play the role of the invariant:

h1(C,F) := dimkH
1(C,F)

attached to a quasi-coherent sheaf F over C.

When the arithmetic curve X is SpecZ, we will talk of Euclidean quasi-coherent sheaves instead
of Hermitian quasi-coherent sheaves. A Euclidean quasi-coherent sheaves is a pair F := (F, ∥.∥),
where F is a countably generated Z-module and ∥.∥ a Euclidean seminorm on the R-vector space
ER ≃ E ⊗Z R.

11When E ̸= 0, the OK -module Γ(V, E) is finitely generated if and only if π : V → SpecOK is a finite morphism.
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0.2.3. Constructions similar to the ones in 0.2.2 above also arise when dealing with “classical
questions” of Arakelov geometry, for instance in relation with arithmetically ample Hermitian line
bundles on flat projective schemes over SpecZ.

0.2.3.1. Recall that Grauert has developed an approach to ampleness of line bundles over com-
pact complex analytic spaces based on the geometry of the associated “tubes,” namely of the germs
of analytic spaces defined by the total spaces of the dual line bundles and their zero sections [Gra62].

This approach has been transposed in the framework of schemes in EGA-II [Gro61, Sections
8.8-10], where the following “Grauert’s ampleness criterion” is established: if p : X → Y is a proper
morphism of schemes, a line bundle L over X is ample relatively to p if and only if the zero section
of the “vector bundle” V(L)→ X may be contracted into the base scheme Y .12

0.2.3.2. When investigating the counterpart of these approaches in Arakelov geometry, one is
led to to consider a flat projective (say regular) scheme X over an arithmetic curve X := SpecOK ,
endowed with a Hermitian line bundle L := (L, ∥.∥), and to investigate the Arakelov geometry of
the “vector bundle”:

p : V := V(L) −→ X .
For x ∈ X(C), the complex manifold Vx(C) is the total space of the C-analytic line bundle L∨an

x

over the projective smooth complex variety Xx(C). This line bundle is equipped with the Hermitian
metric ∥.∥∨x dual of ∥.∥x, and we may consider the associated unit disk bundle Kx := Dx — which
is a compact subset of Vx(C) — and its boundary ∂Dx,, the unit circle bundle, which is a principal
U(1)-bundle over X (C).

We may finally consider a family (µx)x∈X(C), invariant under conjugation, of positive Radon
measures of supports the unit circle bundles (∂Dx)x∈X(C), and perform the construction in 0.2.2,
associated to the structural morphism:

πV : V := V(L) −→ X := SpecOK
— which is not proper when X is non-empty — to the family of measures (µx)x∈X(C), and to the

trivial Hermitian line bundle OV := (OV , |.|) over V. In this way, we define a Hermitian quasi-
coherent sheaf over SpecOK :

πV,µ∗OV :=
(
Γ(V,OV), (∥.∥x)x∈X(C)

)
.

0.2.3.3. By the very definition of V as SpecX
⊕

n∈N L
⊗n, we have a canonical isomorphism of

OK-modules:

(0.2.1) Γ(V,OV)
∼−→
⊕
n∈N

Γ(X , L⊗n).

It is natural to assume that each measure µx is invariant under the action of U(1) over ∂Dx, and
that its direct image:

νx := px∗µx

under the map:
px : Vx(C) −→ Xx(C)

is a C∞ positive volume form on Xx(C). When this holds, the isomorphism (0.2.1) defines an
isomorphism of Hermitian quasi-coherent sheaves over X:

(0.2.2) πµ∗OV
∼−→
⊕
n∈N

πX ,ν∗L
⊗n
,

where the right-hand side of (0.2.2) is the orthogonal direct sum13 of the Hermitian vector bundles

πX ,ν∗L
⊗n

, which are defined by the “classical” construction recalled in 0.1.4 above, applied to the

12Recall that V(L) := SpecX
⊕

n∈N L⊗n is, in naive terms, the total space of the dual line bundle L∨.
13The isomorphism (0.2.2) shows that the Hermitian quasi-coherent sheaf πµ∗OV is actually a ind-Hermitian

vector bundles, as defined in [Bos20b]; see 0.2.4 below.
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structural morphism:

πX : X −→ X := SpecOK .

0.2.3.4. According to the classical versions of Grauert’s ampleness criterion mentioned in 0.2.3.1
above, the relative ampleness of the Hermitian line bundle L := (L, ∥.∥) with respect to the morphism
πX — namely, the ampleness of the line bundle L over X , and the positivity of the Chern form
c1(L

an
C , ∥.∥) over X (C) =

∐
x∈X(C) Xx(C) — is equivalent to the contractibility into SpecOK of the

zero section of the morphism p : V := V(L)→ X , and to the strict pseudoconvexity of the compact
submanifold with boundary Kx := Dx of Vx(C).

When this relative ampleness holds, it is natural to expect — on the grounds of the analogy
with varieties fibered over a smooth projective curve C — that the Hermitian line bundle L on X
is arithmetically ample if and only if a suitable analogue of the invariant h1(C,F) is finite when
evaluated on the Hermitian quasi-coherent sheaf πµ∗OV over SpecOK .

0.2.3.5. The simplest non-trivial instance of the previous construction arises when:

X = X = SpecZ.

Then the Hermitian line bundle L over X is isomorphic the Hermitian line bundle:

O(λ) := (Z, e−λ|.|),

where the real number λ satisfies:

λ = d̂egL.

In this case, V is SpecZ[X] =: A1
Z, the circle bundle ∂Dx is the circle:

C(e−λ) :=
{
z ∈ C | |z| = e−λ

}
⊂ C = A1

Z(C),

and in the situation of 0.2.3.3, the measure µ is of the form αdθ, for some α in R∗
+, where dθ denotes

the rotation invariant measure of total mass 2π on C(e−λ). Then the direct image πµ∗OV is easily
seen to be the Euclidean quasi-coherent sheaf:

πµ∗OV = (Z[X], ∥.∥λ),

where, for every polynomial
∑
n anX

n in C[X], the norm ∥.∥λ is defined by:∥∥∑
n

anX
n
∥∥2
λ
:= 2πα

∑
n

e−2λn|an|2.

In other words, πµ∗OV is isomorphic to the orthogonal direct sum:⊕
n∈N
O
(
nλ− (1/2) log(2πα)

)
.

0.2.4. In the monograph [Bos20b], invariants that play the role of the dimension h1(C,F)
attached to some quasi-coherent sheaf F have been constructed for a special class of Hermitian
quasi-coherent sheaves, the so-called ind-Hermitian vector bundles over SpecOK , namely the pairs(
F, (∥.∥x)x∈X(C)

)
as above where the OK-module F is projective and the Hermitian seminorms

(∥.∥x)x∈X(C) are norms.

0.2.4.1. The starting point of the constructions in [Bos20b] is the fact that the invariants
h0(C,F) and h1(C,F) attached to a vector bundle F over the projective curve C admit as arith-
metic analogues the theta invariants h0θ(E) and h1θ(E) attached to a Hermitian vector bundle

E :=
(
E, (∥.∥x)x∈X(C)

)
over the arithmetic curve X = SpecOK .

When X is SpecZ, and therefore E = (E, ∥.∥) is a Euclidean lattice, these invariants are the
non-negative real numbers defined as follows in terms of theta series associated to E and to the
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dual14 Euclidean lattice E
∨
:= (E∨, ∥.∥∨):

(0.2.3) h0θ(E) := log
∑
v∈E

e−π∥v∥
2

,

and:

(0.2.4) h1θ(E) := h0θ(E
∨
) = log

∑
ξ∈E∨

e−π∥ξ∥
∨2

.

When X is an arbitrary arithmetic curve, we may consider the finite flat morphism:

(0.2.5) π : X = SpecOK −→ SpecZ,

and the direct image π∗E of E over SpecZ. It is the Euclidean lattice15 (π∗E, ∥.∥) defined by the
Z-module π∗E — namely E seen as a Z-module — equipped with the Euclidean norm ∥.∥ defined
by the relation:

∥v∥2 :=
∑

x∈X(C)

∥v∥2x for every v ∈ E.

Then the theta invariants of E are defined by “reduction to SpecZ”:

(0.2.6) hiθ(E) := hiθ(π∗E) for i = 0, 1,

and the classical Poisson formula for theta series implies the following equality:

(0.2.7) h0θ(E)− h1θ(E) = d̂egE − (rkE/2). log |∆K |,

where ∆K denotes the discriminant of the number field K. The relation (0.2.7) is formally similar
to the Riemann-Roch formula for vector bundles over curves.

Recall that, when E is a Hermitian line bundle over SpecOK , the “Poisson-Riemann-Roch
formula” (0.2.7) is a key point in Hecke’s proof [Hec17] of the analytic continuation and of the
functional equation of the Dedekind zeta function attached to an arbitrary number field.

Moreover, a few years after Hecke’s work, F. K. Schmidt [Sch31] established the analogous
properties for the zeta functions attached to function fields in one variable over a finite field. To
achieve this, Schmidt had to establish the Riemann-Roch formula in this setting. Moreover, in
his study of these zeta functions, the dimensions h0(C,L) and h1(C,L) = h0(C,L∨ ⊗ ωC) of the
cohomology groups of a line bundle L over C are the analogues of the non-negative real numbers
h0θ(L) and h

1
θ(L) attached to a Hermitian line bundle L over SpecOK —which appear in substance in

Hecke’s proof — and the Riemann-Roch formula over C play the role of the Poisson-Riemann-Roch
formula (0.2.7) for Hermitian line bundles.

Although never completely forgotten, the analogy between the dimensions of the cohomology
groups of vector bundles over a projective curve and the theta invariants of Hermitian vector bundles
over an arithmetic curve receded into the background during the second half of the twentieth century.
However it recently experienced a revival thanks to the work of van der Geer and Schoof [vdGS00],
which notably emphasizes its relations with Arakelov geometry.16

14Recall that E
∨

is defined by the dual Z-module E∨ := HomZ(E,Z) and by the Euclidean norm ∥.∥∨ on
E∨ ⊗ R ≃ HomR(ER,R) dual of the Euclidean norm ∥.∥

15This construction is actually the special case of the construction of πµ∗ in 0.1.4 applied to the morphism (0.2.5)

and to the counting measure µ on X(C).
16See [Bos20b, 0.1.2 ] for a more complete discussion and references.
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0.2.4.2. Besides the Poisson-Riemann-Roch formula, the theta invariants h0θ and h1θ satisfy fur-
ther properties similar to the ones of the dimension of cohomology groups h0(C,E) and h1(C,E)
attached to a vector bundle E over a projective curve C.

Consider for instance two Hermitian vector bundles over X = SpecOK :

E :=
(
E, (∥.∥x)x∈X(C)

)
and E

′
:=
(
E′, (∥.∥′x)x∈X(C)

)
,

and a morphism:

f : E −→ E
′
,

namely an OK-linear map f : E → E′ such that, for any x ∈ X(C), the C-linear map:

fx : Ex −→ E′
x

is norm decreasing:
∥fx(v)∥′x ≤ ∥v∥x for every v ∈ Ex.

Then, if f is injective (resp. if fK : EK → E′
K is surjective), the following inequality holds:

(0.2.8) h0θ(E) ≤ h0θ(E
′
) (resp. h1θ(E

′
) ≤ h1θ(E)).

Moreover, for every admissible short exact sequence of Hermitian vector bundles over X:

0 −→ E
i−→ F

p−→ G −→ 0,

the following estimates holds, for i = 0, 1:

(0.2.9) hiθ(F ) ≤ hiθ(E) + hiθ(G).

Let us emphasize a simple but crucial feature of the theta invariants h0θ and h1θ: contrary to
most classical estimates in geometry of numbers, which relates elementary invariants of Euclidean
lattices like their successive minima or their covering radius, the dimension of the Hermitian vector

bundles E, E
′
, F , or G do not appear in the estimates (0.2.8) and (0.2.9). This already hints at the

possibility to define theta invariants in some infinite dimensional setting.

Indeed these estimates play a central role in the construction in [Bos20b], by means of limit
procedures, of extensions of the invariants h0θ and h1θ attached to certain infinite dimensional ana-
logues of Hermitian vector bundles over X, the ind-Hermitian vector bundles and their “duals”, the
pro-Hermitian vector bundles.

The construction of the invariant h0θ(E) attached to some ind-Hermitian vector bundle E is

straightforward. Actually h0θ(E) may also be directly defined by formulas (0.2.3) and (0.2.6), which
still make sense in the infinite rank setting.

The construction of the invariant h1θ(E) is more elaborate, and reminiscent of the construction
of a measure starting from a suitable additive set function, in abstract measure theory. Indeed, the

use of limit procedures leads to introduce two natural possible extensions h1θ(E) and h
1

θ(E) for the
theta invariant h1θ, defined for a general ind-Hermitian E over SpecOK . These extensions satisfy
the estimates:

0 ≤ h1θ(E) ≤ h1θ(E) ≤ +∞,
but h1θ(E) and h

1

θ(E) may differ in general. A central result in [Bos20b] is a flexible criterion on a

ind-Hermitian vector bundle E for these invariant h1θ(E) and h
1

θ(E) to be finite and coincide.17

Let us finally stress that the Arakelov degree of Hermitian vector bundles over arithmetic curves,
which plays a central role in the diverse developments of Arakelov geometry recalled in Section 0.1,

17The presentation in [Bos20b] focuses on the extensions of the invariant h0θ to pro-Hermitian vector bundles.

The construction of extensions of h1θ to ind-Hermitian vector bundles is a straightforward reformulation of these

constructions using duality. The emphasis in [Bos20b] on the invariants h0θ attached to pro-Hermitian vector bundles
is justified by their applications in Diophantine situations which involve both formal geometry over arithmetic curves

and complex analytic geometry; see for instance [Bos20b, Chapter9] and [BC22, Chapter 8].
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makes no sense for their infinite dimensional generalizations18. The introduction of invariants of a
different nature appears necessary for the investigation of the latter.

0.2.4.3. The theta invariants of a ind-Hermitian vector bundle over SpecZ of the form:⊕
n∈N
O(λn),

where (λn)n∈N denotes an arbitrary sequence of real numbers are easily determined, and provide a
simple but suggestive illustration of the general formalism.

Namely we have:

h1θ
(⊕
n∈N
O(λn)

)
= h

1

θ

(⊕
n∈N
O(λn)

)
=
∑
n∈N

h1θ
(
O(λn)

)
(∈ [0,+∞]),

where, for every λ ∈ R:

h1θ(O(λ)) = log
∑
k∈Z

exp(−πk2e2λ);

see for instance [Bos20b, Example 6.4.1].

Actually, as observed in [Bos20b, Section 2.4], we have:

h1θ(O(λ)) = λ− + η(λ),

where λ− := max(0,−λ), and:

0 < η(λ) = 2 exp(−πe2|λ|) +O
(
exp(−2πe2|λ|)

)
when |λ| −→ +∞.

Consequently, the following equivalence holds:

h1θ
(⊕
n∈N
O(λn)

)
:=
∑
n∈N

h1θ
(
O(λn)

)
< +∞⇐⇒

∑
n∈N

exp(−πe2λn) < +∞.

This applies to the Euclidean quasi-coherent sheaf πµ∗OV associated to a Hermitian line bundle

L over X = X = SpecZ in 0.2.3.5 above, and establishes the following implications:

λ := d̂egL > 0 =⇒ h1θ(πµ∗OV) = h
1

θ(πµ∗OV) < +∞

and:

λ := d̂egL ≤ 0 =⇒ h1θ(πµ∗OV) = h
1

θ(πµ∗OV) = +∞.

This shows that, as hinted in 0.2.3.5, the Hermitian line bundle L is arithmetically ample if and
only if the theta invariant:

h1θ(πµ∗OV) := h1θ(πµ∗OV) = h
1

θ(πµ∗OV)

is finite.

0.2.5. This monograph pursues the development of an “infinite dimensional geometry of num-
bers” in which theta invariants play a central role, initiated in [Bos20b]. It includes a number of
new features, which we discuss in the next paragraphs.

18With the exception of a few very special situations.
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0.2.5.1. We are interested in realizing in full generality the program concerning “arithmetic
affine schemes” sketched in 0.2.1 above. The construction of Hermitian quasi-coherent sheaves over
SpecOK by direct images in the relatively affine situation considered in 0.2.2 produces Hermitian
quasi-coherent sheaves F =

(
F, (∥.∥x)x∈X(C)

)
where the OK-module F is definitely not projective,

and some of the seminorms ∥.∥x are not norms. Consequently, to achieve this program, it is crucial
to extend the construction and the properties of the theta invariant h1θ to Hermitian quasi-coherent
sheaves more general than ind-Hermitian vector bundles.

Working with general countably generated OK-modules F — and not only projective ones —
and with general Hermitian seminorms ∥.∥x introduces a number of technical difficulties that did not
occur in [Bos20b]. Ultimately we are able to develop a satisfactory formalism of h1θ invariants in this
general setting which, compared to the ones in [Bos20b], satisfies some simple additional properties
— the “compatibility with canonical dévissage” and the “downward continuity” as a function of the
defining Hermitian seminorms.19

0.2.5.2. The theta series in the right hand sides of (0.2.3) and (0.2.4) defining the theta invariants
h0θ(E) and h1θ(E) of some Euclidean lattice E also occur in the seminal work of Banaszczyk [Ban93],
who used them to establish remarkable new estimates concerning classical invariants of geometry of
numbers — independently of their role in the analogy between function fields and number fields.

More precisely, to investigate various invariants attached to a Euclidean lattice E := (E, ∥.∥),
Banaszczyk introduces the following discrete measure on the real vector space ER:

γE :=
∑
v∈E

e−π∥v∥
2

δv

— whose total mass is exp(h0θ(E)) — and its Fourier transform, which is a E∨-periodic function on
the dual space E∨

R , and may also be expressed as a suitable theta series according to the Poisson
formula.

During the last decades, the techniques introduced by Banaszczyk in in [Ban93] to establish
optimal transference estimates have been used to investigate various properties of Euclidean lattices
and their invariants which play a central role in “lattice based cryptography,” the domain of computer
science devoted to the construction of cryptosystems based on Euclidean lattices.

In particular the probability measure on ER:

βE := e−h
0
θ(E)

∑
v∈E

e−π∥v∥
2

δv

and its Fourier transform BE∨ on E∨
R — which we will call the Banaszczyk measure and the Ba-

naszczyk function attached to E and to E
∨
— have been shown to satisfy remarkable estimates, with

striking consequences for the theta invariants of Euclidean lattices, by Banaszczyk [Ban92, Ban22]
and by experts of lattice based cryptography, notably by Dadush, Regev, and Stephens-Davidowitz
in [DR16, DRSD14, RSD17b].

In this monograph, we establish some of these estimates in a suitably generalized version, and
we use them to derive some of the most delicate properties of the invariant h1θ and its extensions to
Hermitian quasi-coherent sheaves.20

19These properties are introduced in Chapter 4 as the axioms NSAp and Cont+.
20In the monograph [Bos20b], some aspects of Banaszczyk seminal paper [Ban93] are discussed, and the

techniques of [Ban93] are used to compare the invariant h0θ(E) attached to a Euclidean lattice E and its “naive”

variant h0Ar(E), defined as log |{v ∈ E | ∥v∥ ≤ 1}|. The measures γE and βE also play a key role in the construction

in [Bos20b, Chapter 7] of the invariants h0θ associated to pro-Hermitian vector bundles, and dually of the invariant

h1θ attached to ind-Hermitian vector bundles. However the more delicate results in [Ban22] and [RSD17a] do not

enter in this construction.
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0.2.5.3. Theta invariants, in the infinite dimensional setting of Hermitian quasi-coherent sheaves,
constitute our main objet of study in this monograph. However we also study invariants attached
to Hermitian quasi-coherent sheaves which admit a more elementary definition and have an obvious
geometric meaning. Among them, a special role will be played by the covering radius of Euclidean
quasi-coherent sheaves, defined by the equality:

ρ(E, ∥.∥) := inf
{
r ∈ R+ | E/tor +B∥.∥(0, r) = ER

}
(∈ [0,+∞]),

where (E, ∥.∥) denotes a Euclidean quasi-coherent sheaf, E/tor the image of E in ER, and B∥.∥(0, r)
the open ball of center 0 and radius r in ER equipped with the semi-norm ∥.∥.

Diverse results established in this monograph are illustrations of the following principle: the
invariant h1θ(E, ∥.∥) attached to a Euclidean lattice (E, ∥.∥), or more generally to a suitable Euclidean
quasi-coherent sheaf, is “small” when every element of the seminormed R-vector space (ER, ∥.∥) is
“close enough” to some element of E/tor.

This principle provides an intuitively appealing interpretation of the “cohomological condition”
on some Euclidean quasi-coherent sheaf (E, ∥.∥) to have a vanishing or a finite theta invariant
h1θ(E, ∥.∥), and is formally instantiated by comparison estimates relating the theta invariants h1θ and
the covering radii attached to Euclidean quasi-coherent sheaves.

We may illustrate this principle by the Euclidean quasi-coherent sheaf πµ∗OV considered in
0.2.3.5 and 0.2.4.3 above. Its covering radius is easily seen to satisfy:

ρ(πµ∗OV)
2 = π2α2

∑
n∈N

e−2λn.

It is finite if and only if λ := d̂egL is positive, and we have seen in 0.2.4.3 that this holds if and only
if h1θ

(
πµ∗OV

)
is finite.

0.2.5.4. Applications of our infinite dimensional geometry of numbers to Arakelov geometry and
Diophantine problems led us to include two significant innovations in our formalism, which with
hindsight also shed some light on various questions of classical geometry of numbers.

Firstly, several of our main results concern not only objects, but also morphisms, in suitable
categories of Euclidean quasi-coherent sheaves.

For instance, a central result about Banaszczyk functions is their monotonicity property with
respect to arbitrary norm decreasing maps between Euclidean quasi-coherent sheaves. Moreover the
comparison estimates investigated in the final chapter of this monograph, which provide a control on
covering radii in terms of theta invariants, are established in a relative setting, concerning relative
covering radii and theta ranks attached to morphisms of Euclidean quasi-coherent sheaves.

Having at one’s disposal such relative results will be not only conceptually more satisfactory,
but also crucial in applications.

Secondly, several of our results about invariants attached to Euclidean quasi-coherent sheaves
and to their morphisms are concerned with a countably generated Z-module E equipped with two
Euclidean seminorms ∥.∥ and ∥.∥′ on the real vector space ER. Indeed we shall establish estimates in-

volving suitable invariants of the Euclidean quasi-coherent sheaves E := (E, ∥.∥) and E′
:= (E, ∥.∥′)

and the relative traces Tr(∥.∥′/∥.∥) or Tr(∥.∥′2/∥.∥2).
When E and E

′
are one and the same Euclidean lattice, of rank n, these relative traces equal

n, and our estimates becomes estimates in the usual style of geometry of numbers, where the rank
of Euclidean lattices appear.

It is quite remarkable that various classical estimates in geometry of numbers involving the
rank of Euclidean lattices admit an infinite dimensional generalization involving a pair of Euclidean

quasi-coherent sheaves E and E
′
as above, and where the rank is replaced by the relative trace

Tr(∥.∥′/∥.∥) or Tr(∥.∥′2/∥.∥2).
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Moreover the nuclearity properties of the spaces of analytic sections of coherent analytic sheaves

on complex analytic spaces show that pairs of Euclidean quasi-coherent sheaves E and E
′
as above,

for which these relative traces are finite, naturally arise when one considers Hermitian quasi-coherent
sheaves constructed as direct images, as in 0.2.1.

For this reason, our formalism involving pairs of Euclidean norms satisfying suitable trace condi-
tions, which may appear rather ad hoc at first sight, fits quite nicely the applications to Diophantine
geometry.

0.2.5.5. Although motivated by questions of arithmetic geometry, the construction in [Bos20b]
of extensions of theta invariants to suitable categories of infinite rank Hermitian vector bundles
has a fundamentally analytic character. This is reflected by the role played in this construction by
measure theory on Polish, but non-locally compact, spaces; see [Bos20b, Sections 7.3-6]

The “measure theoretic” character of the constructions in this monograph is arguably still
stronger. For instance, the analogy between our constructions of invariants attached to general
Hermitian quasi-coherent sheaves and various classical constructions of measures and capacities be-
comes very precise when we investigate the “rank invariants” associated to morphisms in Chapter 5.
Moreover the fine properties of theta invariants are established in Chapter 8 by using some classical
theorems concerning Borel probability measures on infinite dimensional locally convex spaces, due
notably to Bochner, Prokhorov, Sazonov, and Minlos.

0.2.6. To complete the presentation of the techniques developed in this monograph, in the
next paragraphs, we present a result concerning the geometry of integral points on affine schemes
over rings of integers over number fields, the proof of which uses the full force of these techniques,
but whose statement does not involve theta invariants. We state it below only under somewhat
restrictive hypotheses, and its general formulation will be discussed, together with its proof, in the
upcoming sequel [BCa] to this monograph.

This result on integral points should be considered as a generalization – applicable to arbitrary
affine schemes over rings of integers of number fields – of the classical theorem of Fekete [Fek23],
proving finiteness results for the set of algebraic integers, the complex conjugates of which all lie
in a compact subset of C with capacity strictly smaller than 1, and its extension to affine curves
by Rumely in [Rum89], as well as approximation results of holomorphic functions by polynomials
with integer coefficients as discussed in [Fer80].

0.2.6.1. The natural conceptual setting for Theorem 0.2.1 below is that of the “modifications
of affine schemes” in Arakelov geometry, introduced in [BCa], where we investigate arithmetic
counterparts of affine varieties and of Grauert’s ampleness criterion alluded to in 0.2.2 and 0.2.3
above. Since the relevant definitions – applying to arbitrary modifications of affine schemes of finite
type over the ring of integers of a number field – are beyond the scope of this monograph, we will
consider here a simpler situation, already going further than the existing literature.

Let π : V → X = SpecZ be an integral, flat, projective scheme over the integers21, and assume
that the generic fiber VQ of π is smooth over SpecQ.

Let L = (L, ∥.∥) be a Hermitian line bundle over V, defined by a line bundle L ample on V and
by a Hermitian metric ∥.∥ on the complex analytic line bundle Lan

C over V(C) which is smooth with
positive Chern form. Let s be a nonzero global section of L over V, let D := div s denote its divisor,
and let K be the subset:

K :=
{
x ∈ V(C) | ∥s(x)∥ ≥ 1

}
of the set of complex points of V.

Define V̊ as the affine scheme V \D. Then K is a compact subset of the Stein manifold V̊(C)
which is holomorphically convex and invariant under complex conjugation.

21Since we do not require VQ to be geometrically connected, there is no loss of generality in only working over

Z, instead of general rings of integers of number fields.
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We make the assumption that the restriction L|D to the divisor D of the Hermitian line bundle

L is arithmetically ample (see 0.1.4 above). In our setting, this means that, for any large enough

integer d, the line bundle L⊗d
|D on D is generated by sections s such that ∥s(x)∥ < 1 for any complex

point x ∈ D(C).
In the case where V is the projective line P1

Z, let K be a connected compact subset of C ⊂ P1
Z(C)

which is invariant under complex conjugation and such that C \K is connected. Let L be the line
bundle O(1) on P1

Z — its global sections may be identified with homogeneous polynomials of degree
1 in two variables X0 and X1 — and let s be the section corresponding to the polynomial X0. The
divisor D := divs is the point at infinity in P1(Z), and its complement V̊ is the affine line A1

Z.

Classical potential theory on the complex plane shows that the following holds: there exist
compact subsets K ′ of C containing K, arbitrarily close22 to K, and smooth metrics ∥.∥′ on L

with positive Chern form, such that K ′ is the set of those points x of V̊(C) such that ∥s(x)∥′ ≥ 1.
Additionally, K ′ and ∥.∥′ may be chosen in such a way that the restriction of (L, ∥.∥′) to the divisor
D =∞ is arithmetically ample if and only if the capacity of K as a subset of C — or equivalently,
its transfinite diameter, defined as:

δ(K) := lim
n→+∞

δn(K),

where:

δn(K) := sup
w1,...,wn∈K

∏
1≤j<k≤n

|wj − wk|2/n(n−1)

— is strictly smaller than 1. Compact subsets of C of capacity strictly smaller than 1 are the ones
appearing in the classical Fekete-Szegö theorem.

0.2.6.2. Theorem 0.2.1 addresses notably a generalization of the following problem: given a
compact subset K of C, can we approximate holomorphic functions on a neighborhood of K by
polynomials with integer coefficients ?

An obvious obstruction is given by the existence of elements of Z lying in K. Indeed, given an
integer n lying in K, it is readily seen that if f is a holomorphic function on a neighborhood of K
that is a limit the uniform limit of polynomials Z[X] on this neighborhood, then the power series
expansion of f at n has integral coefficients. We may generalize and discuss this kind of obstruction
to approximation problems in the setting of 0.2.6.1 above.

With the notation of 0.2.6.1, let O(V̊) denote the Z-algebra of regular functions on the affine

scheme V̊ — when V̊ is the affine line A1
Z, this is simply the polynomial ring in one variable Z[X]. Let

Oan(K) denote the C-algebra of (germs of) holomorphic functions on K, namely the colimit of the
Fréchet algebrasOan(U) of holomorphic functions on U , as U ranges through the open neighborhoods

of K in the complex manifold V̊(C).
The algebra Oan(K) is equipped with a natural locally convex vector space topology as a colimit

of Fréchet spaces. It may be proved that a sequence (fn)n≥1 in Oan(K) converges to some element

f of Oan(K) if and only if there exists an open neighborhood U of K in V̊(C) such that f and all
the fn extend to holomorphic functions g and gn on U in such a way that the sequence (gn)n≥1

converges uniformly to g on U .23

The locally convex space Oan(K) is actually the dual of a nuclear Fréchet space — this follows
from the nuclearity properties of restriction maps between space of holomorphic functions on complex
analytic spaces — and this property will prove to be crucial in our approach, as discussed in 0.2.6.6
below.

22Namely, contained in some ε-neighborhood of K in C for an arbitrary small ε ∈ R∗
+.

23See for instance [Kom67, Theorem 6′] for a proof of this result, and of the fact that the topology of Oan(K)
coincides with the colimit topology of the system of topological spaces Oan(U), defined by forgetting their vector

space structures; see also [Bou81, Section III.1, §4 and §7].
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By composing the base change morphism:

O(V̊) := Γ(V̊,OV) −→ O(V̊C) := Γ(V̊C,OVC) ≃ O(V̊)⊗ C,
the analytification morphism:

O(V̊C) −→ Oan(V̊(C))
and the restriction morphism:

Oan(V̊(C)) −→ Oan(K),

we defines a morphism of algebras:

(0.2.10) r : O(V̊) −→ Oan(K),

which we will refer to, slightly abusively, as a restriction map.24

We want to investigate the closure of the image of r in Oan(K) equipped with its canonical
locally convex topology — this amounts to determining which (germs of) holomorphic functions in

Oan(K) can be approximated by elements of O(V̊).
0.2.6.3. Real structures provide a first obstruction to the approximation problem above. Com-

plex conjugation defines an antiholomorphic map τ : V̊(C) → V̊(C). As a consequence, it acts on

Oan(K) by the antilinear involution sending f to
(
x 7→ f(τ(x))

)
. If we denote by Oan(K)R the real

algebra of elements Oan(K) of invariants under this involution, then the restriction map (0.2.10)
factors through Oan(K)R.

A second obstruction may be described as follows. Let Z be a closed purely one-dimensional
subscheme of V̊ that is proper over SpecZ — this implies that |Z| is finite and flat over SpecZ —
and such that the finite set Z(C) of its complex points is contained in K.

Let V̊∧
Z denote the formal completion of V̊ along Z, and let V̊∧

Z,C denote the formal completion

of V̊C along the finite subscheme ZC.

By base change, we may define a morphism:

(0.2.11) O(V̊∧
Z) −→ O(V̊∧

Z,C)

between the algebras of regular functions on these formal schemes, which is easily seen to be injective.
The Taylor expansions at the points of Z(C) of a germ of holomorphic function on V̊(C) near Z(C)
define an element of O(V̊∧

Z,C). In this way, to any element of Oan(K), we may attach an element in

O(V̊∧
Z,C), its “restriction” to V̊∧

Z,C, and define a morphism of C-algebras:

(0.2.12) Oan(K) −→ O(V̊∧
Z,C).

We shall denote by Oan(K)R,intZ the Z-algebra consisting of those elements of Oan(K)R whose

restriction to V̊∧
Z,C extends to V̊∧

Z — that is, belongs to the image of the base change morphism

(0.2.11). In other words, Oan(K)R,intZ is the fiber product, defined by means of the morphisms of
algebras (0.2.11) and (0.2.12), of the algebra Oan(K)R of “real” germs of analytic functions on K

and of the algebra O(V̊∧
Z) of “germs of formal functions” on Z:25

Oan(K)R,intZ := Oan(K)R ×O(V̊∧
Z,C)
O(V̊∧

Z).

The restriction map r introduced in (0.2.10) above is easily seen to take its values in the algebra
Oan(K)R,intZ , and therefore to define a morphism of algebras:

r : O(V̊) −→ Oan(K)R,intZ .

24This terminology is justified by the injectivity of the base change and analytication morphisms O(V̊) → O(V̊C)

and O(V̊C) → Oan(V̊(C)).
25Accordingly the algebra Oan(K)R,intZ may be seen of the algebra of regular functions on some “formal-analytic

space,” defined in the spirit of [BC22] by gluing the germ of the complex analytic manifold V̊(C) along K, endowed

with its natural “real” structure, and the formal scheme V̊∧
Z along their common formal subspace V̊∧

Z,C.
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0.2.6.4. As an illustration of these constructions, consider the case where V̊ is the affine line A1
Z

and Z is irreducible.

Then the ideal in Z[X] defining the support |Z| of Z is the principal ideal P.Z[X] defined by a
monic irreducible polynomial P in Z[X]. A root α of P is an algebraic integer, and Z(C) consists in
the set of complex numbers σ(α), where σ runs through the complex embeddings of Q[α]. According
to the above assumptions on Z, all these conjugates σ(α) of α lie in the compact set K.

The injective morphism of algebras:

Z[X] −→ Z[α][T ], R(X) 7−→ R(α+ T )

is a homeomorphism onto its image when Z[X] and Z[α][T ] are endowed respectively with the P -adic
and the T -adic topology. Therefore it extends to an injective morphism between their completions:

(0.2.13) O(V̊∧
Z) = lim←−

n

Z[X]/(PnZ[X])↪−→Z[α][[T ]].

It is easily seen to become an isomorphism after completed localization:

O(V̊∧
Z) ⊗̂Z[∆−1

P ]
∼−→ Z[α, P ′(α)−1][[T ]],

where ∆P denotes the discriminant of P .

The algebraOan(K)R,intZ is the set of holomorphic functions f on a neighborhood ofK, invariant
under complex conjugation, satisfying the following property: there exists a power series

∑
i≥0 aiT

i

in the image of (0.2.13) such that, for any complex embedding σ of K, the power series expansion
of f at σ(α) is the series: ∑

i≥0

σ(ai)(z − σ(α))i.

For instance, if α is in Z, then Oan(K)R,int is the algebra of holomorphic functions that are invariant
under complex conjugation and have integral power series expansion at α.

0.2.6.5. One of the main theorems of [BCa] is as follows:

Theorem 0.2.1. Let (V̊,K) be as in 0.2.6.1. Then there exist only finitely many integral, one-

dimensional proper subschemes of V̊, all of whose complex points lie in K. Let Z be their union.
Consider the restriction map:

r : O(V̊) −→ Oan(K)R,intZ .

Then, for any element f of Oan(K)R,intZ , there exists a sequence (fn) of elements of O(V̊) such that
f is the limit in Oan(K) of the sequence (r(fn)). In particular, the image of r is dense.

Theorem 0.2.1 contains two parts. The first part is a finiteness statement concerning integral
points of V̊, all of whose conjugates lie in K, thus generalizing to arbitrary affine schemes – most
notably, in arbitrary dimension – the finiteness theorem of Fekete. The second statement shows that
those finitely many integral points, together with reality conditions, provide the only obstructions
to approximating germs of holomorphic functions on K by regular functions on the Z-scheme V̊.

In the case where V̊ is the affine space AdZ, this is a theorem about approximating holomorphic

functions by integer polynomials. Even in the most basic situation considered in 0.2.6.4 where V̊ is
A1

Z, this second part of Theorem 0.2.1 is a new result.

For instance, when V̊ is A1
Z and K is an compact interval in R that does not contain any integer,

the scheme Z is easily seen to be empty, and therefore Theorem 0.2.1 asserts that every element
of the algebra Oan(K)R of germs of real-valued R-analytic functions on K is a limit, in the sense
described in 0.2.6.2 above, of a sequence of integer polynomials. This constitutes a refinement of
the well-known fact that any continuous real valued function on such an interval is a uniform limit
of integer polynomials.
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0.2.6.6. The framework of Theorem 0.2.1 is the counterpart in the setting of Arakelov geometry
of the following geometric situation.

Roughly speaking, the pair (V̊,K) of Theorem 0.2.1, as constructed in 0.2.6.1, is the analog of a

quasi-projective variety X̊ over an algebraically closed field k which is the complement of a divisor
D with ample normal bundle in a smooth projective variety X over k.

It can be proved, see [Har70, III.4.2] and [Laz04, 1.2.30], that such an X̊ is always a modifi-

cation of an affine variety Y obtained by contracting a proper subvariety Z of X̊, whose irreducible
components have positive dimension. Moreover it is readily checked that the higher cohomology of
any coherent sheaf F on X̊ is finite dimensional and comes from the formal neighborhood X̊∧

Z of Z

in X̊ in the following sense: for every positive integer i, the inclusion morphism ι : X̊∧
Z → X induces

an isomorphism:

Hi(X̊,F) ∼−→ Hi(X̊∧
Z , ι

∗F).

The reader should consider the proper subscheme Z appearing in Theorem 0.2.1 as an arithmetic
analogue of this exceptional locus Z. Contracting such a Z, which is flat over SpecZ, would require
to give a geometric meaning to an “absolute point” over which SpecZ would be defined.

Despite the absence of suitable contractions in Arakelov geometry, we are able to express as a
numerical statement an arithmetic version of the above properties — namely the fact that higher
coherent cohomology is finite dimensional and comes from the formal neighborhood of Z in V̊. This
is realized as an equality involving theta invariants for (infinite-dimensional) lattices equipped with
families of Euclidean seminorms related to the topology of Oan(K).

The formalism of Chapter 4 and Chapter 5 of this monograph makes it possible to formulate nu-
merical ersatzes of functoriality properties of higher cohomology. This formalism is indeed applicable
to theta invariants, as established in Chapter 7 and Chapter 8, and will be used in [BCa] to derive
the relevant equalities. To pass from numerical statements on theta invariants to the finiteness and
approximation results of Theorem 0.2.1, we use the results established in Chapter 9 below, most
notably Theorem 9.4.10.

As discussed in 0.2.5.4 above, applications of theta invariants to infinite-dimensional geometry
of numbers work best in the situation where relevant lattices are equipped with pairs of Euclidean
norms with finite relative trace. The fact that Oan(K) is the dual of a nuclear Fréchet space endows
the lattices appearing in the proof of Theorem 0.2.1 with decreasing families of Euclidean seminorms
that have finite successive relative traces — this is the key to relating results on theta invariants to
concrete finiteness and approximation statements.

0.2.7. As already mentioned, in the sequel [BCa] to this monograph, we shall develop a theory
of “arithmetic affine schemes” and of their modifications in Arakelov geometry. It will realizes the
program hinted at in 0.2.2 above, and also have applications to the arithmetical theory of ampleness
— notably to some arithmetic analogues of Grauert’s ampleness criteria, as hinted at in 0.2.3 —
and to integral points, as discussed in 0.2.6.

Besides the main results of this monograph — concerning Hermitian quasi-coherent sheaves,
their theta invariants h1θ, and their covering radii — these applications to Diophantine geometry will
also rely on the tools developed in two more technical works, of independent interest.

Firstly, in [BCb] we shall investigate infinite dimensional geometry of numbers in a slightly
different perspective, by studying countably generated Z-module endowed with the topologies defined
by the embedding of the associated R-vector spaces into duals of nuclear Fréchet spaces. A thorough
use of the results of this monograph concerning theta invariants and their relationship to covering
radii makes it possible to develop a somewhat qualitative version of geometry of numbers for such
“nuclear quasi-coherent sheaves over arithmetic curves”, focusing on the study of their bounded
subsets.
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We will also show that nuclear quasi-coherent sheaves occur naturally as spaces of sections of
coherent sheaves on a quasi-projective scheme V̊ over Z endowed with a conjugation invariant com-
pact subset K of its space V̊(C) of complex points. Such pairs (V̊,K) will be studied systematically
in [BCa] under the name of A-schemes.

Secondly, the monograph [Cha] will be devoted to diverse results of complex analytic geometry
concerning “analytic pairs” — namely pairs (X,K) consisting in a complex analytic space X and
some compact subset K of Xred — and the topological and bornological properties of the spaces
Γ(K, C) of (germs of) sections onK of a coherent analytic sheaf C on X. It will cover the foundational
work in complex analytic geometry necessary to the investigation of the A-schemes mentioned above.

0.3. Contents

We now proceed to a brief synopsis of the main results of this monograph. More detailed
presentations of these results are given in the introductory paragraphs of each chapter.

Chapter 1 collects various results concerning countably generated modules over Dedekind rings.
The main technical result in this chapter is the existence, for every countably generated module M
over some Dedekind ring R, of a largest projective quotient of M :

δM :M −→M∨∨.

This chapter presents further results, either of motivational nature26 or of a technical nature, that
may be skipped at first reading.

The main definitions concerning Hermitian quasi-coherent sheaves that will be used in this

monograph are introduced in Chapter 2. We notably introduce the categories qCoh
≤1

X and qCohX ,

and their subcategories CohX and Coh
≤1

X , defined by Hermitian quasi-coherent sheaves whose
underlying OK-modules are finitely generated. These subcategories contain the categories VectX

and Vect
≤1

X of Hermitian vector bundles over X, classically considered in Arakelov geometry.

We also introduce the admissible short exact sequences of Hermitian quasi-coherent sheaves,
and their canonical dévissages, which will play a central role in the study of theta invariants.

The remaining parts of Chapter 2 are devoted to more technical results concerning Hermitian

quasi-coherent sheaves. Firstly concerning the vectorization functor from Coh
≤1

X to Vect
≤1

X , which

constitutes a left adjoint to the inclusion functor from Vect
≤1

X to Coh
≤1

X , and secondly concerning

the duality functor from the category CohX to a suitably defined category proVect
[∞]

X of pro-
Hermitian vector bundles over X. These developments are intended for later reference, and their
study may be postponed until they are referred to in later chapters.

Before investigating invariants of Hermitian quasi-coherent sheaves, motivated by the analogy
between number fields and function fields, in Chapter 3 we study various properties of the invariant
of a quasi-coherent sheaf F over a smooth projective curve C over some base field k defined by the
dimension h1(C,F) of its first cohomology group H1(C,F). This invariant h1(C,F) plays the role
of a “geometric model” for the invariants of Hermitian quasi-coherent sheaves investigated in this
monograph.

The results of Chapter 3 are not used in the following chapters. However they isolate the main
properties of the invariant F 7→ h1(C,F) that will play a central role in our axiomatic approach to
invariants of Hermitian quasi-coherent sheaves in Chapters 4 and 5.

Chapter 4 is devoted to our main constructions of invariants with values in [0,+∞] attached to
Hermitian quasi-coherent sheaves on X, starting from some invariant attached to Hermitian vector

26They “explain” how Archimedean places are taken into account in our definition of Hermitian quasi-coherent

sheaves over an arithmetic curve.
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bundles with values in R+. These constructions requires the validity of some basic properties of this
invariant on VectX , namely its monotonicity, subadditivity, and downward continuity.

These properties are easily shown to hold for the theta invariant h1θ which constitutes the main
subject of this monograph, and are also satisfied by other significant invariants attached to some
Euclidean lattice, for instance by the square ρ(E)2 of its covering radius, or its Gauss-Voronoi
invariant gv(E) introduced in Section 9.1. Specialized to the invariant h1θ, the results of Chapter 4

will establish an extension to the larger category qCohX of the constructions in [Bos20b, Chapters
7 and 9] of theta invariants on the category indVectX of ind-Hermitian vector bundles over X.27

In Chapter 5, we pursue our axiomatic approach of invariants attached to Hermitian quasi-
coherent sheaves, starting from invariants on VectX or CohX , by studying the consequence of some
additional axiom, which we name strong monotonicity.

When strong monotonicity holds, it becomes possible to attach well behaved invariants, not only
to objects of these categories, but also to morphisms in these categories. The invariants associated
to objects of VectX or CohX , or qCohX are supposed to play the role of the dimension of some
elusive cohomology group associated to these objects, while their “relative versions,” associated to
morphisms in these categories, are analogues of the rank of the morphisms they induce between
cohomology groups.28

We also show in Chapter 5 that, under the assumption of strong monotonicity, the construc-
tions of invariants on qCohX starting from invariants on VectX developed in Chapter 4 satisfies
remarkable additional properties. These turn out to be quite useful in applications.

At this point, we should emphasize that the existence of significant invariants which, besides the
monotonocity, subadditivity, and downward continuity which entered as basic axioms in Chapter 4
also satisfy strong monotonicity, is by no means trivial. The only instances of such invariants which
we are aware of are the theta invariant h1θ and its variants. The proof of their strong monotonic-
ity, which we shall establish in Chapter 7 relies on some non-trivial estimates on theta functions
attached to Euclidean lattices established in the work of Banaszczyk [Ban92, Ban22] and Regev
and Stephens-Davidowitz [RSD17a].

Chapter 6 is devoted to the study of various invariants attached to Euclidean quasi-coherent
sheaves that are defined in elementary terms, in the spirit of the classical geometry of numbers.
Notably we investigate the properties of the covering radius ρ(M) attached to some object M of
qCohZ and its relations with other elementary invariants, and we also study a relative version of
the covering radius, attached to morphisms in qCohZ.

In Chapter 7, we investigate the theta invariants in the finite rank setting. Notably we establish
that the invariant h1θ on the categories VectX and CohX is strongly monotonic. Our proof relies

on the properties of the so-called Banaszczyk function BE associated to an object E of CohZ and

of its Fourier transform βE∨ , the Banaszczyk measure of E, which will also play a key role in the
next chapters.

Chapter 8 is devoted to the construction and to the properties of the theta invariant in the
infinite dimensional situation. We apply the general formalism developed in Chapters 4 and 5 to the

invariant h1θ, and in this way we define the invariants h1θ and h
1

θ on qCohX , and the subcategories of

θ1-summable and θ1-finite objects in qCohX . We also extend to objects E in qCohZ the definitions
and the properties of the Banaszczyk function BE and of the Banaszczyk measure βE∨ , and we use

27The category indVectX is the full subcategory of qCohX whose objects are the Hermitian quasi-coherent

sheaves (E, (∥.∥x)x∈X(C)) such that the underlying OK -module E is projective and the Hermitian seminorms ∥.∥x
are actually norms.

28A similar philosophy appears in the work of McMurray Price [MP17]. This work focuses on invariants of
Hermitian vector bundles that play the role of the dimension h0(C,E) of the space of sections of vector bundle E
over a smooth projective curve over some field k, while we consider invariants which are arithmetic counterparts of

the dimension h1(C,F) of the cohomology group H1(C,F) associated to an arbitrary quasi-coherent sheaf F over C.
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them to investigate the objects E of qCohX such that the theta invariants h1θ(E) and h
1

θ(E) are
finite and coincide.

Finally, in Chapter 9, we explore the relations between the theta invariants attached to some

Euclidean quasi-coherent sheaf E, notably h
1

θ(E), and the more naive invariants introduced in Chap-
ter 6, especially its covering radius ρ(E).

In the Diophantine applications of theta invariants developed in the sequel of this monograph,
the formalism developed in the previous chapters will be used to transpose in Diophantine geometry
various cohomological techniques familiar in classical algebraic geometry. It will lead to results

concerning the smallness or the vanishing of the invariants h
1

θ(E) associated to Euclidean quasi-
coherent sheaves E naturally associated to the Diophantine problems under study.

To derive “concrete” consequences — for instance density results — from these results about

the theta invariants h
1

θ(E), it will be crucial to know that they imply similar smallness properties
of the covering radii ρ(E) of these Euclidean quasi-coherent sheaves. The main result of Chapter 9
will provide the needed control of covering radii in terms of theta invariants.

Our main theorem will actually concern not single objects E of qCohZ, but pairs of objects

E := (E, ∥.∥) and E′
:= (E, ∥.∥′) of qCohZ admitting the same underlying Z-module E, and whose

defining seminorms ∥.∥ and ∥.∥′ satisfy a Hilbert-Schmidt condition of the form Tr(∥.∥′2/∥.∥2) < +∞.
We will actually work in a relative setting — crucial for Diophantine applications — and establish
bound on the relative covering radius attached to a morphism in qCohZ in terms of its theta rank.

These chapters are followed by three Appendices.

Appendices A and B gather various properties associated to a pair of Hermitian seminorms on
a complex vector space, concerning notably their singular values and the associated relative traces.

Appendix C presents various classical results concerning positive Borel measures on some topo-
logical real vector space in the specific form needed for their application in Chapter 8, in a form that
should be accessible with only some familiarity with basic notions of measure theory.
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0.5. Notation and Conventions

0.5.1. Basic Notations.

0.5.1.1. We denote by N the set of nonnegative integers, and for k ∈ N, we denote by N>k (resp.,
by N≥k) the set of nonnegative integers greater than k (resp., greater than or equal to k).

By countable, we mean “of cardinality at mots the cardinality of N.”
Concerning maps between partially ordered sets, we follow the French usage, and by increasing,

we mean non-decreasing.

0.5.1.2. If M is a module over a ring A, and if B is a commutative A-algebra, we denote by MB

the “base changed” module M ⊗A B. Similarly, if φ :M → N is a morphism of A-modules, we let:

φB := φ⊗A IdB :MB −→ NB ,

and if X is a scheme over SpecA, we denote by:

XB := X ×SpecA SpecB
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is base change to SpecB.

0.5.1.3. We will often denote by K a number field and by OK its ring of integer. The associated
arithmetic curve is the scheme:

X := SpecOK .

The set X(C) of morphisms of schemes from SpecC to X may be identified with the set of field
embeddings:

x : K −→ C,
and for every OK-moduleM (resp. any morphism of OK-modules φ :M → N , resp. any OK-scheme
X ), its base change by x : OK → C will be denoted by:

Mx :=M ⊗OK ,x C. (resp. by φx :Mx −→ Nx), resp. by Xx).

We denote by π the morphism of schemes from X to SpecZ, and by ωπ its relative dualizing
sheaf equipped with its natural Hermitian metrics (which give norm 1 to the trace map TrK/Q; see
for instance [Bos20b, 1.2.1]).

0.5.2. Lebesgue measures, Fourier transforms, and Poisson formula.

0.5.2.1. A Lebesgue measure on a finite dimensional R-vector space V is a translation invariant
positive Radon measure on V .

To any Lebesgue measure λ on V is canonically attached a Lebesgue measure λ∨ on the dual
vector space V ∨ := HomR(V,R), characterized by the following property. If (ei)1≤i≤n denotes a
R-basis of V and (ξi)1≤i≤n the dual basis of V ∨, then:

λ
( n∑
i=1

[0, 1)ei

)
λ∨
( n∑
i=1

[0, 1)ξi

)
= 1.

If ∥.∥ is a Euclidean norm on the finite dimensional R-vector space V, the Lebesgue measure λV
associated to the Euclidean vector space V := (V, ∥.∥) is the Lebesgue measure on V that satisfies
the following equivalent normalization conditions, where (v1, . . . , vn) denotes an orthonormal basis
of the Euclidean space V :

λV

( n∑
i=1

[0, 1)vi

)
= 1,

and ∫
V

e−π∥x∥
2

dλV (x) = 1.

If we denote by ∥.∥∨ the dual Euclidean norm on V ∨, defined by the relation:

∥ξ∥∨ := max
v∈V,∥v∥≤1

⟨ξ, v⟩,

and by V
∨
:= (V ∨, ∥.∥∨) the Euclidean vector space dual to V , then we have:

λV ∨ = λ∨
V
.

0.5.2.2. Let V a Hausdorff locally convex topological vector space, and let us denote by:

V ∨ := Homcont
R (V,R)

its topological dual. To any complex Borel measure with finite total mass ν on V is associated its
Fourier transform:

Fν : V ∨ −→ C, ξ 7−→
∫
V

e−2πi⟨ξ,x⟩ dν(x).

It is a continuous function on V ∨ equipped with the weak topology (namely, the σ(V ∨, V )-topology),
and is a function of positive type when ν is a positive finite Borel measure.
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We will use the notation F∨ν for the function on V ∨ defined by:

F∨ν(ξ) := Fν(−ξ) =
∫
V

e2πi⟨ξ,x⟩ dν(x).

0.5.2.3. Let V be a finite dimensional R-vector, V ∨ := HomR(V,R) its dual, and λ a Lebesgue
measure on V .

We shall define the Fourier transform:

FV,λ : L1(V ) −→ C0(V ∨)

by the relation, for every f ∈ L1(V ) and any ξ ∈ V ∨:

FV,λf(ξ) := F(f · λ)(ξ) =
∫
V

f(x) e−2πi⟨ξ,x⟩dλ(x).

We shall also define:

F∨
V ∨,λ∨ : L1(V ∨) −→ C0(V )

by the relation, for every g ∈ L1(V ∨) and any x ∈ V ≃ V ∨∨:

F∨
V ∨,λ∨g(x) := F∨(g · λ∨)(ξ) =

∫
V

f(ξ) e2πi⟨ξ,x⟩dλ∨(ξ).

Then, if we denote by S(V ) and S(V ∨) the Schwartz spaces of complex valued C∞–functions
with rapid decay over V and V ∨, the Fourier transforms FV,λ and FV ∨,λ∨ establish isomorphisms of
Fréchet spaces, inverse of each other:

(0.5.1) FV,λ : S(V )
∼−→ S(V ∨) and F∨

V ∨,λ∨ : S(V ∨)
∼−→ S(V ).

0.5.2.4. If V := (V, ∥.∥) is a finite dimensional Euclidean vector space, of dual V
∨
:= (V ∨, ∥.∥∨),

we shall denote by FV and F∨
V

∨ the Fourier transform FV,λV
and its inverse F∨

V ∨,λ
V ∨ .

Using this notation, the Fourier transform of Gaussian functions is given by the following ex-
pression:

(0.5.2) FV
(
e−π∥.∥

2)
= e−π∥.∥

∨2

,

and more generally, for every t ∈ R∗
+:

(0.5.3) FV
(
e−πt∥.∥

2)
= t− dimR V/2e−πt

−1∥.∥∨2

.

0.5.2.5. Let us keep the notation introduced in 0.5.2.3 above, and consider Λ a lattice in V ,
namely a (free, discrete) subgroup of V generated by a R-basis of V .

The R-vector space ΛR may be canonically identified to V , and the dual Z-module HomZ(Λ,Z)
to the dual lattice in V ∨:

Λ∨ := {ξ ∈ V ∨ | ξ(Λ) ⊆ Z} .

By definition, the covolume covolλ(Λ) of Λ with respect to the Lebesgue measure λ is defined
as:

covolλ(Λ) := λ(∆),

where ∆ is any Borel fundamental domain for the action by translation of Λ on V .

Then the following equality holds:

(0.5.4) covolλ(Λ) · covolλ∨(Λ∨) = 1.
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Moreover the Poisson formula asserts that, for any function f ∈ S and any x ∈ V , the following
equality holds:29

(0.5.5) covolλ(Λ).
∑
v∈Λ

f(x+ v) =
∑
ξ∈Λ∨

FV,λf(ξ) e2πi⟨ξ,x⟩.

In particular, we have:

(0.5.6) covolλ(Λ).
∑
v∈Λ

f(v) =
∑
ξ∈Λ∨

FV,λf(ξ).

29The reader may refer to [Hör90, 7.1-2] for a concise and elegant exposition of the basic properties of the Fourier
transform in the spaces S(Rn) and S(Rn)′ of Schwartz functions and tempered distributions which emphasizes the

role of the Poisson formula.
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CHAPTER 1

Countably Generated Modules over Dedekind Rings

An arithmetic curve is a scheme:
X := SpecOK

defined by the ring of integers OK of some number field K. Its set of complex points X(C) is the
set, of cardinality [K : Q], of field embeddings:

x : K −→ C.

The main object of study of this monograph are the Hermitian quasi-coherent sheaves over such
an arithmetic curve X. These are defined as pairs:

F :=
(
F, (∥.∥x)x∈X(C)

)
,

where F is a countably generated OK-module, and where (∥.∥x)x∈X(C) is a family, invariant under
complex conjugation, of Hermitian seminorms on the complex vector spaces:

Fx := F ⊗x C,
deduced from F by the base changes x : OK → C.

In this chapter, we gather diverse preliminary results concerning countably generated modules
over the ring of integer OK of some number field K, and more generally, over some Dedeking ring R.

In Section 1.1, we discuss various properties of countably generated modules over a Noetherian
ring, and more generally of quasi-coherent sheaves of countable type over a Noetherian scheme.

These properties notably imply that the quasi-coherent sheaves over an arithmetic curve X =
SpecOK that arise in practice when investigating the algebraic geometry of schemes of finite type
over K or over OK are defined by countably generated OK-modules. This demonstrates that con-
sidering only countably generated OK-modules in our definition of Hermitian quasi-coherent sheaves
is an innocuous restriction.

Section 1.2 is devoted to the main technical result in this chapter. We show that, for every
countably generated module M over some Dedekind ring R, there is a largest projective quotient
of M :

δM :M −→M∨∨,

constructed as its double dual, suitably defined.

In Section 1.3, we discuss the compatibility of various constructions and properties of modules
over Dedekind rings with finite flat morphisms R ↪→ S of the base rings.

In Section 1.4, we present a topological interpretation of the construction of the largest projective
quotient M∨∨ in Section 1.2 when the base ring R is Z, and more generally when R is the ring of
integers OK of a number field K.

In Sections 1.5 and 1.6, we discuss the role of ultrametric seminorms when studying modules
over Dedekind rings. The content of these two sections will not be explicitly used in our investigation
of Hermitian quasi-coherent sheaves in the remaining of this monograph. However they will provide
a motivation for the use of Hermitian seminorms when developing the theory of Hermitian quasi-
coherent sheaves over an arithmetic curve X, which play the role of quasi-coherent sheaves over X
“compactified” by its Archimedean places.

3
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More specifically, in Section 1.5, we review various (more or less) classical facts concerning the
description of torsion free modules over a discrete valuation ring R in terms of vector spaces on
the fraction field K of R and of ultrametric seminorms on these vector spaces. We also extend this
description to the situation where R is a valuation ring defining a non-discrete valuation of rank 1
on its fraction field K — which arguably is a better analogue of the Archimedean places of number
fields than discrete valuations.

Finally in Section 1.6, we discuss the compatibility of the constructions of the dual module M∨

and of the largest projective quotient M∨∨ with extensions of Dedekind ring R ↪→ R̊ defining an
open immersion Spec R̊ ↪→ SpecR between their associated schemes.

The results in Sections 1.1, 1.5 and 1.6 are either folklore or motivational, the ones in Sections
1.3 and 1.4 are of a rather technical nature, and the detail of their proofs could be skipped without
inconvenience.

In contrast, the construction of the largest projective quotient in Section 1.2 — which does not
seem to appear in the literature in spite of its basic character — will play an important role in

this monograph. Indeed the theta invariants h1θ, h
1

θ, h
1
θ, . . . that we shall attach to some Hermitian

quasi-coherent sheaf F :=
(
F, (∥.∥x)x∈X(C)

)
over an arithmetic curve X := SpecOK will turn out

to be unaltered when F is replaced by the Hermitian quasi-coherent sheaf:

F
∨∨

:=
(
F∨∨, (∥.∥∼x )x∈X(C)

)
defined by the largest projective quotient F∨∨ of the OK-module F and by seminorms (∥.∥∼x )x∈X(C)
quotients of the seminorms (∥.∥x)x∈X(C)) by the surjective C-linear maps:

δF,x : Fx −→ F∨∨
x .

It should be emphasized that the study of countably generated Z-modules, and more generally
of countably generated OK-modules, displays considerably delicate phenomena.1 The invariance of

the theta invariants under the replacement of F by F
∨∨

show that, ultimately, we will not need to
take them into account.

In this chapter, by R, we always denote a Dedeking ring, in the sense of Bourbaki [Bou65,
VII.2.1]; in other words, R is either a field, or a Noetherian integrally closed domain of dimension 1.

Moreover, for every R-module M , we denote by Mtor its torsion submodule:

Mtor := {m ∈M | ∃a ∈ R \ {0}, am = 0} ,
and we let:

M/tor :=M/Mtor.

1.1. Countably Generated Modules and Quasi-coherent Sheaves of Countable Type

1.1.1. Countably generated A-modules. Let A be a ring (commutative, with unit). The fol-
lowing proposition gathers various properties of countably generated A-modules which are straight-
forward consequences of definitions.

1When R is Z, countably generated modules are nothing but countable abelian groups. The study of not finitely

generated countable abelian groups was initiated in the Habilitationschrift of F. W. Levi [Lev17] — where are
constructed examples of countable abelian groups such that the short exact sequence 0 →Mtor →M →M/Mtor → 0
is not split — and pursued in the pionneering works of Prüfer [Prü23, Prü24, Prü25], Ulm [Ulm33], and Baer

[Bae36, Bae37]. We refer the reader to the lecture notes by Kaplansky [Kap69] for a gentle presentation of various
classical results, and to the monograph of Fuchs [Fuc15] for a synthesis of one century of investigations of abelian

groups.

All these results demonstrate the difficulty of establishing general classification results concerning countable
abelian groups. During the last decades, various advances concerning the level in the hierarchy of Borel equivalence

relations of the classification of various classes of countable abelian groups, due notably to Hjorth, Kechris, and

Thomas, have established the “hardness” of these classification problems in a precise sense; see for instance [Tho06].
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Proposition 1.1.1. (1) Let M be a A-module, equipped with a filtration by submodules

M0 = {0} ⊆M1 ⊆ . . . ⊂Mn ⊆Mn+1 ⊆ . . .
that is exhausting, namely that satisfies: ⋃

n≥0

Mn =M.

If the successive quotientsMn+1/Mn, n ≥ 0, are countably generated, thenM is countably generated.

Conversely, if a A-module M is countably generated, then it admits an exhausting filtration
(Mn)n∈N as above such that the quotients Mn+1/Mn, n ≥ 0, are finitely generated.

(2) Any quotient of countably generated A-module is countably generated. If the ring A is
Noetherian, any submodule of a countably generated A-module is countably generated.

(3) For any A-algebra B and any countably generated A-module M , the B-module MB :=
M ⊗A B is countably generated.

(4) If B is an A-algebra of finite type, and if M is a countably generated B-module, then M is
also countably generated as a A-module.

1.1.2. Quasi-coherent sheaves of countable type over Noetherian schemes.

Proposition and Definition 1.1.2. Let X be a Noetherian scheme, and let (Uα)α∈I be a
covering of X by affine open subschemes. For every quasi-coherent sheaf F over X, the following
conditions are equivalent:

(i) There exists an increasing sequence:

C0 ⊆ C1 ⊆ · · · ⊆ Cn ⊆ Cn+1 ⊆ · · ·
of coherent subsheaves of F such that F =

⋃
n∈N Cn.

(ii) For every affine open subscheme U of X, the OX(U)-module F(U) is countably generated.
(iii) For every α ∈ I, the OX(Uα)-module F(Uα) is countably generated.

When these conditions are satisfied, we shall say that F is a quasi-coherent sheaf of countable
type.

The proof of Proposition 1.1.2 relies on the following classical theorem concerning extensions of
coherent susbsheaves of a quasi-coherent sheaf:

Theorem 1.1.3 (see [GD71, I.6.9.7]). Let F be a quasi-coherent sheaf over a Noetherian scheme
X. For every open subscheme U of X and every coherent subsheaf C of the restriction F|U of F to

U , there is a coherent subsheaf C̃ of F such that C̃|U = C.

Proof of Proposition 1.1.3. Assume that Condition (i) is satisfied. Then, for every affine
open subscheme U of X, the OX(U)-module F(U) is the increasing union of its finitely generated
submodules Cn(U) and therefore is countably generated. Therefore (ii) is satisfied.

The implication (ii)⇒ (iii) is clear.

Finally assume that (iii) is satisfied.

Since X is Noetherian and therefore quasi-compact, there exists a finite subset J of I such
that (Uα)α∈J is an open covering of X. For every α ∈ J, we may choose a sequence (sα,n)n∈N of
generators of the O(Uα)-module F(Uα). For every (α, n) in J × N, we may consider the coherent
subsheaf OUαsα,n of F|Uα

. According to Theorem 1.1.3, this coherent subsheaf is the restriction to
Uα of some coherent subsheaf (OUα

sα,n)
∼ of F .

We may define inductively an increasing sequence (Cn)n∈N of coherent subsheaves of F as follows:

• C0 = 0;
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• For every n ∈ N, Cn+1 = Cn +
∑
α∈J(OUαsα,n)

∼.

By construction, for every α ∈ J, the OX(Uα)-submodule
⋃
n∈N Cn(Uα) of F(Uα) contains all the

terms of the sequence (sα,n)n∈N, and therefore coincides with F(Uα). This establishes the equality
F =

⋃
n∈N Cn and completes the proof of (i). □

Proposition 1.1.4. Let X be a Noetherian scheme, and let:

0 −→ F −→ G −→ H −→ 0

be a short sequence of quasi-coherent sheaf over X. The sheaf G is of countable type if and only if
both F and H are of countable type.

This directly follows from Proposition 1.1.1 (1) and (2), and from the characterization of quasi-
coherent sheaves of countable type by Condition (ii) in Proposition 1.1.2.

Corollary 1.1.5. Let X be a Noetherian scheme. For any morphism u : F1 → F2 of quasi-
coherent sheaves over X, if F1 (resp. F2) is countably generated, then keru and imu (resp. imu
and cokeru) are countably generated.

Proposition 1.1.6. Let f : X → Y be a morphism of Noetherian schemes.

(1) For every quasi-coherent sheaf of countable type F over Y , the quasi-coherent sheaf f∗F
over X is of countable type.

(2) When X and Y are separated and when f is a morphism of finite type, then for every quasi-
coherent sheaf of countable type F over X, the (higher) direct images Rif∗F are quasi-coherent
sheaves of countable type over Y .

Proof. Assertion (1) is a direct consequence of the definition of quasi-coherent sheaves of
countable type — for instance from its characterization by Condition (i) in Proposition 1.1.2.

With the notation of (2), the direct image R∗f∗F in the bounded derived category of quasi-
coherent sheaves over Y is actually represented by a bounded complex of quasi-coherent sheaves of
countable type on X. This follows from the description of R∗f∗F in terms of the Cech complex
associated to finite affine open covering of X and from Proposition 1.1.1. We leave the details to
the interested reader. □

For later reference, we spell out the following simple consequence of the previous propositions:

Corollary 1.1.7. Let X be a Noetherian scheme, Σ a closed subset of X, and U := X \Σ the
open subscheme of X defined as its complement.

If F is a quasi-coherent sheaf over X such that its subsheaf ΓΣF of sections supported by Σ
vanishes, then F is of countable type if and only if its restriction F|U to U is of countable type.

Proof. Let us denote by j : U → X the inclusion morphism.

If F is of countable type, then F|U = j∗F also is, as a special case of Proposition 1.1.6, (1).
Conversely, when FU is of countable type, then the quasi-coherent sheaf j∗F|U over X also is,
according to Proposition 1.1.6, (2). When moreover the sheaf ΓΣF vanishes, or equivalently when
the canonical morphism of sheaves F → j∗j

∗F = j∗F|U is injective, this implies that F is of
countable type by Proposition 1.1.4. □

Propositions 1.1.4 and 1.1.6 and their corollaries show that a large part of algebraic geometry,
which concerns schemes of finite type over a Noetherian base, may be developed by considering only
quasi-coherent sheaves that are of countable type.

A notable exception to this principle would be the sheaves of meromorphic functions. Indeed, if
X is an integral scheme of finite type over some base field k, the sheaf of meromorphic functions on X
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— namely the constant sheaf defined by field k(X) of rational functions over X — is quasi-coherent,
and this sheaf is of countable type if and only if X is zero dimensional or k is countable.

The formalism of this monograph is developed with a view toward applications to Diophantine
geometry, where such countability assumptions on the base fields are satisfied, since Diophantine
geometry involves (mostly) base fields that are finitely generated extensions of the prime field.

For these reasons, considering only countably generated OK-modules in our definition of Her-
mitian quasi-coherent sheaves will never appear as an actual restriction in practice.

1.2. The Largest Projective Quotient of a Countably Generated R-Module

1.2.1. Topological modules and duality. Let us begin by preliminaries concerning the dual
module associated to some (topological) module over an arbitrary base ring.

In this subsection, we denote by A an arbitrary (commutative, unital) ring A.

1.2.1.1. The duality functors. Let ModA denote the category of A-modules, and Modtop
A the

category of topological modules and continuous A-linear maps over the ring A equipped with the
discrete topology.

We may define as follows two adjoint A-linear duality functors:

.∨ : ModA −→ (Modtop
A )opp and .∨

t

: Modtop
A −→ (ModA)

opp.

Firstly, to any A-module M , we may attach the A-module:

M∨ := HomA(M,A),

equipped with the topology of simple convergence — namely with the topology induced by the
product topology on the set AM of set-theoretic maps from M to A, where each factor A is endowed
with the discrete topology. And to any A-linear morphism φ :M →M ′, we may attach its transpose:

φ∨ :M ′∨ −→M∨, f 7−→ f ◦ φ,

which indeed is A-linear and continuous whenM ′∨ andM∨ are equipped with the topology of simple
convergence.

Secondly, to any topological A-module N , we may attach the A-module

N∨t

:= Homtop
A (N,A)

of continuous A-linear maps from M to A, where A is endowed with the discrete topology, and
to any continuous A-linear map ψ : N → N ′ between topological A-modules, we may attach its
transpose:

φ∨t

: N ′∨t

−→ N∨t

, f 7−→ f ◦ φ.

If (I,≼) is a directed set and (Mi)i∈I is an increasing family of finitely generated A-submodules
of some A-module M that satisfies: ⋃

i∈I
Mi =M,

thenM may be identified with the inductive limit lim−→i∈IMi, and the topological A-moduleM∨ with

the projective limit lim←−i∈IM
∨
i of the discrete A-modules M∨

i := HomA(Mi, A), which are finitely

generated when A is Noetherian.

Using this description of the topological module M∨, one easily establishes that the functors .∨

and .∨
t

are adjoint of each other, in the form of functorial A-isomorphisms:

HomA(M,N∨t

)
∼−→ Homtop

A (N,M∨),
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where M (resp. N) denotes an object of ModA (resp. of Modtop
A ). Actually both HomA(M,N∨t

)

and Homtop
A (N,M∨) may be identified with the A-module of A-bilinear maps from M × N to N

that are continuous in the second variable.

1.2.1.2. Biduality. If M (resp. N) is an A-module (resp. a topological A-module), we denote
by δM (resp. by δN ) the biduality morphism

δM :M −→M∨∨t

(resp. δN : N −→ N∨t∨)

defined by:

δM (x)(ξ) := ξ(x) (resp. δN (x)(ξ) := ξ(x))

for any (x, ξ) in M ×M∨ (resp. in N ×N∨t

).These morphisms define a natural transformation from

the identity functor to the functor .∨∨t

(resp. .∨
t∨) from ModA (resp. Modtop

A ) to itself.

Proposition 1.2.1. Let M (resp. N) be an A-module (resp. a topological A-module). Then
the composition

(δM )∨ ◦ δM∨ :M∨ δM∨−→M∨∨t∨ (δM )∨−→ M∨ (resp. (δN )∨
t

◦ δN∨t : N∨t δN∨t

−→ N∨t∨∨t (δN )∨
t

−→ N∨t

)

is the identity morphism IdM∨ (resp. IdN∨t ).

Proposition 1.2.1 shows that the dual topological module M∨ (resp. the dual module N∨t

) may

be canonically identified with a direct summand of the “tridual” M∨∨t∨ (resp. N∨t∨∨t

).

Proof. For every (x, ξ) ∈M ×M∨, we have:(
(δM )∨ ◦ δM∨(ξ)

)
(x) = (δM )∨

(
δM∨(ξ)

)
(x) = δM∨(ξ)

(
δM (x)

)
= δM (x)(ξ) = ξ(x).

This establishes the equality: (δM )∨ ◦δM∨ = IdM∨ . The proof of the equality (δN )∨
t ◦δN∨t = IdN∨t

is similar. □

Observe that the duality functor .∨ (resp. .∨
t

) transform direct sums in direct products (resp.
direct products in direct sums). In particular, if M is a free A-module A(I), then M∨ may be
identified with AI (equipped with the product topology of the discrete topology on each factor

A) and the double dual M∨∨t

with A(I), so that the biduality morphism δM : M → M∨∨ is an
isomorphism of A-modules.

This immediately implies that δM is an isomorphism if M is a projective A-module.

1.2.2. The categories CPR and CTCR. In the remaining of this section, we denote by R a
Dedekind ring.

As in [Bos20b, Chapter 4], we will denote by CPR the category of countably generated, projec-
tive R-modules, and by CTCR the category of linearly compact Tate spaces over R with countable
basis – that is, the full subcategory of Modtop

R consisting of those topological R-modules M such
that the following equivalent conditions hold:

(i) the topology of M is Hausdorff and complete, and there exists a countable basis of neigh-
borhoods U of 0 inM consisting in R-submodules of N such that N/U is finitely generated
and projective;

(ii) there exists a countably generated projective R-module N – that is, an object of CPR –
and an isomorphism of topological R-modules between M and N∨ equipped as above with
the topology of simple convergence.

Equivalently, the objects of CTCR are the topological R-modules that are isomorphic to the
“prodiscrete” R-modules defined as the projective limit lim←−E• of a projective system:

E• : E0 ←− E1 ←− · · · ←− Ei ←− Ei+1 ←− · · ·
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of surjective morphisms of finitely generated projective R-modules.

Recall from [Bos20b, 4.3.2] that, restricted to CPR and CTCR, the duality functors .∨ intro-
duced above define an adjoint equivalence:

.∨ : CPR ⇆ CTCop
R : .∨

t

Actually, for any object M in CPR (resp. for any object N in CTCR), the biduality morphism δM
is an isomorphism

δM :M
∼−→M∨∨t

(resp. δN : N
∼−→ N∨t∨)

in CPR (resp. in CTCR).

From now on, for simplicity, as in [Bos20b], we shall denote by N∨, instead of N∨t

, the
topological dual of an object N in CTCR. Actually when R is neither a field nor a complete

discrete valuation ring, the R-module N∨ and its submodule N∨t

coincide; see [Bos20b, 4.2.3 and
Appendix B].

1.2.3. The biduality morphism δM : M → M∨∨ associated to a countably generated
R-module M . The following theorem will play a key role in this article by allowing us to handle
arbitrary countably generated R-modules by reducing to projective countably generated R-modules.

Theorem 1.2.2. Let M be a countably generated R-module. Then the topological R-module M∨

is an object of CTCR. The bidual R-module M∨∨ is an object of CPR and the canonical biduality
morphism

δM :M −→M∨∨

is surjective.

If P is a projective R-module, any morphism of R-modules M → P factors through δM .

In particular, the bidual module M∨∨ is the “largest projective quotient” of M .

Proof. Write M as an increasing union of finitely generated submodules Mi, i ≥ 0. Then, as
a topological R-module, the topological R-module M∨ may be identified with a limit of topological
R-modules

M∨ = lim
i
M∨
i ,

defined from the projective system

M∨
0

p0←−−M∨
1 ←− · · · ←−M∨

i
pi←−−M∨

i+1 ←− · · · ,
where pi is the transpose of the inclusion morphism Mi ↪→Mi+1.

Let Ni be the image of M∨ in M∨
i . The R-modules M∨

i and Ni are finitely generated and
torsion free, hence they are projective. The maps

pi|Ni+1
: Ni+1 −→ Ni

are surjective by construction, and therefore the topologicalR-module limiNi is an object ofCTCR –
see [Bos20b, 4.2.1]. Since the inclusions Ni ↪→M∨

i define an isomorphism of topological R-modules

lim
i
Ni

∼−→ lim
i
M∨
i ,

this shows that M∨ is an object of CTCR.

Since M∨ is an object of CTCR, its dual M
∨∨ = Homtop

R (M∨, R) is an object of CPR.

To prove that the biduality morphism δM is surjective, we consider its image T = δM (M). It
is a submodule of the countably generated projective R-module M∨∨, and therefore, by [Bos20b,
Proposition 4.1.1, (3)], T is countably generated and projective as well. The biduality morphism δM
factors as

δM = i ◦ p :M
p
−−−↠ T

i
↪−→M∨∨
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We are reduced to showing that i is an isomorphism in CPR. By duality, it is enough to show
that its transpose:

i∨ :M∨∨∨ −→ T∨

is an isomorphism in CTCR.

Lemma 1.2.1 shows that the composition:

(δM )∨ ◦ δM∨ : M∨ δM∨ // M∨∨∨ (δM )∨ // M∨

is the identity map. SinceM∨ is an object of CTCR, the map δM∨ is an isomorphism of topological
R-modules. Therefore (δM )∨ also is an isomorphism of topological R-modules.

Consider the factorization of (δM )∨ as

(δM )∨ = p∨ ◦ i∨ :M∨∨∨ i∨−→ T∨ p∨

↪−→M∨.

As p is onto, the morphism of topological R-modules p∨ is injective and strict; in other words,
p∨ induces an R-linear homeomorphism between T∨ and its image in M∨. Since (δM )∨ is an
isomorphism, this implies that p∨ is an isomorphism, hence that i∨ :M∨∨∨ → T∨ is an isomorphism.
This completes the proof of the surjectivity of δM .

Finally, let φ : M → P be a morphism from M to a projective R-module P . Consider the
commutative diagram:

M
φ //

δM
��

P

δP
��

M∨∨ φ∨∨
// P∨∨.

Since P is projective, the biduality morphism δP is an isomorphism, and therefore φ factors as

φ = δ−1
P ◦ φ

∨∨ ◦ δM . □

We note two consequences of independent interest of Theorem 1.2.2.

Corollary 1.2.3. Let M be a countably generated R-module. Then the transpose

(δM )∨ :M∨∨∨ −→M∨

of the biduality map δM :M →M∨∨ is an isomorphism.

Proof. Lemma 1.2.1 shows that (δM )∨ is surjective. By Theorem 1.2.2, it is injective. □

Corollary 1.2.4. A countably generated R-module M is projective if and only if, for any
nonzero m ∈M, there exists ξ ∈ HomR(M,R) such that ξ(m) ̸= 0.

Proof. The R-moduleM is projective if and only if the surjective morphism δM :M −→M∨∨

is an isomorphism; this holds precisely when it is injective. □

When R = Z, Corollary 1.2.4 above has been established by Ramspott and Stein [RS62].

1.2.4. Antiprojective R-modules and canonical dévissage. We shall say that an R-
module M is antiprojective when, for any projective R-module P , we have

HomR(M,P ) = 0,

or, equivalently, whenM∨ = HomR(M,R) = 0. For instance, any torsion R-module is antiprojective.
When the Dedekind ring R is not a field, then its filed of fractions K, and more generally any K-
vector space, is antiprojective when considered as an R-module.

Let M be a countably generated R-module. We may consider its submodule

Map := ker δM .
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According to Theorem 1.2.2, it fits into a short exact sequence

(1.2.1) 0 −→Map −→M
δM−−→M∨∨ −→ 0,

which splits, since M∨∨ is projective. As a consequence, we obtain a (non-canonical) isomorphism
of R-modules:

M
∼−→Map ⊕M∨∨.

Lemma 1.2.1 implies the equality

M∨
ap = 0.

In other words, M∨
ap is antiprojective. The short exact sequence (1.2.1) actually shows that Map is

the largest antiprojective submodule of M . In particular, it contains the torsion submodule of M .

The short exact sequence (1.2.1) associated to a countably generated R-module M will be
called the canonical dévissage of M . Observe that its construction is functorial, namely, to any two
countably generated R-modules M1 and M2 and to any morphism of R-modules

φ :M1 −→M2

is attached a commutative diagram of R-modules with admissible exact rows:

0 // M1,ap

φ|M1,ap

��

// M1

φ

��

δM1 // M∨∨
1

φ∨∨

��

// 0

0 // M2,ap
// M2

δM2 // M∨∨
2

// 0.

1.2.5. The sets coft(M), scoft(M), coh(M), and U(M∨).

Definition 1.2.5. For every R-module M, we denote by coft(M) (resp. by scoft(M)) the set of
R-submodules N of M such that the quotient R-module M/N is finitely generated (resp. is finitely
generated and torsion free), and we denote by coh(M) the set of finitely generated R-submodules
of M .

The acronym coft (resp. scoft) stands for “of co-finite type” (resp. “saturated of co-finite
type”), and coh for “coherent.”

1.2.5.1. The following properties of coft(M) and scoft(M) are easy consequences of their defini-
tion, and the details of their proof will be left to the reader.

Proposition 1.2.6. (1) For every R-module M, coft(M) and scoft(M) are stable under finite
intersection. In particular (coft(M),⊇) and (scoft(M),⊇) are directed sets, with smallest element
M . Moreover, for every N ∈ coft(M), the saturation of N in M — namely the R-submodule N sat

of M such that N ⊆ N sat and N sat/N = (M/N)tor — belongs to scoft(M).

(2) Every morphism of R-modules f :M1 →M2 induces order preserving maps:

f−1 : coft(M2) −→ coft(M1) and f−1 : scoft(M2) −→ scoft(M1).

(3) A R-submodule N of some R-module M belongs to scoft(M) if and only if there exists a
finite family (ξi)i∈F of elements of M∨ such that:

M =
⋂
i∈F

ker ξi.

Actually the proof of (1) and (2) uses only the noetherianity of the base ring R. Assertion (3)
follows from the fact that a torsion free finitely generated R-module is projective, and therefore a
R-submodule of some finitely generated free R-module.
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1.2.5.2. For any object N of CTCR, we shall denote the set of open saturated submodules of N
by U(N). For any U in U(N), the quotient N/U is finitely generated and projective; see [Bos20b,
4.2.1].

For any object M in CPR and any C ∈ coh(M), the submodule of M∨:

C⊥ := {ξ ∈M∨ | ξ|C = 0}

is an element of U(M∨). Moreover the saturation Csat of C in M is also an element of coh(M), and
satisfies:

Csat⊥ = C⊥.

If cohsat(M) denotes the set of saturated and finitely generated R-submodules ofM, one defines
in this way an order reversing bijection:

.⊥ : cohsat(M)
∼−→ U(M∨), C 7−→ C⊥.

The inverse bijection maps U ∈ U(M∨) to

U⊥ := {m ∈M, δM (m)|U = 0} =
⋂
ξ∈U

ker ξ.

Moreover, for any C ∈ cohsat(M) with image C⊥ in U(M∨), the restriction map M∨ → C∨,
namely the transpose of the inclusion morphism C ↪→M , induces an isomorphism of finitely gener-
ated projective R-modules:

M∨/C⊥ ∼−→ C∨;

see [Bos20b, Corollary 4.4.9].

1.2.5.3. The construction of the sets scoft(M) and coh(M) associated to a countably generated
R-moduleM and the duality properties in 1.2.5.2 above are compatible with the canonical dévissage,
as demonstrated by the following proposition, which we leave as an exercise for the reader.

Proposition 1.2.7. Let M be a countably generated R-module.

Every N ∈ scoft(M) contains Map and the map δM induces a bijection:

δ−1
M : scoft(M∨∨)

∼−→ scoft(M).

The map:

(1.2.2) coh(M) −→ coh(M∨∨), C 7−→ δM (C)

is onto, and the map:

(1.2.3) coh(M∨∨) −→ U(M∨∨∨) ≃ U(M∨), C̃ 7−→ C̃⊥ :=
{
ξ ∈M∨∨∨ | ξ|C̃ = 0

}
≃ δ∨M (C̃⊥)

restricts to a bijection:

(1.2.4) cohsat(M∨∨)
∼−→ U(M∨).

The surjective map:

coh(M) −→ U(M∨)

defined as the composition of (1.2.2) and (1.2.3) maps C ∈ coh(M) to

C⊥ :=
{
ξ ∈M∨ | ξ|C = 0

}
.

Moreover, for any U ∈ U(M∨), the submodule of M :

U⊥ :=
⋂
ξ∈U

ker ξ
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contains Map, the quotient U⊥/Map is a finitely generated projective R-module, and the transposes
of the inclusion morphism U⊥ → M and of the quotient morphism U⊥ → U⊥/Map define isomor-
phisms:

M∨/U
∼−→ (U⊥)∨

∼−→ (U⊥/Map)
∨.

1.3. Modules over Dedekind Rings and Finite Morphisms

Let L be a finite field extension of the field of fractions K of R, assume that the integral closure
S of R in K is a finitely generated R-module,2. and denote by X (resp. Y ) the spectrum of the
Dedekind ring R (resp. S), and by

π : Y = SpecS −→ X = SpecR

the finite flat morphism of schemes defined by the inclusion of rings R ↪→ S.

Any S-moduleM defines a quasi-coherent sheaf over Y that we will still denote byM . Its direct
image π∗M is (the quasi-coherent sheaf over X defined by) M considered as an R-module by means
of the inclusion R ↪→ S.

Similarly, if N is an object of of Modtop
S , we define π∗N as the object of Modtop

R defined by N
seen as a R-module, equipped with its given topology.

1.3.1. Permanence properties of the functor π∗ : ModS →ModR.

Lemma 1.3.1. Let M be an S-module. Then M is torsion-free if and only if the R-module π∗M
is torsion-free. An S-submodule N of M is saturated in M if and only if the R-module π∗N is
saturated in π∗M .

Proof. The norm map NL/K sends a (nonzero) element a of S to a (nonzero) element NL/K(a)
of R in the ideal aS. As a consequence, if the S-moduleM is not torsion-free, we may find a nonzero
m ∈M and a nonzero a ∈ S such that am = 0. ThenNL/K(a)m = 0, so that π∗M is not torsion-free.
The converse is obvious, and a similar argument proves the second equivalence. □

Proposition 1.3.2. Let M be an S-module. The following two conditions are equivalent:

(i) M is an object of CPS;
(ii) π∗M is an object of CPR.

Proof. The implication (i) ⇒ (ii) follows from the fact that, as an R-module, the ring S is
finitely generated and torsion-free, hence projective.

To prove the converse implication (ii) ⇒ (i), we shall use the fact that a module M over a
Dedekind ring is countably generated and projective if and only if it admits an exhaustive filtration

M0 ⊆M1 ⊆ . . . ⊆Mi ⊆Mi+1 ⊆ . . .
by finitely generated, torsion-free submodulesMi that are saturated inM ; see for instance [Bos20b,
Proposition 4.1.1].

When (ii) is satisfied, we may consider such a filtration (Mi)i≥0 ofM considered as an R-module.
For any i ≥ 0, we may consider the S-submoduleM ′

i ofM generated byMi, that is, M
′
i = SMi, and

the saturation M ′′
i of M ′

i considered as an R-submodule of M . Clearly, M ′
i is finitely generated as

an S-module, hence as an R-module.This implies that its saturation M ′′
i in the projective R-module

M is a finitely generated R-module. The R-submodule M ′′
i is easily seen to be an S-submodule of

M . As such, it is saturated in M by Lemma 1.3.1. Finally,

M ′′
0 ⊆M ′′

1 ⊆ . . . ⊆M ′′
i ⊆M ′′

i+1 ⊆ . . .

2This holds when for instance L is a separable extension of K, or when R is a finitely generated algebra over a

field.
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is an exhaustive filtration of S-module M by saturated, finitely generated and torsion-free S-
submodules. This proves that M is an object of CPS . □

1.3.2. Relative duality and biduality. To any S-module M , we may associate the dual
topological S-module

M∨ := HomS(M,S),

which is an object in CTCS , and the bidual module

M∨∨ := Homcont
S (M∨, S),

which is an object in CPS .

We may also consider the R-module π∗M and its dual and bidual objects in CTCR and CPR

respectively:
(π∗M)∨ := HomR(M,R)

and
(π∗M)∨∨ := Homcont

R (M∨, R).

1.3.2.1. To describe the compatibility between these constructions, we need to introduce some
– very classical – definitions.

Observe that for any topological S-module N , and any finitely generated projective S-module
E, the tensor product N⊗SE has a natural topology as an S-module: it is defined by by identifying
E with a direct summand of some free S-module of finite rank S⊕n, and N ⊗S E with a direct
summand of N⊕n.

Moreover, the natural morphisms of S-modules3

(1.3.1) N∨ ⊗S E = Homcont
S (N,S)⊗S E −→ Homcont

S (N,E)

and

(1.3.2) N∨ ⊗S E∨ = Homcont
S (N,S)⊗S E∨ −→ Homcont

S (N ⊗S E,S) = (N ⊗S E)∨

are isomorphisms. Indeed, this is clear when E is a free S-module of finite rank; by considering
direct summands of such free modules, the general case follows.

Recall that the morphism π admits a relative dualizing sheaf ωY/X , namely, the invertible sheaf

over Y attached to the invertible S-module4

ωS/R := HomR(S,R).

Moreover, for any S-module M , we may define a morphism of “relative duality”:

IM : π∗(M
∨ ⊗S ωS/R) −→ (π∗M)∨,

by mapping a simple tensor ξ ⊗ λ in

M∨ ⊗S ωS/R = HomS(M,S)⊗S HomR(S,R)

to the composition λ ◦ ξ in HomR(M,R).

Similarly, for any topological S-module N , we may consider the morphism of R-modules

IN : π∗(N
∨ ⊗S ωS/R) −→ (π∗N)∨,

which maps an element ξ⊗λ in Homcont
S (N,S)⊗SHom(S,R) to the element λ◦ ξ in Homcont

R (N,R).
Using the isomorphism (1.3.1), which takes the form

N∨ ⊗S ωS/R ≃ Homcont
S (N,ωS/R),

3For simplicity, we denote by N∨ instead of N∨t
the topological dual in ModR (resp. in ModS) of an object

N of Modtop
R (resp. of Modtop

S ).
4The structure of S-module on the additive group HomR(S,R) is defined by setting sξ = ξ(s.) for any s ∈ S and

any ξ ∈ HomR(S,R).
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we see that, for any α ∈ Homcont
S (N,ωS/R), we have:

IN (α) = Tr ◦ α ∈ HomR(N,R) = (π∗N)∨,

where Tr denotes the R-linear map:

Tr : ωS/R −→ R

defined by Tr(λ) = λ(1) for any λ ∈ ωS/R = HomS(S,R).

Since the S-module ωS/R is invertible, the isomorphism (1.3.2) with E = ωS/R defines an
isomorphism of S-modules

LN : N∨ ∼−→ (N ⊗S ωS/R)∨ ⊗S ωS/R
for every topological S-module N .

1.3.2.2. The following lemma is a straightforward consequence of the definitions of the relative
duality morphisms. We leave its proof to the reader.

Lemma 1.3.3. For any S-module M , the following diagram of R-modules commutes:

π∗M
δπ∗M //

δM

��

(π∗M)∨∨

(IM )∨

��
π∗(M

∨∨)
LM∨

∼
// π∗((M∨ ⊗ ωS/R)∨ ⊗S ωS/R

IM∨⊗SωS/R // (π∗(M∨ ⊗S ωS/R))∨.

(1.3.3)

Proposition 1.3.4. The relative duality morphisms IM and IN defined above satisfy the fol-
lowing properties:

(i) For every S-module M , the map IM is an isomorphism of topological R-modules.
(ii) For every topological S-module N in CTCS, the map IN is an isomorphism of R-modules.

Proof. To prove (i), note that, clearly, the morphism IM is an isomorphism when M is a
torsion S-module; in this case, its range and its source are both zero. It is also an isomorphism
when M is a free S-module of finite rank, and therefore when M is a direct summand of a free S-
module of finite rank, that is, when M is a projective S-module of finite type; in this case, the range
and the source of IM are discrete projective R-modules. This implies that IM is an isomorphism of
topological R-modules when M is finitely generated. This proves (i), by considering an arbitrary
S-module M as the colimit of its finitely generated submodules.

Let us prove (ii). When M is an object of CPS , the R-module π∗M is an object of CPR, and
both δM and δπ∗M are isomorphisms. Moreover, IM , and therefore its transpose (IM )∨, are isomor-
phisms by (i). The commutative diagram (1.3.3) then shows that IM∨⊗SωS/R

is an isomorphism.

Moreover, as the S-module ωS/R is invertible, any object N of CTCS is isomorphic to M∨⊗S ωS/R
for some object M of CPS . □

1.3.2.3. From Lemma 1.3.3 and Proposition 1.3.4, we deduce the following compatibility between
canonical dévissage and direct images:

Corollary 1.3.5. For every S-module M , the R-submodule (π∗M)ap of π∗M coincides with
π∗(Map), and the R-modules (π∗M)∨∨ and π∗(M

∨∨) are canonically isomorphic.

Proof. Proposition 1.3.4 shows that, in the diagram (1.3.3), the morphisms IM∨⊗SωS/R
and

(IM )∨ are isomorphisms. Therefore, the kernels (π∗M)ap and π∗(Map) of δπ∗M and δM coincide,
and (π∗M)∨∨ and π∗(M

∨∨) – which may be identified with the coimages of these morphisms – are
canonically isomorphic. □

We may finally establish the following compatibility between direct images and (saturated)
submodules of co-finite type:
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Corollary 1.3.6. For every S-module M , a S-submodule N of M belongs to coft(M) (resp.
to scoft(M))) if and only if π∗N — that is, N seen as a R-submodule of M — belongs to coft(π∗M)
(resp. to scoft(π∗M)). Moreover for every N ′ ∈ scoft(π∗M), there exists N in scoft(M) such that
π∗N

′ ⊆ N ′.

In other words the image of the “inclusion map”:

π∗ : scoft(M) −→ scoft(π∗M)

is cofinal in the directed set (scoft(π∗M),⊇).

Proof. Observe that a S-module M is finitely generated (resp. is torsion free) if and only if
the R-module π∗M is. Applied to M/N, this establishes the second assertion.

Consider an element N ′ of scoft(π∗M). According to Proposition 1.2.6 (3) applied to π∗M,
there exists a finite family (ξ′i)i∈F of elements of (π∗M)∨ such that:

N ′ := ∩i∈I ker ξ′i.
Proposition 1.3.4 (i) shows that, for every i ∈ F, there exists a finite family (ξj , λj)j∈Fi

of elements
of M∨ × ωS/R such that:

ξ′i =
∑
j∈Fi

λj ◦ ξj .

Then by Proposition 1.2.6 (3) again, the S-submodule

N :=
⋂
i∈F

⋂
j∈Fi

ker ξj

of M belongs to scoft(M). It is clearly contained in N ′. □

1.4. The Largest Projective Quotient of a Countably Generated Z-module:
Topological Interpretation

In this section, we present a topological interpretation of the canonical dévissage (1.2.1) when
the base ring is Z, or more generally the ring of integers OK of a number field K.

1.4.1. A theorem of Brown, Higgins, and Morris. Any real vector space V may be
endowed with a canonical topology of Hausdorff topological vector space, by considering V as the
colimit of its finite-dimensional vector subspaces endowed with their (unique) topology of Hausdorff
vector spaces. We will call this topology the inductive topology of V . By definition, a subset X of
V is open (resp. closed) for the inductive topology if and only if the intersection X ∩ F of X with
any finite-dimensional vector subspace F of V is open (resp. closed) in F .

The inductive topology is the finest topology for which V is a topological vector space. In other
words, any morphism from V to a real topological vector space is continuous.

When the real vector space V admits a countable basis (vi)i∈I , the inductive topology on V
may be described as the vector space topology such that, when ε = (εi)i∈I runs over (R∗

+)
I , the

“rectangles”

R(ε) :=

{∑
i∈I

xivi | (xi)i∈I ∈ R(I) ∩
∏
i∈I

]− εi, εi[

}
form a basis of (open) neighborhoods of 0 in V ; see for instance [Bou81, Section III.1.4, Lemme
1, p. III.6] and [BHM75, Proposition 1]. In particular, V equipped with the inductive topology
is a locally convex topological vector space, and may be identified with the inductive limit of its
finite-dimensional vector subspaces in the category of locally convex topological real vector spaces.

In [BHM75], Brown, Higgins and Morris have established the following infinite dimensional
generalization of the classical description of closed subgroups of finite dimension real vector spaces.
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Theorem 1.4.1 ([BHM75, Theorem 1]). Let V be a countably generated real vector space. For
any additive subgroup G of V that is closed in the inductive topology, there exists a basis (vi)i∈I of
the real vector space V and two disjoint subsets K and L of I such that the following equality holds:

G =
⊕
k∈K

Rvk ⊕
⊕
l∈L

Zvl.

In particular, the connected component G0 of 0 in G is the largest R-vector subspace of V contained
in G, it is open and closed in G, and the quotient G/G0 is a countably generated free Z-module.

1.4.2. Application to countably generated Z-modules. Let us consider a countably gen-
erated Z-module M . To M , we may attach the countably generated real vector space

MR :=M ⊗Z R,
and the map

ι :M −→MR, m 7→ m⊗ 1.

This map defines an isomorphism from M/Mtor onto its image M/tor = ι(M). Lastly, we may

consider the closure M/tor of M/tor in MR endowed with its inductive topology.

Applied to the subgroup M/tor of MR, Theorem 1.4.1 admits the following consequence.

Proposition 1.4.2. With the previous notation, the following equality holds:

(1.4.1) Map = ι−1(M/tor
0
).

Moreover the morphism ι : M → M/tor defines an isomorphism of countably generated free Z-
modules:

M/Map
∼−→M/tor/M/tor

0
.

Proposition 1.4.2 may be summarized by the following commutative diagram with exact rows:

0 // Map
//

ι|Map

��

M
δM //

ι

��

M∨∨ //

≀
��

0

0 // M/tor
0 // M/tor

// M/tor/M/tor
0 // 0.

Proof of Proposition 1.4.2. Consider the composition

M
ι // // M/tor

� � // M/tor
// // M/tor/M/tor

0
.

Since its range is a free Z-module, it vanishes on Map. This proves the inclusion:

Map ⊆ ι−1(M/tor
0
).

Any ξ in M∨ = HomZ(M,Z) defines an R-linear form ξR in HomR(MR,R) which satisfies

(1.4.2) ξR ◦ ι = ξ.

We have:
ξR(M/tor) = ξ(M) ⊂ Z.

Therefore, by continuity of ξR for the inductive topology, we have:

ξR(M/tor) ⊆ Z.

This implies that ξR vanishes onM0
/tor, which is an R-vector space. According to (1.4.2), this implies

that ξ vanishes on ι−1(M/tor
0
) and establishes the inclusion:

ι−1(M/tor
0
) ⊆Map.
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This completes the proof of (1.4.1) and shows that ι defines an injective map

(1.4.3) M/Map↪−→M/tor/M/tor
0
, [m] 7→ [ι(m)].

As M/tor
0
is open in M/tor, the quotient topology on M/tor/M/tor

0
is discrete. Since ι has dense

image in M/tor, the map (1.4.3) has dense image as well. This shows that it is surjective. □

Corollary 1.4.3. Let M be a torsion free countably generated Z-module. If its image ι(M) in
MR equipped with the inductive topology is discrete, then M is projective, hence free.

1.4.3. Application to countably generated OK-modules. Combined with the compati-
bility of the formation of the largest projective quotient with finite morphisms established in Section
1.3, Proposition 1.4.2 allows us to give a topological description of the canonical dévissage of a
countably generated R-module when the base ring R is the ring of integers of an arbitrary number
field.

Let K be a number field, let OK be its ring of integers, and let X denote the arithmetic curve
SpecOK . The set X(C) of complex points of the Z-scheme X may be identified with the set of field
embeddings of K into C. Consequently, we have a canonical isomorphism of C-algebras:
(1.4.4) KC := K ⊗Q C ∼−→ CX(C), a⊗ λ 7→ (x(a)λ)x∈X(C).

The C-algebra KC is equipped with a distinguished C-antilinear automorphism, namely the
“complex conjugation” which maps a ⊗ λ ∈ K ⊗Q C to a ⊗ λ. Under the isomorphism (1.4.4), it
becomes the C-antilinear involution

CX(C) ∼−→ CX(C), (ax)x∈X(C) 7→ (ax)x∈X(C).

Its set of fixed points is the R-subalgebra of KC:

KR := K ⊗Q R ≃ Rr1 × Cr2 ,
where, as usual, r1 (resp. r2) denotes the number of real (resp. complex) places of K.

Observe that the fields K and R are canonically embedded in KR by the morphisms (a 7→ a⊗1Q)
and (λ 7→ 1K ⊗λ) respectively, and that the subring OK of KR generates KR as a real vector space.
Moreover, for any OK-module, we have canonical isomorphisms:

MR :=M ⊗Z R ∼−→M ⊗OK
(OK ⊗Z R) =M ⊗OK

KR.

In particular MR is naturally endowed with the structure of a KR-vector space.

Together with Proposition 1.3.4, Corollary 1.3.4 and Proposition 1.4.2, these observations easily
imply the following amplification of Proposition 1.4.2, which we spell out for future reference.

Theorem 1.4.4. Let M be a countably generated OK-module, let

ι :M −→MR, m 7−→ m⊗ 1R

be the canonical morphism from M to MR. Identify M/tor with the image of ι.

The closure M/tor of M/tor in MR endowed with its inductive topology is an OK-submodule of

MR, and its connected component M0
/tor is a KR-submodule of MR. Moreover, the map ι defines a

commutative diagram of OK-modules with exact rows:

0 // Map
//

ι|Map

��

M
δM //

ι

��

M∨∨ //

≀
��

0

0 // M/tor
0 // M/tor

// M/tor/M/tor
0 // 0.

The arguments leading to Theorem 1.4.4 may actually be used to give an alternate proof of
Theorem 1.2.2 for countably generated modules over OK .
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1.5. Torsion-free Modules over Valued Rings and Non-archimedean Seminorms

1.5.1. Torsion-free modules over discrete valuation rings and nonarchimedean semi-
norms. In this subsection and the next one, we assume that R is a discrete valuation ring with
maximal ideal m and fraction field K.

We shall denote by
v : K −→ Z ∪ {+∞}

the associated valuation on K, by ϖ a uniformizer of R – namely, an element of v−1(1) = m \m2 –
by q a real number with q > 1, and by |.| the absolute value on K defined by setting

|x| = q−v(x) ∈ R+

for any x ∈ K. The value set of K is defined as

|K| = qZ ∪ {0}.

1.5.1.1. Let V be a K-vector space. To V , we may associate the setM(V ) of R-submodules M
of V that satisfy the following equivalent conditions:

(i) M generates the K-vector space V ;
(ii) V =

⋃
n≥0ϖ

−nM ;

(iii) the K-linear map
M ⊗R K −→ V, m⊗ λ 7−→ λm

is an isomorphism.

Definition 1.5.1. A ultrametric |.|-seminorm, or, for short, a seminorm on V is a map

||.|| : V −→ R+

such that the following conditions hold:

• NA: for any (v, w) ∈ V 2, ||v + w|| ≤ max(||v||, ||w||);
• H: for any (λ, v) ∈ K × V , ||λv|| = |λ| ||v||.

We will denote by N (V ) the set of ultrametric seminorms

||.|| : V −→ |K|
with values in |K| on the K-vector space V .

Proposition 1.5.2. The map

µV : N (V ) −→M(V ), ||.|| 7−→M||.|| :=
{
v ∈ V | ||v|| ≤ 1

}
is a bijection. Its inverse sends an R-submodule M inM(V ) to the seminorm ||.||M defined by

||v||M = inf
{
|λ|, λ ∈ K, v ∈ λM

}
.

The proof follows easily from the definitions ofM(V ) and N (V ), and is left to the reader.

Observe that, for any v ∈ V , we have ||v||M = q−s, where

s = sup
{
k ∈ Z, v ∈ ϖkM} ∈ Z ∪ {+∞

}
.

In particular,
||v||M = 0⇐⇒ Kv ⊆M.

When ||v||M ̸= 0, there exists a unique integer k such that v belongs to ϖkM \ϖk+1M , and

||v||M = |ϖk| = q−k.

For any two submodules M1 and M2 inM(V ), we have:

M1 ⊆M2 ⇐⇒ ||.||M2
≤ ||.||M1

.
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Moreover, M1 ∩M2 and M1 +M2 also belong toM(V ),. The seminorm

||.||M1∩M2 = max
(
||.||M1 , ||.||M2

)
(resp. ||.||M1+M2) is the smallest (resp. largest) seminorm ||.|| on V such that ||.||M1 ≤ ||.|| and
||.||M2 ≤ ||.|| (resp. ||.||M1 ≥ ||.|| and ||.||M2 ≥ ||.||).

The bijection between N (V ) andM(V ) described in Proposition 1.5.2 is easily seen to compat-
ible with restriction to and quotient by vector spaces, in the following sense.

Consider a K-vector subspace V ′ of V .

If M is an element of M(V ) and ∥.∥ := µV (M) denotes the associated seminorm in N (V ),
then M ∩ V ′ is an element ofM(V ′) and its image µV ′(M ∩ V ′) inM(V ′) is the seminorm ∥.∥|V ′

restriction of ∥.∥ to V ′.

Moreover the image p(M) of M by the quotient K-linear map:

p : V −→ V/V ′

belongs toM(V/V ′), and the associated seminorm µV/V ′(p(M)) in N (V/V ′) is the quotient semi-
norm ∥.∥∼ on V/V ′ defined by:

∥w∥∼ := inf
v∈p−1(w)

∥v∥.

1.5.1.2. Every seminorm ||.|| on V endows V with the structure of a topological K-vector space.
If V ′ is another K-vector space endowed with a seminorm ||.||′, and if φ : V → V ′ is a K-linear
map, then φ is continuous, when V and V ′ are equipped with the topology defined by ||.|| and ||.||′
respectively, if and only if the operator norm5 of φ, defined as

|||φ||| = sup
v∈V,||v||≤1

||φ(v)||′ ∈ R+ ∪ {+∞}

is finite.

Now assume that ||.|| and ||.||′ both take value in |K|, and let

M = µV (||.||), M ′ = µV ′(||.||′).
Observe that there is a canonical embedding

HomR(M,M ′)↪−→HomK(V, V ′)

that maps ψ ∈ HomR(M,M ′) to

ψ ⊗R IdK : V ≃M ⊗R K −→M ′ ⊗R K = V ′.

The following proposition is a straightforward consequence of the definitions.

Proposition 1.5.3. With the notation above, the R-submodule HomR(M,M ′) of HomK(V, V ′)
coincides with {

φ ∈ HomK(V, V ′)| |||φ||| ≤ 1
}
.

Moreover the K-vector subspace of HomK(V, V ′) generated by HomR(M,M ′), i.e., the K-vector
space

HomR(M,M ′)⊗R K =
⋃
n≥0

ϖ−nHomR(M,M ′),

is the space
Homcont

K (V, V ′) =
{
φ ∈ HomK(V, V ′)| |||φ||| < +∞

}
of continuous K-linear maps φ : V → V ′.

Finally observe that a R-submodule of K is either K =
⋃
k≥0ϖ

−kR or of the form αR for some
α ∈ K, and therefore is countably generated. This easily implies:

5Since |||φ||| may take the value +∞, the terminology operator quasinorm would be more appropriate.
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Proposition 1.5.4. A torsion-free R module M is countably generated if and only if the K-
vector space V :=M ⊗R K admits a countable basis.

This proposition is actually a special case of Corollary 1.1.7.

1.5.2. Compatibility with completion. Let us keep the notation of the previous subsection,

and let R̂ be the m-adic completion of R. It is a discrete valuation ring with maximal ideal m̂ = mR̂.

Its fraction field may be identified with the completion K̂ of K with respect to the absolute value |.|.
We shall still denote by v the m̂-adic valuation on K̂, and by |.| = q−v the absolute value on K̂.

Note that the absolute value |.| has the same value set qZ ∪ {0} on K and K̂.

1.5.2.1. Extending scalars from K to K̂, the K-vector space V defines a K̂-vector space:

VK̂ := V ⊗K K̂,

in which V is naturally embedded via the map:

V ↪−→VK̂ , v 7−→ v ⊗ 1.

Consequently we may form the following commutative diagram:

N (VK̂)
.|V //

∼ µV
K̂

��

N (V )

∼

µV

��
M(VK̂)

.∩V //M(V ),

(1.5.1)

where the first horizontal map sends a seminorm ∥.∥ on VK̂ to its restriction ||.|||V to V , and the

second one maps a R̂-submodule M̂ of VK̂ to M̂ ∩ V.
LetM be an element ofM(V ). Making use of flatness of R̂ over R and the canonical isomorphism

K ⊗R R̂
∼−→ K̂, we get an injective map:

MR̂ :=M ⊗R R̂↪−→V ⊗R R̂ ≃ V ⊗K K̂ = VK̂ .

Moreover it is clear that the R̂-submodule MR̂ of VK̂ defined above generates the K̂-vector space
VK̂ . As a consequence, the construction above defines a map:

.⊗R R̂ :M(V ) −→M(VK̂), M 7−→MR̂.

Proposition 1.5.5. The maps .|V and . ∩ V in (1.5.1) are bijective. Moreover, the maps . ∩ V
and .⊗R R̂ are inverse to one another.

Proof. Since (K̂, |.|) is complete, any separated topological vector space over (K̂, |.|) with

finite dimension n is isomorphic to K̂n; see for instance [Bou81, Section I.2.3, Théorème 1, p. I.14].

In other words, any finite-dimensional K̂-vector space E admits a unique structure of separated

topological vector space over (K̂, |.|). Moreover any |.|-seminorm on E equipped with this canonical
topology is continuous.

Let F be a finite-dimensional K-subvector space of V . Then F is dense in FK̂ endowed with
its topology of separated topological vector space. As a consequence, for any ||.|| in N (VK̂), the
restriction ||.||F

K̂
of ||.|| to FK̂ is uniquely determined by its restriction ||.|||F to F . As a consequence,

||.|| is determined by its restriction to V . This proves that the map .|V in (1.5.1) is injective.

To complete the proof of the proposition, we are left to showing that, for any M inM(V ), the
following equality holds:

(1.5.2) MR̂ ∩ V =M.
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Indeed, since |V is injective, (1.5.1) shows that . ∩ V is injective as well. If (1.5.2) holds, then in
particular .∩V is surjective, so that it is a bijection. The remaining statements then follow directly
from (1.5.1).

To prove (1.5.2), observe that the diagram

R �
� //� _

��

K� _

��
R̂
� � // K̂

(1.5.3)

is both a cartesian and a cocartesian diagram of injective morphisms of R-modules. Since any
torsion-free R-module is flat, the diagram

M //

��

V

��
MR̂

// VK̂

deduced from (1.5.3) by applying the functor .⊗RM is cartesian and cocartesian as well, with all the
maps in the diagram being injective. In particular, M is the intersection of MR̂ and V in VK̂ . □

1.5.2.2. The fact that the maps .∩V and .⊗RR̂ are inverse to one another is essentially equivalent
to the following classical descent results, in the special case of torsion-free R-modules:

Proposition 1.5.6 ([BLR90, Section 6.2, Proposition D.4 (a)]). The functor which associates
to each R-module M the triple (MK ,MR̂, τ) where MK and MR̂ are defined by extension of scalar:

MK :=M ⊗R K, MR̂ :=M ⊗R R̂

and where

τ :MK ⊗K K̂
∼−→MR̂ ⊗R̂ K̂

is the canonical isomorphism, is an equivalence of categories from the category of R-modules to the

category of pairs of K- and R̂-modules endowed with some glueing datum over K̂.

For later reference, it is convenient to observe that the results in this subsection and in the
previous one establish an equivalence between the category of torsion-free R-modules and the category
whose objects are the pairs (V, ∥.∥) consisting in a K-vector space V and an ultrametric |.|-seminorm

on the K̂-vector space VK̂ := V ⊗K K̂:

∥.∥ : VK̂ −→ |K|,

and whose morphisms are K-linear maps that, after base change to K̂, have operator norm ≤ 1.

In this equivalence, to the pair (V, ∥.∥) is associated the R-module:

(1.5.4) M :=
{
v ∈ V | ∥v∥ ≤ 1

}
.

Moreover M is a countably generated R-module if and only if the K vector space V has a countable
basis.

We leave it as an exercise to the reader to establish the following additional property of this
equivalence of category:

Proposition 1.5.7. Assume that the K-vector space V has a countable basis. Then the count-
ably generated R-module M defined by (1.5.4) is a free if and only if ∥.∥ is a norm on VK̂ , namely
if and only if: {

v ∈ VK̂ | ∥v∥ = 0
}
= {0}.
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Observe that, when K ̸= K̂, the fact that the restriction ∥.∥|V is a norm on V does not imply

in general that ∥.∥ is a norm on VK̂ .6

1.5.3. The case of a non-discrete valuation of rank 1. In this subsection, we discuss how
the correspondence described in Proposition 1.5.2 may be extended to the case of a non-discrete
valuation. This framework is arguably a better “model” for Archimedean places of number fields
than the one of discrete valuations previously considered.

Let K be a field endowed with a non-archimedean absolute value:

|.| : K −→ R+.

Let R be the valuation ring of (K, |.|): it is the subring of K consisting of those x ∈ K with |x| ≤ 1.
Let I be the maximal ideal of R, that is,

I = {x ∈ K| |x| < 1}.
We assume that the value group |K∗| is a dense subgroup of R∗

+. This is equivalent to R not being
a discrete valuation ring.

Let V be a K-vector space. As in 1.5.1, let M(V ) be the set of R-submodules M of V such
that M generates the K-vector space V . Let N (V ) be the set of non-archimedean |.|-seminorms

||.|| : V −→ R+

on the K-vector space V . We do not require those elements of N (V ) to take values in |K|.
As in 1.5.1 again, there are natural maps

µV : N (V ) −→M(V ), ||.|| 7−→M||.|| :=
{
v ∈ V | ||v|| ≤ 1

}
and

νV :M(V ) −→ N (V ), M 7→ ||.||M
where the seminorm ||.||M is defined by

||v||M = inf
{
|λ|, λ ∈ K, v ∈ λM

}
.

Proposition 1.5.8. The composition

νV ◦ µV : N (V ) −→ N (V )

is IdN (V ).

Proof. Let ||.|| be an element of N (V ), and let M be the R-submodule of V :

M = µV (||.||).
Then by definition:

M =
{
v ∈ V | ||v|| ≤ 1

}
so that, for any nonzero λ ∈ K, we have:

λM =
{
v ∈ V | ||v|| ≤ λ

}
.

Let ||.||′ be the archimedean seminorm:

||.||′ = νV (M) = (νV ◦ µV )(||.||).
Then by definition, for any v ∈ V , we have:

||v||′ = inf
{
|λ|, λ ∈ K, v ∈ λM

}
= inf

{
|λ|, ||v|| ≤ λ

}
= ||v||,

the last equality holding because |K| is dense in R+. □

6Consider for instance V := K2 and the seminorm ∥.∥ on V
K̂

= K̂2 defined by ∥(x, y)∥ := |y − αx| for some

α ∈ K̂ \K.
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In general, it is not true that µV ◦ νV = IdM(V ). It follows from the definitions that if M is an
element ofM(V ), we have:

(1.5.5) (µV ◦ νV )(M) =
{
v ∈ V | ∀λ ∈ K, |λ| > 1 =⇒ v ∈ λM

}
.

In particular, we have an inclusion:

M ⊂ (µV ◦ νV )(M).

Define a set Ma(V ) as the quotient of M(V ) by the equivalence relation ∼ defined by the
following: if M and N are elements ofM(V ), M ∼ N if and only if

I(M +N)/(M ∩N) = 0,

i.e.

I(M +N) ⊂M ∩N.

The set Ma(V ) may be understood more conceptually as follows: since |.| is not discrete, the
maximal ideal I of R satisfies I2 = I. It is clearly flat over R. As a consequence, we may consider
the category of almost R-modules as in [GR03]. ThenMa(V ) is the set of isomorphism classes of
almost R-submodules of V that generate V as a K-vector space.

Let p :M(V )→Ma(V ) be the quotient map, and let

µaV : N (V ) −→Ma(V )

be the composition µaV = p ◦ µV .

Lemma 1.5.9. The map

νV :M(V ) −→ N (V )

factors through the quotient map

p :M(V ) −→Ma(V ).

Proof. Let M and N be two elements ofM(V ) with M ∼ N . We need to show the equality

νV (M) = νV (N).

Note that M ∼M ∩N ∼M +N . In particular, we may assume that there is an inclusion M ⊂ N .
Since M ∼ N , we have IN ⊂M . Write ||.||M = νV (M), ||.||N = νV (N).

Let v be an element of V . For any element λ of K, if v lies in λM , then v lies in λN . In
particular, we have the inequality:

||v||M = inf
{
|λ|, λ ∈ K, v ∈ λM

}
≤ inf

{
|λ|, λ ∈ K, v ∈ λN

}
= ||v||N .

To prove the converse inequality, choose ε > 0. Let λ be an element of K with

|λ| ≤ ||v||N + ε

and v ∈ λN . Let µ be an element of I. Since µN ⊂ N , we have:

µv ∈ λµN ⊂ λM,

so that:

|µ| ||v||M = ||µv||M ≤ |λ| ≤ ε+ ||v||N .
Since |µ| may be chosen as close to 1 as needed, this proves:

||v||M ≤ ||v||N .

□
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Using Lemma 1.5.9, let
νaV :Ma(V ) −→ N (V )

be the unique map through which νV factors.

The following statement is the variant of Proposition 1.5.2 that holds in the non-discrete case.

Proposition 1.5.10. The maps

µaV : N (V ) −→Ma(V )

and
νaV :Ma(V ) −→ N (V )

defined above are bijections. They are the inverse of one another.

Proof. By Proposition 1.5.8, we have νV ◦ µV = IdN (V ). This readily implies the equality:

νaV ◦ µaV = IdN (V ).

We prove the equality:
µaV ◦ νaV = IdMa(V ).

This amounts to proving that if M is an element ofM(V ), then:

(µV ◦ νV )(M) ∼M.

Let N = (µV ◦ νV )(M). Recall from (1.5.5) that we have:

N =
{
v ∈ V | ∀λ ∈ K, |λ| > 1 =⇒ v ∈ λM

}
.

We have M ⊂ N . Let µ be an element of I, and let v be an element of N . If µ = 0, then µv ∈M . If
µ ̸= 0, then |µ−1| > 1, so that v belongs to µ−1M and µv belongs to M . This proves that IN ⊂M ,
and finally that M ∼ N . □

1.6. Localization and Ultrametric Seminorms

In this section, we consider a Dedekind ring R that is not a field, the associated affine scheme:

X := SpecR,

and a nonempty open subscheme X̊ of X. This subscheme is the complement:

X̊ = X \ Σ

of a finite set Σ of closed points of X, and is actually affine, defined by a Dedekind ring R̊ := OX(X̊)
which satisfies:

R ⊆ R̊ ⊆ K,
where K denotes the faction field of R.

We want to discuss the propertis of the base change7 of modules from R to R̊ — which ge-
ometrically corresponds to restricting to X̊ quasi-coherent sheaves over X — and particular its
compatibility with duality and with the construction of the largest projective quotient. We will
notably emphasize the role of the ultrametric |.|p-seminorms associated to the p-adic absolute values
|.|p on K associated to the elements p of Σ.

Throughout this section, we shall use the following notation.

We shall denote by η := SpecK the generic point of X and X̊. The elements of

X0 := |X| \ {η}
are the closed points of X, or equivalently the nonzero prime ideals of R.

7We will refer to this base change as “localization”, although strcitly speaking the ring R̊ is not always a

localization of R. However, when K is a number field and R its ring of integers OK , R̊ is always a localization of OK ,

as a consequence of the finiteness of the ideal class group of K.
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For every p ∈ X0, we denote by R(p) the discrete valuation ring OX,p, that is, the localization of
R at p, by Rp (resp. Kp) the p-adic completion of R(p) (resp. K), and by vp the p-adic valuation on
Kp. We also choose a real number qp > 1, and we define the p-adic absolute value on Kp associated
to vp as:

|.|p := q
−vp
p .

We have:
R ⊆ R(p) ⊆ K, for every p ∈ X0,

and:
R =

⋂
p∈X0

R(p) =
{
x ∈ K | ∀ p ∈ X0, |x|p ≤ 1

}
.

Similarly we have:

R̊ ⊆ R(p) ⊂ K, for every p ∈ X0 \ Σ,
and:

R̊ =
⋂

p∈X0\Σ

R(p) =
{
x ∈ K | ∀ p ∈ X0 \ Σ, |x|p ≤ 1

}
,

and consequently:

R =
{
x ∈ R̊ | ∀ p ∈ Σ, |x|p ≤ 1

}
.

If M be a R-module, and if M̃ denotes the associated quasi-coherent sheaf over X. We shall
say that the R-module has no Σ-torsion when the following equivalent properties are satisfied:

(i) the R-module ΓΣ(X, M̃) of sections of M̃ over X that are supported by Σ vanishes;
(ii) for every p ∈ Σ, the R(p)-module MR(p)

is torsion free;

(iii) for every p ∈ Σ, the Rp-module MRp
is torsion free;

(iv) the canonical map
M −→MR̊, m 7−→ m⊗R 1R̊

is injective.

This section has been included mainly8 to provide a motivation for the construction of suitable
categories of Hermitian quasi-coherent sheaves over arithmetic curves in the next chapter. From
this perspective, the finite set of closed points Σ has to be thought as the analogue of Archimedean
places in the arithmetic framework.

The results in this section will not be used in the remaining of this monograph, and some details
of their proofs are left to the interested reader.

1.6.1. Seminormed R̊-modules and R-modules. We may define the category Mod
≤1

R̊,Σ of

Σ-seminormed R̊-modules as follows.

The objects of Mod
≤1

R̊,Σ are pairs:

M̊ := (M̊, (∥.∥p)p∈Σ)

consisting in a R̊-module M̊ and in a family (∥.∥p)p∈Σ of ultrametric |.|p-seminorms:

∥.∥p :MKp
−→ |Kp|p := qZp ∪ {0}

on the Kp-vector spaces MKp
.

A morphism in Mod
≤1

R̊,Σ from M̊ to another object

M̊ ′ := (M̊ ′, (∥.∥′p)p∈Σ)

8and secondarily to discuss the compatibility with localization of the construction of the largest projective quotient

in Section 1.4, which is a slightly delicate issue.
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of Mod
≤1

R̊,Σ is a morphism of R̊-modules:

φ : M̊ −→ M̊ ′

such that, for every p ∈ Σ, the operator norm |||φKp
|||p of the Kp-linear map φKp

between the

seminormed Kp-vector spaces (M̊Kp
, ∥.∥p) and (M̊ ′

Kp
, ∥.∥′p) satisfies:

(1.6.1) |||φKp
|||p ≤ 1.

We may also introduce a category ModR̊,Σ with the same objects as Mod
≤1

R̊,Σ, where, in the

definition of morphisms, condition (1.6.1) is replaced by the following weaker one:

(1.6.2) |||φKp
|||p < +∞.

To any R-module M , we may attach the object M̊ of Mod
≤1

R̊,Σ defined by the R̊-module:

M̊ :=MR̊

and by the seminorms (∥.∥p)p∈Σ on the Kp-vector spaces:

M̊Kp
≃MKp

attached to the image in MKp
of the Rp-module MRp

by the inverse of the bijection:

µMKp
: N (MKp

)
∼−→M(MKp

)

investigated in Subsections 1.5.1 and 1.5.2.

This constructions actually defines a functor from ModR to Mod
≤1

R̊,Σ, by sending a morphism

ψ :M −→M ′

of R-module to its base change:

φ := ψR̊ :MR̊ −→M ′
R̊
,

which indeed satisfies conditions (1.6.1), since φKp
sends the image in MKp

of MRp
to the image in

M ′
Kp

of M ′
Rp

.

Recall that basic descent theory shows that the category of quasi-coherent sheaves on X is
equivalent to the category of quasi-coherent sheaves (F̊ , (Fp)p∈Σ) on the scheme

X̊ ⨿
∐
p∈Σ

SpecR(p),

equipped with “glueing data,” namely with isomorphisms of Kp-vector spaces:

F̊Kp

∼−→ Fp,Kp
, for p ∈ Σ.

By combining this equivalence of category with the descriptions of torsion free-modules over
discrete valuation rings and of their morphisms in terms of seminorms in Subsections 1.5.1 and
1.5.2, we obtain:

Proposition 1.6.1. Restricted to the full subcategory of ModR defined by modules with no

Σ-torsion, the functor from ModR to Mod
≤1

R̊,Σ constructed above is an equivalence of category.
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1.6.2. Seminorms and Duality. Let M be an R-module. We may consider its dual,

M∨ := HomR(M,R),

which defines an object of Modtop
R , and the dual of the K-vector space MK ,

M∨
K := HomK(MK ,K),

which defines an object of Modtop
K .

The topology ofM∨ and ofM∨
K is the topology of pointwise convergence, defined by the discrete

topology on R and on K.9 The natural map, defined by extension of scalars:

M∨ −→M∨
K , ξ 7−→ ξK := ξ ⊗R IdK ,

is clearly injective, and a homeomorphism onto its image, which is the closed R-submodule of M∨
K

consisting in the K-linear forms η in M∨
K such that the image η(M/tor) of M/tor is contained in R.10

For every p ∈ X0, we may consider the ultrametric |.|p-seminorm

∥.∥p :MKp
−→ |Kp|p = qZp ∪ {0}

deduced from the image of MRp
in MKp

by the bijection µMKp
. Every element η ∈ M∨

Kp
:=

HomKp
(MKp

,Kp) admits an operator norm, as defined in 1.5.1.2, namely:

∥η∥∨p := sup
v∈MRp/tor

|η(v)|p = sup
v∈MR(p)/tor

|η(v)|p.

Observe that M∨
K naturally embeds in M∨

Kp
, and that, for every ξ ∈M∨

K , the following equiva-

lence holds:

ξ(M/tor) ⊆ R(p) ⇐⇒ ξKp
(MRp/tor) ⊆ Rp ⇐⇒ ∥ξ∥∨p ≤ 1.

Consequently, the dual R-module M∨ of M , identified with its image in M∨
K , satisfies:

M∨ =
{
ξ ∈M∨

K | ∥ξ∥p ≤ 1
}
.

1.6.3. Duality and localization.

1.6.3.1. The discussion of the previous subsection applies with the Dedekind ring R replaced by
the ring R̊, which admits the same fraction field K.

This shows that, for every R-module M , if we let:

M̊ :=MR̊,

we have injective maps of topological modules:

(1.6.3) M∨ = HomR(M,R) ↪−→M̊∨ := HomR̊(M̊, R̊)↪−→M∨
K ,

that are homeomorphisms onto their images, which themselves are closed in M∨
K .

The canonical morphism of R̊-module:

(1.6.4) (M∨)R̊ := HomR(M,R)⊗R R̊ −→ M̊∨ := HomR̊(M̊, R̊),

that maps ξ ⊗R λ to λ(ξ ⊗R IdR̊) for any ξ ∈M∨ and any λ ∈ R̊, is also easily seen to be injective.

Thanks to the injective maps in (1.6.3) and in (1.6.4), we shall identify M∨, M̊∨, and (M∨)R̊
to submodules of M∨

K , which therefore satisfy:

M∨ ⊆ (M∨)R̊ ⊆ M̊
∨ ⊆M∨

K .

9For instance, the topology of M∨
K is the topology induced by the topology on KMK defined as the product

topology of the discrete topology on each factor K.
10We identify M/tor := M/Mtor with the image of M in MK .
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Proposition 1.6.2. With the notation above, for every ξ ∈ M̊∨, the following equivalence hold:

(1.6.5) ξ ∈M∨ ⇐⇒ ∀ p ∈ Σ, ||ξ||∨p ≤ 1,

and:

(1.6.6) ξ ∈ (M∨)R̊ ⇐⇒ ∀ p ∈ Σ, ||ξ||∨p < +∞.

The proof of (1.6.5) is straightforward, and also the proof of (1.6.6) when R̊ is of form R[1/f ]
for some f ∈ R \ {0} (for instance, when R is the ring of integers of some number field). We leave
the details of the proof of (1.6.6) in the general situation to the interested reader.

If we introduce the “trivial rank one object”:

R̊ := (R̊, (|.|p)p∈Σ)

in the category Mod
≤1

R̊,Σ, the equivalence (1.6.5) states that M∨ may be identified with the set of

morphisms from M̊ to R̊ in this category. This is also a consequence of the equivalence of category
in Proposition 1.6.1. The equivalence 1.6.6 shows that (M∨)R̊ may be identified with the set of

morphisms from M̊ to R̊ in the category ModR̊,Σ.

1.6.3.2. We now assume that the R-module M , and therefore the R̊-module M̊ , is countably
generated.

Then the topology of M∨
K is metrizable, hence also the one of M∨ and of M̊∨. Actually,

according to Theorem 1.2.2, the topological R-module M∨ is an object of CTCR, and M̊∨ is an
object of CTCR̊.

We may also consider the image M∨⊗̂RR̊ of M∨ by the functor “completed tensor product”:

.⊗̂RR̊ : CTCR −→ CTCR̊;

it contains the “algebraic tensor product”:

(M∨)R̊ :=M∨⊗RR̊

as a dense R̊-submodule; see [Bos20b, Section 4.2.1].

The following proposition is established by unwinding the definitions, and by using the unique-
ness of the completion of a metric space; see also [Bos20b, Section 4.2.1-2].

Proposition 1.6.3. As a topological R̊-module, the completed tensor product M∨⊗̂RR̊ may be
identified with the closure of (M∨)R̊ in M∨

K , and is contained in M̊∨.

1.6.4. Canonical dévissage and localization. Let us still consider a countably generated
R-module M . We may wish to compare the largest projective quotients of the R-module M and of
the R̊-module M̊ :=MR̊, which are defined by the biduality morphisms:

δM :M −→M∨∨ and δM̊ : M̊ −→ M̊∨∨.

To achieve this, observe that the base change from R to R̊ of δM defines a morphism of R̊-
modules:

δM,R̊ : M̊ :=MR̊ −→ (M∨∨)R̊,

which, like δM , is surjective with projective range.

By applying Theorem 1.2.2 to the R̊-module M̊, we obtain the first assertion in the following
proposition.
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Proposition 1.6.4. There exists a unique morphism of R̊-modules:

p : M̊∨∨ −→ (M∨∨)R̊

such that δM,R̊ = p ◦ δM̊ . The morphism p is split surjective, and its kernel ker p is a countably

generated projective R̊-module.

Moreover the topological R̊-module (ker p)∨ is isomorphic to the quotient topological R̊-module

M̊∨/(M∨⊗̂RR̊), which consequently is an object of CTCR̊.

The second assertion in Proposition 1.6.4 is straightforward, and the last one follows from
Proposition 1.6.3. Combined with Propositions 1.6.2 and 1.6.3, it provides a description of ker p in
terms of the seminormed R̊-module (M̊, (∥.∥p)p∈Σ).

The existence of the surjective morphism p implies that the rank of the projective R-module
M∨∨ is at most the one of the projective R̊-module M̊ . The following examples that p may actually
vanish while M̊ does not, or be an isomorphism.

Example 1.6.5. Assume that Σ is nonempty and that M is R̊, seen as a R-module.

Then on the one hand, we have:
M∨ = 0.

Indeed, any element of HomR(R̊, R) extends to a linear form

φK : R̊⊗R K = K −→ R⊗K K = K,

and accordingly may be written as (x 7→ φ(1)x). If p is a prime in Σ, then, for every x ∈ R̊, the
following inequality holds in Z ∪ {+∞}:

vp(φ(1)) + vp(x) = vp(φ(x)) ≥ 0.

Since vp(S) = Z, this implies the equality vp(φ(1)) = +∞, that is the vanishing of φ(1).

On the other hand, the R̊-module M̊ ≃ R̊ ⊗R R̊, and therefore its dual M̊∨, may be identified
with R̊.

Observe also that p is an element of Σ, the Rp-module MRp
coincides with Kp, so that the

seminorm ||.||p on MKp
vanishes identically. As a consequence, for any η ∈ HomKp

(MKp
,Kp), the

operator norm of η satisfies:

∥η∥∨p =

{
0 if ξ = 0;
+∞ if ξ ̸= 0.

Example 1.6.6. Assume that M = R(I) for some index set I.

The the following identifications hold:

M∨ ≃ RI , M̊ ≃ R̊(I), and M̊∨ ≃ R̊I ,
and therefore:

M∨∨ ≃ R(I), (M∨∨)R̊ ≃ R̊
(I), and M̊∨∨ ≃ R̊(I).

In terms of these identifications, we also have:

δM = IdR(I) , δM̊ = IdR̊(I) , and p = IdR̊(I) .

Morover, for every p in Σ, and any ξ = (ξi)i∈I in M̊∨ ≃ R̊I , we have:

||ξ||∨p = sup
i∈I
|ξi|p.



CHAPTER 2

Hermitian Quasi-coherent Sheaves over Arithmetic Curves

This chapter is devoted to the definition and to the basic properties of Hermitian quasi-coherent
sheaves over an arithmetic curve X := SpecOK attached to a number field K.

These are defined as pairs F :=
(
F, (∥.∥x)x∈X(C)

)
, where F is a countably generated OK-module,

and where (∥.∥x)x∈X(C) is a family, invariant under complex conjugation, of Hermitian seminorms
on the complex vector spaces: Fx := F ⊗x C.

Hermitian quasi-coherent sheaves constitute the main object of study in this monograph. and
are natural from the perspective of the classical analogy between number fields and function fields.
Indeed they constitute the analogues of quasi-coherent sheaves of countable type on a smooth pro-
jective curve C over some field k.

In the preliminary section 2.1, we consider a smooth projective curve C, equipped with a finite
non-empty subset Σ of closed points — which play the role of the Archimedean places in the arith-
metic setting — and we briefly describe various categories of quasi-coherent sheaves over C that are
the geometric counterparts of the categories of Hermitian quasi-coherent sheaves whose definitions
constitute the main topic of this chapter. The notation for these categories of quasi-coherent sheaves
over C has been chosen to make clear the correspondence between these geometric categories and
their arithmetic counterparts.

Section 2.2 introduces the main definitions concerning Hermitian quasi-coherent sheaves that

will be used in this monograph. In particular, we introduce the categories qCoh
≤1

X and qCohX ,
whose objects are the Hermitian quasi-coherent sheaves over the arithmetic curve X, the notion of
admissible short exact sequence of Hermitian quasi-coherent sheaves, and the canonical dévissage of
a Hermitian quasi-coherent sheaf F :=

(
F, (∥.∥x)x∈X(C)

)
, which is defined in terms of the maximal

projective quotient F∨∨ of the OK-module F .

The remaining sections are devoted to diverse complements to the basic definitions introduced
in Section 2.2. Strictly speaking, the main results of this monograph are independent of these
complements. However the constructions and results of these sections shed some light on various
developments in the next chapters. The reader could skip the contents of Sections 2.3 to 2.5 at first
reading, and postpone the study of the results and the proofs in these sections — some of which are
somewhat technical — until they are needed in later chapters.

Section 2.3 is devoted to the vectorization functor. Namely we shall consider the full subcat-

egories Coh
≤1

X of qCoh
≤1

X , the objects of which are the Hermitian quasi-coherent sheaves whose

underlying OK-module is finitely generated. The category Coh
≤1

X contains as full subcategory the

category Vect
≤1

X of Hermitian vector bundles over X, classically considered in Arakelov geometry,
and the vectorization functor:

.vect : Coh
≤1

X −→ Vect
≤1

X

is a left adjoint to the inclusion functor:

Vect
≤1

X ↪−→Coh
≤1

X .

31
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The vectorization functor will naturally occur when we shall establish that the study of certain

invariants of objects in Coh
≤1

X may actually be reduced to the one of invariants of the more classical

Hermitian vector bundles in Vect
≤1

X .

Sections 2.4 and 2.5 are devoted to the constructions of two contravariant duality functors:

(2.0.1) ·∨ : qCohX −→ proVect
[∞]

X

and:

(2.0.2) ·∨ : proVect
[∞]

X −→ indVect
[0]

X

that extend the duality functors between the categories of categories of ind- and pro-Hermitian
vector bundles over X studied in [Bos20b]:

(2.0.3) ·∨ : indVectX −→ proVectX and ·∨ : proVectX −→ indVectX ,

While the functors (2.0.3) establish adjoint equivalences of categories,1 the new duality functor
(2.0.1) is not an equivalence. Actually the composite biduality functor:

.∨∨ : qCohX −→ indVect
[0]

X

provides an alternative construction of the canonical dévissage of an object of qCohX .

The construction of the category proVect
[∞]

X , which constitutes the range and the source of the
functors (2.0.1) and (2.0.2), requires to work with pro-vector bundles over X equipped with suitable
generalizations of Euclidean or Hermitian seminorms — namely with quasinorms, that are allowed
to take the value +∞. Section 2.4 is devoted to various results concerning Euclidean and Hermitian

quasi-norms, that are preliminary to the construction of the category proVect
[∞]

X and of the duality
functors (2.0.1) and (2.0.2) in Section 2.5.

In this chapter, we use the following notation.

We denote by K a number field and by OK its ring of integers. The set of complex points X(C)
of the associated arithmetic curve

X := SpecOK
is the set, of cardinality [K : Q], of field embeddings of K in C.

We also denote by:

π : X −→ SpecZ
the (unique) morphism of schemes, which is defined by the inclusion of Z into OK , and by ωπ its
dualizing sheaf, namely the line bundle over X defined by OK-module HomZ(OK ,Z).

2.1. Preliminary: Categories of Quasi-coherent Sheaves over Marked Smooth
Projective Curves

In this section, we denote by C a smooth, projective, geometrically connected curve over some
base field k, and by Σ a non-empty finite set of closed points of C.

The open subscheme of C:

C̊ := C \ Σ
is a smooth affine geometrically connected curve over K, and for every x ∈ Σ, the local ring OX,x
is a discrete valuation ring of field of fractions K. We shall denote by ÔX,x the completion of the
local ring OX,x and by Kx its fraction field, and by vx the x-adic valuation on K and its extension
to Kx.

1See [Bos20b, Section 5.5].
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We shall also choose a real number2 qx > 1, and we shall define the x-adic absolute value on Kx

associated to vx as :

|.|x := q−vxx .

Moreover we shall say that a quasi-coherent sheaf F on C has no Σ-torsion when, for every
x ∈ Σ, the stalk Fx of F at x is a torsion free OX,x-module. If we denote by:

i : C̊ −→ C

the inclusion morphism, this is equivalent to the injectivity of the tautological morphism of quasi-
coherent sheaves over C:

F −→ i∗i
∗F .

Observe that the k-scheme C̊ uniquely determines C and Σ. This will legitimate diverse notations
below, where C̊ explicitly appears, but neither C, nor Σ.

The data (C,Σ) of a marked smooth projective curve as above constitute a geometric analogue

of the arithmetic curve X = SpecOK . In this analogy, the function field k(C) = k(C̊) of C plays
the role of the number field K and the k-algebra

R := OC(C̊)

the role of the ring of integers OK . The affine curve C̊ = SpecR plays the role of X = SpecOK ,
and the finite set Σ the role of the set of Archimedean places of K, or equivalently of the set X(C)
of field embeddings of K into C, modulo complex conjugation.

In this section, we describe various categories of quasi-coherent sheaves over C in a way which
should make clear their analogy with the various categories of Hermitian quasi-coherent sheaves over
the arithmetic curve X that we shall introduce in the next section. This description will be in terms
of modules over the algebra OC(C̊) and of ultrametric |.|x-seminorms associated to the point x in Σ.

Hopefully this will convince the reader that the objects we shall introduce in the arithmetic
setting of the next section are the counterparts of various natural classes of quasi-coherent sheaves
in the geometric setting.

2.1.1. The categories qCoh
(≤1)

C̊
, Coh

(≤1)

C̊
, Coh

(≤1)

C and Vect
(≤1)

C̊
.

2.1.1.1. The categories qCoh
≤1

X and qCohX , which play a central role in this monograph, will

be the arithmetic counterparts of the categories qCoh
≤1

C̊ and qCohC̊ defined as follows.

The objects of both categories are the quasi-coherent sheaves of countable type, with no Σ-torsion
over C.

The morphisms in qCoh
≤1

X are the morphisms of OC modules.

If F and G are two quasi-coherent sheaves over C that define objects of qCohC̊ , the set of

morphisms from F to G in qCohC̊ is the inductive limit:

lim−→
i

HomOC

(
F ,G ⊗OC(iΣ)

)
,

where i describes the directed set (N,≤). If φ : F → G and ψ : G → H are two morphisms in
qCohC̊ , defined by some morphisms of OC-modules:

φ ∈ HomOC

(
F ,G ⊗ OC(iΣ)

)
and ψ ∈ HomOC

(
G,H(jΣ)

)
,

for some non-negative integers i and j, there composition in qCohC̊ is the morphism:

ψ ◦ φ ∈ HomOC

(
F ,H((i+ j)Σ)

)
,

2When k is a finite field, it is natural to choose for qx the cardinality |κ(x)| of the residue field κ(x) of x, which

is a finite extension of k.
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defined by means of the identification:

HomOC

(
G,H(jΣ)

) ∼−→ HomOC

(
G(iΣ),H((i+ j)Σ)

)
.

2.1.1.2. To a quasi-coherent sheaf F over C, we may attach the R-module:

F := F(C̊).
The K-vector space FK := F ⊗R K is the stalk of F at the generic point of C.

For every x ∈ Σ, we may also consider the stalk Fx of F at x. It is a OX,x-module. There is a
canonical identification:

Fx ⊗OX,x
K

∼−→ FK ,

and therefore an isomorphism of Kx-vector spaces:

Fx ⊗OX,x
Kx

∼−→ FKx
.

Let us now assume that F has no Σ-torsion. Then for every x ∈ Σ, we may consider the
canonical injective morphism of OX,x-modules:

Fx↪−→Fx ⊗OX,x
K ≃ FK .

It induces an injective morphism of ÔX,x-modules:

Fx ⊗OX,x
ÔX,x↪−→Fx ⊗OX,x

Kx ≃ FKx ,

and Fx⊗OX,x
ÔX,x generates the Kx-vector space FKx . By the correspondance between submodules

and ultrametric seminorms discussed in Section 1.5, it is associated to an ultrametric |.|x-seminorm
∥.∥x on FKx

with values in |K|x = qZx ∪ {0}. The seminorm ∥.∥x is characterized by the equivalence,
for every v ∈ FKx

:

v ∈ Fx ⊗OX,x
ÔX,x ⇐⇒ ∥v∥x ≤ 1.

In this way, to any quasi-coherent sheaf F over C without Σ-torsion we associate a metrized
R-module:

F := (F, (∥.∥x)x∈Σ),

consisting in some R-module F and in a family (∥.∥x)x∈Σ of ultrametric |.|x-seminorms with value
in |K|x on the Kx-vector spaces FKx

.

Moreover this construction is functorial. Indeed, if F and F ′ are two quasi-coherent sheaf F
over C without Σ-torsion, and if F := (F, (∥.∥x)x∈Σ) and F

′
:= (F ′, (∥.∥′x)x∈Σ) denote the associated

metrized R-modules, then any morphism of OC-modules:

Φ : F −→ F ′

defines a morphism of R-modules:

(2.1.1) φ := Φ|C̊ : F := F(C̊) −→ F ′ := F ′(C̊),

and, for every x ∈ Σ, the operator norm of the Kx-linear map:

φx := φ⊗R IdKx
: FKx

−→ F ′
Kx
,

computed with respect to the seminorms ∥.∥x and ∥.∥′x, satisfy:
|||φx||| ≤ 1.

More generally, for every i ∈ N, a morphism of OC-module:

Φ : F −→ F ′ ⊗OC(iΣ)
still defines a morphism of R-modules φ := Φ|C̊ : F → F ′, which now satisfies:

(2.1.2) |||φx||| ≤ qix
for every x ∈ Σ.
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Using the results concerning modules over Dedekind rings established in Sections 1.1, 1.5, and 1.6
(see notably Corollary 1.1.7 and Proposition 1.6.1), one easily checks that the above constructions3

define an equivalence of categories from the category qCoh
≤1

C̊ (resp. qCohC̊) to the category whose

objects are the metrized R-modules F := (F, (∥.∥x)x∈Σ) where F is a countably generated R-module,

and whose morphisms from F := (F, (∥.∥x)x∈Σ) to F
′
:= (F ′, (∥.∥′x)x∈Σ) are the morphisms of

R-modules:
φ : F −→ F ′

such that, for every x ∈ Σ, the operator norm of the Kx-linear map:

φx := φ⊗R IdKx
: FKx

−→ F ′
Kx

satisfies:
|||φx||| ≤ 1 (resp. |||φx||| < +∞).

2.1.1.3. The subcategories Coh
≤1

X and CohX , Coh
≤1

X and CohX , and Vect
≤1

X , of qCoh
≤1

X

and qCohX , introduced in the next section of this chapter, will be the counterparts of the full

subcategories of qCoh
≤1

C̊ and qCohC̊ defined as follows.

The category Coh
≤1

C̊ (resp. CohC̊) is the full subcategory of qCoh
≤1

C̊ (resp. qCohC̊) whose
objects are the quasi-coherent sheaves F of countable type over C, with no Σ-torsion, such that the
restriction F|C̊ to C̊ is coherent — or equivalently such that the R-module F := F(C̊) is finitely

generated.

The categoryCoh
≤1

C (resp. CohC) is the full subcategory ofCoh
≤1

C̊ (resp. CohC̊) whose objects

are the coherent sheaves F over C with no Σ-torsion. Equivalently the R-module F := F(C̊) is
finitely generated and, for every x ∈ Σ, the associated seminorm ∥.∥x on FKx

is a norm.

The categories CohC̊ and CohC are actually equivalent to the category of coherent sheaves over

C̊, or to the category of finitely generated modules over R.

The category Vect
≤1

C̊ is the full subcategory of Coh
≤1

C whose objects are the vector bundles (or

equivalently the locally free coherent sheaves) over C. An object F of qCoh
≤1

C̊ belongs to Vect
≤1

C

if and only if the R-module F := F(C̊) is finitely generated and projective, and the associated
seminorms (∥.∥x)x∈Σ are norms.

2.1.2. The categories qCoh
≤1

C̊ and qCohC̊ as exact categories.

2.1.2.1. The additive (actually k-linear) category qCoh
≤1

C̊ is not an abelian category, due to the
requirement on its objects to Σ-torsion free quasi-coherent sheaves. However it becomes an exact
category4 if we endow it with the class E of kernel-cokernel pairs consisting in short exact sequences:

(2.1.3) 0 −→ F ′ j−→ F p−→ F ′′′ −→ 0

of OC-modules, where F , F ′ and F ′′ denote objects of qCoh
≤1

C̊ .

It is indeed straightforward that this class E satisfies the axioms defining an exact category (see
for instance [Bos20b, D.1.1]). Moreover the allowable epimorphisms are the surjective morphisms

p : F → F ′′ of OC-modules between objects of qCoh
≤1

C̊ , the allowable monomorphisms are the

injective morphisms i : F ′ → F of OC-modules between objects of qCoh
≤1

C̊ whose cokernel F/i(F ′)
has no Σ-torsion.

3of the metrized R-module F := (F(C̊), (∥.∥x)x∈Σ) associated to a quasi-coherent sheaf F and of the morphism
φ of R-modules associated to a morphism Φ of OC -modules.

4In the sense of [Qui73, §2]. We refer the reader to [Kel96] and [Büh10] for details and references concerning
exact categories; see also the short summary in [Bos20b, Appendix D], whose terminology we follow — namely we

say “allowable” instead of “admissible” or “strict” morphisms.
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This implies that, more generally, the allowable morphisms are the morphisms f : F → G of

OC-modules between objects of qCoh
≤1

C̊ whose cokernel G/f(F) has no Σ-torsion.

2.1.2.2. The short exact sequences (2.1.3) that define the structure of an exact category on

qCoh
≤1

C̊ admit a simple interpretation in terms of the description of qCohC̊ as a category of
metrized R-modules.

Consider an object F of qCohC̊ , and F := (F(C̊), (∥.∥x)x∈Σ) the associated metrized R-module.

To any R-submodule F ′ of F := F(C̊), we may attach the quasi-coherent subsheaf F ′ of F
defined as follows, in terms of the quasi-coherent subsheaf F̃ ′ of i∗F := F|C̊ attached to F ′. Since

F has no Σ-torsion, it may be identified to a subsheaf of the quasi-coherent sheaf i∗i
∗F over C.

The direct image i∗F̃
′ also is a quasi-coherent subsheaf of i∗i

∗F , and therefore we may form the
intersection:

F ′ := i∗F̃
′ ∩ F ,

which is a quasi-coherent subsheaf of F .
In more concrete terms, for every open subset V of C, we have:

F ′(V ) :=
{
s ∈ F̃(V ) | s|C̊∩V ∈ F̃

′(
◦
C ∩ V )

}
.

The sheaf F ′ is the largest subsheaf of F whose restriction to C̊ is F̃ ′. It is also the unique

quasi-coherent subsheaf of F whose restriction to C̊ is F̃ ′, and such that the quasi-coherent sheaf:

F ′′ := F/F ′

over C has no Σ-torsion.

The metrized R-modules associated to F ′ and to F/F ′ are easily seen to be:

(2.1.4) F ′ := (F ′, (∥.∥x|F ′
Kx

)x∈Σ

and

(2.1.5) F/F ′ := (F/F ′, (∥.∥∼x )x∈Σ),

defined by means of the restrictions ∥.∥x|F ′
Kx

to F ′
Kx

and to the quotient seminorms ∥.∥∼x on

(F/F ′)Kx
≃ FKx

/F ′
Kx

of the seminorms ∥.∥x on the Kx-vector spaces FKx
.

These remarks show that, written in terms of metrized R-modules, the short exact sequences
(2.1.3) coincide, up to isomorphism, with the diagrams of the form:

0 −→ F ′ j−→ F
p−→ F/F ′ −→ 0,

associated by means of the constructions (2.1.4) and (2.1.5) to a metrized R-module:

F := (F, (∥.∥x)x∈Σ)

— with F a countably generated R-module — and to some R-submodule F ′ of F , and to the
inclusion morphism j : F ′ → F and the quotient map p : F → F/F ′.

2.1.2.3. Similar considerations apply to the k-linear category qCohC̊ . Again, it is not an abelian

category, but it becomes an exact category if we endow it with the class Ė of kernel-cokernel pairs
consisting in the diagrams deduced by “saturation” under isomorphisms in qCohC̊ from the short
exact sequences of the form (2.1.3) that define E .

These diagrams may also be described as follows in terms of metrizedR-modules. Up to isometric
isomorphisms,5 these are the diagrams:

0 −→ Ḟ ′ j−→ F
p−→ ¨
F/F ′ −→ 0,

5in other words, up to isomorphisms in qCoh
≤1

C̊
.
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associated to a metrized R-module F with F countably generated and to some R-submodule F ′ of
F as above, where the seminorms ∥.∥.x and ∥.∥..x defining the metrized R-modules:

Ḟ ′ := (F ′, (∥.∥.x)x∈Σ

and:
¨

F/F ′ := (F/F ′, (∥.∥..x)x∈Σ),

are now allowed to be arbitrary |K|v-valued ultrametric seminorms that are equivalent to the semi-
norms ∥.∥x|F ′

Kx
and ∥.∥∼x on F ′

Kx
and FKx

/F ′
Kx

.

In terms of metrized R-modules, the morphisms and the allowable morphisms in the exact
category qCohC̊ admit the following description.

The morphisms from F 1 := (F1, (∥.∥1,x)x∈Σ) to F2 := (F2, (∥.∥2,x)x∈Σ) in qCohC̊ are the
morphisms of R-modules:

φ : F1 −→ F2

such that, for every x ∈ Σ, the Kx-linear map:

φx : F1,Kx
−→ F2,Kx

is continuous, when F1,Kx
and F2,Kx

are endowed with the seminorms ∥.∥1,x and ∥.∥2,x. Among
these morphisms, the allowable morphisms are those such that the two seminorms on φx(F1,Kx)
defined as the quotient of ∥.∥1,x and as the restriction of ∥.∥2,x are equivalent.

2.2. Main Definitions: the Categories qCoh
(≤1)

X , Coh
(≤1)

X , Coh
(≤1)

X and Vect
(≤1)

X

2.2.1. The categories qCohX and qCoh
≤1

X .

2.2.1.1. Recall that we denote by K a number field and by OK its ring of integers. The category
of quasi-coherent sheaves on the associated arithmetic curve:

X := SpecOK
is equivalent to the category of OK-modules, and we shall use somewhat interchangeably the termi-
nology “quasi-coherent sheaf over X,” “quasi-coherent OX -module,” and “OK-module.”

If F is a OK-module, and x ∈ X(C) is a field embedding of K in C, we shall denote by:

Fx := F ⊗OK ,x C
the complex vector space deduced from F by the base change x : SpecC→ X.

Observe that, if x is an element of X(C) and x its complex conjugate, then there is a canonical
C-antilinear isomorphism defined by complex conjugation:

(2.2.1) . : Fx
∼−→ Fx, f ⊗x λ 7−→ f ⊗x λ.

Definition 2.2.1. A Hermitian quasi-coherent sheaf over X is a pair:

F :=
(
F , (∥.∥x)x∈X(C)

)
,

where F is a countably generated OK-module, and where (∥.∥x)x∈X(C) is a family, invariant under

complex conjugation6 of Hermitian seminorms on the complex vector spaces (Fx)x∈X(C).

If F1 :=
(
F1, (∥.∥1,x)x∈X(C)

)
and F2 :=

(
F1, (∥.∥2,x)x∈X(C)

)
are two Hermitian quasi-coherent

sheaves over X, a morphism of Hermitian quasi-coherent sheaves:

φ : F1 −→ F2

is a morphism of OK-modules φ ∈ HomOK
(F1,F2) such that, for every x ∈ X(C), the C-linear map:

φx := φ⊗OK ,x IdC : F1,x −→ F2,x

6In other words, with the notation (2.2.1), the equality ∥v∥x = ∥v∥x holds for every x ∈ X(C) and every v ∈ Fx.
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is a continuous map between the seminormed vector spaces (F1,x, ∥.∥1,x) and (F2,x, ∥.∥2,x).

The continuity of φx is equivalent to the finiteness of its operator norm:

(2.2.2) |||φx|||x := sup
v∈F1,x,∥v∥1,x≤1

∥φx(v)∥2,x.

The Hermitian quasi-coherent sheaves over X and their morphisms, as defined above, constitute
an OK-linear category, that we will denote by qCohX .

The subcategory of qCohX whose objects are the Hermitian quasi-coherent sheaves over X and
whose morphisms are the morphisms φ : F1 → F2 as defined above of operator norm at most one
— namely those morphisms such that:

|||φx|||x ≤ 1 for every x ∈ X(C)

— will be denoted by qCoh
≤1

X .

2.2.1.2. If F :=
(
F , (∥.∥x)x∈X(C)

)
is a Hermitian quasi-coherent sheaf over X, we will denote

by:

Fx := (Fx, ∥.∥x)
the underlying seminormed C-vector space attached to the field embedding x ∈ X(C).

Let F and G be two Hermitian quasi-coherent sheaves over X. An isomorphism φ between F
and G in qCoh

≤1

X is precisely an isometric isomorphism between F and G, namely an isomorphism:

φ : F ∼−→ G

between the underlying OK-modules such that, for every x in X(C), the invertible C-linear map:

φx : Fx
∼−→ Gx

is an isometry between the seminormed spaces Fx and Gx.
By contrast, an isomorphism φ between F and G in qCohX is an isomorphism between the

underlying OK-modules F and G such that, for any x ∈ X(C), the invertible map φx is a homeo-
morphism when Fx and Gx are equipped with the topology defined by the seminormed spaces Fx
and Gx.

In other words, an object F of qCohX is determined, up to a (unique) isomorphism in qCohX ,
by the underlying OK-module F and the structure of topological vector space on the complex vector
spaces (Fx)x∈X(C) defined by the seminormed vector spaces (Fx)x∈X(C).

2.2.1.3. We will systematically denote Hermitian quasi-coherent sheaves over the arithmetic
curve X = SpecOK by means of “overlined” characters, such as E, E ,... and the underlying OK-
modules (or equivalently, the quasi-coherent sheaf over X) by same characters without overline, such
as E, E ,...

The Hermitian seminorms on the complex vectors spaces Ex, Ex,... deduced from E, E ,...
by the complex embeddings x ∈ X(C) that define the Hermitian structure of E, E ,... will be
denoted by ∥.∥E,x, ∥.∥E,x,..., and the Hermitian scalar products that define these seminorms by

⟨., .⟩E,x, ⟨., .⟩E,x,...,

When X is SpecZ, we shall denote by qCoh
≤1

Z and qCoh
≤1

Z the categories qCoh
≤1

X and

qCoh
≤1

X . An object of these categories is a pair F := (F , ∥.∥) where F is a countably generated
Z-module — that is, a countable abelian group — and ∥.∥ a Hermitian seminorm on the C-vector
space FC := F ⊗ C that is invariant under complex conjugation. The data of the Hermitian semi-
norm ∥.∥ on FC is equivalent to the data of its restriction ∥.∥|FR , which is a Euclidean seminorm on
the R-vector space FR.
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Accordingly, the Hermitian quasi-coherent sheaves over SpecZ will often be defined as pairs
(F , ∥.∥) with F is countably generated Z-module and ∥.∥ a Euclidean seminorm on FR, and will be
called Euclidean quasi-coherent sheaves.

If F is a countably generated torsion OK-module, then the C-vector spaces (Fx)x∈C all vanish.
These vector spaces admit a unique Hermitian seminorm, namely the zero norm (!), and equipped
with these norms, the OK-module F defines a Hermitian quasi-coherent sheaf over X, which we will
still denote by F .

2.2.1.4. The category qCoh
≤1

X will play a central role in this monograph, and the analogy

between qCoh
≤1

X and the category qCoh
≤1

C̊ of quasi-coherent sheaves on a smooth projective curve
C introduced in Section 2.1 will be a guiding theme in our work.

However we should emphasize that the category qCoh
≤1

X does not share some of the basic

properties of the category qCoh
≤1

C̊ . In particular, qCoh
≤1

X is very far from being an additive
category — due to the Archimedean character of Archimedean places. For instance, in general the

product of two objects does not exist in qCoh
≤1

X . A related issue is that the set of morphisms

between two objects in qCoh
≤1

X , in general, is not closed under addition.7

In spite of its lack of simple categorical interpretation, it is natural to introduce the following
definition of direct sums of Hermitian quasi-coherent sheaves.

Definition 2.2.2. If (E i)i∈I := ((Ei, (∥.∥i,x)x∈X(C)))i∈I is a countable family of Hermitian
quasi-coherent sheaves over X, their direct sum is the Hermitian quasi-coherent sheaf over X:⊕

i∈I
E i :=

(⊕
i∈I
Ei, (∥.∥x)x∈X(C)

)
,

where, for every x ∈ X(C) and every (vi)i∈I in
(⊕

i∈I Ei
)
x
≃
⊕

i∈I Ei,x, we let:

∥(vi)i∈I∥2x :=
∑
i∈I
∥vi∥2i,x.

For any k ∈ I, the inclusion map ιk : Ek →
⊕

i∈I Ei and the projection map pk :
⊕

i∈I Ei → Ek
define morphisms in qCoh

≤1

X :

ιk : Ek →
⊕
i∈I
E i and pk :

⊕
i∈I
E i → Ek.

However, if E is a Hermitian quasi-coherent sheaf over X, the diagonal map:

∆E : E −→ E ⊕ E , e 7−→ (e, e)

defines a morphism ∆E : E → E ⊕ E in qCohX , but not in qCoh
≤1

X unless all the Hermitian
seminorms defining E vanish.

2.2.2. Admissible short exact sequences of Hermitian quasi-coherent sheaves.

7This basic failure of the analogy between the categories qCoh
≤1
X and qCoh

≤1

C̊
makes all the more remarkable

that, as will be shown in Chapters 7 and 8, the theta invariants attached to Hermitian quasi-coherent sheaves satisfy
formal properties astonishingly similar to the ones of cohomological invariants attached to quasi-coherent sheaves over

a projective curve C.
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2.2.2.1. Admissible short exact sequences and admissible morphisms. Let us consider a Hermit-
ian quasi-coherent sheaf over X:

E :=
(
E , (∥.∥x)x∈X(C)

)
.

For any OK-submodule F of E , we may perform the following construction.

We may introduce the short exact sequence of OK-modules defined by the inclusion of F into
E and by the quotient map from E onto E/F :

0 −→ F i−→ E p−→ E/F −→ 0.

We may equip each complex vector space Fx, x ∈ X(C), with the restriction of the Hermitian
seminorm ∥.∥x over Ex, and thus define a Hermitian quasi-coherent sheaf over X:

F :=
(
F , (∥.∥x|Fx

)x∈X(C)
)
.

We may also equip the complex vector spaces (E/F)x ≃ Ex/Fx with the quotient seminorm
∥.∥∼x deduced from ∥.∥x by means of the surjective C-linear map px : Ex → Ex/Fx, namely with the
Hermitian seminorm defined by the equality:

∥v∥∼x := inf
ṽ∈p−1

x (v)
∥ṽ∥x

for every v ∈ Ex/Fx. We may thus define a Hermitian quasi-coherent sheaf over X:

E/F :=
(
E/F , (∥.∥∼x )x∈X(C)

)
.

Finally we may associate to E and F the following diagram in qCoh
≤1

X :

(2.2.3) 0 −→ F i−→ E p−→ E/F −→ 0.

An admissible short exact of Hermitian quasi-coherent sheaves over X is defined as a diagram

in qCoh
≤1

X which is, up to isometric isomorphism, of the form (2.2.3).

This definition may be equivalently reformulated as follows.

Consider three Hermitian quasi-coherent sheaves over X:

E i :=
(
Ei, (∥.∥i,x)x∈X(C)

)
, i ∈ {1, 2, 3}.

Definition 2.2.3. An admissible injective morphism i : E1 → E2 is an injective morphism of
OK-modules i : E1 → E2 such, for every x ∈ X(C), the injective C-linear map ix : E1,x → E2,x is an

isometry from the seminormed space E1,x into E2,x.
An admissible surjective morphism p : E2 → E3 is a surjective morphism of OK-modules p :

E2 → E3 such that, for every x ∈ X(C), the seminorm ∥.∥3,x on E3,x is the quotient seminorm
deduced from ∥.∥2,x by means of the surjective C-linear map px : E2,x → E3,x.

An admissible short exact sequence of Hermitian quasi-coherent sheaves over X — or shortly,
an admissible short exact sequence in qCohX — is a diagram of the form:

0 −→ E1
i−→ E2

p−→ E3 −→ 0,

where i (resp. p) is an admissible injective (resp. surjective) morphism, and where the diagram:

0 −→ E1
i−→ E2

p−→ E3 −→ 0

is a short exact sequence of OK-modules.
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On the model of allowable morphisms in an exact category,8 we could define more generally an ad-

missible morphism f : E → E ′ between two Hermitian quasi-coherent sheaves E := (E , (∥.∥x)x∈X(C))

and E ′ := (E ′, (∥.∥′x)x∈X(C)) over X to be a morphism which admits a factorization:

f = i ◦ p : E p−→ F i−→ E ′,

where p is an admissible surjective morphism and i an admissible injective morphism.

This holds precisely when, for every x ∈ X(C), the restriction ∥.∥′x|fx(Ex)
of the seminorm ∥.∥′x

to the image of the C-linear map fx : Ex → E ′x coincides with the quotient seminorm of ∥.∥x, defined
by means of the surjection fx : Ex → fx(Ex).

Example 2.2.4. A basic instance of the above construction of the admissible short exact se-
quence (2.2.3) associated to a submodule arises from its application to the torsion submodule Etor
of the OK-module E .

In this way, we associate to any Hermitian quasi-coherent sheaf E overX the following admissible
short exact sequence:

(2.2.4) 0 −→ Etor −→ E −→ E/tor := E/Etor −→ 0.

The quotient map E → E/tor := E/Etor induces isomorphisms of C-vector spaces Ex ≃ E/tor,x,
and using this identification, we may write:

E/tor :=
(
E/tor, (∥.∥E,x)x∈X(C)

)
.

Example 2.2.5. Consider a Hermitian quasi-coherent sheaf E :=
(
E , (∥.∥x)x∈X(C)

)
over X, and

a surjective morphism of OK-modules:

q : E −→ G.

To these data is canonically associated an admissible short exact sequence of Hermitian quasi-
coherent sheaves:

(2.2.5) 0 −→ ker q
i−→ E q−→ G −→ 0.

In (2.2.5), we denote by ker q the Hermitian quasi-coherent sheaves over X defined by ker q
and the restrictions to (ker q)x ≃ ker qx of the seminorms ∥.∥x, and by i the inclusion morphism.
Moreover G is the Hermitian quasi-coherent sheaves over X defined by G equipped with the quotient
seminorms of the seminorms ∥.∥x defined by means of the surjections qx : Ex → Gx.

In the following paragraphs, we describe two constructions involving admissible short exact
sequences which will appear recurrently in this monograph.

2.2.2.2. Short exact sequences of admissible short exact sequences. Consider an admissible short
exact sequence in qCohX :

0 // E i // F
p // G // 0,

and a submodule F ′ of F .
We may introduce the following OK-submodules of E and G:

E ′ := i−1(F ′) and G′ := p(F ′),

8See for instance [Bos20b, D.1.3].
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and construct a commutative diagram in qCoh
≤1

X , whose columns are admissible short exact se-
quences:

0

��

0

��

0

��
0 // E ′ i′ //

��

F ′ p′ //

��

G′ //

��

0

0 // E i //

��

F
p //

��

G //

��

0

0 // E/E ′ ĩ //

��

F/F ′ p̃ //

��

G/G′ //

��

0

0 0 0

In this diagram, i′ and p̃ are admissible (respectively injective and surjective) morphisms, and

p′ and ĩ are morphism in qCoh
≤1

X , but may be not admissible.

In other words, if we denote by E/E ′
∼

the OK-module E/E ′ equipped with the Hermitian
seminorms that make the injection ĩ isometric, then the diagram:

0 // E/E ′
∼ ĩ // F/F ′ p̃ // G/G′ // 0

is an admissible short exact sequence in qCoh
≤1

X , and the identity map

IdE/E′ : E/E ′ −→ E/E ′
∼

is a morphism in qCoh
≤1

X .

Similarly, if we denote G′∼ the OK-module G′ equipped with the quotient Hermitian seminorms

deduced from the ones on F ′
by means of the surjections p′x : F ′

x → G′x, then the diagram:

0 // E ′ i′ // F ′ p′ // G′∼ // 0

is an admissible short exact sequence in qCoh
≤1

X , and the identity map

IdG′ : G′∼ −→ G′

is a morphism in qCoh
≤1

X .

2.2.2.3. Admissible short exact sequences and exhaustive filtrations. Consider an admissible
short exact sequences in qCohX :

0 // E i // F
p // G // 0,

an exhaustive filtration9 (En)n≥0 of E by OK-submodules, and a OK-submodule F ′ of F .
For any n ≥ 0, we have a short exact sequence

0 // En + i−1(F ′)
i // i(En) + F ′ p // p(F ′) // 0

9In other words, (En)n≥0 is a sequence of OK -submodules of E such that En ⊆ En+1 for every n ∈ N, and⋃
n∈N En = E.
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of OK-modules. We may define objects En + i−1(F ′), i(En) + F ′ and p(F ′) in qCohX by endowing
En+ i−1(F ′), i(En) +F ′ and p(F ′) with the restrictions of the Hermitian seminorms on E , F and G
respectively.

Moreover, for any n ≥ 0, we may define an object p(F ′)n in qCohX by requiring the diagram:

0 // En + i−1(F ′)
i // i(En) + F ′ p // p(F ′)n

// 0

to be an admissible short exact sequence in qCohX , by the construction in Example 2.2.5 applied

to the Hermitian quasi-coherent sheaf i(En) + F ′ and to the surjective morphism:

p : i(En) + F ′ −→ p(F ′).

In other words, for any x ∈ X(C), the Hermitian seminorm ||.||
p(F ′)n,x

on p(F ′)x is the quotient

seminorm deduced from the restriction of the seminorm ||.||F,x to i(En)x + F ′
x by means of the

surjective C-linear map:

px : i(En)x + F ′
x −→ p(F ′)x.

Proposition 2.2.6. For any x ∈ X(C) and any v ∈ p(F ′)x, the sequence
(
||v||

p(F ′)n,x

)
n≥0

is

decreasing, and satisfies:

lim
n→+∞

||v||
p(F ′)n,x

= ||v||
p(F ′),x

.

Proof. The sequence of OK-modules (i(En)+F ′)n≥0 is an exhaustive filtration of p−1(p(F ′)) =
i(E) + F ′, and therefore, for any x ∈ X(C), the sequence of C-vector spaces (i(En)x + F ′

x)n≥0 is an
exhaustive filtration of p−1

x (px(F ′
x)). The fact that the sequence of seminorms

(
||.||

p(F ′)n,x

)
n≥0

is

decreasing and converges pointwise to ||.||
p(F ′),x

now follows from the definition of these seminorms

as quotient seminorms. □

2.2.3. Inverse and direct images.

2.2.3.1. Let L be a finite extension of the number field K, and let:

f : Y := SpecOL −→ X := SpecOK
be the morphism of schemes defined by the inclusion of rings OK ↪→ OL.

To f are attached the inverse image functors:

(2.2.6) f∗ : qCohX −→ qCohY and f∗ : qCoh
≤1

X −→ qCoh
≤1

Y

defined as follows.

To a Hermitian quasi-coherent sheaf F := (F , (∥.∥x)x∈X(C) over X, they associate the Hermitian
quasi-coherent sheaf over Y :

(2.2.7) f∗F :=
(
f∗F , (∥.∥f(y))y∈Y (C)

)
,

where:

f∗F = F ⊗OK
OL.

To clarify the meaning of the right-hand side of (2.2.7), observe that an element y ∈ Y (C) is a
field embedding y : L→ C, that its image f(y) in X(C) is the composite field embedding:

f(y) : K↪−→L y−→ C,
and that the C-vector space:

(f∗F)y := (F ⊗OK
OL)⊗OL,y C

may be identified with:

Ff(y) := F ⊗OK ,f(y) C.
Therefore ∥.∥f(y) defines a Hermitian seminorm on (f∗F)y.
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The morphism:

f∗φ : f∗F −→ f∗G
associated by the functors (2.2.6) to a morphism:

φ : F −→ G
is the map:

φOL
:= φ⊗OK

IdOL
: f∗F −→ f∗G.

Since, for every y ∈ Y (C), the C-linear map:

(f∗φ)y : (f∗F)y −→ (f∗G)y
may be identified to:

φf(y) : Ff(y) −→ Gf(y),
it indeed defines a morphism from f∗F to f∗G.

2.2.3.2. The functor:

f∗ : qCohX −→ qCohY
admits a right adjoint:

f∗ : qCohY −→ qCohX .

This functor f∗ may be defined in such a way that it restricts to a functor:

(2.2.8) f∗ : qCoh
≤1

Y −→ qCoh
≤1

X .

In this monograph, the direct image functor (2.2.8) will be used only when f is the morphism
from an arithmetic curve to SpecZ:

π : X := SpecOK −→ SpecZ,

and we shall spell out its definition in this special case only, and leave its general construction to
the reader.

Let F := (F , (∥.∥x)x∈X(C)) be a Hermitian quasi-coherent sheaf over X.

We may consider the Z-module π∗F , defined by F seen as a Z-module. The isomorphism of
C-algebras:

OK ⊗Z C ∼−→ CX(C), α⊗ λ 7−→ (x(α)λ)x∈X(C)

induces an isomorphism of C-vector spaces:

i = (ix)x∈X(C) : π∗FC := F ⊗Z C ≃ F ⊗OK
(OK ⊗Z C) ∼−→

⊕
x∈X(C)

Fx.

We define a Hermitian seminorm ∥.∥ on π∗FC, invariant under complex conjugation, by the relation:

∥f∥2 :=
∑

x∈X(C)

∥ix(f)∥2x,

and we let:

π∗F := (π∗F , ∥.∥).

This construction is easily seen to define a functor:

π∗ : qCoh
≤1

X −→ qCoh
≤1

Z

when, to a morphism φ : E → F between two Hermitian quasi-coherent sheaves on X, we attach
the map:

π∗φ := φ : π∗E := E −→ π∗F := F .
It is indeed Z-linear (!), and the induced C-linear map:

(π∗φ)C : (π∗E)C −→ (π∗F)C
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may be identified with the map:

diag(φx)x∈X(C) :
⊕

x∈X(C)

Ex −→
⊕

x∈X(C)

Fx, (ex)x∈X(C) 7−→ (φx(ex))x∈X(C).

If F is an object of qCohX as above, we shall often use the following notation:

FC := (π∗F)C = F ⊗Z C,

and:

FR :=:= (π∗F)R = F ⊗Z R.
The R-vector space FR may be identified with the fixed points under complex conjugation in

FC ≃
⊕

x∈X(C)

Fx,

and the OK-module F/tor with the image of the canonical map:

F −→ FR, f 7−→ f ⊗ 1.

2.2.3.3. Admissible short exact sequences, and consequently admissible morphisms, are compat-
ible with inverse and direct images, as shown by the following proposition:

Proposition 2.2.7. For every diagram in qCohX :

(2.2.9) 0 −→ E
i−→ F

p−→ G −→ 0,

the following conditions are equivalent:

(i) the diagram (2.2.9) is an admissible short exact sequence in qCohX ;
(ii) the diagram:

0 −→ π∗E
π∗i−−→ π∗F

π∗p−−→ π∗G −→ 0

is an admissible short sequence in qCohZ;
(iii) the diagram:

0 −→ f∗E
f∗i−−→ f∗F

f∗p−−→ f∗G −→ 0

is an admissible short exact sequence in qCohY .

This is a simple consequence of the definitions and of the faithful flatness of OL over OK , and
we leave the details of the proof to the reader.

2.2.4. The canonical dévissage of an object of qCohX .

2.2.4.1. Let F := (F , (∥.∥x)x∈X(C)) be an object of qCohX .

In Subsection 1.2.4, we have attached to the countably generated OK-module F its canonical
dévissage:

(2.2.10) 0 −→ Fap↪−→F
δF−−→ F∨∨ −→ 0.

The OK-module is projective, and Fap is the largest antiprojective OK-module contained in F , and
contains Ftor.

Definition 2.2.8. The canonical dévissage of the Hermitian quasi-coherent sheaf F is the
admissible short exact sequence in qCohX :

(2.2.11) 0 −→ Fap −→ F
δF−−→ F∨∨ −→ 0

deduced from the short exact sequence (2.2.10) and the Hermitian structure on F by the construction
in 2.2.2.1 above.
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By construction, F∨∨
is the Hermitian quasi-coherent sheaf defined by the OK-module F∨∨

equiped with the Hermitian seminorms quotient of the seminorms ∥.∥x, defined by means of the
surjective C-linear maps: δF,x : Fx → (F∨∨)x. Since the OK-module F∨∨ is projective, F is an

object of indVect
[0]

X .

In Subsection 2.5.4, we shall show that F∨∨
may also be identified to the bidual of F , suitably

defined.

2.2.4.2. The image of the antiprojective OK-module Fap in the real vector subspace Fap,R of FR
satisfies strong density properties, as shown in the next proposition, which relies on the topological
interpretation of the canonical dévissage of countably generated Z- and OK-modules presented in
Section 1.4.

This proposition will allow us to prove that various significant invariants attached to objects of

qCohX are unaltered when an object F of qCohX is replaced by F∨∨
; see for instance Propositions

4.3.12, 6.3.2, and 8.2.2.

Proposition 2.2.9. Let F be an object of qCohX such that the OK-module F is torsion-free
— and therefore may be identified with a submodule of FR := F ⊗Z R — and antiprojective

Let k be a positive integer. For any (f1, . . . , fk) in Fk and any ε in R∗
+, there exists an OK-

submodule C in F such that:

(i) C contains f1, . . . , fk;

(ii) there exists (f̃1, . . . , f̃2k) in F2k such that:

C =
∑

1≤i≤2k

OK f̃i and max
1≤i≤2k

||f̃i||π∗F < ε.

Proof. According to Theorem 1.4.4, F is dense in FR endowed with its inductive topology. It
is a fortiori dense in FR endowed with the seminorm ||.||π∗F .

Let N be an integer such that:

N ≥ 2 and
1

N
max
1≤i≤k

||fi||π∗F <
ε

2
.

For any i ∈ {1, . . . , k}, we may choose f̃i ∈ F such that:

||f̃i −
1

N
fi||π∗F <

ε

N
.

Then we have:

||f̃i||π∗F <
ε

N
+

1

N
max
1≤j≤k

||fj ||π∗F < ε,

and f̃i+k := Nf̃i − fi satisfies the inequality:

||f̃i+k||π∗F < ε.

Consequently the OK-submodule C of F generated by (f̃1, . . . , f̃2k) satisfies (i) and (ii). □

2.2.4.3. The construction of the canonical dévissage (2.2.11) associated to an object F of qCohX
is actually functorial.

Indeed, for any morphism in qCohX :

φ : F −→ G,

we may consider the underlying morphism of OK-modules:

φ : F −→ G
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and, as observed in 1.2.4 above, the attached commutative diagram with exact rows of OK-modules:

0 // Fap

φ|Fap

��

// F

φ

��

δF // F∨∨

φ∨∨

��

// 0

0 // Gap // G
δG // G∨∨ // 0.

Moreover it is straightforward that, for any x ∈ X(C), the maps φ|Fap,x and φ∨∨
x define contin-

uous maps of seminormed C-vector spaces:
φ|Fap,x : Fap,x −→ Gap,x

and:
φ∨∨
x : F∨∨

x −→ G∨∨
x .

Consequently φ|Fap
and φ∨∨ define morphisms in qCohX , which fit into a commutative diagram

in qCohX whose rows are admissible short exact sequences:

0 // Fap

φ|Fap

��

// F

φ

��

δF // F∨∨

φ∨∨

��

// 0

0 // Gap // G
δG // G∨∨ // 0.

This construction is clearly compatible with composition of morphisms. Moreover, if φ : F → G
is a morphism in qCoh

≤1

X , it is also the case of the morphisms:

φ|Fap
: Fap → Gap and φ∨∨ : F∨∨ → G∨∨

.

2.2.5. The categories indVect
[0](≤1)

X , indVect
(≤1)

X , Coh
(≤1)

X , Coh
(≤1)

X , and Vect
(≤1)

X .

2.2.5.1. The category qCohX (resp. qCoh
≤1

X ) admit various full subcategories defined as fol-
lows:

(i) the category indVect
[0]

X (resp. indVect
[0]≤1

X ) the objects of which are the Hermitian quasi-
coherent sheaves F whose underlying OK-module F is projective;

(ii) the category indVectX (resp. indVect
≤1

X ), already introduced in [Bos20b], the objects
of which are the Hermitian quasi-coherent sheaves F whose underlying OK-module F is
projective, and whose Hermitian seminorms ∥.∥F,x are norms;

(iii) the category CohX (resp. Coh
≤1

X ), the objects of which are the Hermitian quasi-coherent
sheaves whose underlying OK-module F is finitely generated;

(iv) the category CohX (resp. Coh
≤1

X ), the objects of which are the Hermitian quasi-coherent

sheaves F whose underlying OK-module F is finitely generated, and whose Hermitian
seminorms ∥.∥F,x are norms;

(v) the category VectX (resp. Vect
≤1

X ), the objects of which are the Hermitian vector bundles
overX, classically considered in Arakelov geometry; these are the Hermitian quasi-coherent
sheaves F whose underlying OK-module F is finitely generated and projective (or equiv-
alently, finitely generated and torsion free), and whose Hermitian seminorms ∥.∥F,x are
norms.

When X = SpecZ, the categories indVect
[0]

X , indVectX , CohX ,... will be denoted indVect
[0]

Z ,
indVectZ, CohZ,...

The objects of VectX whose underlying OK-module has rank one are the Hermitian line bundles
over X.
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The objects of VectZ are the Euclidean lattices, defined as the pairs E := (E, ∥.∥) where E is a
free Z-module of finite rank and ∥.∥ is a Euclidean norm on the R-vector space ER := E ⊗ R.

The inverse and direct images functor constructed in Subsection 2.2.3 “preserve” these subcat-

egories: with the notation of this subsection, the functor f∗ (resp. π∗) maps objects of indVect
[0]

X ,

indVectX , CohX ,... to objects of indVect
[0]

Y , indVectY , CohY ,... (resp. to objects of indVect
[0]

Z ,
indVectZ, CohZ,...).

2.2.5.2. The inclusion functor from VectX to CohX (resp. from Vect
≤1

X to Coh
≤1

X ) admits as
left adjoint the functor “killing the torsion”:

(2.2.12) CohX −→ VectX (resp. Coh
≤1

X −→ Vect
≤1

X ), E 7−→ E/tor.

.

We may also define a duality functor:

(2.2.13) CohX −→ VectX (resp. Coh
≤1

X −→ Vect
≤1

X ), E 7−→ E
∨
.

It maps an object E := (E, (∥.∥x)x∈X(C) of CohX to the Hermitian vector bundle:

E
∨
:= (E∨, (∥.∥∨x )x∈X(C)

— defined by the dual OK-module E∨ := HomOK
(E,OK) and the Hermitian norms on the complex

vector spaces (E∨)x ≃ HomC(Ex,C) dual to the Hermitian norms ∥.∥x — and a morphism φ : E → F
between two objects of CohX to the transpose map φ∨ := . ◦ φ : F∨ → E∨, which indeed defines a

morphism φ∨ : F
∨ → E

∨
.

The biduality functor:

(2.2.14) .∨∨ : Coh
≤1

X −→ Vect
≤1

X (resp. ∨∨ : Coh
≤1

X −→ Vect
≤1

X )

may be identified with the functor (2.2.12).

2.2.5.3. If L := (L, (∥.∥x)x∈X(C)) is a Hermitian line bundle over X, its Arakelov degree is the
real number:

d̂egL := log |L/OKs|+
∑

x∈X(C)

log ∥s∥−1
x ,

where s denotes a non-zero element of the OK-module L.

More generally, to every object E of CohX , we may attach the Hermitian line bundle over X:

detE := (detE, (∥.∥∧rkEEx
)x∈X(C)),

where the Hermitian norms ∥.∥∧rkEEx
on the one-dimensional C-vector spaces (detEx) ≃ ∧rkEEx

are defined by the following equality:

∥v1 ∧ · · · ∧ vrkE∥2∧rkEEx
:= det

(
⟨vi, vj⟩E,x

)
1≤i,j≤rkE

,

valid for every x ∈ C, and every v1, . . . , vrkE in Ex.

Then the Arakelov degree of E is defined as the real number:

d̂egE := d̂eg detE.

It is straightforward that, for any two Hermitian line bundles over X, the following relation
holds10:

d̂egL1 ⊗ L2 = d̂egL1 + d̂egL2.

10The definition of the tensor product of Hermitian vector bundles — and notably of Hermitian line bundles
— is a special instance of Definition 2.2.10 below, valid in the more general framework of Hermitian quasi-coherent

sheaves.
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For every admissible short exact sequence in CohX :

0 −→ E1 −→ E2 −→ E3 −→ 0,

there exists an isometric isomorphism:

detE2
∼−→ detE1 ⊗ detE3,

and consequently the following additivity relation is satisfied by the Arakelov degree:

(2.2.15) d̂egE2 = d̂egE1 + d̂egE3.

For every object E in CohX , the Arakelov degree also satisfies the following relations,

(2.2.16) d̂egE = d̂egE/tor + log |Etor|,

where |Etor| denote the cardinality of the torsion module Etor, which is finite, and:

(2.2.17) d̂eg π∗E = d̂egE − rkE.(log |∆K |)/2,

where ∆K denotes the discriminant of the number field K.

Using (2.2.16) and (2.2.17), we see that the computation of the Arakelov degree of an object E
of CohX reduces to the one of the Arakelov degree of the Euclidean lattice π∗E/tor. In turn, the

Arakelov degree of a Euclidean lattice E may be expressed in terms of its covolume covol(E):

(2.2.18) d̂egE = − log covol(E).

2.2.6. Tensor products.

2.2.6.1. We may define the tensor products of Hermitian quasi-coherent sheaves as follows.

Definition 2.2.10. If E and E ′ are two objects in qCohX , we let:

E ⊗ E ′ := (E ⊗OK
E ′, (∥.∥⊗x )x∈X(C)),

where, for x ∈ X(C), we denote by ∥.∥⊗x the Hermitian seminorm on:

(E ⊗OK
E ′)x ≃ Ex ⊗C E ′x

deduced by tensor product from the Hermitian seminorms ∥.∥x and ∥.∥′x on Ex and E ′x.

Recall that, if we denote by ⟨., .⟩ and ⟨., .⟩′ the Hermitian scalar product on Ex and E ′x defining
∥.∥x and ∥.∥′x, then the Hermitian scalar product ⟨., .⟩⊗ on Ex ⊗C E ′x defining ∥.∥⊗ satisfies the
relation:

⟨e1 ⊗ e′1, e2 ⊗ e′2⟩⊗ := ⟨e1, e2⟩ ⟨e′1, e′2⟩.

This construction is easily seen to be functorial. Namely, if

φ : E −→ F and φ′ : E ′ −→ F ′

are two morphisms in qCohX (resp. in qCoh
≤1

X ), then the tensor product:

φ⊗ φ′ : E ⊗OK
E ′ −→ F ⊗OK

F ′

defines a morphism in qCohX (resp. in qCoh
≤1

X ):

φ⊗ φ′ : E ⊗ E ′ −→ F ⊗F ′
.
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2.2.6.2. In this monograph, with a few exceptions, tensor products of Hermitian quasi-coherent
sheaves over X will occur when one of them is a Hermitian line bundle over X.

In particular, tensor products with the Hermitian line bundles OX(δ) defined below will recur-
rently appear in the next chapters.

For every δ ∈ R, we define the Hermitian line bundle O(δ) over SpecZ by:

O(δ) := (Z, e−δ |.|),

and we denote its inverse image over X by:

OX(δ) := π∗O(δ) = (OK , (e−δ|.|)x∈X(C)).

Observe that O(δ) satisfies:
d̂egO(δ) = δ,

and that this properties characterizes O(δ) up to isometric isomorphism.

The tensor product of an object E of qCohX by OX(δ) may be identified with the Hermitian
quasi-coherent sheaf over X deduced from E by scaling its Hermitian norms by a factor e−δ:

E ⊗ OX(δ) ≃
(
E , (e−δ ∥.∥E,x)x∈X(C)

)
,

and we shall often write E ⊗ O(δ) instead of E ⊗ OX(δ).

Tensoring by a Hermitian line bundle — for instance by OX(δ) — defines a functor from qCohX
(resp. qCoh

≤1

X ) to itself, and is compatible with inverse images and admissible short exact sequence.
We also have canonical isometric isomorphisms:

π∗
(
E ⊗ O(δ)

)
≃ π∗E ⊗ O(δ).

2.2.6.3. The compatibility between duality and direct images by π will involve tensoring by the
“Hermitian relative dualizing sheaf” ωπ, namely the Hermitian line bundle over X whose underlying
OK-module11 is:

ωπ := HomZ(OK ,Z),
and whose Hermitian norms are defined by:

∥TrK/Q∥ωπ,x = 1 for every x ∈ X(C),

where TrK/Q denotes the trace map from K to Q, which is an element of ωπ.

For instance, for every object E of CohX , the Z-linear map:

HomOK
(E,OK)⊗OK

HomZ(OK ,Z) −→ HomZ(E,Z), η ⊗ ξ 7−→ ξ ◦ η

is an isomorphism of Z-modules, and defines an isometric isomorphism of Euclidean lattices:

(2.2.19) π∗(E
∨ ⊗ ωπ)

∼−→ (π∗E)∨;

see [BK10, Proposition 3.2.2].

If we denote by ∆K the discriminant of the number field K, we also have:

(2.2.20) d̂egωπ = log |∆K |.

2.3. The Vectorization Functor from CohX to VectX

2.3.1. The vectorization functor .vect : CohZ −→ VectZ.

11The OK -module structure on HomZ(OK ,Z) is defined by αξ := (x 7→ ξ(αx)) for every α in OK and every ξ

in HomZ(OK ,Z).
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2.3.1.1. The Euclidean lattice E
vect

associated to E in CohZ. In this paragraph, we fix an object
E := (E, ∥.∥) of CohZ.

To E is attached the free Z-module of rank rkE:

E/tor := E/Etor,

which will be identified with its image in ER, and the vector subspace of ER:

K = ker ∥.∥ := {v ∈ ER | ∥v∥ = 0} .
We may introduce the closure E/tor +K of the subgroup E/tor +K in ER equipped with its usual

Hausdorff locally convex topology.12 It is a closed subgroup of ER, and its connected component

E/tor +K
◦
is a R-vector subspace of ER. We will denote by

p : ER −→ ER/E/tor +K
◦

the quotient map.

Proposition 2.3.1. (i) The image p(E/tor) coincides with p(E/tor +K) and is a discrete co-

compact subgroup of ER/E/tor +K
◦
.

(ii) The quotient seminorm on ER/E/tor +K
◦
,

(2.3.1) ∥.∥vect : ER/E/tor +K
◦ −→ R+, x 7−→ inf

x′∈p−1(x)
∥x∥

is a Euclidean norm.

Proof. (i) According to the structure of closed subgroups of finite dimensional vector spaces,

any subgroup of E/tor +K containing E/tor +K
◦
is closed in E/tor +K. This implies that E/tor +

E/tor +K
◦
is a closed subgroup of E/tor +K. Since it contains E/tor and K, it coincides with

E/tor +K.

This proves that the subgroups p(E/tor) and p(E/tor +K) of the R-vector space ER/E/tor +K
◦

coincide and are discrete. Since E/tor generates the R-vector space ER, its image p(E/tor) generates

ER/E/tor +K
◦
, hence is cocompact in ER/E/tor +K

◦
.

(ii) This directly follows from the fact that ker p = E/tor +K
◦
contains K = ker ∥.∥. □

Consequently the Z-module:
Evect := p(E/tor)

is a free of finite rank, the real vector space Evect
R may be identified with ER/E/tor +K

◦
, and the

pair

(2.3.2) E
vect

:= (Evect, ∥.∥vect)
defines a Euclidean lattice, the vectorization of E.

Moreover the morphism of Z-modules obtained as the composition:

E −→ E/Etor =: E/tor
p|E/tor−→ p(E/tor)

defines a surjective admissible morphism:

νE : E −→ E
vect

in CohZ, with νE,R = p.

This construction satisfies the following universal property:

12The “overline” symbol is used in E and in E/tor +K with different meanings. We hope this will not become

too confusing.
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Proposition 2.3.2. Every morphism f : E −→ F in CohZ (resp. in Coh
≤1

Z ), where F is an
object of VectZ, uniquely factorizes as

(2.3.3) f = f̃ ◦ νE ,

with f̃ : E
vect −→ F a morphism in VectZ (resp. in Vect

≤1

Z ).

Moreover the operator norms ∥fR∥ and ∥f̃R∥ of fR : ER → FR and f̃R : E
vect

R → FR satisfy:

(2.3.4) ∥f̃R∥ = ∥fR∥.

Proof. Consider a morphism f : E → F in CohZ, with F := (F, ∥.∥F ) a Euclidean lattice.
There exists λ ∈ R∗

+ such that, for every v ∈ ER, we have:

(2.3.5) ∥fR(v)∥F ≤ λ∥v∥F .

In particular fR vanishes on K and therefore map E/tor + K, hence E/tor +K, to the discrete

subgroup F of FR. This implies that fR vanishes on E/tor +K
◦
and therefore factorizes as fR = f̃R◦p

for a uniquely determined R-linear map

f̃R : Evect
R := ER/E/tor +K

◦ −→ FR.

Moreover f̃R maps Evect := p(E/tor) to fR(E/tor) = f(E), which is contained in F , and according

to (2.3.5) and to the definition (2.3.1) of Vect.Vectvect as a quotient norm, satisfies the inequality:

(2.3.6) ∥f̃R(w)∥F ≤ λ∥w∥
vect

for every w ∈ Evect
R .

This establishes the inequality:

(2.3.7) ∥f̃R∥ ≤ ∥fR∥.

Since νE,R is norm decreasing, this equality is actually an equality, and (2.3.4) holds.

In particular f̃R is the R-linear map attached to a morphism f̃ in CohZ from E
vect

to F , which
satisfies (2.3.3) by construction. Moreover the unicity of the factorization is clear, and (2.3.7) shows

that, when f is a morphism in Coh
≤1

Z , then f̃ also is a morphism in Coh
≤1

Z . □

Since the morphism νE is surjective admissible, the transpose map

ν∨
E
: Evect∨ −→ E∨

is injective with a saturated image. The latter admits the following description, which is a straight-
forward corollary of Proposition 2.3.2 applied with F = OZ := (Z, |.|).

Corollary 2.3.3. For every ξ ∈ E∨ := HomZ(E,Z), the following two conditions are equiva-
lent:

(i) ξ ∈ ν∨
E
(Evect∨);

(ii) the R-linear map ξR : ER −→ R is continuous on (ER, ∥.∥).

Indeed condition (ii) precisely asserts that ξ defines a morphism in CohZ:

ξ : E −→ OZ.

Corollary 2.3.3 provides an alternative construction of Evect — as the dual of the saturated

submodule of E∨ defined by condition (ii) — and therefore of E
vect

and of the surjective admissible

morphism νE : E → E
vect

.
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2.3.1.2. The functor .vect : CohZ −→ VectZ. Proposition 2.3.2 admits the following straight-
forward consequence:

Corollary 2.3.4. For every morphism f : E → F in CohZ, there exists a unique morphism

fvect : E
vect → F

vect
in VectZ such that the following diagram is commutative:

E
f−−−−→ F

νE

y yνF
E

vect fvect

−−−−→ F
vect

.

Moreover:

∥fvectR ∥ = ∥νF,R ◦ fR∥ ≤ ∥fR∥.

Corollary 2.3.4 implies that assigning to an object E (resp. a morphism f) in CohZ its “vec-

torization” E
vect

(resp. the morphism fvect) defines a functor:

.vect : CohZ −→ VectZ,

which restricts to a functor:

.vect : Coh
≤1

Z −→ Vect
≤1

Z .

Proposition 2.3.2 establishes also that these functors are left adjoints to the inclusion functors

VectZ ↪→ CohZ and Vect
≤1

Z ↪→ Coh
≤1

Z .

2.3.1.3. The objects E in CohZ such that E
vect

= 0. In our constructions of invariants on CohZ,
the following characterization of its objects with trivial vectorization will be useful.

Proposition 2.3.5. For every object E := (E, ∥.∥) in CohZ, the following conditions are equiv-
alent:

(i) E
vect

= 0;
(ii) E/tor +K is dense in ER, where K = ker ∥.∥ := {v ∈ ER | ∥v∥ = 0};
(iii) for every ε ∈ R∗

+, ER = E/tor +BER
(0, ε);

(iv) for every ε ∈ R∗
+, there exists a generating family (ei)i∈I of the Z-module E such that

∥ei∥ < ε for every i ∈ I;
(v) there exists N ∈ N and, for every ε ∈ R∗

+, a generating family (ei)1≤i≤N of the Z-module
E such that ∥ei∥ < ε for every i ∈ {1, . . . , N};

(vi) for every ε ∈ R∗
+, there exists a family (ei)i∈I of elements of E/tor which generate the

R-vector space ER such that ∥ei∥ < ε for every i ∈ I.

When these conditions are satisfied and E is torsion-free13, condition (v) is satisfied with N = rkZE.

Among the above conditions, (iii), (iv), and (vi) may be reformulated in terms of the invariants
ρ, γ, and λ[0] introduced in Chapter 6, Sections 6.1 and 6.4. Namely they are respectively equivalent
to:

(iii’) ρ(E) = 0;
(iv’) γ(E) = 0;
(vi’) λ[0](E) = 0.

Proof. We shall use, in the special case of Euclidean coherent sheaves, some of the relations
between the invariant ρ, γ and λ[0] established in Chapter 6.14

13or equivalently, free.
14The proofs of these relations in Chapter 6 do not rely on Proposition 2.3.5.
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The equivalence (i)⇔ (ii) follows from the definition of E
vect

, and the implication (ii)⇒ (iii)
from the inclusion:

K ⊆ BER
(0, ε),

valid for every ε ∈ R∗
+.

The implication (iii′)⇒ (iv′) is a special case of Proposition 6.4.10, and the implication (vi′)⇒
(v) follows from Proposition 6.4.8, which also shows that, when E is torsion-free, we may take
N = rkZE in (v).

The implications (iv)⇒ (vi) and (v)⇒ (vi) are clear.

Finally consider an element ξ of E∨ = HomZ(E,Z) such that the linear form ξR : ER → R is
continuous on (ER, ∥.∥); there exists C ∈ R+ such that:

|ξ(v)| ≤ C ∥v∥
for every v ∈ ER. When (vi) holds, we may choose ε in (O, 1/C) and find a family (ei)i∈I in Etor as
in the statement of (vi). Then we have:

ξR(ei) ∈ Z and |ξR(ei)| ≤ C∥ei∥ ≤ Cε < 1,

for every i ∈ I. This implies that the ξR(ei) all vanish, and therefore that ξ vanishes. According to
Corollary 2.3.3, this proves that Evect∨ is zero. This establishes the implication (vi)⇒ (i). □

2.3.1.4. The kernel of the admissible surjective morphism νE. Let us return to the notation of

2.3.1.1 above, and consider the admissible short exact sequence in CohZ attached to νE :

(2.3.8) 0 −→ V ↪−→E
νE−→ E

vect −→ 0.

The object V of CohZ admits the following description:

Proposition 2.3.6. With the above notation, we have:

(2.3.9) Vtor = Etor, V/tor = E/tor ∩ E/tor +K
◦
, and VR = E/tor +K

◦
.

Moreover V/tor +K is dense in VR.

Proof. The relations (2.3.9) are straightforward. Moreover any element v of VR := VR =

E/tor +K
◦
may be written as a limit:

v = lim
i→+∞

(ei + ki)

with ei ∈ E/tor and ki ∈ K. Then we have:

0 = νE(v) = lim
i→+∞

νE(ei + ki) = lim
i→+∞

νE(ei).

Since νE(ei) belongs to the discrete subgroup Evect of Evect
R , it vanishes for i large enough. Conse-

quently ei belongs to V/tor for i large enough, and v is the limit of a sequence in V/tor +K. □

Together with the equality:
Evect = νE,R(E/tor +K),

this implies:

Corollary 2.3.7. The inverse image in ER of Evect by νER is:

ν−1

E,R(E
vect) = E/tor +K

The density of V/tor +K in VR may be rephrased as the equality:

(2.3.10) V
vect

= 0.

The admissible surjective morphism νE is actually characterized by this property of its kernel V :
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Proposition 2.3.8. Let f : E := (E, ∥.∥)→ F be an admissible surjective morphism in CohZ,
with range F an object of VectZ. If ker f := (ker f, ∥.∥|ker fR) satisfies:

(2.3.11) ker f
vect

= 0,

then there exists a unique isometric isomorphism:

ι : E
vect ∼−→ F

such that:

(2.3.12) f = ι ◦ νE .

Proof. Consider the admissible short exact sequence:

0 −→ ker f↪−→E f−→ F −→ 0.

Every element ξ of E∨ := HomZ(E,Z) such that ξR : ER → R is continuous on (ER,Vect.Vect)
vanishes on ker f because of 2.3.11, and therefore factorizes through F . Conversely, for any η in
F∨ = HomZ(F,Z), the linear form

f∨R (ηR) := ηR ◦ fR : ER −→ R
is continuous on (ER, ∥.∥). Consequently, according to Corollary 2.3.3, there exists a unique isomor-
phism of Z-modules:

i : F∨ ∼−→ Evect∨

such that:
ν∨
E
◦ i = f∨.

Its transpose defines an isomorphism:

ι := i∨ : Evect ∼−→ F

which satisfies (2.3.12). Finally ι is isometric as a consequence of (2.3.12) and of the admissibility
of f and νE . □

2.3.1.5. An example: Euclidean seminorms of rank 1. Let E be a finitely generated Z-module
of rank n ≥ 2.

Let Q(ER) be the cone of Euclidean semipositive quadratic forms on ER, and let Q(ER)1 be
the set of semipositive quadratic forms of rank 1 on ER. The corresponding seminorms on ER are
precisely the ones of the form:15

|ξ| : v 7−→ |ξ(v)|
for some ξ ∈ E∨

R \ {0}. To any such ξ, we may attach the object in CohZ:

Eξ := (E, |ξ|).

The Z-module E∨ and the Q-vector space E∨
Q will be identified to subsets of E∨

R . Any non-zero
element ξ of E∨

R (resp. of E∨
Q) defines an element [ξ] of P(E)(R) ≃ (E∨

R \{0})/R∗
+ (resp. of its subset

P(E)(Q) ≃ (E∨
Q \ {0})/Q∗

+.). Observe that, for every ξ in E∨
R \ {0}, its class [ξ] belongs to P(E)(Q)

if and only if
Rξ ∩ E∨ ̸= {0}.

When this holds, there exists a unique element t(ξ) in R∗
+ such that t(ξ)ξ is a primitive element in

E∨ \ {0}, or equivalently such that:

Rξ ∩ E∨ = Z t(ξ)ξ.
15The set Q(ER)1 is the union of the extremal rays (minus the origin) of of the closed convex cone Q(ER). It is

a real analytic submanifold of S2E∨
R , and the map

E∨
R \ {0} −→ Q(ER)1, ξ 7−→ |ξ|2

is an étale covering of degree 2.
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Proposition 2.3.9. With the above notation, for every ξ ∈ E∨
R \ {0}, we have:

E
vect

ξ = 0 if [ξ] ∈ P(E)(R) \ P(E)(Q).

Moreover when [ξ] belongs to P(E)(Q), the “vectorization” of Eξ is the surjective admissible mor-
phism:

νEξ
= t(ξ)ξ : Eξ −→ E

vect

ξ := (Z, t(ξ)−1|.|).

This is an easy consequence of Corollary 2.3.3, and we leave the details to the reader.

2.3.2. The vectorization functor .vect : CohX −→ VectX . In this subsection, we extends
the construction of the vectorization functor from CohZ to VectZ we construct a vectorization
functor:

.vect : CohX −→ VectX

where X is SpecOK for K an arbitrary number field. This construction will be compatible with the
previous construction where X is SpecZ via the direct image functors:

π∗ : CohX −→ CohZ and π∗ : VectX −→ VectZ .

Namely, for every object E in CohX we will have a canonical isomorphism in VectZ:

(π∗E)vect
∼−→ π∗(E

vect
).

2.3.2.1. The Hermitian vector bundle E
vect

associated to E in CohX . Let E := (E, (∥.∥σ)σ:K↪→C
be an object in CohX . Recall that its direct image is defined as the object of CohZ:

π∗E := (π∗E, ∥.∥)
where π∗E denotes E seen as a Z-module, and where, for every x = (xσ)σ:K↪→C in

(π∗E)C = E ⊗Z C ≃
⊕

σ:K↪→C
Eσ,

its Hermitian seminorm ∥x∥ is defined by:

∥x∥2 :=
∑

σ:K↪→C
∥xσ∥2σ.

Applied to π∗E, the construction of paragraph 2.3.1.1 produces a Euclidean lattice (π∗E)vect

and an admissible short exact sequence in CohZ:

0 −→ V := ker νπ∗E
↪−→π∗E

νπ∗E−→ (π∗E)vect −→ 0.

Proposition 2.3.10. With the above notation, the Z-submodule V := ker νπ∗E
of π∗E is an

OK-submodule of E.

Proof. For every a ∈ OK , the morphism of Z-modules:

[aE ] : π∗E −→ π∗E, v 7−→ av

defines an endomorphism of π∗E in CohZ. Indeed the C-linear endomorphism [a]C := [a]⊗Z IdC of
(π∗E)C ≃

⊕
σ:K↪→CEσ satisfies, for every x = (xσ)σ:K↪→C in (π∗E)C:

∥[aE ]Cx∥2 = ∥(σ(a)xσ)σ:K↪→C∥2 =
∑

σ:K↪→C
|σ(a)|2 |xσ|2 ≤ max

σ:K↪→C
|σ(a)|2

∑
σ:K↪→C

|xσ|2

= max
σ:K↪→C

|σ(a)|2 ∥x∥2.

Consequently we may consider the endomorphism:

[aE ]
vect : (π∗E)vect −→ (π∗E)vect
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of the object (π∗E)vect of VectZ. It satisfies:

[aE ]
vect ◦ νπ∗E

= νπ∗E
◦ [aE ],

and therefore [a] maps V = ker νπ∗E
into itself. □

We may endow the Z-module (π∗E)vect underlying (π∗E)vect with the structure of OK-module
that makes the isomorphism defined by νπ∗E

:

E/V
∼−→ (π∗E)vect

an isomorphism of OK-modules. Then the short exact sequence of Z-modules:

0 −→ V ↪−→π∗E
νπ∗E−→ (π∗E)vect −→ 0

becomes a short exact sequence of OK-modules, which we shall denote by:

0 −→ V := ker νE ↪−→π∗E
νE−→ Evect −→ 0.

In turn, this short exact sequence of OK-modules gives rise to an admissible short exact sequence
in CohX :

0 −→ ker νE = (V, (∥.∥σ|Eσ
)σ:K↪→C)↪−→π∗E := (E, (∥.∥σ)σ:K↪→C)

νE−→ E
vect

:= (Evect, (∥.∥vectσ )σ:K↪→C) −→ 0,

where the Hermitian norms defining ker νE and π∗E are deduced by restriction and by quotient from

the ones defining E.

The compatibility between the constructions of quotients and of direct sums of Hermitian norms
implies that, for every v = (vσ)σ:K↪→C in Evect

C ≃
⊕

σ:K↪→CE
vect
σ , the following equality holds:

(∥v∥vect)2 =
∑

σ:K↪→C
∥vσ∥2σ.

In other words, the tautological isomorphism:

π∗E
vect ≃ (π∗E)vect

defines an isometric isomorphism of Euclidean lattices:

(2.3.13) π∗E
vect ≃ (π∗E)vect.

Observe also that, with the notation of the proof of Proposition 2.3.10, for every a ∈ OK , the
endomorphism [aE ] of π∗E satisfies:

(2.3.14) [aE ]
vect = [aEvect ],

where [aEvect ] denotes the multiplication by a in Evect.

2.3.2.2. The functor .vect : CohX −→ VectX . Recall that to a morphism:

f : E −→ F

in CohX (resp. in Coh
≤1

X ) is functorially attached a morphism:

π∗f : π∗E −→ π∗F

in CohZ (resp. in Coh
≤1

Z ). By construction, π∗f is the morphism of OK-module f : E → F seen
as a morphism of Z-modules.

With this notation, for every object E in CohX , the morphisms νπ∗E
and π∗νE coincides once

their ranges are identified by means of (2.3.13).
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Proposition 2.3.11. Every morphism f : E −→ F in CohX (resp. in Coh
≤1

X ), where F is an
object of VectX , uniquely factorizes as

(2.3.15) f = f̃ ◦ νE ,

with f̃ : E
vect −→ F a morphism in VectX (resp. in Vect

≤1

X ).

Observe that the factorization of π∗f : π∗E → π∗F :

(2.3.16) π∗f = π∗f̃ ◦ π∗νE = π∗f̃ ◦ νπ∗E

deduced from (2.3.15) by direct image necessarily coincides with its factorization in CohZ (resp. in

Coh
≤1

Z ) constructed in Proposition 2.3.2.

Proof. Consider the factorization:

π∗f = (π∗f)
∼ ◦ νπ∗E

of π∗f : π∗E → π∗F in CohZ provided by Proposition 2.3.2. To establish the proposition, it is
sufficient to prove that the morphism of Z-modules:

(π∗f)
∼ : E −→ F

is actually OK-linear.

To achieve this, observe that for every a ∈ OK , the OK-linearity of f : E → F implies the
equality of morphisms in CohX with source π∗E and range π∗F :

π∗f ◦ [aE ] = [aF ] ◦ π∗f.

Using the adjunction property of the functor .vect : CohZ −→ VectZ, this implies the relations:

(π∗f)
∼ ◦ [aE ]vect = (π∗f ◦ [aE ])∼ = ([aF ] ◦ π∗f)∼ = [aF ] ◦ (π∗f)∼.

Together with (2.3.14), this implies:

(π∗f)
∼ ◦ [aEvect ] = [aF ] ◦ (π∗f)∼,

and establishes the OK-linearity of (π∗f)
∼. □

From Proposition 2.3.11, we immediately deduce the following extension of Corollary 2.3.4:

Corollary 2.3.12. For every morphism f : E → F in CohX , there exists a unique morphism

fvect : E
vect −→ F

vect

in VectX such that the following diagram is commutative:

E
f−−−−→ F

νE

y yνF
E

vect fvect

−−−−→ F
vect

.

Moreover the morphism:

π∗f
vect : π∗E

vect −→ π∗F
vect

coincides with (π∗f)
vect when π∗E

vect
and π∗(E

vect
) (resp. π∗F

vect
and π∗(F

vect
)) are identified by

means of the isomorphism (2.3.13).
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As in paragraph 2.3.1.2 above when X = SpecZ, Corollary 2.3.12 implies that assigning to an

object E (resp. a morphism f) in CohX its “vectorization” E
vect

(resp. the morphism fvect) defines
a functor:

.vect : CohX −→ VectX ,

which restricts to a functor:

.vect : Coh
≤1

X −→ Vect
≤1

X ,

and Proposition 2.3.11 establishes also that these functors are left adjoints to the inclusion functors

VectX ↪→ CohX and Vect
≤1

X ↪→ Coh
≤1

X .

2.3.2.3. The objects E in CohX such that E
vect

= 0. The characterizations in Proposition

2.3.5 of the objects E in CohZ such that E
vect

is zero immediately provides a characterization of

the objects E in CohX such that E
vect

= 0, thanks to the isomorphism (2.3.13). The following
straightforward consequence of Proposition 2.3.5 will also be useful when constructing invariants on
CohX :

Proposition 2.3.13. For every object E of CohX , the following conditions are equivalent:

(i) E
vect

= 0;

(ii) there exists N ∈ N, and for every δ ∈ R, a surjective morphism in Coh
≤1

X :

OX(δ)⊕N −→ E.

Observe also that any object E := (E, (∥.∥σ)σ:K↪→C) of CohX such that, for some field embed-
ding σ : K ↪→ C:

(2.3.17) ∥.∥σ = 0

satisfies:

E
vect

= 0.

Indeed (2.3.17) implies that every morphism f : E → F in CohX with F in VectX satisfies fσ = 0,
and therefore vanishes.

Corollary 2.3.3 and Proposition 2.3.8 also admit straightforward generalizations concerning Her-
mitian coherent sheaves over X = SpecOK instead of Hermitian coherent sheaves over SpecZ.

2.4. Hermitian Quasinorms and Complex Topological Vector Spaces

2.4.1. Hermitian Quasinorms on Complex Vector Spaces.

2.4.1.1. To develop a suitable duality formalism concerning complex vector spaces endowed with
seminorms that possibly vanish on some non zero vectors, we need to consider generalizations of
norms and seminorms which are allowed to take the value +∞.

Definition 2.4.1. Let V be a complex vector space. A quasinorm on V is a map

||.|| : V 7−→ [0,+∞]

such that the following conditions are satisfied:

(i) ∀λ ∈ C,∀v ∈ V, ||λv|| = λ||v||;
(ii) ∀v, w ∈ V, ||v + w|| ≤ ||v||+ ||w||.

In (ii), we use the convention: 0.(+∞) = 0.

Given V and ||.|| as in Definition 2.4.1, we may consider the vector subspace V0 (resp. Vfin) of
V of elements v such that ∥v∥ = 0 (resp. such that ||v|| < +∞). We say that that the quasinorm
||.|| is finite when Vfin = V , or equivalently when ||.|| is a seminorm, and that ∥.∥ is definite when
V0 = 0. A quasinorm is both finite and definite if and only if it is a norm.
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Clearly the data of a quasinorm ||.|| on a complex vector space V is equivalent to the data of
two vector subspaces V0 ⊂ Vfin of V , and of a norm ||.||˜ on the quotient Vfin/V0: if p denotes the
quotient map from Vfin to Vfin/V0, one attaches to (V0, Vfin, ||.||˜) the quasinorm ||.|| defined by:

||v|| := +∞ if v ∈ V \ Vfin,
and:

||v|| := ||p(v)||˜ if v ∈ Vfin.

Finally a quasinorm ∥.∥ on a complex vector space V will be called a Hermitian quasinorm
when the seminorm defined by its restriction to Vfin is a Hermitian seminorm, or equivalently with
the above notation, when the norm ||.||˜) on Vfin/V0 is a Hermitian norm. This holds if and only if,
besides conditions (i) and (ii) in Definition 2.4.1, the quasinorm ∥.∥ also satisfies:

(iii) ∀v, w ∈ V, ||v + w||2 + ||v − w||2 = 2||v||2 + 2||w||2.

Let us emphasize that our use of the terminology quasinorm is not standard.16

The definitions and the results of this section admit straightforward variants, where complex vec-
tor spaces are replaced by real vector spaces, and Hermitian (semi)norms by Euclidean (semi)norms.

2.4.1.2. The following example is a basic instance of the construction by duality of Hermitian
quasinorms. This construction will be extended to the infinite dimensional setting in the next
subsections.

Example 2.4.2. Let W be a finite dimensional C-vector space, and let:

W∨ := HomC(W,C)

be the dual vector space.

To any Hermitian seminorm ∥.∥ on W, we may attach the lower semicontinuous function:

∥.∥∨ :=W∨ −→ [0,+∞]

defined by:

∥ξ∥∨ := sup
x∈W,∥x∥≤1

|ξ(x)|.

It is actually a definite Hermitian quasinorm on W∨. Indeed, if we let:

K := {x ∈W | ∥x∥ = 0}
and

K⊥ := {ξ ∈W∨ | ξ|K = 0},
then, for any ξ ∈W∨, we have:

(2.4.1) ∥ξ∥∨ < +∞⇐⇒ ξ ∈ K⊥.

The transpose of the quotient map V → V/K defines an isomorphism of C-vector spaces (W/K)∨ ≃
K⊥, and using this identification, the restriction ∥.∥|K⊥ coincides with the norm dual to the Her-
mitian norm on W/K deduced from the seminorm ∥.∥.

Moreover, the seminorm ∥.∥ on W may be recovered from the quasinorm ∥.∥∨ on W∨. Indeed,
for every x ∈W, we have:

∥x∥ = sup
ξ∈W∨,∥ξ∥∨≤1

|⟨ξ, x⟩|.

It is straightforward that this construction establishes a bijection between Hermitian seminorms
on W and definite Hermitian quasinorms on W∨.

16In [GR84, Section 10.1.1], Grauert and Remmert call protonorm a definite quasinorm that defines a complete

norm on Vfin.
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2.4.1.3. The maximum of two Hermitian quasinorms on some complex vector space is not al-
ways a Hermitian quasinorms.17 However, Hermitian quasinorms are stable under the operation of
“filtrant supremum”:

Proposition 2.4.3. Let (I,⪯) be a directed set, and let (∥.∥i)i∈I be a family of Hermitian
quasinorms on V such that:

i ⪯ i′ =⇒ ∥.∥i ≤ ∥.∥i′
for any (i, i′) ∈ I2.

Then the map :

∥.∥ : V −→ [0,+∞]

defined by:

(2.4.2) ∥v∥ := sup
i∈I
∥v∥i

is a Hermitian quasinorm on V .

This directly follows from the observation that the quasinorm ∥.∥ defined by (2.4.2) is the
pointwise limit of the quasinorms ∥.∥i when i runs over the directed set (I,⪯).

2.4.1.4. A vector space V equipped with a Hermitian quasinorm ||.|| as above is endowed with
a natural topology where a basis of neighborhood of 0 is given by the open balls ||x|| < r, r > 0.
The closure of any singleton {x} is x + V0, and for any x ∈ V , x + Vfin is open and closed, and a
connected component of V . This topology endows the additive group (V,+) with the structure of a
topological group ; it endows the complex vector space V with the structure of a topological vector
space precisely when the quasinorm ||.|| is finite.

Let V and W be two complex vector spaces, equipped with quasinorms ∥.∥V and ∥.∥W . As
above, we let:

Vfin := {v ∈ V | ∥v∥V < +∞} and Wfin := {w ∈W | ∥w∥W < +∞}.

The following proposition is a straightforward consequence of the definitions.

Proposition 2.4.4. For every C-linear map φ : V → W , the following equality holds18 in
[0,+∞]:

|||φ||| := inf
{
λ ∈ R+ | ∀v ∈ V, ∥φ(v)∥W ≤ λ∥v∥W

}
= inf

{
λ ∈ R+ | ∀v ∈ Vfin, ∥φ(v)∥W ≤ λ∥v∥W

}
.(2.4.3)

Moreover the following conditions are equivalent:

(i) the map φ is continuous when V and W are equipped with the topology defined by the
quasinorms ∥.∥V and ∥.∥W ;

(ii) φ(Vfin) ⊆ Wfin, and the map φ|Vfin
: Vfin → Wfin is continuous when Vfin (resp. Wfin) is

equipped wiith the seminorm ∥.∥V |Vfin
(resp. ∥.∥W |Wfin

);
(iii) |||φ||| < +∞.

Observe that, when the continuity conditions (i)-(ii) are satisfied, the infimum in (2.4.3) is
actually a minimum, and that the operator (quasi)norm:

|||.||| : HomC(V,W ) −→ [0,+∞]

defined by (2.4.3) is indeed a quasinorm on the complex vector space HomC(V,W ).

17Actually, on any complex vector space V of dimension > 1, there exists two Hermitian norms ∥.∥1 and ∥.∥2
such that the norm max(∥.∥1, ∥.∥2) is not Hermitian.

18Recall that the infimum of the empty subset of R+ is +∞.
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2.4.1.5. Let V ′ be a vector subspace of a complex vector space V equipped with a Hermitian
quasinorm ||.||. Then the restriction of ||.|| to V ′ is clearly a Hermitian quasinorm, the induced
quasinorm, and we have

V ′
0 = V0 ∩ V ′ andV ′

fin = Vfin ∩ V ′.

Consider the quotient map π : V → V/V ′.

Proposition 2.4.5. We can define a Hermitian quasinorm ||.||′ on V/V ′, the quotient quasi-
norm deduced from ||.||, by the formula

||w||′ = inf
v∈π−1(w)

||v||

for any w ∈ V/V ′. Moreover, we have

(V/V ′)fin = π(Vfin) = (Vfin + V ′)/V ′

and
(V/V ′)0 = V ′/V ′

where V ′ denotes the closure of V ′ in V . It coincides with V ′ + (V ′ ∩ Vfin), and therefore (V/V ′)0
is also the image π(V ′ ∩ Vfin) of the closed subspace V ′ ∩ Vfin of Vfin.

Proof. Clearly, ||.||′ is a quasinorm on V/V ′ – namely, it satisfies (i) and (ii) in Definition
2.4.1. To prove that this quasinorm is Hermitian – namely, that it satisfies (iii) – we may argue as
follows.

Let us first assume that ||.|| is a Hermitian norm on V . When the normed space (V, ||.||) is
complete – i.e., when it is a Hilbert space – and V ′ is closed in V , we may consider the orthogonal
V ′′ of V ′ in V . It is a closed vector subspace of V . Moreover, V = V ′ ⊕ V ′′, and the isomorphism
of complex vector spaces

π|V ′′ : V ′′ −→ V/V ′

is an isometry between (V ′′, ||.|||V ′′) and (V/V ′, ||.||′). As a consequence, (V/V ′, ||.||′) is a Hilbert
space.

When (V, ||.||) is possibly non-complete, and V ′ is an arbitrary complex subspace of V , consider

the completion (V̂ , ||.||∧) of the normed space (V, ||.||) and the closure V̂ ′ of V ′ in V̂ . The inclusion

V ↪→ V̂ defines a C-linear map

j : V/V ′ −→ V̂ /V̂ ′

with kernel
ker j = V ′/V ′.

Indeed, we have V ′ = V ∩ V̂ ′. Moreover, if (||.||∧)′ denotes the Hilbertian norm on V̂ /V̂ ′ defined as
the quotient quasinorm of ||.||∧, one easily checks the relation

(||j(w)||∧)′ = ||w||′

for every w ∈ V/V ′.

This shows that ||.||′ is a Hermitian seminorm on V/V ′ and that

(V/V ′)0 = V ′/V ′.

In the general case, the proof can be completed by a formal reduction to the situation where
||.|| is a norm, which we leave to the reader. □

Definition 2.4.6. Let φ : V → W be a linear map between quasinormed Hermitian vector
spaces. Then φ is admissible if φ induces an isometry between V/Kerφ, endowed with the quotient
quasinorm, to φ(V ) ⊂W , endowed with the induced quasinorm.

For instance, the admissible injections are exactly the injective maps that induce an isometry
onto their image.
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2.4.2. Definite Hermitian quasinorms and Hilbert subspaces in Fréchet spaces.

2.4.2.1. In this subsection, we analyze the continuity properties of Hermitian quasinorms on a
complex vector space that is equipped with a topology of Fréchet space.

Proposition 2.4.7. Let F be a complex Fréchet space, and let ∥.∥ be a definite Hermitian
quasinorm on F . Let us consider its C-vector subspace:

H := Ffin = {x ∈ F | ∥x∥ < +∞}.

Then two of following three conditions imply the third one:

(i) The inclusion map i : H ↪→ F is continuous from the pre-Hilbert space (H, ∥.∥) to the
Fréchet space F .

(ii) The normed C-vector space (H, ∥.∥) is complete, or in other words, is a Hilbert space.
(iii) The function ∥.∥ : F → [0,+∞] is lower semicontinuous on F equipped with its Fréchet

topology.

Observe that, according to the very definition of lower semicontinuity, condition (iii) is equivalent
to each of the following two conditions:

(iii)’ For every r ∈ R+, the ball

B∥.∥(0, r) := {v ∈ H | ∥v∥ ≤ r}
is closed in the Fréchet space F .

(iii)” If a sequence (vn)n∈N in F admits a limit v in the Fréchet space F , and if

(2.4.4) ∥vn∥ ≤ 1 for every n ∈ N,

then ∥v∥ ≤ 1.

Proof of Proposition 2.4.7. Let us assume that (i) and (ii) are satisfied, and let us consider
a converging sequence (vn)n∈N of limit v in F such (2.4.4) is satisfied. As it is a bounded sequence in
the Hilbert space (H, ∥.∥), it is weakly convergent in this Hilbert space. Moreover its weak limit w,
like the vn, belongs to the closed ball B∥.∥(0, 1). Moreover the continuity of the inclusion morphism
i implies that the sequence (vn)n∈N converges to w in F equipped with its weak topology. This
implies that w = v, and finally establishes the upper bound ∥v∥ ≤ 1.

Let us assume that (i) and (iii) are satisfied, and let us consider a Cauchy sequence (vn)n∈N in
H. According to the continuity of i, it possesses a limit v in the Fréchet space F . Condition (iii)’
shows that v belongs to H. Moreover, applied to the sequences (vn+k − vk)n∈N, which converges to
v − vk in F , Condition (iii)’ also shows that, for every k ∈ N,

∥vk − v∥ ≤ sup
n∈N
∥vn+k − vk∥.

This converges to zero when k goes to infinity, and therefore (vn)n∈N converges to v in (H, ∥.∥).
Let us finally show that (ii) and (iii) imply (i). By Banach’s closed graph theorem, to establish

the continuity of i when (ii) is satisfied, it is enough to prove that, if a sequence (xn)n∈N in H admits
a limit x in F and satisfies:

lim
n→+∞

∥xn∥ = 0,

then x = 0.

To achieve this, observe that, with the above notation, for any k ∈ N, the sequence (xk+n)n∈N is
contained in B∥.∥(0, rk), where rk := supn∈N ∥xk+n∥ goes to 0 when k grows to infinity. Therefore,

when moreover (iii) is satisfied, its limit x also belongs toB∥.∥(0, rk), and therefore to the intersection:⋂
k∈N

B∥.∥(0, rk) = {0}. □
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2.4.2.2. Examples of pairs (H,F ) of a Hilbert space H continuously embedded in a Fréchet
space F — or equivalently of a definite Hermitian quasinorm on a Fréchet space F that satisfies the
conditions (i)-(iii) in Proposition 2.4.8 — naturally occur in various areas of analysis and geometry.
A noteworthy instance is the Hilbert space H1((0, 1)), of distributions with L2 derivative on the
interval (0, 1), embedded in the Banach space C([0, 1]) of continuous functions on [0, 1]. The pair
(H1((0, 1)), C([0, 1])) plays a key role in the construction of the Brownian motion.

Examples of a Fréchet space F and of a definite Hermitian quasinorm ∥.∥ on F that satisfy
exactly one of the condition (i)-(iii) are easily constructed.

For instance, an example where (i) only is satisfied is obtained by taking for F some infinite
dimensional Hilbert space, with Hilbert norm ∥.∥0, and by taking for H a vector subspace not closed
in F , and by defining:

∥x∥ :=

{
∥x∥0 if x ∈ H,

+∞ if x ∈ F \H.

Examples where (iii) only is satisfied may be constructed by using that an infinite dimensional
Hilbert space admit some non-continuous automorphisms when seen as a C-vector space.

Finally, an example where (iii) only is satisfied is given by a Fréchet space F admitting a
continuous Hermitian norm ∥.∥ such that (F, ∥.∥) is not complete.19

2.4.3. Definite Hermitian quasinorms and Hilbert spaces in CN. When the Fréchet
space F is CN equipped with the topology of simple convergence of sequences, conditions (i) and (ii)
in Proposition 2.4.7 not only imply condition (iii), but actually are equivalent to condition (iii).

This will follow from Proposition 2.4.7 combined with the description of lower semi-continuous
definite Hermitian quasinorms on CN in Proposition 2.4.8 below, which constitutes an infinite di-
mensional generalization of Example 2.4.2.

2.4.3.1. The vector space CN may be identified to the vector space C(N)∨, dual of the vector
space C(N) of sequences with finite supports, by means of the pairing ⟨·, ·⟩ defined by

⟨ξ, x⟩ :=
∑
n∈N

ξnxn

for any ξ = (ξn)n∈N in CN and any x = (xn)n∈N in C(N).

The Fréchet topology on CN coincides with the topology defined by this duality, namely the
σ(CN,C(N))-topology (cf. [Bou81, Section II.6.2]). The vector space C(N) may be identified, by
means of the pairing ⟨·, ·⟩, with the topological dual of the Fréchet space CN. Moreover the strong
topology on this dual coincides with the inductive topology20 on C(N), and the Fréchet space CN

may also be identified with the strong dual of C(N) equipped with its inductive topology.

Proposition 2.4.8. For any Hermitian seminorm ∥.∥ on C(N), the function:

∥.∥∨ : CN −→ [0,+∞]

defined by the equality:

(2.4.5) ∥ξ∥∨ := sup
{
|⟨ξ, x⟩|, x ∈ C(N) and ∥x∥ ≤ 1

}
is a definite Hermitian quasinorm on CN, and is lower semicontinuous when CN is equipped with its
Fréchet space topology.

19For instance, we may take for F some infinite dimensional Hilbert space, and for ∥.∥ a Hermitian norm on F
compact with respect to the Hilbert norm of F .

20See 1.4.1 above. The C-vector space C(N) equipped with its inductive topology may be identified with the
inductive limit, in the category of locally convex topological C-vector spaces, of its finite-dimensional vector subspaces

equipped with their canonical (Hausdorff locally convex) topology.



2.4. HERMITIAN QUASINORMS AND COMPLEX TOPOLOGICAL VECTOR SPACES 65

Moreover, for any (x, ξ) in C(N) × CN, the inequality:

(2.4.6) |⟨ξ, x⟩| ≤ ∥ξ∥∨ ∥x∥
holds when (∥x∥, ∥ξ∥∨) ̸= (0,+∞).

Conversely, any lower semicontinuous definite Hermitian quasinorm |||.||| on CN is of the form
∥.∥∨ for a unique Hermitian semi-norm ∥.∥ on C(N), which satisfies, for every x ∈ C(N):

(2.4.7) ∥x∥ = sup
{
|⟨ξ, x⟩|, ξ ∈ CN and |||ξ||| ≤ 1

}
.

As usual, to define the right-hand side of (2.4.6), we use the convention: +∞.0 = 0. If ∥.∥ = 0,
then ∥ξ∥∨ = +∞ for every non-zero ξ in CN. In particular, the inequality (2.4.6) does not hold for
a pair (x, ξ) such that ⟨ξ, x⟩ ≠ 0.

Corollary 2.4.9. For any Hermitian seminorm ∥.∥ on C(N), when equipped with the restriction
of the quasinorm ∥.∥∨ defined by (2.4.5), the complex vector space:

H :=
{
ξ ∈ CN | ∥ξ∥∨ < +∞

}
becomes a Hilbert space.

Proof. The validity of (2.4.6) when ξ belongs to H implies that the inclusion morphism i :
H ↪→ CN is continuous from the pre-Hilbert space (H, ∥.∥∨|H) to the Fréchet space CN. According to

Proposition 2.4.7, (H, ∥.∥∨|H) is therefore a Hilbert space. □

2.4.3.2. Proof of Proposition 2.4.8. (1) For every n ∈ N, let us consider the exhaustive
filtration (Fn)n∈N of CN by the subspaces Fn defined by:

(xk)k∈N ∈ Fn ⇐⇒ ∀ k ∈ N≥n, xk = 0.

Let us also consider the “closed unit ball” in (C(N), ∥.∥),

B := {x ∈ C(N) | ∥x∥ ≤ 1},
and its intersection with Fn,

Bn := B ∩ Fn.

For any x in CN and any n in N, we let:

∥ξ∥∨n := sup
x∈Bn

|⟨ξ, x⟩| ∈ [0,+∞].

Then, for any n, ∥.∥∨n is clearly a Hermitian quasinorm on CN. Actually it is the “pull-back” by the
projection

pn : CN −→ Cn, (ξk)k∈N 7−→ (ξ0, · · · , ξn−1)

of some Hermitian quasinorm on Cn, deduced by duality from the Hermitian semi-norm ∥.∥|Fn
on

Fn ≃ Cn. Moreover, for any ξ in CN, the sequence (∥ξ∥∨n)n∈N) is non-increasing and satisfies:

∥ξ∥∨ = sup
n∈N
∥ξ∥∨n = lim

n→+∞
∥ξ∥∨n .

This makes clear that ∥.∥ is lower semicontinuous Hermitian quasinorm on CN. Moreover it is
definite. Indeed, for any ξ in CN \ {0}, there exists x ∈ C(N) such that ⟨ξ, x⟩ ≠ 0; then

x̃ := max(1, ∥x∥)−1x

satisfies ∥x̃∥ ≤ 1, and therefore:

∥ξ∥∨ ≥ |⟨ξ, x̃⟩| = max(1, ∥x∥)−1|⟨ξ, x⟩| > 0.

(2) The inequality (2.4.6) holds when ∥x∥ = 1 by the very definition of ∥ξ∥∨. By homogeneity,
it remains true for any x in C(N) such that ∥x∥ ≠ 0.
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To prove that (2.4.6) also holds when ∥ξ∥∨ < +∞, we are left to show that it holds when
moreover ∥x∥ = 0; or in other words, we are left to establish the implication:

(2.4.8) ∥x∥ = 0 and ∥ξ∥∨ < +∞ =⇒ ⟨ξ, x⟩ = 0.

Observe that, when ∥.∥ = 0, the condition ∥ξ∥∨ < +∞ implies ξ = 0. Therefore, to establish
this implication, we may also assume that there exists y in C(N) such that ∥y∥ ≠ 0. Then, for any ε
in R∗

+, we have:

∥x+ εy∥ = ε∥y∥ ≠ 0,

and therefore:

|⟨ξ, x⟩+ ε⟨ξ, y⟩| = |⟨ξ, x+ εy⟩| ≤ ∥ξ∥∨ ∥x+ εy∥ = ∥ξ∥∨ε∥y∥.
By taking the limit when ε goes to 0, we derive the vanishing of ⟨ξ, x⟩ = 0.

(3) Let |||.||| be a lower continuous definite Hermitian quasinorm on CN.

Let us consider the following subset of CN:

B := B|||.|||(0, 1) := {ξ ∈ H | |||ξ||| ≤ 1}.

It is convex and balanced; moreover, it is closed in CN since |||.||| is lower semi-continuous. Therefore,
if we define the polar of B as

B
◦
:=
{
x ∈ C(N) | ∀ξ ∈ B, |⟨ξ, x⟩| ≤ 1

}
,

and its bipolar as

B
◦◦

:=
{
ξ ∈ CN | ∀x ∈ B◦, |⟨ξ, x⟩| ≤ 1

}
,

we have:

(2.4.9) B
◦◦

= B;

see [Bou81, II.6.3, Corollaire 3 and II.8.3, Proposition 2].

Let us define a function:

∥.∥ : C(N) −→ [0,+∞]

by the equation (2.4.7). For every x in C(N) and any t ∈ R∗
+, we have:

∥x∥ := sup
ξ∈B
|⟨ξ, x⟩| ≤ t ⇐⇒ x ∈ tB◦

.

In particular, ∥x∥ = +∞ if and only if R∗
+x ∩ B

◦
= ∅. Since B

◦
is convex and balanced, this

holds precisely when the complex vector subspace of C(N) generated by B
◦
does not contain x. The

existence of a point x such that ∥x∥ = +∞ would therefore imply the existence of some ξ in CN \{0}
whose kernel would contain B

◦
. Then the line C.ξ would be contained in B

◦◦
, hence in B by (2.4.9).

This would contradict the definiteness of |||.|||.
This shows that ∥.∥ takes its values in [0,+∞), and is therefore a seminorm on C(N).

For any V in the set F(CN) of finite dimensional complex vector subspaces of CN, we may
consider the map:

∥.∥V : C(N) −→ [0,+∞]

defined by:

∥x∥V := sup
ξ∈B∩V

|⟨ξ, x⟩|.

Let us introduce

V ⊥ := {x ∈ C(N) | ∀ξ ∈ V, ⟨ξ, x⟩ = 0},
and

Vfin := {ξ ∈ V | |||ξ||| < +∞}.
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Then CN/V ⊥ may be identified with the dual V ∨, the inclusion Vfin ↪→ V defines by duality a
surjective linear map V ∨ ↠ V ∨

fin, and we may consider the composite map:

pV := C(N) ↠ C(N)/V ⊥ ∼−→ V ∨ ↠ V ∨
fin.

The restriction |||.||||Vfin
of |||.||| to the finite-dimensional space Vfin is a Hermitian norm. By duality,

it defines a Hermitian norm |||.|||∨|Vfin
on V ∨

fin, and it directly follows from the definitions that, for

any x in C(N),

∥x∥V = |||pV (x)|||∨|Vfin
.

This shows that ∥.∥V is a Hermitian semi-norm on C(N).

Ordered by inclusion, F(CN) is a directed poset. It is straightforward that, for any V and V ′ in
F(CN), we have:

V ⊆ V ′ =⇒ ∥.∥V ≤ ∥.∥V ′ ,

and that, for any x ∈ C(N),

∥x∥ := sup
V ∈F(CN)

∥x∥V .

The stability of Hermitian quasinorms under the operation of “filtrant supremum” stated in
Proposition 2.4.3 therefore implies that the seminorm ∥.∥ is Hermitian. Moreover, the equality
(2.4.9) implies (indeed is equivalent to) the relation:

(2.4.10) |||.||| = ∥.∥∨.

The unicity of the Hermitian seminorm ∥.∥ on C(N) that satisfies (2.4.10) follows again from an
argument involving bipolars. Indeed, if we let

C := {x ∈ C(N) | ∥x∥ ≤ 1},
the relation (2.4.10) is equivalent to the equality:

B = C◦ := {ξ ∈ CN | ∀x ∈ C, |⟨ξ, x⟩ ≤ 1}.

Moreover, according to [Bou81, II.6.3, Corollaire 3 and II.8.3, Proposition 2] applied in C(N)

equipped with the inductive topology, we have:

C◦◦ = C.

Therefore, if (2.4.10) holds, then we have:

C = B
◦
,

and consequently ∥.∥ necessarily satisfies (2.4.7). □

2.4.3.3. For later reference, we spell out the following consequence of the previous results in this
subsection.

Corollary 2.4.10. Let (H, |.|) be a complex Hilbert space, and let i : H ↪→ CN be an injective
C-linear map, continuous from (H, |.|) to CN equipped with its Fréchet space topology.

Then the function:

∥.∥H,i : CN −→ [0,+∞]

defined by the equality:

∥ξ∥H,i :=

{
|i−1(ξ)| if ξ ∈ i(H)

+∞ if ξ ∈ CN \ i(H)

is a lower continuous definite Hermitian quasinorm on the Fréchet space CN.

Conversely, any lower continuous definite Hermitian quasinorm of CN is of the form ∥.∥H,i for a
complex Hilbert space (H, |.|) and a continuous injective C-linear map i as above, which are uniquely
determined (up to a unique isomorphism).
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Proof. By duality, the map i determines a C-linear map

i∨ : C(N) −→ H∨

from C(N) to the Hilbert space (H∨, |.|∨) dual of (H, |.|). Since i is injective, its transpose i∨ has a
dense image, and the double transpose i∨∨ may be identified with i. This implies that a linear form
ξ ∈ CN on C(N) belongs to the image of i if and and only if it factorizes through i∨ and defines a
continuous linear form on (H∨, ∥.∥∨), and that the following equality holds:

(2.4.11) ∥ξ∥H,i = sup
{
|⟨ξ, x⟩|;x ∈ C(N) and |i∨(x)|∨ ≤ 1

}
.

This expression for ∥.∥H,i establishes its lower semi-continuity. It actually shows that ∥.∥H,i
coincides with the Hermitian quasinorm ∥.∥∨ dual of the Hermitian semi-norm on C(N) defined as:

∥.∥ : C(N) −→ [0,+∞), x 7−→ |i∨(x)|∨.

The last assertion of the proposition follows from Proposition 2.4.8 and Corollary 2.4.9. □

Finally, we may formulate an analogue, valid in the infinite dimensional setting, of the equiva-
lence (2.4.1) in Example 2.4.2.

Proposition 2.4.11. Consider a Hermitian seminorm ∥.∥ on C(N) and the dual quasinorm ∥.∥∨
on CN defined by (2.4.5). If we let:

K := {x ∈ C(N) | ∥x∥ = 0},

then the closure H in the Fréchet space CN of its vector subspace:

H :=
{
ξ ∈ CN | ∥ξ∥∨ < +∞

}
satisfies the equality:

H = K⊥ :=
{
ξ ∈ CN | ∀x ∈ K, ⟨ξ, x⟩ = 0

}
.

In particular, H is dense in CN if and only if the seminorm ∥.∥ is actually a norm.

Proposition 2.4.11 follows from a straightforward duality argument that we leave to the reader.

2.4.4. The equivalence of categories ·∨ : indVect
[0]

C
∼−→ proVect

[∞]

C .

2.4.4.1. The results of the preceding subsection may be rephrased in terms of the categories

indVect
[0]

C and proVect
[∞]

C , and of their variants indVect
[0]≤1

C and proVect
[∞]≤1

C , defined as fol-
lows.

The categories indVect
[0]

C and indVect
[0]≤1

C admit as objects the pairs (W, ∥.∥) where W is
a C-vector space of at most countable dimension. If (W, ∥.∥) and (W ′, ∥.∥′) are two such pairs, a
morphism:

φ : (W, ∥.∥) −→ (W ′, ∥.∥′)

in the category indVect
[0]

C (resp. in indVect
[0]≤1

C ) is a C-linear map φ : W → W ′ whose operator
norm:

|||φ||| := sup
w∈W,∥w∥≤1

∥φ(w)∥′

satisfies the inequality:

|||φ||| < +∞ (resp. |||φ||| ≤ 1).

The categories proVect
[∞]

C and proVect
[∞]≤1

C admit as objects the pairs (F, ∥.∥) where F is
complex Fréchet space isomorphic to CI for some at most countable index set I, and ∥.∥ is a lower
semicontinuous definite quasinorm over F . If (F, ∥.∥) and (F ′, ∥.∥′) are two such pairs, a morphism:

ψ : (F, ∥.∥) −→ (F ′, ∥.∥′)
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in the category proVect
[∞]

C (resp. in proVect
[∞]≤1

C ) is a continuous C-linear map between Fréchet
spaces ψ : F → F ′ whose operator quasinorm with respect to ∥.∥ and ∥.∥′:

|||ψ||| := inf
{
λ ∈ R+ | ∀v ∈ F, ∥ψ(v)∥′ ≤ λ∥v∥

}
satisfies the inequality:

|||ψ||| < +∞ (resp. |||ψ||| ≤ 1).

Observe that the isomorphisms in the category indVect
[0]≤1

C (resp. in proVect
[∞]≤1

C ) are

precisely isometric isomorphims between objects of indVect
[0]

C (resp. of proVect
[∞]

C ). Namely a
morphism φ : (W, ∥.∥) → (W ′, ∥.∥′) (resp. ψ : (F, ∥.∥) → (F ′, ∥.∥′)) as above is an isomorphism in

indVect
[0]≤1

C (resp. in proVect
[∞]≤1

C ) if and only if φ (resp. ψ) establishes a C-linear bijection
between W and W ′ (resp. a C-linear homeomorphism between F and F ′) and if, for every x ∈ W
(resp. every ξ ∈ F ), the following equality holds:

∥φ(x)∥′ = ∥x∥ (resp. ∥ψ(ξ)∥′ = ∥ξ∥).

2.4.4.2. To an object (W, ∥.∥) in indVect
[0]

C , we may attach the dual object in proVect
[∞]

C
defined by:

(2.4.12) (W, ∥.∥)∨ := (W∨, ∥.∥∨),

where W∨ is the Fréchet space:

W∨ := HomC(W,C)
of linear forms on W equipped with the σ(W∨,W )-topology and where ∥.∥∨ is the lower continuous
definite quasinorm on W∨ defined by the equality:

∥ξ∥∨ := sup {|⟨ξ, x⟩|, x ∈W and ∥x∥ ≤ 1} .

Conversely, to an object (F, ∥.∥) of proVect
[∞]

C we may attach the dual object in indVect
[0]

C
defined by:

(2.4.13) (F, ∥.∥)∨ := (F∨, ∥.∥∨),

where:

F∨ := Homcont
C (F,C)

denotes the C-vector space of continuous linear forms on F , and where ∥.∥∨ is the Hermitian semi-
norm on F∨ defined by the following equality, for every x ∈ F∨:

∥x∥∨ := sup {|⟨x, ξ⟩|, ξ ∈ F and ∥ξ∥ ≤ 1} .

According to Example 2.4.2 and Proposition 2.4.8, these two constructions are well-defined, and

are inverse of each other. Namely, for every object (W, ∥.∥) (resp. (F, ∥.∥)) of indVect
[0]

C (resp. of

proVect
[∞]

C ), we have a canonical biduality isomorphism:

(W, ∥.∥)∨∨ ∼−→ (W, ∥.∥) (resp. (F, ∥.∥)∨∨ ∼−→ (F, ∥.∥))

in indVect
[0]≤1

C (resp. in proVect
[∞]≤1

C ).

Consider two objects (W, ∥.∥) and (W ′, ∥.∥′) in indVect
[0]

C , and the dual objects (F, ∥.∥∨) :=

(W, ∥.∥)∨ and (F ′, ∥.∥′∨) := (W ′, ∥.∥′)∨ in proVect
[∞]

C . Then the transpose map establish a canon-
ical isomorphism:

·∨ : HomC(W,W
′)

∼−→ Homcont
C (F ′, F ).

It sends a C-linear map φ :W →W ′ to the continous C-linear map:

φ∨ := · ◦ φ : F ′ := HomC(W
′,C) −→ F := HomC(W,C).
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Its inverse sends a continuous C-linear map ψ : F ′ → F to the map:

ψ∨ := · ◦ ψ :W := Homcont
C (F,C) −→W ′ := Homcont

C (F ′,C).

Moreover, with the previous notation, a straightforward duality argument shows that the op-
erator norm |||φ||| of φ (with respect to ∥.∥ and ∥.∥′) and the operator norm |||φ∨||| of φ∨ (with
respect to ∥.∥∨ and ∥.∥′∨) satisfy:

(2.4.14) |||φ∨||| = |||φ|||.

This implies that we may define duality functors:

·∨ : indVect
[0]

C
∼−→ proVect

[∞]

C and ·∨ : indVect
[0]≤1

C
∼−→ proVect

[∞]≤1

C

(resp. ·∨ : proVect
[∞]

C
∼−→ indVect

[0]

C and ·∨ : proVect
[∞]≤1

C
∼−→ indVect

[0]≤1

C )

by the assignment (2.4.12) (resp. (2.4.13)) at the level of objects, and by sending a morphism

φ in indVect
[0]

C or indVect
[0]≤1

C (resp. ψ in proVect
[∞]

C or proVect
[∞]≤1

C ) to its transpose φ∨

(resp. ψ∨).

Using Example 2.4.2 and Proposition 2.4.8, one easily checks that these duality functors define
adjoint equivalences:

·∨ : indVect
[0]

C ⇆ proVect
[∞]

C : ·∨

and:

·∨ : indVect
[0]≤1

C ⇆ proVect
[∞]≤1

C : ·∨.

2.4.4.3. The following observation is a straightforward consequence of Hahn-Banch theorem. We
spell it out for later reference.

Proposition 2.4.12. Let F := (F, ∥.∥) be an object of proVect
[∞]

C , and F
∨
:= (F∨, ∥.∥)∨ be

its dual in indVect
[0]

C .

For every closed C-vector subspace F ′ of the Fréchet space F, the pair F
′
:= (F ′, ∥.∥|F ′) is an

object of proVect
[∞]

C . Moreover its dual F
′∨

:= (F ′∨, ∥.∥∨|F ′) in indVect
[0]

C may be described as

follows.

The topological dual F ′∨ fits into a short exact sequence of C-vector spaces:

0 −→ F ′⊥↪−→F∨ .|F ′
−→ F ′∨ −→ 0,

where:

F ′⊥ := {ξ ∈ F∨ | ξ|F ′ = 0},

and where .|F ′ denotes the restriction map (ξ 7→ ξ|F ′), and the Hermitian seminorm ∥.∥∨|F ′ on F ′∨

may be identified with the quotient seminorm deduced from the seminorm ∥.∥∨ on F∨.

2.5. The Duality Functors ·∨ : qCohX → proVect
[∞]

X and ·∨ : proVect
[∞]

X → indVect
[0]

X

2.5.1. The categories proVect
[∞]

X and proVect
[∞]≤1

X .
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2.5.1.1. Consider an object (E, (∥.∥x)x∈X(C)) of the category CTCOK
, namely a topological

module over the ring OK , equipped with the discrete topology, that is isomorphic to the limit
lim←−nEn of a projective system

(2.5.1) E0 ↞ E1 ↞ · · ·En ↞ En+1 ↞ · · ·

of surjective morphisms between finitely generated projective OK-modules, equipped with the dis-
crete topology; see [Bos20b, Chapter 4] and Subsection 1.2.2 above.

For every embedding x ∈ X(C) of K in C, we may introduce the completed tensor product:

Êx := Ê⊗̂OK ,xC;

see [Bos20b, 4.2.1]. It is a complex Fréchet space, isomorphic to Cn for some n in N or to CN;

see [Bos20b, 4.2.4 and 5.1.3]. When Ê is the limit lim←−nEn of the projective system (2.5.1), this

Fréchet space may be identified with the limit lim←−nEn,x of the projective system of finite dimensional

C-vector spaces:
E0,x ↞ E1,x ↞ · · ·En,x ↞ En+1,x ↞ · · ·

deduced from (2.5.1) by the extension of scalars x : OK → C.21

Moreover any morphism:

f : Ê −→ F̂

in CTCOK
— that is, any continuous OK-linear map between topological OK-modules as above —

induces, by extension of scalars, a continuous C-linear map between Fréchet spaces:

fx : Êx := Ê⊗̂OK ,xC −→ F̂x := F̂ ⊗̂OK ,xC.

2.5.1.2. The following definition is a generalization of the definition of the pro-Hermitian vector
bundles and of their morphisms, which play a central role in [Bos20b]

Definition 2.5.1. A generalized pro-Hermitian vector bundle over the arithmetic curve X is a
pair:

Ê := (Ê, (∥.∥x)x∈X(C)),

where Ê is an object of CTCOK
, and where (∥.∥x)x∈X(C) is a family, invariant under complex conju-

gation, of lower continuous definite Hermitian quasinorms on the complex Fréchet spaces (Êx)x∈X(C).

If Ê1 := (Ê1, (∥.∥1,x)x∈X(C)) and Ê2 := (Ê2, (∥.∥x,2)x∈X(C)) are two generalized pro-Hermitian
vector bundles over X, a morphism of generalized pro-Hermitian vector bundles:

ψ : Ê1 −→ Ê2

is a morphism ψ : Ê1 → Ê2 in CTCOK
— that is, a continuous OK-linear map — such that, for

every x ∈ X(C), the continuous C-linear map:

ψx : Ê1,x := Ê1⊗̂OK ,xC −→ Ê2,x := Ê2⊗̂OK ,xC

are continuous when Ê1,x and Ê2,x are equipped with the topology defined by the quasinorms ∥.∥1,x
and ∥.∥2,x, or in other words, when their operator quasinorms |||ψx||| with respect to ∥.∥1,x and
∥.∥2,x — which are defined by the relations:

|||ψx||| := inf
{
λ ∈ R+ | ∀v ∈ Ê1,x, ∥ψ(v)∥2,x ≤ λ∥v∥1,x

}
— satisfy the estimates:

(2.5.2) |||ψx||| < +∞.

21The finite dimensional C-vector spaces En,x are endowed with their canonical topology of Hausdorff complex

topological vector space.
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Equivalently, if we introduce the following objects in proVect
[∞]

C :

Ê1,x := (Ê1,x, ∥.∥1,x) and Ê2,x := (Ê2,x, ∥.∥2,x),

condition (2.5.2) means that ψx defines a morphism in proVect
[∞]

C :

ψx : Ê1,x −→ Ê2,x.

The generalized pro-Hermitian vector bundles over X and their morphisms, as defined above,

constitue an OK-linear category, that we will denote by proVect
[∞]

X .

The subcategory of proVect
[∞]

X whose objects are the generalized pro-Hermitian vector bun-

dles over X and whose morphisms are the morphisms ψ : Ê1 → Ê2 as defined above of operator
quasinorms at most one — namely those morphisms such that:

|||ψx|||x ≤ 1 for every x ∈ X(C)

— will be denoted by proVect
[∞]≤1

X .

Here again, the isomorphisms in the category proVect
[∞]≤1

X are precisely the isometric isomor-
phisms, in the obvious sense, between generalized pro-Hermitian vector bundles over X.

2.5.1.3. The pro-Hermitian vector bundles over X introduced in [Bos20b, Chapter 5] may be

identified with the generalized pro-Hermitian vector bundles Ê := (Ê, (∥.∥x)x∈X(C)), defined as in
Definition 2.5.1 above, that satisfy the following additional condition: for every x ∈ X(C), the vector
subspace:

Ex,fin := {v ∈ Ex | ∥v∥x < +∞}
is dense in the Fréchet space Ex.

This directly follows from Corollary 2.4.10. Actually the categories proVectX and proVect
≤1

X

introduced in [Bos20b, section 5.4] are naturally equivalent to the full subcategories of proVect
[∞]

X

and proVect
[∞]≤1

X whose objects satisfy this density condition.

2.5.1.4. When X is SpecZ, we write proVect
[∞]

Z and proVect
[∞]≤1

Z instead of proVect
[∞]

X and

proVect
[∞]≤1

X , and the objects in these categories will be called generalized pro-Euclidean vector
bundles.

2.5.2. The duality functor ·∨ : qCohX → proVect
[∞]

X .

2.5.2.1. Let E := (E, (|.∥x)x∈X(C)) be Hermitian quasi-coherent sheaf over X. In order to define

the dual object E
∨
in the category proVect

[∞]

X , we need some preliminary results comparing the
completed tensor products (E∨)x := E∨⊗̂OK ,xC of the dual OK-module E∨, and the duals (Ex)

∨

of the complex vector spaces Ex.

To the countably generated OK-module E, we may attach the dual OK-module:

E∨ := HomOK
(E,OK).

As shown in Theorem 1.2.2, equipped with the topology of pointwise convergence,22 it is an object
of CTCOK

. For every embedding x ∈ X(C) of K in C, we may also consider the completed tensor
product:

(E∨)x := E∨⊗̂OK ,xC;
see [Bos20b, 4.2.1]. It is a complex Fréchet space, isomorphic to Cn for some n in N or to CN;
see [Bos20b, 4.2.4 and 5.1.3].

22the ring OK being equipped with the discrete topology.
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Actually, we may choose an exhaustive filtration of E by finite generated OK-submodules:

(2.5.3) E0 ⊆ E1 ⊆ · · ·En ⊆ En+1 ⊆ · · · ,
and introduce the projective system defined by the dual OK-modules and the transposes of the
inclusion maps in (2.5.3):

E∨
0 ←− E∨

1 ←− · · ·E∨
n ←− E∨

n+1 ←− · · · ,
and we have a canonical isomorphism of topological OK-modules:

E∨ ≃ lim←−
n

E∨
n ,

where the finitely generated projective OK-modules E∨
n are equipped with the discrete topology.

For every n ∈ N, we may introduce the following OK-submodule of E∨
n :

E∼
n := im (E∨ −→ E∨

n ).

These modules are finitely generated and projective, and fits into a “projective subsystem” of (2.5.3):

(2.5.4) E∼
0 ↞ E∼

1 ↞ · · ·E∼
n ↞ E∼

n+1 ↞ · · · .
By construction, the limit of (2.5.4) is canonically isomorphic to the one of (2.5.3). This defines an
isomorphism of topological OK-modules:

(2.5.5) E∨ ≃ lim←−
n

E∼
n .

2.5.2.2. Let x ∈ X(C) be an imbedding of K in C.
The C-vector space Ex := E⊗OK ,xC admits the following exhaustive filtration by finite dimen-

sional vector subspaces:
E0,x ⊆ E1,x ⊆ · · ·En,x ⊆ En+1,x ⊆ · · · ,

We may consider the dual projective system defined by the transpose maps of the inclusion maps,
which indeed are surjective:

E∨
0,x ↞ E∨

1,x ↞ · · ·E∨
n,x ↞ E∨

n+1,x ↞ · · · ,
where:

E∨
n,x := HomC(En,x,C) = HomC(En ⊗OK ,x C,C) ≃ HomOK

(En,OK)⊗OK ,x C = (E∨
n )x,

and we have a canonical isomorphism of topological C-vector spaces:
(2.5.6) (Ex)

∨ := HomC(Ex,C) ≃ lim←−
n

E∨
n,x,

when (Ex)
∨ is equipped with its natural structure of Fréchet space, and the finite dimensional

C-vector spaces E∨
n,x with their canonical Hausdorff topology.

We may also consider the completed tensor product:

(E∨)x := E∨⊗̂OK ,xC.
Using the realization (2.5.5) of E∨ as the limit of a projective systems of surjective morphisms
between finitely generated projective OK-modules, we get an isomorphism:

(E∨)x ≃ lim←−
n

E∼
n,x,

where:
E∼
n,x := E∼

n ⊗OK ,x C.

The injection of OK-modules E∼
n ↪→ E∨

n define injections of C-vector spaces E∼
n,x ↪→ E∨

n,x, which
in turn define an injection of projective limits:

(E∨)x ≃ lim←−
n

E∼
n,x↪−→ lim←−

n

E∨
n,x ≃ (Ex)

∨.
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This shows that the canonical map:

E∨ ⊗OK ,x C := HomOK
(E,OK)⊗OK ,x C −→ HomC(E⊗OK ,x,C) =: (Ex)

∨

uniquely extends to a continuous injection with closed image:

(E∨)x := E∨⊗̂OK ,xC↪−→(Ex)
∨,

which actually establishes a homeomorphism between (E∨)x and its image in (Ex)
∨.

2.5.2.3. For every x ∈ X(C), we may consider the dual:

(Ex, ∥.∥x)∨ := (E∨
x , ∥.∥∨x )

in proVect
[∞]

C of the object (Ex, ∥.∥x) of indVect
[0]

C .

Equipped with the restriction:

∥.∥∼x := ∥.∥x|(E∨)x

of the quasinorm ∥.∥∨x , the Fréchet spaces (E∨)x also define an object ((E∨)x, ∥.|∼x ) of proVect
[∞]

C ,

and we define the dual in proVect
[∞]

X of the object (E, (∥.∥x)x∈X(C)) of qCohX as:

E
∨
:= (E, (∥.∥x)x∈X(C))

∨ := (E∨, (∥.∥∼x )x∈X(C)).

Moreover, for every morphism of Hermitian quasi-coherent sheaves over X:

φ : E1 −→ E2,

the transpose morphism:

φ∨ : E∨
2 −→ E∨

1

of the underlying morphism φ : E1 → E2 of OK-modules defines a morphism in proVect
[∞]

X :

(2.5.7) φ∨ : E
∨
2 −→ E

∨
1 .

Indeed, for every x ∈ X(C), the continuous morphism:

(φ∨)x : (E∨
2 )x −→ (E∨

1 )x

between completed tensor products is the restriction of the morphism:

(φx)
∨ : (E2,x)

∨ −→ (E1,x)
∨

deduced by transposition from the C-linear map φx : E1,x → E2,x, and the map (φx)
∨ defines the

morphism in proVect
[∞]

C :

(φx)
∨ : E

∨
2,x −→ E

∨
1,x

dual of the morphism in indVect
[0]

X :

φx : E1,x −→ E2,x.

The construction of the dual morphism (2.5.7) is obviously compatible with composition, and
thus defines a contravariant functor:

·∨ : qCohX → proVect
[∞]

X .

Moreover the equality (2.4.14) between the operator norm of a morphism in indVect
[0]

X and the one
of its dual shows that it also defines a functor:

·∨ : qCoh
≤1

X → proVect
[∞]≤1

X .
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2.5.3. The duality functor ·∨ : proVect
[∞]

X −→ indVect
[0]

X . A construction similar, but sim-

pler, to the one in the previous subsection allows one to construct a duality functor from proVect
[∞]

X

to indVect
[0]

X .

Consider a generalized pro-Hermitian vector bundle over X:

Ê := (Ê, (∥.∥x)x∈X(C)).

The dual of the topological OK-module Ê in CTCOK
, namely:

Ê∨ := Homtop
OK

(Ê,OK),

is an object of CPOK
, that is a countably generated projective OK-module. Besides, for every every

field embedding x ∈ X(C) of K in C, we may consider the Fréchet space Êx := Ê⊗̂OK ,xC, the
object Êx := (Êx, ∥.∥x) of proVect

[∞]

C , and its dual in indVect
[0]

C :

Ê
∨
x := ((Êx)

∨, ∥.∥∨x ).

Moreover, for every field embedding x ∈ X(C) of K in C, the C-vector space Ê∨
x := Ê∨⊗OK ,xC

may be identified with the topological dual (Êx)
∨ of Êx, and therefore may be endowed with the

Hermitian seminorm ∥.∥∨x .

Consequently we may define the dual of Ê as the following object in indVect
[0]

X :

Ê
∨
:= (E

∨
, (∥.∥∨x )x∈X(C)).

Moreover, for every morphism of generalized pro-Hermitian vector bundles:

ψ : Ê1 −→ Ê2,

the transpose morphism:

ψ∨ : Ê∨
2 −→ Ê∨

1

of the underlying morphism ψ : Ê1 → Ê2 of topological OK-modules defines a morphism in

indVect
[0]

X :

ψ∨ := Ê
∨
2 −→ Ê

∨
1 .

Actually, for every x ∈ X(C), the associated morphism in indVect
[0]

C :

(ψ∨)x : Ê
∨
2,x −→ Ê

∨
1,x

is the dual of the morphism in proVect
[∞]

C :

ψx : Ê1,x −→ Ê2,x.

This construction of ψ∨ is compatible with composition, and defines a contravariant functor:

·∨ : proVect
[∞]

X −→ indVect
[0]

X .

Here again, equality (2.4.14) shows that it also defines a functor:

·∨ : proVect
[∞]≤1

X −→ indVect
[0]≤1

X .
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2.5.4. Biduality and canonical dévissage of Hermitian quasi-coherent sheaves. By
combining the adjoint equivalences attached to the duality functors between the categories CPOK

and CTCOK
and between indVect

[0](≤1)

C and proVect
[∞](≤1)

C discussed in 1.2.2 and 2.4.4.2 above,
one easily establishes:

Proposition 2.5.2. The duality functors constructed in Subsections 2.5.3 define adjoint equiv-
alences:

·∨ : indVect
[0]

X ⇆ proVect
[∞]

X : ·∨

and:

·∨ : indVect
[0]≤1

X ⇆ proVect
[∞]≤1

X : ·∨.

Moreover the following proposition is a straightforward consequence of the definitions and of
Proposition 2.4.12:

Proposition 2.5.3. The composition of the two duality functors:

·∨∨ : qCohX
·∨−→ proVect

[∞]

X
·∨−→ indVect

[0]

X

coincides with the functor:

qCoh −→ indVect
[0]

X , F 7−→ F∨∨, φ 7−→ φ∨∨

defined in 2.2.4.3 above.

2.5.5. Varia. Various constructions and properties discussed in Section 2.2 concerning Hermit-
ian coherent and quasi-coherent sheaves admit counterparts concerning generalized pro-Hermitian
vector bundles.

For instance, if L is a finite extension of the number field K and if

f : Y := SpecOL −→ X := SpecOK
denotes the morphism of schemes defined by the inclusion OK ↪→ OL, we may define inverse image
functors:

f∗ : proVect
[∞]

X −→ proVect
[∞]

Y and f∗ : proVect
[∞]≤1

X −→ proVect
[∞]≤1

Y

and direct image functors:

f∗ : proVect
[∞]

Y −→ proVectX [∞] and f∗ : proVect
[∞]≤1

Y −→ proVect
[∞]≤1

X

by mimicking the constructions in Subsection 2.2.3.

If V is a Hermitian vector bundle over X, we may define its tensor product Ê ⊗ V with a

generalized pro-Hermitian vector bundles Ê, and define functors:

· ⊗ V : proVect
[∞]

X −→ proVect
[∞]

X and · ⊗V : proVect
[∞]≤1

X −→ proVect
[∞]≤1

X ,

which are compatible with the duality functors defined above. Namely, for every object F (resp. Ê)

of qCohX (resp. of proVect
[∞]

X ), we have a canonical isometric isomorphism in proVect
[∞]

X (resp.

in indVect
[0]

X ):

(F ⊗ V )∨
∼−→ F

∨ ⊗ V ∨
(resp. (Ê ⊗ V )∨

∼−→ Ê
∨
⊗ V ∨

).

Moreover the compatibility between duality and direct images expressed by the isometric isomor-
phism (2.2.19), valid for any Hermitian coherent sheaf E overX, extends to Hermitian quasi-coherent
sheaves and generalized pro-Hermitian vector bundles, in the form of an isometric isomorphism in

proVect
[∞)

Z (resp. in indVect
[0]

Z ):

π∗(F
∨ ⊗ ωπ)

∼−→ (π∗F )
∨ (resp. π∗(Ê

∨
⊗ ωπ)

∼−→ (π∗Ê)∨)
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[∞]
X AND ·∨ : proVect

[∞]
X → indVect

[0]
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for every object F (resp. Ê) of qCohX (resp. of proVect
[∞]

X ).
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Positive Invariants of Hermitian
Quasi-coherent Sheaves





CHAPTER 3

Quasi-coherent Sheaves over Smooth Projective Curves,
First Cohomology Groups, and h1-Finiteness

3.0.1. This monograph is devoted to the study of invariants of Hermitian quasi-coherent sheaves
on arithmetic curves, taking their values in [0,+∞], that are the arithmetic counterparts of the
dimension h1(C,F) of the first cohomology group of quasi-coherent sheaves F on a projective curve
C over some base field k.

In this chapter, we discuss various properties satisfied by this invariant h1(C,F), which will
play the role of “geometric models” for the properties of invariants of Hermitian quasi-coherent
sheaves investigated in the next chapters. These properties provide a conceptual motivation for
the introduction of various categories of Hermitian quasi-coherent sheaves defined in terms of such
invariants, independently of their applications to Diophantine geometry developed in the sequel.

More specifically, consider a smooth, projective, geometrically connected curve C over some
base field k, and denote by qCohC the k-linear abelian category of quasi-coherent OC-modules.
The composition of the k-linear functor:

(3.0.1) H1(C, .) : qCohC −→ Vectk,

with values in the category Vectk of k-vector spaces, and of the dimension function:

(3.0.2) dimk : Vectk −→ N ∪ {+∞}

defines the invariant:

h1(C, .) : qCohC −→ N ∪ {+∞}, F 7−→ h1(C,F) := dimkH
1(C,F).

Our goal in this chapter is to investigate which properties of the numerical invariant h1(C, .)
on the abelian category qCohC may be formulated with no mention of the intermediate invariant
H1(C, .) with value in the abelian category Vectk.

This question, somewhat bizarre from a geometric perspective, is motivated by the classical
analogy between functions fields — such as K := k(C) — and number fields.

When dealing with a number field K and with the associated arithmetic curve X := SpecOK
and its compactification Ã la Arakelov, there are natural counterparts for the category qCohC —
namely the category of Hermitian quasi-coherent sheaves over X — and for the invariant h1(C,F)
associated to a coherent sheaf over C — namely the theta invariant h1θ(F) of a Hermitian coherent

sheaf F over X.1 However there is presently no established counterpart of the category Vectk and of
the dimension function dimk — not to say of the base field k — which would provide a construction
of the theta invariant h1θ analogous to the construction of the invariant h1(C, .) as a composition of
(3.0.1) and (3.0.2).

1We will study these theta invariants more systematically in Chapter 7. At this stage, let us only recall that,
when F is a Hermitian line bundle, the theta invariant h1θ(F) already appears, at least implicitly, in Hecke’s classical
derivation [Hec17] of the meromorphic continuation of the Dedekind zeta function ζK attached to K and of its

functional equation. The analogy between h1θ(F) and the invariant h1(C,F) associated to a line bundle F over a
smooth projective curve C becomes conspicuous when comparing Hecke’s proof with the later proof by F.K. Schmidt

[Sch31] of the same properties for the zeta function attached to the global field k(C) when the base field k is finite.
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The question of defining a suitable arithmetic avatar of the category Vectk, on which would
be defined a natural dimension function admitting [0,+∞] as set of values, and to associate to any
Hermitian (quasi-)coherent sheaf F over X some object in this category whose “dimension” would
coincide with the theta invariant of F , is a fascinating but formidable question.2

In this monograph, we follow a less ambitious approach, which bypasses this question by focusing
on the numerical invariant h1θ(F). The investigation of real valued numerical invariants attached to
Hermitian vector bundles over a scheme of finite type X over SpecZ, analogue to the integral valued
numerical of classical algebraic geometry over a field, is actually a central theme in Arakelov geome-
try.3 Accordingly, like [Bos20b], this monograph may be seen as a contribution to the development
of infinite dimensional techniques in Arakelov geometry.

The results in this chapter, which explores the numerical properties of the geometric invariant
h1(C,F), are elementary, in so far as their proofs uses only the basic properties of quasi-coherent
and coherent sheaves over a smooth projective curve, such as the Riemann-Roch formula and Serre
duality. However it has been a surprise for the authors to discover the validity of several simple (al-
though not completely straightforward) results concerning the cohomology of quasi-coherent sheaves
over projective curves, that, to the best of their knowledge, are not present in the literature.4

3.0.2. In Section 3.1, we discuss various properties — mainly inequalities — satisfied by the
invariant

h1(C, .) : qCohC −→ N ∪ {∞}
and by its restriction:

h1(C, .) : CohC −→ N
to coherent OC-modules. These properties constitute the models for the basic properties of “h1-like
invariants” taken as axioms in Chapters 4 and 5.

In Section 3.2, we begin to investigate how the invariant h1(C, .) on qCohC may be recovered
from its restriction to CohC : we define two invariants attached to an object F of qCohC , denoted

by h
1
(C,F) and h1(C,F), by taking suitable limits of the invariants h1(C, C) associated to coherent

sheaves C that are respectively subsheaves or quotient sheaves of F . Basically by construction, they
satisfy the inequalities:

(3.0.3) h1(C,F) ≤ h1(C,F) ≤ h1(C,F).

In Theorem 3.2.7, we prove the equality:

(3.0.4) h1(C,F) = h1(C,F).

and we establish criteria ensuring that a quasi-coherent OC-module F of countable type F satisfies
the condition:

(3.0.5) h1(C,F) = h
1
(C,F) < +∞.

In view of the equality (3.0.4), one may wonder about the interest of the invariant h
1
(C,F) and

of criteria ensuring (3.0.5), and we want to discuss briefly our motivation for considering them.

2As hinted at by Quillen in the entry dated April 1st, 1983, of its mathematical diary [Qui], for constructing

such an arithmetic avatar of Vectk, it is tempting to look for a category of modules over a suitable factor of type
II1, equipped with the real valued dimension function associated to its von Neumann trace. See [Bor03] for another
perspective on this circle of questions.

3When X is an arithmetic curve, say SpecZ, Hermitian vector bundles over X are nothing but Euclidean lattices,
and their study is the object of the classical “geometry of numbers”. The “Arakelov point of view” on the geometry of

numbers is illustrated notably by the work of Stuhler [Stu76], Grayson [Gra84] Gillet, Mazur, and Soulé [GMS91],
and McMurray Price [MP17].

4See for instance Theorem 3.2.7 and the content of Section 3.5 and 3.6.



3. QUASI-COHERENT SHEAVES ON CURVES AND FIRST COHOMOLOGY GROUPS 83

In the arithmetic situation, where qCohC is replaced by the category qCohX of Hermitian
quasi-coherent sheaves over some arithmetic curve X and the invariant h1(C, .) on CohC by the

theta invariant h1θ on CohX , we will be able to define similarly invariants h
1

θ(F) and h
1
θ(F) attached

to some object F of qCohX . The invariant h1θ(F), which according to (3.0.4) should be thought as
the right analogue of h1(C,F), turns out to be delicate to control directly, because of its definition in
terms of quotient Hermitian coherent sheaves. However we will be able to establish diverse criteria
for the validity of the condition:

(3.0.6) h1θ(F) = h
1

θ(F) < +∞,
which will be quite suitable in Diophantine applications.

Establishing these criteria for (3.0.6) in Chapters 4, 5, and 8 will require a substantial amount
of work, and Theorem 3.2.7 and its proof may be seen as a (considerably simplified) model, in the
geometric situation, for the criteria for (3.0.6) and their derivation in the arithmetic setting.

In Section 3.4, we show that, contrary to the first inequality in (3.0.3), the second one may
actually be strict.

In Section 3.5 (resp. in Section 3.6), we investigate the objects of qCohC that are h1-finite

(resp. h
1
-finite), namely these objects F such that:

h1(C,F ⊗ L) < +∞ (resp. h1(C,F ⊗ L) = h
1
(C,F ⊗ L) < +∞)

for every line bundle L over C. Here again, our results are models for our later results in the

arithmetic situations. For instance, the h
1
-finite objects in qCohC are the analogues of the θ1-finite

objects F in qCohX , defined by the validity of the condition:

(3.0.7) h1θ
(
F ⊗ L

)
= h

1

θ

(
F ⊗ L

)
< +∞

for every Hermitian line bundle L over X, whose properties will be discussed in detail in Section 8.5.5

3.0.3. In this chapter, we use the following notation and conventions.

We denote by C a smooth, projective, geometrically connected curve over some base field k, by

η := Spec k(C)
iη
↪−→ X

its generic point and the inclusion morphism, by ωC := Ω1
C/k its dualizing sheaf, and by g its genus.

We shall say “OC-module” for “sheaf of OC-modules over C.”

Recall that a quasi-coherent OC-module G is torsion when its stalk Gη := i∗ηG at the generic
point η := Spec k(C) of C vanishes, or equivalently if G is the direct sum

⊕
x∈C0

Gx of quasi-coherent
subsheaves Gx supported by the closed points x of C. A quasi-coherent OC-module H is torsion free
when the tautological morphism of quasi-coherent sheaves

H −→ iη∗i
∗
ηH

is injective, or equivalently when for any closed point x of C, the k-vector space Γ{x}(C,H) of
sections of H supported by {x} vanishes.

For any quasi-coherent OC-module G over C, we define its torsion subsheaf Gtor as the kernel of
the tautological morphism:

G −→ iη∗i
∗
ηG.

5The θ1-finite objects of qCohX will naturally occur in the Diophantine applications of the results established

in this monograph. An object F of qCohX is actually θ1-finite if and only if h1θ
(
F ⊗O(δ)

)
= h

1
θ

(
F ⊗O(δ)

)
< +∞

for every δ ∈ R. Observe that, when δ = 0, this is condition (3.0.6), which expresses that the invariant h1θ of F is

well-defined and finite. Moreover the Hermitian quasi-coherent sheaves F ⊗O(δ) are those deduced from F by a joint

change of scale of its Hermitian seminorms. In other words, F is θ1-finite if and only if, after any change of scale, it

has a well-defined and finite invariant h1θ.
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The quotient OC-module G/tor := G/Gtor is then torsion free, and fits into a short exact sequence of
quasi-coherent OC-modules:

0 −→ Gtor −→ G −→ G/tor −→ 0.

Recall that there exists a canonical isomorphism:

(3.0.8) ResC : H1(C,ωC)
∼−→ k,

which may be defined as follows.

Let U := (Ui)i∈I be an open covering of C, and let

α := (αij)(i,j)∈I2 ∈ Z1(U , ωC)

be a 1-cocycle. Let i0 be an element of i such that Ui0 is non-empty. Its complement C \ Ui0 is
a finite set of closed points of C. For every P ∈ C \ Ui0 , we may choose i(P ) ∈ I such that Ui(P )

contains P , and consider αioi(P ) ∈ Γ(Ui0 ∩ Ui(P ), ωC), which is a meromorphic section of ωC over
C. Its residue ResPαioi(P ) at P belongs to the residue field kP := OC,P /mC,P . The image by ResC
of the class [α] in H1(U , ωC) — which maps injectively in H1(C,ωC), actually isomorphically if all
the Ui are distinct of C, hence affine — satisfies:

ResC [α] =
∑

P∈C\Ui0

TrkP /kResPαi0i(P ).

We shall denote by dimk V the “naive” dimension in N∪{+∞} of some k-vector space V . In other
words, we assign +∞ as the dimension of an infinite dimensional k-vector space V , independently
of the actual (infinite) cardinality of its k-bases. With this convention, the following equality holds
for any k-vector space V :

dimk Homk(V, k) = dimk V.

3.1. Numerical Properties of h1(C,F)

3.1.1. Vanishing on torsion sheaves, monotonicity, and subadditivity. When thinking
of properties of the invariant

h1(C, .) : F 7−→ h1(C,F) := dimkH
1(C,F) ∈ N ∪ {+∞}

of quasi-coherent OC-modules, the first one that comes to mind is its additivity. Namely, for every
two quasi-coherent sheaves F1 and F2 over C, the following inequality holds:

(3.1.1) h1(C,F1 ⊕F2) = h1(C,F1) + h1(C,F2).

After a few moment’s thoughts, one realizes that h1(C, .) satisfies also the following properties:

(i) it vanishes on torsion sheaves; namely, if a quasi-coherent OC module F is torsion, then:

h1(C,F) = 0;

(ii) it satisfies the following monotonicity property: if f : F → G is a morphism of quasi-coherent
sheaves over C such that fη : Fη → Gη is surjective, then

h1(C,F) ≥ h1(C,G).

(iii) it is subadditive in short exact sequences; namely, for any short exact sequence

0 −→ F α−→ G β−→ H −→ 0

of quasi-coherent sheaves over C, we have:

(3.1.2) h1(C,G) ≤ h1(C,F) + h1(C,H).
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These three properties are manifestations of the one-dimensionality of the curve C. Indeed, (i)
follows from the fact that any torsion quasi-coherent sheaves over the curve C is a direct sum of quasi-
coherent sheaves supported by closed points; (iii) follows from the fact that C has cohomological
dimension ≤ 1, which implies the exactness of the diagram:

(3.1.3) H1(C,F) α−→ H1(C,G) β−→ H1(C,H) −→ 0.

Together with (i), this right exactness of the functor H1(C, .) also implies (ii).

Observe that the properties (i)–(iii) above formally imply that the invariant h1(C,F) “does not
see torsion”. Namely, for any coherent sheaf F over C, property (iii) applied to the short exact
sequence

0 −→ Ftor −→ F −→ F/tor −→ 0

and property (ii) applied to the quotient morphism F → F/tor imply the estimates:

h1(C,F/tor) ≤ h1(C,F) ≤ h1(C,Ftor) + h1(C,F/tor).

Moreover, according to property (i), we have:

h1(C,Ftor) = 0.

This establishes the equality:

h1(C,F) = h1(C,F/tor).

3.1.2. The invariant rkkα
1. Further inequalities satisfied by the invariant:

h1(C, .) : CohC −→ N, F 7−→ h1(C,F) := dimkH
1(C,F)

on the category CohC of coherent OC-modules may be derived by considering the rank of the
k-linear map

(3.1.4) α1 := H1(C,α) : H1(C,F) −→ H1(C,G)

attached by functoriality of the cohomology to a morphism of coherent OC-modules6

(3.1.5) α : F −→ G.

3.1.2.1. The rank rkkα
1 indeed admits a simple expression in terms of the invariant h1(C, .) of

coherent OC-modules; moreover, for any α as in (3.1.5), rkkα
1 depends only of the coherent module

G and of the k(C)-vector subspace imαη of Gη, as shown by the following proposition:

Proposition 3.1.1. For every morphism of coherent OC-modules α : F → G, the rank of the
k-linear map H1(C,α)satisfies the equality:

(3.1.6) rkkα
1 = h1(C,G)− h1(C,G/α(F)).

Moreover if two morphisms of coherent OC-modules

α : F −→ G and α′ : F ′ −→ G

satisfy:

imαη = imα′
η,

then:

(3.1.7) rkkα
1 = rkkα

′1.

6To be consistent with the notation (3.1.4), the arrows in the diagram (3.1.3) should have been labeled H1(C,α)

and H1(C, β), or α1 and β1.
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Proof. The equality (3.1.6) is a consequence of the right exactness of the functor H1(C, .)
applied to the short exact sequence:

F α−→ G −→ G/α(F) −→ 0.

and of its vanishing on torsion coherent modules.

The equality (3.1.7) follows from (3.1.6) applied to α and α′ and from the vanishing of H1(C, .)
on torsion coherent sheaves, which implies that H1(C,G/α(F)) and H1(C,G/α′(F ′)) are both iso-
morphic to H1(C,G/α(F) ∩ α′(F ′)). □

To any pair (α, β) of composable morphisms of coherent OC-modules:

F α−→ G β−→ H,

we may attach the following commutative diagram of k-linear maps:

(3.1.8) H1(C,F) α1
//

(β◦α)1 &&

H1(C,G)

β1

��
H1(C,H),

and the following inequality between the ranks of the k-linear maps in (3.1.8) clearly holds:

(3.1.9) rkk(β ◦ α)1 ≤ min
(
rkkα

1, rkkβ
1
)
.

The inequality:

rkk(β ◦ α)1 ≤ rkkβ
1,

when expressed in terms of the invariant h1(C, .) by means of Proposition 3.1.1, takes the following
form:

h1(C,H)− h1(C,H/β(α(H))) ≤ h1(C,H)− h1(C,H/β(G)).
It is therefore a special instance of the monotonicity of h1(C, .), applied to the quotient morphism:

H/β(α(F)) −→ H/β(G).

In turn, the inequality:

rkk(β ◦ α)1 ≤ rkkα
1

may be written:

h1(C,H)− h1(C,H/β(α(F))) ≤ h1(C,G)− h1(C,G/α(F)).

It involves the morphism α only through the coherent submodule α(F) and may rephrased as follows:

Proposition 3.1.2. For every morphism β : G → H of coherent OC-modules and every coherent
OC-submodule G′ ⊆ G, the following inequality holds:

(3.1.10) h1(C,H)− h1(C,H/β(G′)) ≤ h1(C,G)− h1(C,G/G′).

Observe that, applied to H = 0, the inequality (3.1.10) becomes the monotonicity inequality:

h1(C,G) ≥ h1(C,G/G′)

attached to the quotient morphism from G to G/G′. Applied to a monomorphim β and to G′ := G,
(3.1.10) becomes the subadditivity inequality:

h1(C,H) ≤ h1(C,G) + h1(C,H/β(G))

associated to the short exact sequence:

0 −→ G β−→ H −→ H/β(G) −→ 0.
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3.1.2.2. The inequality (3.1.10) admits further consequences:

(i) If F is a coherent OC-module and if

F ′′ ⊆ F ′ ⊆ F

are two coherent OC-submodules, then the following inequality holds:

(3.1.11) h1(C,F) + h1(C,F ′/F ′′) ≤ h1(C,F ′) + h1(C,F/F ′′).

This follows from (3.1.10) applied to the inclusion morphism

β : G := F ′↪−→H := F

and to G′ := F ′′.

(ii) If F is a coherent OC-module and if F ′ and F ′′ are two coherent OC submodules of F , then
the following inequality holds:

(3.1.12) h1(C,F/F ′) + h1(C,F/F ′′) ≤ h1(C,F/(F ′ + F ′′)) + h1(C,F/(F ′ ∩ F ′′)).

This follows from (3.1.10) applied to the quotient morphism

β : G := F/(F ′ ∩ F ′′) −→ H := F/F ′′

and to G′ := F ′/(F ′ ∩ F ′′).

Observe that the inequality (3.1.12) is also a consequence of the additivity (3.1.1) of h1(C, .)
and of its subadditvity (3.1.2) applied to the short exact sequence of OC-modules:

(3.1.13) 0 −→ F/(F ′ ∩ F ′′)
∆−→ F/F ′ ⊕F/F ′′ δ−→ F/(F ′ + F ′′) −→ 0,

where the morphisms ∆ and δ are defined by the relations:

∆([x]) := ([x]′, [x]′′) and δ([x′]′, [x′′]′′) := [x′ − x′′]∼,

in which we denote by [s], [s]′, [s′′], and [s]∼ the classes in F/(F ′ ∩F ′′), F/F ′, F/F ′′, and F/(F ′+
F ′′) of a section s of F .

3.2. Recovering h1(C,F) for F Quasi-coherent from its Value on Coherent Sheaves

Let F be a quasi-coherent OC-module.

3.2.1. The invariant h
1
(C,F).

3.2.1.1. To F , we may associate the directed set (coh(F),⊆) of its coherent OC-submodules.

If C and C′ are two elements of coh(F) such that C ⊆ C′, we may consider the inclusion morphism

iC′C : C↪−→C′

and the linear map between finite dimensional k-vector spaces that it induces between first coho-
mology groups:

(3.2.1) i1C′C : H1(C, C) −→ H1(C, C′).

Moreover, to any C in coh(F), we may also attach the inclusion morphism

jC : C↪−→F

and the induced k-linear map between cohomology groups:

j1C : H1(C, C) −→ H1(C,F).
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Clearly, for every two C and C′ as above, the diagrams

(3.2.2) C
iC′C //

jC ��

C′

jC′

��
F

and

(3.2.3) H1(C, C)
i1C′C //

j1C &&

H1(C, C′)

j1C′

��
H1(C,F)

are commutative, and consequently the systems of maps (jC)C∈coh(F) and (j1C)C∈coh(F) define a map
of OC-modules:

jF : colim
C∈coh(F)

C −→ F

and a k-linear map:

j1F : colim
C∈coh(F)

H1(C, C) −→ H1(C,F),

where the sources of jF and j1F are the colimits of the systems of morphisms iC′C and i1C′C , taken
over the directed set (coh(F),⊆).7

The following proposition follows from basic results8 concerning quasi-coherent sheaves on sche-
mes and colimits of sheaves and their cohomology, which apply since C is a Noetherian scheme.

Proposition 3.2.1. The maps jF and j1F are isomorphisms.

We may attach to F the following invariant in N ∪ {+∞}:

(3.2.4) h
1
(C,F) := lim inf

C∈coh(F)
h1(C, C),

where the superior limit is taken over the directed set (coh(F),⊆). The following observation is
then a straightforward consequence of the fact that j1F is an isomorphism of k-vector spaces:

Corollary 3.2.2. For every quasi-coherent OC-module F , the following inequality holds:

(3.2.5) h1(C,F) ≤ h1(C,F).

The invariant h
1
(C, .) satisfies formal properties analogous to the ones of h1(C, .) discussed in

3.1.1 above. Namely one easily establishes the following proposition:

Proposition 3.2.3. The properties (i), (ii), and (iii) stated in 3.1.1 — namely, the vanishing
on torsion quasi-coherent sheaves, the monotonicity, and the subadditivity — still hold when h1(C, .)

is replaced by h
1
(C, .).

We leave the details of the proof to the interested reader, as well as the derivation of the following
proposition:

7Since C is a Noetherian scheme, the colimit colimC∈coh(F) C may be indifferently taken in the category of

presheaves or in the category of sheaves of OC -modules.
8See for instance [Sta], Lemma 28.22.3 (= Tag 01PG) and Lemma 20.19.1 (=Tag 01FF).
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Proposition 3.2.4. For every short exact sequence of quasi-coherent OC-modules:

0 −→ F1 −→ F2 −→ F3 −→ 0,

the following inequality holds in N ∪ {+∞}:

(3.2.6) h
1
(C,F1) ≤ h0(C,F3) + h

1
(C,F2).

Observe that, as a special case of Proposition 3.2.3, (iii), we obtain the inequality:

(3.2.7) h
1
(C,F1 ⊕F2) ≤ h

1
(C,F1) + h

1
(C,F2),

for any two quasi-coherent OC-modules F1 and F2. We do not expect this inequality to be an
equality for general quasi-coherent OC-modules.9

3.2.1.2. Recall that a quasi-coherent OC-module F is said to be of countable type when there ex-
ists an exhaustive filtration (Ci)i∈N of F by coherent submodules, or equivalently a cofinal increasing
sequence in (coh(F),⊆).

Then we may consider, among these filtrations, those that satisfy the following condition:

(3.2.8) the limit limi→+∞ h1(C, Ci) exists in N ∪ {+∞}.
Clearly, for any filtration (Ci)i∈N as above, this condition is satisfied by the filtration (Cι(n))n∈N if
ι : N→ N is a suitable strictly increasing map. Moreover condition (3.2.8) is satisfied precisely when
the sequence (h1(C, Ci))i∈N is either eventually constant, or goes to infinity.

The following proposition is a straightforward but suggestive reformulation of the definition

(3.2.4) of h
1
(C,F) when F is of countable type:

Proposition 3.2.5. Let F be a quasi-coherent OC-module of countable type. For every exhaus-
tive filtration (Ci)i∈N of F by coherent submodules, we have:

lim inf
i−→+∞

h1(C, Ci) ≥ h
1
(C,F).

Moreover the set of limits limi→+∞ h1(C, Ci) where (Ci)i∈N runs over the set of exhaustive filtrations

of F by coherent OC-submodules that satisfy (3.2.8) admits h
1
(C,F) as smallest element.

According to Proposition 3.2.3, the map

coh(F) −→ N ∪ {+∞}, C 7−→ h
1
(C,F/C)

is decreasing. We shall denote its infimum over coh(F) by evh
1
(C,F). By definition, if F is

countably generated and if (Ci)i∈N is an exhaustive filtration of F by coherent OC-submodules, we
have:

evh
1
(C,F) = lim

i→+∞
h
1
(C,F/Ci).

Moreover evh
1
(C,F) vanishes if and only if there exists C ∈ coh(F) such that h

1
(C,F/C) vanishes.

3.2.2. The invariant h1(C,F). Let coft(F) be the set of quasi-coherent OC-submodules G of
F such that F/G is coherent. It is stable under finite intersection, and the partially ordered set
(coft(F),⊇) is a directed set.10

To any two elements G′ ⊂ G of coh(F) are attached surjective maps of OC-modules:

F −→ F/G′ −→ F/G′,
and consequently, using again the monotonicity of h1(C, .), we get the following inequalities between
dimensions of first cohomology groups:

h1(C,F) ≥ h1(C,F/G′) ≥ h1(C,F/G′).

9Even under some additional countability condition, such as the one introduced in the next paragraph.
10The notation “coft” stands for co-finite type.
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This observation establishes the following lemma:

Lemma 3.2.6. The function

coft(F) −→ N, G 7−→ h1(C,F/G)
is increasing on the directed set (coft(F),⊇). Moreover the element of N ∪ {+∞} defined as

(3.2.9) h1(C,F) := lim
G∈coft(F)

h1(C,F/G) = sup
G∈coft(F)

h1(C,F/G)

satisfies the inequality:

(3.2.10) h1(C,F) ≤ h1(C,F).

Recall that, for any coherent OC-module C, the quotient C/tor := C/Ctor is locally free of finite
rank and satisfies:

h1(C, C) = h1(C, C/tor),
as observed in 3.1.1 above. This implies that, for any G in coft(F), the saturation Gsat of G in F
belongs to the subset11

(3.2.11) scoft(F) :=
{
G̃ ∈ coft(F) | F/G̃ is locally free

}
,

of coft(F) and the following equality holds:

h1(F/G) = h1(F/Gsat).

The partially ordered set (scoft(F),⊇) is a directed set — indeed scoft(F) is stable by finite

intersections — and the previous observation show that h
1
(C,F), which had been defined by (3.2.9),

also admits the following expressions:

(3.2.12) h1(C,F) := lim
G̃∈scoft(F)

h1(C,F/G̃) = sup
G̃∈scoft(F)

h1(C,F/G̃).

3.2.3. Comparing h1(C,F), h1(C,F), and h
1
(C,F). According to (3.2.10) and (3.2.5), the

following estimates hold:

h1(C,F) ≤ h1(C,F) ≤ h1(C,F).

Consequently, when h1(C,F) and h1(C,F) coincide, they coincide with h1(C,F).
This simple observation leads one to ask what are in general the relations between the three

invariants h1(C,F), h1(C,F), and h
1
(C,F). This question is answered by the following theorem

and by the construction in Section 3.4 below of quasi-coherent OC-modules F such that h1(C,F) <
h
1
(C,F).

Theorem 3.2.7. Let F be a quasi-coherent OC-module.

(1) The following equality holds in N ∪ {+∞}:

(3.2.13) h1(C,F) = h1(C,F).

(2) When moreover F is of countable type, the following two conditions are equivalent:

(i) h1(C,F) = h
1
(C,F) < +∞;

(ii) there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodules and i0 ∈ N
such that:

h1(C, Ci+1/Ci) = 0 for every i ≥ i0.

(iii) evh
1
(C,F) = 0.

11The notation “scoft” stands for saturated of co-finite type.
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Actually, if a quasi-coherent OC-module F satisfies condition (ii) above, then the sequence
(h1(C, Ci))i∈N is constant for i ≥ i0, and

(3.2.14) h
1
(C,F) = h1(C,F) = h1(C, Ci0).

(3) If F is of countable type and if h
1
(C,F) is finite, then, for any line bundle L over C such

that degC L > g − 1, we have:

(3.2.15) h1(C,F ⊗ L) = h
1
(C,F ⊗ L) < +∞.

The proof of Theorem 3.2.7 is presented in Section 3.3. In Section 3.4, we explain how to

construct quasi-coherent OC-modules F whose invariants h1(C,F) and h1(C,F) are distinct when
the genus g of C is positive.

Theorem 3.2.7, (2) implies that the condition on a quasi-coherent OC-module F of countable
type of satisfying:

h1(C,F) = h
1
(C,F) < +∞

satisfies the following permanence properties:

Corollary 3.2.8. Let us consider a short exact sequence of quasi-coherent OC-modules of
countable type:

(3.2.16) 0 −→ F1
ι−→ F2

p−→ F3 −→ 0.

1) If h1(C,F2) = h
1
(C,F2) < +∞, then h1(C,F3) = h

1
(C,F3) < +∞.

2) If h1(C,F1) = h
1
(C,F1) < +∞ and h1(C,F3) = h

1
(C,F3) < +∞, then h1(C,F2) =

h
1
(C,F2) < +∞.

3) If F3 is a coherent OC-module, then h1(C,F1) = h
1
(C,F1) < +∞ if and only if h1(C,F3) =

h
1
(C,F3) < +∞.

Proof. According to the equivalence of conditions (i) and (iii) in Theorem 3.2.7, (2), for k in
{1, 2, 3} the condition

h1(C,Fk) = h
1
(C,Fk) < +∞

is satisfied if and only if there exists a coherent OC-submodules Ck of Fk such that:

h
1
(C,Fk/Ck) = 0.

When this holds for k = 2, then C3 := p(C2) is a coherent OC-submodule of F , the morphism
p induces a surjective morphism of OC-modules from F2/C2 onto F3/C3, and the monotonicity of

h
1
(C, .), stated in Proposition 3.2.3, implies the vanishing h

1
(C,F3/C3). This establishes 1).

Conversely, let assume that the above condition is satisfied for k = 1 and for k = 3. Since the
morphism p : F2 → F3 is surjective, there exists a coherent OC-submodule C̃3 of F2 such that

p(C̃3) = C3.

Then the OC-submodule

C2 := ι(C1) + C̃3
of F2 is coherent, and by quotienting the short exact sequence (3.2.16), we get a short exact sequence
of quasi-coherent OC-modules:

0 −→ F1/C1 −→ F2/C2 −→ F3/C3 −→ 0.

The subadditivity of h
1
(C, .), stated in Proposition 3.2.3, implies the vanishing h

1
(C,F2/C2). This

completes the proof of 2).
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Let us finally assume that F3 is coherent. Then h1(C,F3) = h
1
(C,F3) < +∞, and according to

2), if h1(C,F1) = h
1
(C,F1) < +∞, then h1(C,F2) = h

1
(C,F2) < +∞. Conversely, let us assume

that h1(C,F2) = h
1
(C,F2) < +∞. According to implication (i)⇒ (ii) in Theorem 3.2.7, (2), there

exists an exhaustive filtration (C2,i)i∈N of F by coherent OC-submodules and i0 ∈ N such that:

h1(C, C2,i+1/C2,i) = 0, for every i ≥ i0.
Then the sequence (C1,i)i∈N of OC-submodules of F1 defined by:

C1,i := ι−1(C2,i), for every i ≥ 0,

constitutes an exhaustive filtration of F1 by coherent OC-submodules. Moreover, since F3 is coher-
ent, there exists i1 ∈ N such that:

p(C2,i) = F3, for every i ≥ i1.
Then for every i ≥ i1, the map ι induces an isomorphims of OC-modules from C1,i+1/C1,i onto
C2,i+1/C2,i. This shows that:

h1(C, C1,i+1/C1,i) = 0, for every i ≥ max(i0, i1).

Finally the implication (ii) ⇒ (i) in Theorem 3.2.7, (2) shows that h1(C,F1) = h
1
(C,F1) < +∞.

This completes the proof of 3). □

3.3. Proof of Theorem 3.2.7

3.3.1. Serre duality for quasi-coherent sheaves on curves. To any sheaf F of OC-
modules, we may attach the k-vector space

HomOC
(F , ωC)

of morphisms of sheaves ofOC-modules from F to ωC . If φ : F → ωC is an element of HomOC
(F , ωC)

and α is a class in H1(C,F), we may apply to α the morphism

φ1 : H1(C,F) −→ H1(C,ωC)

deduced from φ by functoriality of the cohomology. Thus we get a class φ1(α) in the k-vector space
H1(C,ωC), itself canonically isomorphic to k.

In this way, we define a k-bilinear map:

⟨., .⟩F : HomOC
(F , ωC)×H1(C,F) −→ H1(C,ωC)

ResC
∼−→ k, (φ, α) 7−→ ResCφ

1(α).

When the OC-module F is locally free of finite rank, Serre duality asserts that this k-bilinear
map is a perfect pairing of finite dimensional k-vector spaces. Serre duality may be extended to
arbitrary quasi-coherent OC-modules in the following guise:

Proposition 3.3.1. For every quasi-coherent OC-module F over C, the map

DF : HomOC
(F , ωC) −→ Homk(H

1(C,F), k), φ 7−→ ⟨φ, .⟩F := (α 7−→ ResC φ
1(α)),

is an isomorphism of k-vector spaces.

The construction of the map DF is natural in F . Namely, for any morphism

f : F1 −→ F2

of OC-modules, the following diagram is commutative:

(3.3.1) HomOC
(F2, ωC)

.◦f //

DF2

��

HomOC
(F1, ωC)

DF1

��
Homk(H

1(C,F2), k)
tf1:=.◦f1

// Homk(H
1(C,F1), k),
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where

f1 : H1(C,F1) −→ H1(C,F2)

denotes the morphism between cohomology groups induced by the morphism of sheaves f . The
commutativity of (3.3.1) is indeed a straightforward consequence of the definitions of DF1 and DF2

and of the functoriality of the cohomology of OC-modules.

Proposition 3.3.1 is derived by some standard limit arguments from its special case where F is
locally free of finite rank. Since this proposition plays a key role in the proof of Theorem 3.2.7 (1),
we provide some details.

Proof of Proposition 3.3.1. As indicated above, when F is coherent and locally free, this
is a reformulation of the classical Serre duality on smooth projective curves.

When F is coherent, we may consider the quotient morphism: p : F → F/tor. Its range F/tor is
coherent and locally free — and therefore DF/tor

is an isomorphism — and the morphism

p1 : H1(C,F) −→ H1(C,F/tor)
that it induces between first cohomology groups is an isomorphism. Moreover every morphism of
OC-modules from F to some line bundle over C vanishes on Ftor, and therefore uniquely factors
through F/tor. This implies that the k-linear map:

(3.3.2) HomOC
(F/tor, ωC)

.◦p // HomOC
(F , ωC)

is an isomorphism. The commutativity of the naturality diagram (3.3.1) with F1 = F , F2 := F/tor,
and f = p therefore implies that DF also is an isomorphism.

Consider now an arbitrary quasi-coherent OC-module F . For every two elements of coh(F) such
that C ⊆ C′, the commutative diagram (3.3.1) applied to the inclusion morphism iC′C : C ↪→ C′ reads:

(3.3.3) HomOC
(C′, ωC)

.◦iC′C=.|C //

DC′

��

HomOC
(C, ωC)

DC

��
Homk(H

1(C, C′), k)
ti1C′C // Homk(H

1(C, C), k).

Moreover the maps DC′ and DC are isomorphisms.

These isomorphisms define an isomorphism of k-vector spaces:

(3.3.4) lim
C∈coh(F)

DC : lim
C∈coh(F)

HomOC
(C, ωC)

∼−→ lim
C∈coh(F)

Homk(H
1(C, C), k).

By composition with the canonical isomorphisms:

HomOC
( colim
C∈coh(F)

C, ωC)
∼−→ lim

C∈coh(F)
HomOC

(C, ωC)

and

Homk( colim
C∈coh(F)

H1(C, C), k) ∼−→ lim
C∈coh(F)

Homk(H
1(C, C), k)

and with the isomorphisms:

. ◦ jF : HomOC
(F , ωC)

∼−→ HomOC
( colim
C∈coh(F)

C, ωC)

and:
tj1F := . ◦ j1F : Homk(H

1(C,F), k) ∼−→ Homk( colim
C∈coh(F)

H1(C, C), k)

deduced from the isomorphisms jF and j1F in Proposition 3.2.1, the isomorphism (3.3.4) defines an
isomorphism:

HomOC
(F , ωC)

∼−→ Homk(H
1(C,F), k).
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It a straightforward albeit tedious consequence of the definitions that it coincides with DF , which
consequently is an isomorphism. □

3.3.2. Proof of the equality h1(C,F) = h1(C,F). Let F be a quasi-coherent OC-module.
To establish part (1) of Theorem 3.2.7, we have to show that the inequality (3.2.10)

h1(C,F) ≤ h1(C,F).

is actually an equality. As Serre duality, in the form established in Proposition 3.3.1, implies the
equality of dimensions:

h1(C,F) = dimk HomOC
(F , ωC),

this will be a consequence of the following lemma:

Lemma 3.3.2. For any finite dimensional k-vector subspace V of HomOC
(F , ωC), there exists G

in scoft(F) such that

h1(C,F/G) ≥ dimk V.

Proof. The subspace V of HomOC
(F , ωC) defines a morphism of OC-modules from F ⊗k V to

ωC , or equivalently a morphism of OC-modules:

φ : F −→ ωC ⊗k V ∨,

where V ∨ := Homk(V, k). By construction, for every v ∈ V , the morphism of OC-modules defined
as the composition:

F φ−→ ωC ⊗k V ∨ Id⊗kv−→ ωC

coincides with v itself.

Let us prove that G := kerφ satisfies the conclusion of Lemma 3.3.2. Clearly G is a quasi-coherent
OC-submodule of F . Moreover F/G ≃ imφ is a quasi-coherent OC-submodule of ωC ⊗k V ∨, hence
is coherent and locally free. This shows that G is an element of scoft(F).

The morphism φ defines a k-linear map between cohomology groups:

φ1 : H1(C,F) −→ H1(C,ωC ⊗k V ∨),

the range of which may be identified to V ∨ by means of the isomorphisms:

H1(C,ωC ⊗k V ∨) ≃ H1(C,ωC)⊗k V ∨ and ResC ⊗ IdV ∨ : H1(C,ωC)⊗k V ∨ ∼−→V ∨.

Moreover the k-linear map
tφ1 : V −→ Homk(H

1(C,F), k),
defined as the transpose of

φ1 : H1(C,F) −→ V ∨,

coincides by construction with the restriction DF|V , and therefore is injective. This proves that φ1

is surjective.

Since φ factors as

φ : F −→ imφ↪−→ωC ⊗ V ∨,

the k-linear map φ1 factors through

H1(C, imφ) ≃ H1(C,F/G),

and therefore:

dimkH
1(C,F/G) ≥ dimk imφ1 = dimk V. □

3.3.3. The condition h1(C,F) = h
1
(C,F) < +∞.
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3.3.3.1. Proof of (i) ⇔ (ii) in Theorem 3.2.7 (2). Let F be a quasi-coherent OC-module of
countable type such that N := h1(C,F) is finite.

According to Corollary 3.2.2 and Proposition 3.2.5, the condition

h
1
(C,F) = N

is satisfied if and only if there exists an exhaustive filtration (Ci)i∈N by coherent OC-submodules
satisfying the following condition:

(3.3.5) h1(C, Ci) = N for every large enough i ∈ N.

To complete the equivalence (i)⇔ (ii) in part (2) of Theorem 3.2.7, we will show that the existence
of such a filtration (Ci)i∈N satisfying (3.3.5) is equivalent to condition (ii) in Theorem 3.2.7.

For every exhaustive filtration (Ci)i∈N of F by coherent OC-submodules, we may consider the
inclusion morphisms:

ιi : Ci ↪−→ Ci+1,

and the associated k-linear maps:

ι1i : H
1(C, Ci) −→ H1(C, Ci+1).

Using again that C has cohomological dimension ≤ 1, we get exact sequences of cohomology groups:

H1(C, Ci)
ι1i−→ H1(C, Ci+1) −→ H1(C, Ci/Ci+1) −→ 0,

which actually are finite dimensional k-vector spaces. Moreover, as recalled in Proposition 3.2.1, the
colimit of the system

(3.3.6) H1(C, C0)
ι10−→ H1(C, C1)

ι11−→ H1(C, C2)
ι12−→ . . .

ι1i−1−→ H1(C, Ci)
ι1i−→ H1(C, Ci+1)

ι1i+1−→ . . .

is canonically isomorphic to H1(C,F).
Let us assume that (Ci)i∈N satisfies condition (ii) in Theorem 3.2.7. Then the k-linear maps ι1i

are surjective for i ≥ i0. The integers h1(C, Ci) are therefore decreasing for i ≥ i0, hence eventually
constant. Consequently the surjective morphisms ι1i are isomorphisms when i is large enough, say
when i ≥ i1. This implies that, for any i ≥ i1, H

1(C, Ci) is isomorphic to H1(C,F), and therefore
has the same dimension N . This proves that (Ci)i∈N satisfies (3.3.5), and therefore establishes the
validity of (3.2.14).

Conversely, let us assume that (3.3.5) holds. Then we may apply the following lemma to the
system of finite dimensional k-vector spaces (3.3.6). It implies that the maps ι1i are isomorphisms,
and therefore that H1(C, Ci+1/Ci) vanishes, when i is large enough, and therefore the validity of
condition (ii) in Theorem 3.2.7.

Lemma 3.3.3. Let us consider a direct system, indiced by N, of k-vector spaces:

V0
j0−→ V1

j1−→ V2
j2−→ . . .

ji−1−→ Vi
ji−→ Vi+1

ji+1−→ . . . .

If there exists N in N such that:

(3.3.7) dimk Vi = N for every i ∈ N,

and

(3.3.8) dimk colim
i∈N

Vi = N,

then there exists i0 in N such that ji is an isomorphism for every integer i ≥ i0.

Proof. Let us assume that (3.3.7) holds and that the conclusion of the lemma is not satisfied,
or equivalently that there exists a strictly increasing sequence (in)n∈N such that, for every n in N,
jin is not an isomorphism, and therefore not injective.
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Every finite dimensional k-vector subspace F of colimi∈N Vi is contained in the image of Vin for
n large enough. Therefore:

dimk F ≤ dimk jin(Vin) ≤ N − 1.

This proves the estimate
dimk colim

i∈N
Vi ≤ N − 1,

and implies that (3.3.8) does not hold. □

3.3.3.2. Proof of (ii)⇔ (iii) in in Theorem 3.2.7 (2). Let (Ci)i∈N and i0 be as in condition (ii).
Then the sequence (Ci/Ci0)i≥i0 is an exhaustive filtration of F/Ci0 by coherent OC-submodules.
Moreover for any i ≥ i0, we have:

h1(C, (Ci+1/Ci0)/(Ci/Ci0)) = h1(C, Ci+1/Ci) = 0.

Therefore (3.2.14) applied to F/Ci0 establishes the equality:

h
1
(C,F/Ci0) = h1(Ci0/Ci0) = 0,

and therefore the vanishing of evh
1
(C,F). This completes the proof of (iii).

Conversely let us assume that (iii) is satisfied, or equivalently that there exists a coherent
OC-submodule C of F such that

h
1
(C,F/C) = 0.

The implication (i)⇒ (ii) applied to F ′ := F/C establishes the existence of an exhaustive filtration
(C′i)i∈N and of i0 ∈ N such that:

h1(C, C′i+1/C′i) = 0 for every i ≥ i0.
Then the OC-submodules C′i of F containing C such that

Ci/C = C′i
define an exhaustive filtration of F by coherent OC-submodules that satisfies condition (ii).

3.3.4. Quasi-coherent sheaves of countable type such that h
1
(C,F) < +∞. Let F be

a quasi-coherent OC-module of countable type.

The following lemma is a straightforward addition to Proposition 3.2.5:

Proposition 3.3.4. For every N ∈ N, the following two conditions are equivalent:

(i) h
1
(C,F) = N ;

(ii) there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodules that satisfies
the following two conditions:

(3.3.9) h1(C, Ci) = N, for every i ∈ N,
and:

(3.3.10) h1(C, C) ≥ N, for every C in coh(F) containing C0.

Let us recall that the minimum slope µmin(C) of a coherent OC-module C is defined as the
infimum of the slopes

µ(Q) :=
degC Q

rkQ

of the locally free quotients Q of C of positive rank. It is also the infimum of the slopes µ(Q) of the
coherent quotients Q of C of positive rank. The minimum slope µmin(C) coincides with the minimum
slope µmin(C/tor) of the vector bundle C/tor. It is +∞ if and only if C is torsion, and satisfies the
equality:

(3.3.11) µmin(C ⊗ L) = µmin(C) + degC L
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for any line bundle L over C. Moreover the following implications hold:

(3.3.12) µmin(C) > 2g − 2 =⇒ h1(C, C) = 0 =⇒ µmin(C) ≥ g − 1.

Lemma 3.3.5. Let us assume that N := h
1
(C,F) is finite. If (Ci)i∈N is an exhaustive filtration

of F by coherent OC-submodules satisfying the conditions (3.3.9) and (3.3.10), then, for every i ∈ N,
we have:

(3.3.13) µmin(Ci/C0) ≥ g − 1.

Proof. We have to prove that, for every i ∈ N and every locally free quotient Q of positive
rank of Ci/C0, its slope satisfies the lower bound:

µ(Q) ≥ g − 1,

or equivalently, according to the Riemann-Roch formula:

(3.3.14) χ(C,Q) := h0(C,Q)− h1(C,Q) ≥ 0.

To achieve this, observe that any such quotient Q may be written Ci/C, where C is a coherent
OC-submodule of F such that

C0 ⊆ C ⊆ Ci,
and consider the short exact sequence of OC-modules:

0 −→ C −→ Ci −→ Q −→ 0.

From the associated long exact sequence of cohomology groups, we derive the equalities:

χ(C,Q) = χ(C, Ci)− χ(C, C)
= h0(C, Ci)− h0(C, C) + h1(C, C)− h1(C, Ci).

The difference h0(C, Ci)− h0(C, C) is clearly non-negative, and h1(C, C)− h1(C, Ci) also, according
to (3.3.9) and (3.3.10). This establishes the lower bound (3.3.14). □

To complete the proof of part (3) of Theorem 3.2.7, assume that N := h
1
(C,F) is finite, and

choose an exhaustive filtration (Ci)i∈N as in condition (ii) of Proposition 3.3.4. Then the lower
bounds (3.3.13) on the minimal slopes of the quotients Ci/C0 are satisfied. These imply the lower
bounds:

µmin(Ci+1/Ci) ≥ g − 1, for every i ∈ N,
since Ci+1/Ci is a quotient of Ci+1/C0. Consequently, if L is a line bundle over C such that degC L >
g − 1, then we have, for every i ∈ N:

µmin((Ci+1 ⊗ L)/(Ci ⊗ L)) = µmin((Ci+1/Ci)⊗ L) ≥ g − 1 + degC L > 2g − 2,

and therefore, according to the implication (3.3.12):

h1(C, (Ci+1 ⊗ L)/(Ci ⊗ L)) = 0.

This shows that the filtration (Ci ⊗ L)i∈N of F ⊗ L satisfies the condition (ii) of part (2) of
Theorem 3.2.7 for F ⊗ L instead of F , and consequently establishes (3.2.15).

3.4. Constructing quasi-coherent OC-modules F such that h1(C,F) < h
1
(C,F)

In this section, we describe a construction of locally free quasi-coherent OC-modules of countable

type such that h1(C,F)(= h1(C,F)) and h1(C,F) are finite and distinct. This construction involve
a suitable sequence of extensions by line bundles over C, and is basically dual to the one in [Bos20b,
Section 9.3]. We therefore allow ourselves to leave a few details to the reader.
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3.4.1. The data (Mi)i≥1 and (βi)i≥2, and the OC-module F . .

Let (Mi)i≥1 be a sequence of line bundles over C, and let (βi)i≥2 be a sequence of cohomology
classes:

βi ∈ H1(C,Mi−1 ⊗M∨
i )

∼−→ Ext1OC
(Mi,Mi−1).

From these data, we can construct a diagram:

F• : F0
ι0−→ F1

ι1−→ F2
ι2−→ . . .

ιi−1−→ Fi
ιi−→ Fi+1

ιi+1−→ . . .

where, for every i ∈ N, Fi is vector bundle of rank i over C and ιi is an injective morphism of
OC-modules with saturated image, such that the following condition is satisfied: for every i ≥ 1,
there exists an isomorphism of OC-modules

pi : Fi/ιi−1(Fi−1)
∼−→Mi

such that the extension class β̃i in Ext1OC
(Mi,Mi−1) of the 1-extension

(3.4.1) 0 −→ Fi−1
ιi−1−→ Fi

pi−→Mi −→ 0

is sent to βi by the morphism:

(3.4.2) pi−1 ◦ . : Ext1OC
(Mi,Fi−1) −→ Ext1OC

(Mi,Mi−1).

This is established by a straightforward inductive construction: starting from F0 := 0, F1 :=
M1, ι0 := 0, and p1 := IdM1

, and construct (Fk, ιk1 , pk) by induction on k, by using the surjectivity
of the maps (3.4.2), itself a consequence of the vanishing of the functor Ext2OC

on vector bundles
over C.

3.4.2. Computation of h1(C,F) and h
1
(C,F).. Let us consider the quasi-coherent sheaf

over C defined as the colimit of the inductive system F•:

F := colimF•.

This quasi-coherent sheaf F is locally free. Namely, for every affine open subscheme U in C, the
module F(U) over the Dedekind ring OC(U) is projective of infinite countable rank, and therefore
free. We will identify the vector bundles Fn with their image in F .

Let us now assume that the following condition is satisfied: for every i ≥ 2, the cup product by
βi defines an isomorphism:

βi ∪ . : H0(C,Mi)
∼−→ H1(C,Mi−1).

We shall prove that, under this assumption, the following relations hold:

(3.4.3) h1(C,F) = 0

and :

(3.4.4) h
1
(C,F) = lim inf

k→+∞
h1(C,Mk).

To achieve this, let us consider the long exact sequence of cohomology groups attached to the
short exact sequence of OC-modules (3.4.1):

(3.4.5) 0 −→ H0(C,Fi−1)
ι0i−1−→ H0(C,Fi)

p0i−→ H0(C,Mi)

β̃i∪.−→ H1(C,Fi−1)
ι1i−1−→ H1(C,Fi)

p1i−→ H1(C,Mi)−→0.
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A straightforward induction, based on the commutativity of the diagram:

H0(C,Mi)

β̃i∪.

((
βi∪.
��

H1(C,Mi−1)
p1i−1 // H1(C,Fi−1),

shows that the following properties are satisfied:

• for every i ≥ 1, the map p1i defines an isomorphism:

p1i : H
1(C,Fi)

∼−→ H1(C,Mi);

• for every i ≥ 2, the morphism β̃i ∪ . in (3.4.5) is an isomorphism, and therefore p0i and ι
1
i−1

vanish and ι0i−1 is an isomorphism.

The vanishing of the maps

ι1i−1 : H1(C,Fi−1)−→H1(C,Fi)

implies that

H1(C,F) ≃ colim
i

H1(C,Fi)

also vanishes. This completes the proof of (3.4.3).

Similarly the fact that the map ι0i−1 are isomorphisms shows that the inclusion morphism :

M1 ≃ F1↪−→F

induces an isomorphism:

H0(C,M1)
∼−→ H0(C,F).

Let C be an element of coh(F). There exists a smallest n ∈ N such that C ⊆ Fn. If C ̸= 0, then
n ≥ 1 and the composite morphism

C −→ Fn
pn−→Mn

is non-zero; therefore its cokernel is a torsion coherent OC-module, and the following inequality
holds:

h1(C, C) ≥ h1(C,Mn).

Consequently we obtain the estimate:

(3.4.6) h
1
(C,F) = lim inf

C∈coh(F)
h1(C, C) ≥ lim inf

k→+∞
h1(C,Mn).

Moreover, since the maps p1i , i ≥ 1, are isomorphisms, we also have:

h1(C,Fi) = h1(C,Mi),

and therefore:

(3.4.7) h
1
(C,F) = lim inf

C∈coh(F)
h1(C, C) ≤ lim inf

k→+∞
h1(C,Fn) = lim inf

k→+∞
h1(C,Mn).

The equality (3.4.4) follows from (3.4.6) and (3.4.7).
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3.4.3. Application: constructing F such that h1(C,F) = 0 and h
1
(C,F) = 1. The

previous construction allows one to construct F such that:

h1(C,F) < h
1
(C,F)

when the genus g of C is positive,12 at least when the base field k is algebraically closed or is a finite
field of cardinality larger than some function of g.

Indeed assume thatM is a line bundle over C such that

h0(C,M) = h1(C,M) = 1.

Such a line bundle exists for instance when g = 1 (take M = OC), and when g > 1 and when C

and the smooth locus of the theta divisor in Picg−1
C/k possess a k-rational point. A straightforward

application of Serre duality establishes the existence of β in H1(C,OC) such that the map

β ∪ . : H0(C,M) −→ H1(C,M)

is nonzero, hence an isomorphism. The construction above applied toMi :=M (resp. βi := β) for
every i ≥ 1 (resp. for every i ≥ 2) produces a quasi-coherent OC-module F such that:

h0(C,F) = 1, h1(C,F) = 0, and h
1
(C,F) = 0.

3.5. h1-Finiteness of Quasi-coherent Sheaves

3.5.1. h1-finiteness: definition and first properties.

Lemma 3.5.1. Let F be some quasi-coherent sheaf over C. If L is a line bundle over C that is
generated by its global section (for instance, if degC L ≥ 2g), then the following implication holds:

(3.5.1) h1(C,F) < +∞ =⇒ h1(C,F ⊗ L) < +∞.

Proof. Let us assume that s1, . . . , sN are elements of Γ(C,L) such that

N∑
i=1

OCsi = L.

We may consider the morphism

σ := (s1, . . . , sn) : O⊕N
C −→ L

of sheaves of OC-modules. It is surjective and its kernel kerσ is locally free of rank N − 1. From
the short exact sequence of locally free coherent sheaves

0 −→ kerσ ↪−→O⊕N
C

σ−→ L −→ 0,

we deduce a short exact sequence of quasi-coherent sheaves:

0 −→ F ⊗ kerσ ↪−→F⊕N σ−→ F ⊗ L −→ 0,

and finally, since C has cohomological dimension 1, a surjective morphism of k-vector spaces:

H1(C,F)⊕N σ1

−→ H1(C,F ⊗ L) −→ 0.

This establishes the implication (3.5.1). □

12Observe that, according to Theorem 3.2.7, (3), quasi-coherent OC -modules F of countable type such that

h1(C,F) and h
1
(C,F) are finite and distinct do not exist when the genus g = 0.
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Let D be some divisor of positive degree on C. Lemma 3.5.1 shows that, for any quasi-coherent
sheaf F over C, the following conditions are equivalent.

h1-Fin1 : For any line bundle L over C,

h1(C,F ⊗ L∨) < +∞.

h1-Fin2 : For any n ∈ N,
h1(C,F ⊗OC(−nD)) < +∞.

h1-Fin3 : There exists a sequence Ln of line bundles over C such that

lim
n→+∞

degC Ln = +∞,

and, for any n ∈ N,
h1(C,F ⊗ L∨

n) < +∞.

When they are satisfied, we shall say that F is h1-finite.

Proposition 3.5.2. Let us consider a short exact sequence of quasi-coherent OC-modules:

0 −→ F1 −→ F2 −→ F3 −→ 0.

1) If F2 is h1-finite, then F3 is h1-finite.

2) If F1 and F3 are h1-finite, then F2 is h1-finite.

3) If F3 is coherent, then F1 is h1-finite if and only if F2 is h1-finite.

Proof. This is a straightforward consequence of the exact sequences of cohomology groups,
where L denotes an arbitrary line bundle over C:

H0(C,F3 ⊗ L∨) −→ H1(C,F1 ⊗ L∨) −→ H1(C,F2 ⊗ L∨) −→ H1(C,F3 ⊗ L∨) −→ 0. □

Any torsion quasi-coherent sheaf over C is clearly h1-finite. Together with Proposition 3.5.2, 1)
and 2), this implies:

Corollary 3.5.3. A quasi-coherent sheaf F over C is h1-finite if and only if F/Ftor is h1-
finite. □

Any coherent sheaf over C is clearly h1-finite. Examples of torsion free and non-coherent h1–
finite quasi-coherent sheaves are provided by the following straightforward proposition:

Proposition 3.5.4. 1) For any open affine subscheme U of C and any quasi-coherent sheaf F
over U , its direct image iU∗F by the inclusion morphism iU : U↪−→C is h1-finite.

2) Let (Ln)n∈N be a sequence of line bundles over C. The quasi-coherent sheaf
⊕

n∈N Ln over

C is h1-finite if and only if limn→+∞ degC Ln = +∞. □

3.5.2. Global sections and h1-finiteness. Let F be some quasi-coherent sheaf over C.

3.5.2.1. Criteria of h1-finiteness. For any line bundle M over C, we may consider the tautolog-
ical morphism of quasi-coherent sheaves:

ηM : Γ(C,F ⊗M∨)⊗kM −→ F .
For any open subscheme U of C and any s ∈ Γ(C,F ⊗M∨) and any t ∈ Γ(U,M), this morphism
maps s⊗k t to the section s|U ⊗ t of F ⊗M∨⊗M ≃ F over U . Recall that F is said to be generated
by its global sections when the morphism of sheaves

ηOC
: Γ(C,F)⊗k OC −→ F

is surjective. It is straightforward that the sheaf

FM := im ηM
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is the largest quasi-coherent subsheaf F ′ of F such that F ′⊗M∨ is generated by its global sections.

As before, we denote by D some divisor of positive degree over C.

Proposition 3.5.5. The following conditions are equivalent:

h1-Fin : The quasi-coherent sheaf F is h1-finite.

h1-Fin1′ : For any line bundle M over C, the quasi-coherent sheaf coker ηM := F/FM over C
is coherent.

h1-Fin2′ : For any n ∈ N, F/FO(nD) is coherent.

h1-Fin3′ : There exists a sequence (Ln)n≥0 of line bundles over C such that

lim
n→+∞

degC Ln = +∞,

and, for any n ∈ N, the sheaf F/FLn
is coherent.

3.5.2.2. Proof of Proposition 3.5.5. We divide the proof of Proposition 3.5.5 in a succession of
lemmas.

Lemma 3.5.6. LetM and N be two line bundles over C. If F/FM is coherent and if H1(C,N) =
0, then

dimkH
1(C,F ⊗M∨ ⊗N) = dimkH

1(C, (F/FM )⊗M∨ ⊗N)) < +∞.

In particular, if F is generated by its global sections, then H1(C,F ⊗N) = 0.

Proof. From the exact sequence

Γ(C,F ⊗M∨)⊗k N
ηM⊗IdM∨⊗N−−−−−−−−−→ F ⊗M∨ ⊗N −→ (F/FM )⊗M∨ ⊗N −→ 0,

we deduce an exact sequence of cohomology groups

H1(C,Γ(C,F ⊗M∨)⊗k N) −→ H1(C,F ⊗M∨ ⊗N) −→ H1(C, (F/FM )⊗M∨ ⊗N) −→ 0.

As C is Noetherian, the cohomology group H1(C,Γ(C,F ⊗ M∨) ⊗k N) may be identified with
Γ(C,F ⊗M∨)⊗k H1(C,N), and therefore vanishes. Consequently,

H1(C,F ⊗M∨ ⊗N)
∼−→ H1(C, (F/FM )⊗M∨ ⊗N).

When F is generated by its global sections, if we let M = OC , then FM = F , and these
cohomology groups vanish. □

Let us consider the diagonal embedding of C into C×C := C×Spec kC, and the two projections
of C × C to C:

C
∆
↪−→ C × C p1,p2−−−−→ C,

and let us denote by ∆C the diagonal ∆(C) in C × C. For any quasi-coherent sheaf G over C × C,
we shall write G(−∆C) for G ⊗ OC⊗C(−∆C).

For any two quasi-coherent sheaves G1 and G2 over C, we may introduce their “external tensor
product”, namely the quasi-coherent sheaf over C × C:

G1 ⊠ G2 := p∗1G1 ⊗ p∗2G2.

For any line bundle M over C, the restriction of M ⊗M∨ to ∆C is canonically isomorphic to
O∆C

. This isomorphism determines a short exact sequence of coherent sheaves over the surface
C × C:

0 −→M ⊠M∨(−∆C) −→M ⊠M∨ −→ O∆C
−→ 0.

From this short exact sequence, by applying the functor · ⊗ p∗2F, we derive a short exact sequence
of quasi-coherent sheaves over C × C:
(3.5.2) 0 −→M ⊠ (F ⊗M∨)(−∆C) −→M ⊠ (F ⊗M∨) −→ ∆∗F −→ 0.
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Indeed, the left exactness holds in (3.5.2) because the map p1 : ∆C −→ C is an isomorphism, and a
fortiori flat.

Lemma 3.5.7. For any line bundle M over C, if the quasi-coherent sheaf Rp1∗(M ⊠ (F ⊗
M∨)(−∆C)) is coherent, then coker ηM is coherent.

Proof. From (3.5.2), we derive a long exact sequences of higher direct images along p1:

(3.5.3) p1∗(M ⊠ (F ⊗M∨)) −→ p1∗∆∗F −→ Rp1∗(M ⊠ (F ⊗M∨)(−∆C)).

We have canonical isomorphisms:

p1∗(M ⊠ (F ⊗M∨))
∼−→ Γ(C,M∨)⊗kM and p1∗∆∗F

∼−→ F,

and the first arrow in the exact sequence (3.5.3) may be identified with ηM . The quasi-coherent
sheaf coker ηM is therefore isomorphic to some subsheaf of Rp1∗(M ⊠ (F ⊗M∨)(−∆M )), and thus
is coherent if the latter is. □

Lemma 3.5.8. Let M and N be two line bundles over C. Let us assume that there exists a vector
bundle E over C and a surjective morphism of sheaves of OC×C-modules

α : p∗1E −→ p∗2(N ⊗M∨)(−∆C).

If moreover

(3.5.4) dimkH
1(C,F ⊗N∨) < +∞,

then the sheaf Rp1∗(M ⊠ (F ⊗M∨)(−∆M )) is coherent.

Observe that the existence of some vector bundle E and of some morphism α as above is assured
when the line bundle N ⊗M∨ is positive enough. For instance, it holds with

E := p1∗(p
∗
2(N ⊗M∨)(−∆C))

and with α the tautological morphism if degC N ≥ degCM + 2g + 1.

Proof. By taking the tensor product of the morphism α by the identity morphism ofM⊠(F⊗
N∨), we get an exact sequence of coherent sheaves over C × C:

(3.5.5) (E ⊗M)⊠ (F ⊗N∨)
α⊗IdM⊠(F⊗N∨ )
−−−−−−−−−−−→ (M ⊠ (F ⊗M∨))(−∆C) −→ 0.

Observe that, for any quasi-coherent sheaf G over C×C, the higher direct images Rip1∗G vanish
for every i > 1. Indeed, we may write C as the union U ∪ V of two affine open subschemes U and
V , and therefore C ×C as the union of the two open subschemes C × U and C × V , the restriction
of p1 to both of them is an affine morphism.

Applied to G := ker(α ⊗ IdM⊠(F⊗N∨)), this shows that the exact sequence (3.5.5) determines,
by considering higher direct images by p1, a short exact sequence of quasi-coherent sheaves over C:

R1p1∗
(
(E ⊗M)⊠ (F ⊗N∨)

)
−→ R1p1∗

(
M ⊠ (F ⊗M∨)(−∆C)

)
−→ 0.

Moreover, we have a canonical isomorphisms of quasi-coherent sheaves over C:

R1p1∗(E ⊗M)⊠ (F ⊗N∨)
∼−→ H1(C,F ⊗N∨)⊗k E ⊗M.

When the finiteness condition (3.5.4) holds, the quasi-coherent sheaf H1(C,F ⊗N∨)⊗kE⊗M , and
therefore its quotient R1p1∗

(
M ⊠ (F ⊗M∨)(−∆C)

)
is coherent. □

Proof of Proposition 3.5.5. The implications h1-Fin1′ ⇒ h1-Fin2′ ⇒ h1-Fin3′ are clear.

To prove the implication h1-Fin3′ ⇒ h1-Fin3, choose some line bundle N over C such that
H1(C,N) = 0 — for instance, any line bundle of degree > 2g − 2. If (Ln)n∈N is a sequence of line
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bundles over C as in Condition h1-Fin3′ , Lemma 3.5.6 shows that the line bundles L′
n := Ln ⊗N∨

— the degrees of which go to infinity with N — satisfy

dimkH
1(C,F ⊗ L′

n
∨
) < +∞.

To prove the implication h1-Fin1 ⇒ h1-Fin1′ , observe that, for any two line bundles M and
N over C, Lemma 3.5.7 together with Lemma 3.5.8 and the subsequent observation establish the
following implication:

dimkH
1(C,F⊗N∨) < +∞ and degC N ≥ degCM+2g+1 =⇒ coker ηM is coherent. □

3.5.2.3. Stability under tensor product of h1-finiteness. As an application of the criteria for h1-
finiteness established in Proposition 3.5.5, we may prove:

Proposition 3.5.9. The tensor product F ⊗G of any two h1-finite quasi-coherent sheaves over
C is h1-finite.

The proof will rely on Proposition 3.5.5 combined with Lemma 3.5.6 and with the following
observation:

Lemma 3.5.10. For any h1-finite quasi-coherent sheaf F over C and any coherent sheaf G over
C, the quasi-coherent sheaf F ⊗ G is also h1-finite.

Proof. This clearly holds when G is a line bundle. Assertions 2) and 1) in Proposition 3.5.2
imply that it also holds when G is any finite sum of line bundles, and then when G is any quasi-
coherent quotient of such a direct sum, that is, for any coherent sheaf G. □

Proof of Proposition 3.5.9. Let us choose some line bundle N over C such that:

H1(C,N) = 0.

Let F and G be h1-finite quasi-coherent sheaves over C, and let L be some line bundle over C.

As F and G satisfy Condition h1-Fin1′ , we may consider the exact sequence of quasi-coherent
sheaves over C

(3.5.6) 0 −→ FL↪−→F −→ F/FL −→ 0

and

(3.5.7) 0 −→ GOC
↪−→G −→ G/GOC

−→ 0.

The quasi-coherent sheaves FL ⊗L∨ and GOC
are generated by their global sections. Moreover, the

quotients sheaves F/FL and G/GOC
are coherent, and therefore, according to Proposition 3.5.2, 3),

FL and GOC
are h1-finite.

By applying the functor · ⊗ G ⊗ L∨ ⊗N (resp. FL ⊗ L∨ ⊗N ⊗ ·) to the exact sequence (3.5.6)
(resp. to (3.5.7)), we get exact sequences of quasi-coherent sheaves:

(3.5.8) FL ⊗ G ⊗ L∨ ⊗N α−→ F ⊗ G ⊗ L∨ ⊗N −→ F/FL ⊗ G ⊗ L∨ ⊗N −→ 0

and

(3.5.9) FL ⊗ GOC
⊗ L∨ ⊗N β−→ FL ⊗ G ⊗ L∨ ⊗N −→ FL ⊗ G/GOC

⊗ L∨ ⊗N −→ 0.

The quasi-coherent sheaf FL ⊗ L∨ ⊗ GOC
is generated by its global sections, and therefore, by

the last assertion in Lemma 3.5.6,

(3.5.10) H1(C,FL ⊗ L∨ ⊗ GOC
⊗N) = 0.

Using that C has cohomological dimension 1, we deduce from (3.5.10):

H1(C, imβ) = 0
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and then, from (3.5.9), an isomorphism between first cohomology groups:

(3.5.11) H1(C,FL ⊗ G ⊗ L∨ ⊗N)
∼−→ H1(C,FL ⊗ G/GOC

⊗ L∨ ⊗N).

Moreover, according to Lemma 3.5.10, the quasi-coherent sheaf FL⊗G/GOC
is h1-finite. Together

with (3.5.11), this shows:
dimkH

1(C,FL ⊗ L∨ ⊗ G ⊗N) < +∞.
In turn, this implies:

(3.5.12) dimkH
1(C, imα) < +∞.

By Lemma 3.5.10 again, the quasi-coherent sheaf F/FL ⊗ G is also h1-finite. Combined with
the exact sequence of first cohomology groups

H1(C, imα) −→ H1(C,F ⊗ G ⊗ L∨ ⊗N) −→ H1(C, (F/FL)⊗ G ⊗ L∨ ⊗N)

deduced from (3.5.8) and with (3.5.12), this implies:

dimkH
1(C,F ⊗ G ⊗ L∨ ⊗N) < +∞.

Since L is arbitrary, this shows that F ⊗ G is h1-finite. □

3.6. h
1
-Finiteness of Quasi-coherent Sheaves

3.6.1. h
1
-finiteness: definition and first properties.

3.6.1.1. Â Let (Lα)α∈A be a family of line bundles over C such that

(3.6.1) sup
α∈A

degC Lα = +∞.

The conditions h1-Fin1, h
1-Fin2, and h

1-Fin3 defining the h1-finite quasi-coherent OC-modules
are clearly equivalent to the following one:

(3.6.2) for every α ∈ A, h1(C,F ⊗ L∨
α) < +∞.

In particular, the condition (3.6.2) is independent of the family (Lα)α∈A satisfying (3.6.1).

Similarly the conditions h1-Fin1′ , h
1-Fin2′ , and h

1-Fin3′ in Proposition 3.5.5 are equivalent to
the condition:

(3.6.3) for every α ∈ A, the OC-module F/FLα
is coherent.

This condition may be reformulated as follows:
(3.6.4)

for every α ∈ A, there exists G in coft(F) such that G ⊗ L∨
α is generated by its global sections.

3.6.1.2. Observe that Lemma 3.5.1 still holds when h1(C, .) is replaced by h
1
(C, .).13 This implies

that, for any quasi-coherent OC-modules, the conditions h
1
-Fin1, h

1
-Fin2, and h

1
-Fin3 obtained

by replacing h1(C, .) by h
1
(C, .) in h1-Fin1, h

1-Fin2, and h1-Fin3, are still equivalent, and also
equivalent to the condition:

(3.6.5) for every α ∈ A, h
1
(C,F ⊗ L∨

α) < +∞
for every family (Lα)α∈A of line bundles over C satisfying (3.6.1) as above.

When these equivalent conditions are satisfied, we shall say that F is h
1
-finite.

Clearly a h
1
-finite quasi-coherent OC-module is h1-finite. Moreover, for any family (Lα)α∈A as

above, we immediately derive from Theorem 3.2.7 (3):

13Indeed, with trivial modifications, its proof remains valid for h
1
(C, .) instead of h1(C, .). It now relies on the

monotonicity and subadditivity properties of h
1
(C, .) stated in Proposition 3.2.3.
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Proposition 3.6.1. A quasi-coherent OC-module of countable type F is h
1
-finite if and only it

satisfies:

(3.6.6) for every α ∈ A, h1(C,F ⊗ L∨
α) = h

1
(C,F ⊗ L∨

α) < +∞.

From the monotonicity and and subadditivity properties of h
1
(C, .) stated in Propositions 3.2.3

and 3.2.4, we also obtain the following analogue of Proposition 3.5.2:

Proposition 3.6.2. Let us consider a short exact sequence of quasi-coherent OC-modules of
countable type:

0 −→ F1 −→ F2 −→ F3 −→ 0.

1) If F2 is h1-finite, then F3 is h
1
-finite.

2) If F1 and F3 are h1-finite, then F2 is h
1
-finite.

3) If F3 is coherent, then F1 is h1-finite if and only if F2 is h
1
-finite.

3.6.2. Filtrations by coherent submodules and h
1
-finiteness. The h

1
-finiteness of quasi-

coherent OC-modules of countable type may actually be characterized in terms of the existence of
suitable filtrations by coherent submodules.

Theorem 3.6.3. For every quasi-coherent OC-module F of countable type, the following condi-
tions are equivalent:

(i) F is h
1
-finite;

(ii) for every α ∈ A, there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodu-
les such that

h1(C, (Ci+1/Ci)⊗ L∨
α) = 0 for every large enough i ∈ N;

(iii) there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodules such that, for
every α ∈ A,

h1(C, (Ci+1/Ci)⊗ L∨
α) = 0 for every large enough i ∈ N;

(iv) for every D in N, there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-
submodules such that

(3.6.7) µmin(Ci+1/Ci) ≥ D for every large enough i ∈ N;

(v) there exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodules such that

(3.6.8) lim
i→+∞

µmin(Ci+1/Ci) = +∞.

The conditions (ii) to (iv), characterizing h
1
-finiteness in terms of coherent filtrations, should

be compared to conditions (3.6.3) and (3.6.4), which characterize h1-finiteness in terms of coherent
quotients.

The proof of Theorem 3.6.3 will rely on the characterization in Theorem 3.2.7, (2), of the quasi-
coherent OC-modules of countable type F such that

h1(C,F) = h
1
(C,F) < +∞,

and on the following lemma concerning the minimal slopes of subquotients of exhaustive filtrations.

Lemma 3.6.4. Let F be a OC-module of countable type, and let (Ci)i∈N and (C′i)i∈N be two
exhaustive filtrations of F by coherent OC-submodules.

If D′ is an integer such that:

(3.6.9) µmin(C′i+1/C′i) ≥ D′ for every large enough i ∈ N,
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then, for every A in N, there exists two integers N ≥ A and M ≥ A in N such that

(3.6.10) CN ⊆ C′M and µmin(C′M/CN ) ≥ D′.

Proof of Lemma 3.6.4. We may choose B in N such that:

(3.6.11) µmin(C′i+1/C′i) ≥ D′ for every integer i ≥ B.

As the filtration (Ci)i∈N is exhaustive and C′B is coherent, we may find an integer N ≥ A such
that C′B ⊆ CN . Similarly, as the filtration (C′i)i∈N is exhaustive and CN is coherent, we may find
M ≥ max(A,B) such that CN ⊆ C′M .

Then C′M/CN is a quotient of C′M/C′B , and therefore:

(3.6.12) µmin(C′M/CN ) ≥ µmin(C′M/C′B).

Recall that, for every coherent OC-module D and every filtration

0 = D0 ⊆ D1 ⊆ · · · ⊆ DA = D

of D by coherent OC-modules, we have:

(3.6.13) µmin(D) ≥ inf
1≤i≤A

µmin(Di/Di−1).

Applied to the coherent OC-module D = C′M/C′B equipped with the filtration:

0 = C′B/C′B ⊆ C′B+1/C′B ⊆ · · · ⊆ C′M/C′B ,

the lower bound (3.6.13) becomes:

(3.6.14) µmin(C′M/C′B) ≥ inf
B<i≤M

µmin(C′i/C′i−1).

.

From (3.6.11), (3.6.12), and (3.6.14), the lower bound in (3.6.10) follows. □

Proof of Theorem 3.6.3. The equivalence (i) ⇔ (ii) follows from the criterion (3.6.6) for

h
1
-finiteness combined with part (2) of Theorem 3.2.7.

The implications (iii) ⇒ (ii) and (v) ⇒ (iii) are clear. Moreover, using the properties (3.3.11)
and (3.3.12) of the minimum slope of a coherent OC-module, we derive the implications:

µmin(Ci+1/Ci) > degLα+2g− 2 =⇒ h1(C, (Ci+1/Ci)⊗L∨
α) = 0 =⇒ µmin(Ci+1/Ci) ≥ degLα+ g− 1.

These establish the equivalences (ii)⇔ (iv) and (iii)⇔ (v).

To complete the proof, we are left to prove the implication (iv) ⇒ (v). To achieve this, con-
sider for each D ∈ N an exhaustive filtration (CDi )i∈N of F by coherent submodules such that
µmin(CDi+1/CDi ) ≥ D for every large enough i ∈ N, and let us construct a filtration (Ci)i∈N of F as
in (v).

Firstly we choose a strictly increasing map α : N → N such that (CDα(D))D∈N is an exhaustive

filtration of F ; any α that grows fast enough will do.

Then, by induction on D in N, we construct another family (C̃Di )i∈N, D ∈ N, of exhaustive
filtrations of F by coherent submodules and a strictly increasing map A : N → N such that the
following conditions are satisfied:

(1) for every D ∈ N, C̃DA(D)+1 ⊇ C
D
α(D);

(2) for every D ∈ N and any i ≥ A(D), µmin(C̃Di+1/C̃Di ) ≥ D;

(3) for every D ∈ N>0 and every i ∈ {0, . . . , A(D)}, C̃Di = C̃D−1
i .
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Indeed we may define (C̃0i )i∈N as (C0i )i∈N. Then (1) and (2) hold whenD = 0 for any large enough

A(0). Consider now D in N>0 and assume that (C̃0i )i∈N, . . . , (C̃D−1
i )i∈N and A(0) < · · · < A(D− 1)

satisfying (1), (2), and (3) up to order D − 1 have already been constructed. Then we construct

(C̃Di )i∈N by means of Lemma 3.6.4 applied to the filtrations C• := C̃D−1
• and C′• := CD• , and to

D′ := D and A := max(α(D), A(D − 1) + 1). Then if we let:

(C̃Di )i∈N := (C̃D−1
0 , . . . , C̃D−1

N , CDM , CDM+1, . . . ) and A(D) := N,

then A(D) > A(D − 1), and (1), (2), and (3) are clearly satisfied at order D.

Having the filtrations (C̃Di )i∈N and the map A at our disposal, we define (Ci)i∈N as follows:

Ci := C̃ii , for every i ∈ N.

Observe that, for any given i ∈ N, the module C̃Di is independent of D, provided A(D+1) ≥ i. This
last condition is satisfied by D = i, and therefore:

(3.6.15) C̃Di = Ci if i ≤ A(D + 1).

Notably we have: C̃ii+1 = Ci+1, since i+1 ≤ A(i+1), and therefore: Ci ⊆ Ci+1. This proves that
(Ci)i∈N is indeed a filtration of F . It is exhaustive, since for every D ∈ N:

CA(D)+1 = C̃DA(D)+1 ⊇ C
D
α(D).

Finally, the minimal slope µmin(Ci+1/Ci) goes to infinity with i because, for any D and i in N, the
following implication holds:

(3.6.16) A(D) ≤ i < A(D + 1) =⇒ µmin(Ci+1/Ci) ≥ D.
Indeed, when i < A(D + 1), we have: i+ 1 ≤ A(D + 1), and therefore, according to (3.6.15) again,

Ci = C̃Di and Ci+1 = C̃Di+1. Therefore (3.6.16) follows from condition (2) above. □



CHAPTER 4

Positive invariants of Hermitian Quasi-coherent Sheaves over
Arithmetic Curves I:

Monotonicity, Subadditivity and φ-Summable Hermitian
Quasi-coherent Sheaves

As in Chapter 2, we denote by K a number field, by OK its ring of integers, and by X the
arithmetic curve SpecOK , and by VectX and qCohX the categories of Hermitian vector bundles
and of Hermitian quasi-coherent sheaves over the arithmetic curve X.

4.0.1. This chapter and the next one are devoted to the construction of invariants with values in
[0,+∞] attached to objects of the category qCohX , starting from invariants on VectX with values
in R+.

As already mentioned, we are interested in invariants that will have the role played in the
geometric situation by the invariant

h1(C,F) := dimkH
1(C,F) ∈ N ∪ {+∞}

attached to a quasi-coherent sheaf F on a projective curve C over some field k.

In Chapter 3, besides h1(C,F), we have investigated the invariants h1(C,F) and h1(C,F), the
definition of which involve only the knowledge of the invariants h1(C, C) attached to some coherent
sheaves C over C. In Theorem 3.2.7 notably, we have related these new invariants h1(C,F) and

h
1
(C,F) to the classical invariant h1(C,F).
In this chapter, we introduce invariants attached to objects of qCohX that play the role, in

the arithmetic situation, of the invariants h1(C, .) and h
1
(C, .). We also construct a subcategory

of qCohX that may be seen as an analogue of the category of quasi-coherent sheaves over C that
appear in Theorem 3.2.7, (2), Condition (iii). Since we are dealing with real valued invariants,
instead of integer valued ones, our constructions have necessarily a more analytic flavor than the
ones in Chapter 3.

The “h1-like” invariant of Hermitian vector bundles and Hermitian quasi-coherent sheaves that
is our main object of study in this monograph the θ-invariant h1θ. It is the invariant firstly defined

on VectZ by the formula:

h1θ(E) := log
(
covol(E)

∑
v∈E

e−π∥v∥
2
)

for every Euclidean lattice E := (E, ∥.∥), and then more generally on VectX by reducing to VectZ
by “direct image”.1

However, instead of focusing on h1θ in our constructions of invariants on qCohX extending some

invariant on VectX , in this chapter we follow an axiomatic approach to the constructions of these
extensions.

1Namely, for every Hermitian vector bundle E over X, we will have: h1θ(E) := h1θ(π∗E), where π∗E denotes the

Euclidean lattice direct image of E by the morphism of arithmetic curves π : X → SpecZ, defined in Subsection 2.2.3.

109
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The constructions in this chapter actually also apply to some other classical invariants attached
to Euclidean lattices, for instance to the invariant:

ρ2 : VectZ −→ R+,

defined as the square of the covering radius.2 The properties of the invariant ρ2 and of its extensions
to qCohZ — notably the comparison of ρ2 and of the invariant h1θ — will indeed constitute one the
main themes of this work. These constructions in this chapter would also apply to the invariant:

gv : VectZ −→ R+,

defined and used in Section 9.1 to bound h1θ in terms of ρ2.

Besides being applicable to invariants as diverse as h1θ and ρ
2, a further interest of this axiomatic

approach is that it clarifies the central role of a few basic inequalities and continuity properties of
invariants on VectX when one extend them, by successive limit procedures, to invariants on qCohX .
Our axiomatic approach might also be easily extended to a more general framework where the
category qCohX replaced by suitably defined categories of adelic Hermitian quasi-coherent sheaves.

4.0.2. Let us describe in more detail the content of this chapter.

In Section 4.1, we introduce various basic properties of invariants valued in [0,+∞] attached to
objects of the category CohX of Hermitian coherent sheaves over X, or to objects of qCohX .

Three of these properties will play a central role in our constructions. The first of them is the
monotonicity property Mon1 and its strengthened variant Mon1

K . An invariant φ of the objects of
CohX (resp. of qCohX) satisfies Mon1 when, for any morphism

f : F −→ G

in Coh
≤1

X (resp. in qCoh
≤1

X ) such that f(F) = G, the following inequality is satisfied:

(4.0.1) φ(F) ≥ φ(G).
Condition Mon1

K requires the validity of (4.0.1) under the weaker condition fK(FK) = GK .

Properties Mon1 and Mon1
K are obvious analogues of the monotonicity property satisfied by

h1(C, .) discussed in Subsection 3.1.1.3 A second property of this type, also crucial in our construc-
tions, is the subadditivity property SubAdd. A positive numerical invariant φ on CohX (resp. on
qCohX) satisfies SubAdd when, for every admissible short exact sequence

0 −→ F −→ G −→ H −→ 0

in CohX (resp. in qCohX), the following inequality holds:

φ(G) ≤ φ(F) + φ(H).

Besides properties Mon1 and SubAdd, directly inspired by the properties of the invariant
h1(C, .) in the geometric situation, a condition of analytic nature will equally play a central role in
our constructions, namely the downward continuity condition Cont+.

A positive numerical invariant φ defined and satisfies Mon1 on CohX , or more generally on
some subcategory ShX of qCohX , is said to satisfy Cont+ on ShX when, for every object F :=
(F , (∥.∥x)x∈X(C)) of ShX (resp. qCohX) and for every sequence ((∥.∥n,x)x∈X(C))n∈N of Hermitian
structures on F , the following relation holds:

lim
n→+∞

φ(F , ((∥.∥n,x)x∈X(C)) = φ(F),

2For every Euclidean lattice E := (E, ∥.∥), the covering radius is defined as the maximum distance of point in

the Euclidean space (ER, ∥.∥) to the lattice E: ρ(E) := maxx∈ER mine∈E ∥x− e∥. Equivalently ρ(E) is the minimum

of the set of r ∈ R+ such that the closed balls of radius r centered at the lattice points e ∈ E cover ER.
3The superscript 1 in Mon1 and Mon1

K is meant to recall it is a property of “h1-like invariants.” We will consider

later in Chapter 7 a dual monotonicity property of invariants on VectX , typical of “h0-like invariants,” that will be

denoted StMon0.



4. MONOTONICITY, SUBADDITIVITY AND φ-SUMMABLE HERMITIAN QUASI-COHERENT SHEAVES 111

when the Hermitian quasi-coherent sheaves (F , ((∥.∥n,x)x∈X(C)) define objects of ShX and when,
for every x ∈ X(C), the sequence (∥.∥n,x)n∈N of Hermitian norms on Fx is decreasing and converges
pointwise to ∥.∥x.4

Property Cont+ appears naturally when one extends to CohX monotonic invariants initially
defined on VectX . Moreover this property will allow us to control the dependence on Hermitian
seminorms, associated to the Archimedean places, in our constructions of invariants on qCohX .
Finally it will turn out to be satisfied by these invariants on qCohX in various significant situations.

4.0.3. Our construction of invariants on CohX starting from invariants on VectX will proceed
in two steps.

Firstly, in Section 4.2, we extend R+-valued invariants from VectX to CohX . Our construction
is elementary, and involves essentially the properties Mon1 and Cont+ of the given invariant on
VectX . It relies on some basic properties of downward continuous functions on convex cones in
topological R-vector spaces.

Then Section 4.3 is devoted to the extension to qCohX of an invariant:

φ : CohX −→ [0,+∞]

satisfying the monotonicity condition Mon1.

We actually introduce two extensions of φ, its lower extension φ and its upper extension φ, the

definitions of which are similar to the definitions of the invariants h1(C,F) and h1(C,F) considered
in 3.2.2 and 3.2.1 above. Namely, for every object F of qCohX , we define:

(4.0.2) φ(F) := lim
F ′∈coft(F)

φ(F/F ′) = sup
F ′∈coft(F)

φ(F/F ′),

and:

(4.0.3) φ(F) := lim inf
C∈coh(F)

φ(C),

where, in (4.0.2), the limit is taken over the directed set (coft(F),⊇) of OX -submodules G of F such
that the quotient OX -module F/G is coherent, and, in (4.0.3), the inferior limit is taken over the
directed set (coh(F),⊆) of coherent OX -submodules of F .5 These upper and lower extensions φ

and φ of φ to qCohX satisfy the inequality:

φ(F) ≤ φ(F).

The lower invariant φ is arguably more natural than the upper invariant φ. For instance, the

results in Chapter 3 — notably the equality h1(C,F) = h1(C,F) established in Subsection3.3.2 —
would be in favor of seeing it as the correct extension for “h1-type invariants”. Moreover φ satisfies
better formal properties than the upper invariant φ. However it turns out to be difficult to control
the invariant φ(F) attached to some Hermitian quasi-coherent sheaf F over X when the K-vector
space FK is not finite dimensional, at least without some delicate analysis.

On the contrary, when φ satisfies Mon and SubAdd, there is a natural class of objects of
qCohX , the φ-summable Hermitian quasi-coherent sheaves over X, on which the upper invariant
φ takes a finite value and may be easily computed. By definition, an object F of qCohX is φ-
summable when there exists an exhaustive filtration (Ci)i∈N of F by submodules in coh(F) such

4Since φ satisfies Mon1, the sequence (φ(F , ((∥.∥n,x)x∈X(C))))n∈N is decreasing and therefore admits a limit

in [0,+∞].
5Equivalently, coh(F) (resp. coft(F)) may be defined as the set of OK -submodules G of F := F(X) that are

finitely generated (resp. such that F/G is finitely generated).
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that
+∞∑
i=1

φ(Ci/Ci−1) < +∞.

When this holds, we have:

(4.0.4) φ(F) = lim
k→+∞

φ(Ck) ∈ R+.

The properties of the subcategory φΣ-qCohX of qCohX defined by its φ-summable objects and
of the invariant φ on this subcategory are investigated in Section 4.5, which constitutes the core of
this chapter.

The constructions and proofs in Section 4.5, notably the proof of the expression (4.0.4) for the
upper invariant φ(F) of a φ-summable object F in qCohX , have a lot more analytic content than
the ones in the previous sections. They are very much in the spirit of the derivation of the central
results measure theory — with also significant differences, since the role played in measure theory
by a σ-algebra of subsets of some set Ω is played here by the category qCohX , which admits a much
richer structure.

Some of our proofs, concerning notably the permanence properties of φ-summability, are admit-
tedly rather technical. However they establish the validity of a formalism that turn out to be quite
flexible in applications — notably in applications to Diophantine geometry in which a key role is
played by finiteness conditions of the form:

φ(F) < +∞,

where φ denotes one of the invariants h1θ or ρ2 and F is a Hermitian quasi-coherent sheaf naturally
attached to some Diophantine geometric data.6

4.0.5. Section 4.4 is devoted to a technical, but useful, construction concerning invariants on
qCohX that satisfy the monotonicity condition Mon1. To any such invariant ψ, we attach a new
invariant evψ : qCoh→ [0,+∞] defined by the formula:

evψ(F) := lim
C∈coh(F)

ψ(F/C) = inf
C∈coh(F)

ψ(F/C),

for every object F of qCohX .

Roughly speaking, when ψ also satisfies SubAdd, the vanishing condition:

evψ(F) = 0

means that the invariant ψ(F) may be approximated by the invariant ψ(C) attached to the coherent
submodules C ∈ coh(F). For this reason, this condition enters naturally at various places in our
study of the extensions φ and φ to qCohX of an invariant φ on CohX .

In the final Section 4.6, we discuss the compatibility of the extension procedures developed in
the previous sections with the direct images functors:

π∗ : Coh
≤1

X −→ Coh
≤1

Z and π∗ : qCoh
≤1

X −→ qCoh
≤1

Z

attached to the finite morphism:

π : X −→ SpecZ.

6For instance, the global sections of some coherent sheaf on some OK -scheme of finite type.
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4.1. Positive Numerical Invariants on CohX and qCohX

In this section, we introduce various properties of positive numerical invariants attached to
objects of CohX or qCohX , and we establish various elementary implications between these prop-
erties.

We denote by ShX one of the categories CohX or qCohX , and accordingly, by Sh
≤1

X the

category Coh
≤1

X or qCoh
≤1

X .

4.1.1. Definition.

Definition 4.1.1. An invariant of objects of ShX with values in [0,+∞] (resp. with values in
R+) is a function φ which assigns to each object of ShX an element φ(F) in [0,+∞] (resp. in R+)

that depends only on the isomorphism class of F in Sh
≤1

X and vanishes when F is the zero Hermitian
coherent sheaf on X.

In other words, we require φ to satisfy the following condition:

(i) if there exists an isometric isomorphism f : F1
∼−→ F2 between two objects F1 and F2 in

ShX , then φ(F1) = φ(F2);
(ii) if 0 denotes the zero Hermitian coherent sheaf over X,7 then φ(0) = 0.

To denote such an invariant, we shall use the notation:

φ : ShX −→ [0,+∞] (resp. R+).

4.1.2. Monotonicity and subadditivity. In this chapter and in the following ones, a major
role will be played by the following monotonicity and subadditivity conditions regarding an invariant
φ : ShX −→ [0,+∞]:

Mon1: For every morphism f : F → G in Sh
≤1

X such that the morphism of OK-modules
f : F → G is surjective, we have:

φ(F) ≥ φ(G).

SubAdd: For every admissible short exact sequence in ShX :

(4.1.1) 0 −→ E −→ F −→ G −→ 0,

the following inequality holds:

φ(F) ≤ φ(E) + φ(G).

Observe that, when both conditions Mon1 and SubAdd hold, then, for every admissible short
exact sequence (4.1.1) in ShX , we have:

(4.1.2) φ(G) ≤ φ(F) ≤ φ(E) + φ(G).

Proposition 4.1.2. When the invariant φ satisfies the conditions Mon1 and SubAdd, then,
for any admissible short exact sequence in ShX

(4.1.3) 0 −→ F ′ i−→ F p−→ F ′′ −→ 0

and any OK-submodule G of F , the following inequality holds:

(4.1.4) φ(F/G) ≤ φ(F ′/i−1(G)) + φ(F ′′/p(G)).

Moreover, for any object E in ShX and any two OK-submodules E1 and E2 of E , we have:

(4.1.5) φ(E1 + E2) ≤ φ(E1) + φ(E2).

7or equivalently the null object in ShX and in Sh
≤1
X .
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Proof. To establish (4.1.4), we will rely on the constructions of admissible short exact sequences
discussed in 2.2.2.2.

Namely, consider the short exact sequence of OK-modules induced by (4.1.3):

(4.1.6) 0 −→ F ′/i−1(G) ĩ−→ F/G p̃−→ F ′′/p(G) −→ 0,

and im ĩ, the object of qCohX defined by the image of ĩ endowed by the Hermitian metrics induced

by the ones of F/G. The morphism

ĩ : F ′/i−1(G) −→ im ĩ

is surjective and has norms ≤ 1, and the diagram

0 −→ im ĩ −→ F/G p̃−→ F ′′/p(G) −→ 0

is an admissible short exact sequence in ShX .

Since φ satisfies Mon1 and SubAdd, the following two inequalities hold:

φ(im ĩ) ≤ φ(F ′/i−1(G))
and

φ(F/G) ≤ φ(im ĩ) + φ(F ′′/p(G)),
and (4.1.4) follows.

To prove (4.1.5), consider the admissible short exact sequence:

0 −→ E1 −→ E1 + E2 −→ (E1 + E2)/E1 −→ 0.

The subadditivity of φ implies the inequality:

φ(E1 + E2) ≤ φ(E1) + φ((E1 + E2)/E1).
Moreover the obvious surjective morphism of OK-modules

E2 −→ (E1 + E2)/E1

defines a morphism in Sh
≤1

X from E2 to (E1 + E2)/E1. Therefore, according to the monotonicity of
φ, we have:

φ((E1 + E2)/E1) ≤ φ(E2),
and (4.1.5) follows. □

4.1.3. Downward continuity. Consider an invariant

φ : ShX −→ [0,+∞]

that satisfies the monotonicity condition Mon1.

Let F := (F , (∥.∥x)x∈X(C) and F ′
:= (F , (∥.∥′x)x∈X(C) be two objects in ShX with the same

underlying OK-modules F such that:

∥.∥′x ≤ ∥.∥x for every x ∈ X(C).

Then the morphism

IdF : F −→ F ′

is a morphism in Sh
≤1

X , surjective on the underlying OK-modules, and Mon1 applied to this mor-
phism reads:

φ(F ′
) ≤ φ(F).

More generally, consider a sequence (Fn)n∈N of objects

Fn := (F , (∥.∥n,x)x∈X(C)
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in ShX with the same underlying OK-modules F such that, for every x ∈ X(C), the sequence of
seminorms (∥.∥n,x)n∈N is decreasing. We may define an object

(4.1.7) F := (F , (∥.∥x)x∈X(C))

in ShX by means of the Hermitian seminorms on the Fx, x ∈ X(C), defined as the pointwise limits:

(4.1.8) ∥v∥x := lim
n→+∞

∥v∥n,x, for every v ∈ Fx.

According to the previous observation, the validity of the monotonicity condition Mon1 implies
that (φ(Fn))n∈N is a decreasing sequence in [φ(F),+∞], and therefore has a well-defined limit which
satisfies the inequality:

(4.1.9) lim
n→+∞

φ(Fn) ≥ φ(F).

We may therefore introducing the following condition of downward continuity on the invariant φ:

Cont+ : For every sequence (Fn)n∈N of objects in ShX defined by decreasing sequences of
seminorms as above, the image by φ of the object F defined by (4.1.7) and (4.1.8) satisfies:

(4.1.10) lim
n→+∞

φ(Fn) = φ(C).

Let us emphasize the ambivalent character of this definition: the condition Cont+ is simulta-
neously a weak condition, in so far as it deals with decreasing sequences of seminorms only, and a
strong condition — at least when ShX is the category qCohX or a subcategory8 containing objects
F such that the C-vector spaces Fx, x ∈ X(C), are infinite dimensional — since only pointwise
convergence is required in (4.1.8).

4.1.4. Vanishing on torsion sheaves and antiprojective sheaves.

4.1.4.1. Vanishing on torsion sheaves. The invariants investigated in this monograph “do not
see torsion”. Indeed they satisfy the following conditions:9

VT: For every object F in ShX whose underlying OK-module F is torsion, we have:

φ(F) = 0.

NST: For every object F := (F , ∥.∥) in ShX , the following equality holds:

φ(F) = φ(F/tor).

Clearly, we have:

NST =⇒ VT.

Conversely the estimates (4.1.2) applied to the admissible short exact sequence

0 −→ Ftor −→ F −→ F/tor −→ 0,

introduced in Example 2.2.4 above, establish the implication:[
Mon1,SubAdd and VT

]
=⇒ NST.

8The validity of Condition Cont+ on some categories intermediate between CohX and qCohX will be con-

sidered in this monograph. Its precise meaning in these situations will be specified to avoid any ambiguity; see for

instance Propositions 4.5.16 and 5.4.9. As demonstrated by the constructions in Examples 5.4.10 and 6.3.5, interesting
invariants seldom satisfy Cont+ on the whole category qCohX .

9Note however that there exist natural invariants that satisfy Mon1, SubAdd and Cont+, as well as the
conditions Add⊕, StMon1

2, StMon1
3, and StMon1

4 introduced in 4.1.5 and 5.2 below, but not VT. Such an
invariant may be obtained by considering a non-zero prime ideal p of OK , of residue field Fp := OK/p, and by

defining:

φ : qCohX → N ∪ {+∞}, F 7→ dimFp FFp .
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It is often convenient to consider the following strengthening of the monotonicity condition φ:

Mon1
K : For every morphism f : F → G in Sh

≤1

X such that the morphism of K-vector spaces
fK : FK → GK is surjective, we have:

φ(F) ≥ φ(G).
The following proposition shows that, when the subadditivity condition SubAdd holds, the

validity of Mon1 and VT (or equivalently NST) is equivalent to the one of Mon1
K :

Proposition 4.1.3. The following implications hold:

(4.1.11) Mon1
K =⇒ VT

and:

(4.1.12)
[
Mon1,SubAdd and VT

]
=⇒Mon1

K .

Proof. To prove (4.1.11), consider an object F of ShX whose underlying OK-module F is
torsion. Then the morphism

f : 0 −→ F
from the null object in Sh

≤1

X induces a surjective K-linear map fK , since FK is the null K-vector
space. Therefore, if φ satisfies Mor1K , then:

φ(F) ≤ φ(0) = 0,

and consequently φ(F) vanishes.

To prove (4.1.12), consider a morphism f : F → G in Sh
≤1

X such that fK is surjective. It factors

in Sh
≤1

X as:

f = i ◦ f̃ : F f̃−→ im f
i

↪−→ G,
where the injection morphism i induces isometries (ix)x∈X(C), and we may introduce the admissible

short exact sequence in Sh
≤1

X :

0 −→ im f
i−→ G −→ G/im f −→ 0.

If φ satisfies Mon1, we have:

(4.1.13) φ(im f) ≤ φ(F).
If φ satisfies SubbAdd, then we also have:

(4.1.14) φ(G) ≤ φ(im f) + φ(G/im f),

since f̃ : F → im f is surjective, and if φ satisfies VT:

(4.1.15) φ(G/im f) = 0,

since G/im f is torsion. Finally, (4.1.13), (4.1.14) and (4.1.15) imply:

φ(G) ≤ φ(F). □

We spell out the following simple observation for later reference.

Proposition 4.1.4. When Mon1, SubAdd, and VT hold, then, for any admissible surjective

morphism f : F → G in Sh
≤1

X such that ker f is torsion, we have:

φ(F) = φ(G).

Proof. This follows form the estimates (4.1.2) applied to the admissible short exact sequence

0→ ker f −→ F f−→ G −→ 0

and from the vanishing of φ(ker f). □
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4.1.4.2. Vanishing on antiprojective sheaves. The invariants studied in the next chapters happen
to vanish on antiprojective modules. Namely, they satisfy the following conditions, formally similar
to conditions VT and NST:

VAp: For every object F in ShX whose underlying OK-module F is antiprojective, we have:

φ(F) = 0.

NSAp: For every object F := (F , ∥.∥) in ShX , the following equality holds:

φ(F) = φ(F∨∨
).

The implications

VAp =⇒ VT and NSAp =⇒ NST

trivially hold. They actually are equivalences when ShX = CohX . Furthermore the implication:

NSAp =⇒ VAp

still holds, and by considering the admissible short exact sequence:

0 −→ Fap↪−→F
δF−→ F∨∨ −→ 0,

that defines the “canonical dévissage” of F introduced in Subsection 2.2.4, we also obtain:[
Mon1,SubAdd and VAp

]
=⇒ NSAp.

4.1.5. Compatibility with direct sums. Most of the invariants investigated in this mono-
graph satisfy one of the following two conditions:

Add⊕: For any two objects F1 and F2 of ShX , we have:

φ(F1 ⊕F2) = φ(F1) + φ(F2).

Max⊕: For any two objects F1 and F2 of ShX , we have:

φ(F1 ⊕F2) = max(φ(F1), φ(F2)).

The validity of one of these conditions will often be a straightforward consequence of the defini-
tion of the invariant φ. Rather surprisingly, the compatibility with direct sums will play a relatively
minor role in our study of positive invariants on CohX and qCohX .

4.1.6. Positive linear combinations of invariants. Starting from some invariants on ShX ,
we may define some new ones by considering their products by positive real numbers, their supre-
mum, their sum, etc.

In this subsection, we briefly discuss one of these constructions of invariants, and its compatibility
with the properties introduced in the previous subsections. This construction endows the space of
invariants on ShX satisfying some of these properties with a structure of “convex cone,” and displays
its similarity with the space of positive measures (resp. of positive Radon measures) on some set
equipped with a σ-algebra of subsets (resp. on some Hausdorff topological space).

Consider a family (φα)α∈A of invariants

φα : ShX −→ [0,+∞],

and a family (λα)α∈A of elements of [0,+∞].10 To these data, we may attach the invariant:∑
α∈A

λαφα : ShX −→ [0,+∞], F 7−→
∑
α∈A

λαφα(F).

10We place no restriction on the index set A. Without significant loss of generality, we might require it to be

countable.
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The following proposition is a simple consequence of the definitions, and the details of its proof
will be left to the reader.

Proposition 4.1.5. Let us keep the above notation.

(1) If one of the properties Mon1, SubAdd, VT, NST, Mon1
K , VAp, NSAp, or Add⊕ is

satisfied by all the invariants in the family (φα)α∈A, then the invariant
∑
α∈A λαφα also satisfies it.

(2) When (λα)α∈A belongs to RA+ and when, for every object F of ShX , we have:

(4.1.16)
∑
α∈A

λαφα(F) < +∞,

then, if φα satisfies Cont+ for every α ∈ A, then
∑
α∈A λαφα also satisfies Cont+.

When ShX is CohX , the validity of the finiteness condition (4.1.16) for an arbitrary object F
of ShX may often be derived from its validity for the Hermitian line bundles O(−δ) thanks to the
following criterion, the simple proof of which will also be left to the reader:

Proposition 4.1.6. Assume that ShX is CohX and that the invariants (φα)α∈A satisfy Mon1

and SubAdd. Then, for every family (δi)i∈I of real numbers such that supi∈I δi = +∞, the following
two conditions are equivalent:

(i) For every i ∈ I,
∑
α∈A λαφα(O(−δi)) < +∞.

(ii) For every object F of CohX ,
∑
α∈A λαφα(F) < +∞.

4.1.7. Positive numerical invariants on VectX and Vect
[0]

X . The Definition 4.1.1 of in-
variants with values in [0,+∞] still makes sense when the category Sh is the category VectX or

Vect
[0]

X . Moreover the conditions Mon1, SubAdd, Cont+, Mon1
K , Add⊕ and Max⊕ still make

sense in this setting.

This terminology concerning properties of invariants on VectX or Vect
[0]

X will be freely used in
the sequel — but of course not the elementary results relating these properties established in the
previous subsection, which do not make sense, or whose proof are not valid anymore, when Sh is

VectX or Vect
[0]

X .

4.2. Extending Invariants from VectX to CohX

In the sequel, we will be concerned with the construction of suitable extensions to qCohX of
invariants initially defined on CohX . In practice, the invariants we are interested in are often defined
on the smaller category VectX of CohX , whose objects C := (C, (∥.∥x)x∈X(C)) are the ones of CohX
such that C is torsion free and the Hermitian seminorms ∥.∥x are Hermitian norms.

In this section we discuss how, under suitable conditions, invariants on VectX extend naturally
to CohX and how the validity for these extensions of the properties introduced in Section 4.1 follows
from their validity on VectX .

4.2.1. Increasing positive functions on convex cones. Let V be a R-vector space. A
convex cone C in V is a subset of V stable under addition and under multiplication by elements of
R∗

+. If C is a convex cone in V , we shall denote by Inc(C) the set of functions f : C → R+ that are
increasing, namely that satisfy the following property:

IncC : for every (c1, c2) ∈ C2, c2 − c1 ∈ C =⇒ f(c2) ≥ f(c1).
When V is a topological R-vector space, we shall denote by IncCont+(C) the set of functions f

in Inc(C) that moreover satisfy the following condition of “downward continuity”:

Cont+C : for every c ∈ C, limc′∈c+C

c′→c
f(c′) = f(c).
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Proposition 4.2.1. Let V be a topological R-vector space, and let Q be a non-empty open convex
cone in V and Q its closure in V .

(1) For every function g : Q→ R+, the function

(4.2.1) g̃ : Q −→ R+, c 7−→ inf
c+Q

g

belongs to IncCont+(Q) and is upper semicontinuous.

(2) The restriction map

IncCont+(Q) −→ IncCont+(Q), f 7−→ f|Q

is a bijection. Its inverse sends g ∈ IncCont+(Q) to g̃.

Observe that Q is a closed convex cone in V , and that the following inclusion between subsets
of V holds11:

(4.2.2) Q+Q ⊆ Q.

Consequently the infimum in the definition (4.2.1) is well-defined in R+, since c + Q is contained
in Q.

Proof. (1) Consider a function g : Q→ R+, and let us show that g̃ defined by (4.2.1) satisfies
conditions IncQ and Cont+

Q
:

For every c1 in Q and c2 in c1 +Q, we have:

c2 +Q ⊆ c1 +Q+Q ⊆ c1 +Q,

and therefore:

(4.2.3) g̃(c2) ≥ g̃(c1).

This proves that g̃ satisfies IncQ.

For every c in Q, this implies the inequality:

(4.2.4) g̃(c) ≤ inf
c̃∈c+Q

g̃(c̃).

Moreover, for every neighborhood U of c in V and every c in c+Q, there exists a neighborhood
B of 0 in V such that:

c+B ⊆ U and c−B ⊆ c+Q.

Then, for every c̃ ∈ (c+B) ∩Q, we have:

c− c̃ ∈ c− c−B ⊆ Q,

and therefore:

g̃(c̃) ≤ g(c).
This establishes the lower bound:

sup
(c+B)∩Q,

g̃ ≤ g(c).

Consequently, we have:

(4.2.5) lim sup
c̃∈Q,c̃→c

g̃(c̃) ≤ inf
c∈c+Q

g(c) =: g̃(c),

11Indeed if (c, c) belongs to Q × Q, then there exists a neighborhood B of 0 in V such that c + B ⊆ Q; then

c − B is a neighborhood of c and thus intersects Q; consequently for some b ∈ B, we have: c − b ∈ Q, and thus:
c+ c = (c− b) + (c+ b) ∈ Q+Q ⊂ Q. Actually, using that 0 is in the closure of Q when Q is non-empty, one easily

establishes the equalities: Q+Q = Q+Q = Q.
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and a fortiori:

lim sup
c̃∈c+Q,c̃→c

g̃(c̃) ≤ g̃(c).

Together with (4.2.4), this proves the equality:

lim
c̃∈c+Q,c̃→c

g̃(c̃) = g̃(c),

and shows that g̃ satisfies Cont+Q.

The inequality (4.2.5) also establishes the upper semicontinuity of g̃.

(2) If g satisfies IncQ, then g ≤ g̃|Q. If moreover g satisfies Cont+Q, we may choose v ∈ Q, and
for any c ∈ Q, we have:

g(c) = lim
n→+∞

g(c+ n−1v) ≥ inf
c+Q

g = g̃(c).

This shows that, if g belongs to IncCont+(Q), then g̃|Q = g since g satisfies Cont+Q.

Moreover, if f belongs to IncCont+(Q), then f̃|Q and f coincide on Q, according to the previous

observation applied to g := f|Q. Since Q is dense in Q, and both f̃|Q and f satisfy Cont+
Q
, this

implies the equality: f̃|Q = f . □

Corollary 4.2.2. With the notation of Proposition 4.2.1, for every function f in Inc(Q), the
following conditions are equivalent:

(i) f satisfies Cont+Q, namely for every c ∈ Q:

lim
c′∈c+Q

c′→c

f(c′) = f(c);

(ii) for every c ∈ Q,

(4.2.6) lim
c′∈c+Q

c′→c

f(c′) = f(c);

(iii) for every c ∈ Q,
inf

c′∈c+Q
f(c′) = f(c).

Proof. The implications (ii)⇒ (i)⇒ (iii) are straightforward. When (iii) holds, the function

f̃ belongs to IncCont+(Q) and extends f , and (ii) holds as a special case of conditionCont+
Q
satisfied

by f̃ . □

Observe that this corollary notably shows that, for every function f in Inc(Q), if for every c ∈ Q,
there exists a sequence (cn)n∈N in c+Q such that

inf
n→∈N

f(cn) = f(c)

— in particular when there exists a sequence (cn)n∈N in c+Q such that

lim
n→+∞

f(cn) = f(c)

— then the function f satisfies the conditions of “downward continuity” (4.2.6).
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4.2.2. Quotient seminorms and downward continuity. In this subsection, we consider a
surjective R-linear (resp. C-linear) map between R-vector spaces (resp. C-vector spaces):

p : V −→W,

and we study the continuity properties of the map which associates to a seminorm ∥.∥ on V its
quotient seminorm ∥.∥∼ on W , defined as:

∥.∥∼ :W −→ R+, w 7−→ inf
v∈p−1(w)

∥v∥.

Proposition 4.2.3. With the above notation, let (∥.∥n)n∈N be a sequence of seminorms over V
such that the limit

∥v∥ := lim
n→+∞

∥v∥n
exists in R+ for every v ∈ V .

Then ∥.∥ is a seminorm on V , and the quotient seminorms (∥.∥∼n )n∈N and ∥.∥∼ satisfy the
following inequality, for every w ∈W :

(4.2.7) lim sup
n→+∞

∥w∥∼n ≤ ∥w∥∼.

When moreover:

(4.2.8) ∥.∥n+1 ≤ ∥.∥n for every n ∈ N,

we have, for every w ∈W :

(4.2.9) lim
n→+∞

∥w∥∼n = ∥w∥∼.

Proof. The pointwise limit ∥.∥ of the seminorms ∥.∥n is clearly a seminorm. Moreover, for
every w in W , we have:

lim sup
n→+∞

∥w∥∼n = lim sup
n→+∞

inf
v∈p−1(w)

∥v∥n ≤ inf
v∈p−1(w)

lim sup
n→+∞

∥v∥n = inf
v∈p−1(w)

∥v∥ = ∥w∥∼.

This proves (4.2.7).

When (4.2.8) holds, then, for every n ∈ N, we have:

∥.∥ ≤ ∥.∥n+1 ≤ ∥.∥n,
and therefore:

∥.∥∼ ≤ ∥.∥∼n+1 ≤ ∥.∥∼n .
For every w in W, this implies the existence of the limit limn→+∞ ∥w∥∼n and the inequality:

∥w∥∼ ≤ lim
n→+∞

∥w∥∼n .

Together with (4.2.7), this establishes (4.2.9). □

In brief, Proposition 4.2.3 asserts that the map

(4.2.10) ∥.∥ 7−→ ∥.∥∼

is upper semicontinuous, and “downward continuous.”

In this section, we will use this downward continuity in the special case when V , and therefore
W , is finite dimensional, and when the seminorms (∥.∥n) are Euclidean (resp. Hermitian) seminorms.
In this situation, the map (4.2.10) restricted to the open cone of Euclidean (resp. Hermitian) norms
is easily seen to be continuous by a simple duality argument.12

12Indeed, if we denote by ∥.∥∨ the dual norm on V ∨ (resp. on W∨) of a norm ∥.∥ on V (resp. on W ), this
follows from the equality: ∥.∥∼ = (∥.∥∼|W∨ )∨, where W∨ is identified to a subspace of V ∨ by means of the injective

map p∨ : W∨ → V ∨.
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However, even in this restricted setting, the map (4.2.10) is in general not continuous, as demon-
strated by the following example.

Example 4.2.4. Consider the map:

p : V := R2 −→W := R, (x, y) 7−→ x.

To any ξ = (ξ1, ξ2) ∈ R2∨, we may attach the seminorm:

∥.∥ξ : R2 −→ R+, x :=

(
x1
x2

)
7−→ |ξ(x)| := |ξ1x1 + ξ2x2|.

If ξ2 ̸= 0, then p(ker ξ) = R, and therefore:

∥.∥∼ξ = 0.

Besides, for every ξ1 ∈ R and every x ∈ R2, we have:

∥x∥(ξ1,0) = |ξ1x1|.

This shows that, while the seminorm ∥.∥ξ on R2 is a continuous function of ξ ∈ R2∨, the quotient
seminorm ∥.∥∼ξ does not depend continuously of ξ at every point of R∗ × {0}.

4.2.3. Extending invariants from VectX to Vect
[0]

X . Recall that we denote by Vect
[0]

X the
full subcategory of CohX whose objects C := (C, (∥.∥x)x∈X(C)) are those of CohX such that C is

torsion free (hence a vector bundle over X). In this subsection, we describe how invariants on VectX

may be extended to Vect
[0]

X by relying on the results in of the previous subsections 4.2.1 and 4.2.2.

4.2.3.1. Let us begin by some preliminary observations.

Let C be a vector bundle over X.

We shall denote by Herm(C) the R-vector spaces of “generalized Hermitian structures” on C: its
elements are the families (hx)x∈X(C), where hx is a Hermitian form on Cx, that are invariant under

complex conjugation.13

The subset Herm(C)>0 of Herm(C) whose elements are the families (hx)x∈X(C) such that hx is
positive definite for every x ∈ X(C) is an open convex cone in Herm(C). Its closure in the finite
dimensional R-vector space14 Herm(C) is the closed cone Herm(C)≥0 the elements of which are the
families (hx)x∈X(C) in Herm(C) such that the hx are positive semi-definite Hermitian forms.

The elements (hx)x∈X(C) of Herm(C)>0 (resp. of Herm(C)≥0) may be identified with the Her-
mitian structures (∥.∥x)x∈X(C) on C, defined by a family (∥.∥x)x∈X(C) of seminorms (resp. of norms)
invariant under complex conjugation on the complex vector spaces Cx, as considered in Section 2.2.5.
In this identification, the families (hx)x∈X(C) and (∥.∥x)x∈X(C) of Hermitian forms and of Hermitian
seminorms are related by the equality:

hx(v) = ∥v∥2x,

for every x ∈ X(C) and every v in Cx.
Through this identification, the topology of pointwise convergence on the Hermitian structures

(∥.∥x)x∈X(C), which appears in the formulation of the downward continuity condition in 4.1.3 (see

for instance (4.1.8)), coincides with the topology induced on Herm(C)≥0 by the canonical topology
on the finite dimensional R-vector space Herm(C). This follows from the finite dimensionality of the
C-vector spaces (Cx)x∈X(C).

13Namely, if we denote by : Cx := C ⊗x C ≃ Cx ≃ C ⊗x C the canonical antilinear isomorphism defined by

v ⊗x λ := v ⊗x λ, then we have: hx(v) = hx(v), for every field embedding x ∈ X(C) and every v ∈ Cx.
14endowed with its canonical topology of Hausdorff topological vector space.
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Moreover the order relation ≤ on Herm(C)≥0 deduced from its convex cone structure — namely
the relation ≤ defined by:

h1 ≤ h2 ⇐⇒ h2 − h1 ∈ Herm(C)≥0

— coincides with the natural ordering ≤ of Hermitian structures, defined by:

(4.2.11) (∥.∥′x)x∈X(C) ≤ (∥.∥x)x∈X(C) ⇐⇒ for all x ∈ X(C) and v ∈ Cx, ∥v∥′x ≤ ∥v∥x.
Similarly the relation < on Herm(C)>0 defined by:

h1 < h2 ⇐⇒ h2 − h1 ∈ Herm(C)>0

coincides with the relation < on Hermitian structures defined by:

(∥.∥′x)x∈X(C) < (∥.∥x)x∈X(C) ⇐⇒ for all x ∈ X(C) and v ∈ Cx, ∥v∥′x < ∥v∥x.

4.2.3.2. The finite dimensionality of the complex vector spaces Cx, x ∈ X(C) also admits the
following consequence.

Lemma 4.2.5. Consider a morphism in Vect
[0]≤1

X :

f : F := (F , (∥.∥F,x)x∈X(C))) −→ G := (G, (∥.∥G,x)x∈X(C))),

and a decreasing sequence ((∥.∥nF,x)x∈X(C))n∈N (resp. ((∥.∥nG,x)x∈X(C))n∈N) of Hermitian structures

on F (resp. on G) such that, for every x ∈ X(C), the sequence (∥.∥nF,x)n∈N (resp. (∥.∥nG,x)n∈N)

converges pointwise to ∥.∥F,x (resp. to ∥.∥G,x).
If for every (x, n) ∈ X(C)× N the following condition is satisfied:

∥.∥nF,X > ∥.∥F,x,
then there exist an increasing function α : N → N such that, for every n ∈ N, the map f : F → G
defines a morphism in Vect

[0]≤1

X :

f := Fn := (F , (∥.∥nF,x)x∈X(C))) −→ G
α(n)

:= (G, (∥.∥α(n)G,x )x∈X(C))).

This follows from an elementary compactness argument, which we leave to the reader.

4.2.3.3. Consider an invariant:
ψ : VectX −→ R+

that satisfies the monotonicity condition Mon1.

For every vector bundle C over X, the function:

gC : Herm(C)>0 −→ R+

defined by:
gC((∥.∥2x)x∈X(C)) := ψ((G, (∥.∥x)x∈X(C))))

is increasing. Namely it satisfies the condition IncQ introduced in 4.2.1, when Q denotes the
convex cone Herm(C)>0 in the R-vector space V := Herm(C). Indeed, if two Hermitian structures
(∥.∥′x)x∈X(C) and (∥.∥x)x∈X(C) on C satisfy the condition (4.2.11), then the identity map of C defines

a surjective morphism in Vect
≤1

X :

IdC : (C, (∥.∥x)x∈X(C)) −→ (C, (∥.∥′x)x∈X(C)),

and therefore, according to Mon1:

ψ((C, (∥.∥′x)x∈X(C))) ≤ ψ((C, (∥.∥x)x∈X(C))).

Moreover the invariant ψ satisfies the downward continuity condition Cont+ precisely when,
for every C as above, the function gC satisfies the following condition: for every c ∈ Herm(C)>0, if a
sequence (cn)n∈N in Herm(C)>0 satisfies:

cn+1 − cn ∈ Herm(C)≥0 for all n ∈ N and lim
n→+∞

cn = c,
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then:

lim
n→+∞

gC(cn) = gC(c).

This condition is immediately seen to be equivalent with the conditions (i)–(iii) in Corollary 4.2.2,
and to the one in the subsequent remark, applied to V := Herm(C), Q := Herm(C)>0, and f := gC .

15

Consequently, when the invariant ψ satisfies the downward continuity condition Cont+ on
VectX , Proposition 4.2.1 shows that for every vector bundle C over X, the function gC admits a
unique extension:

g̃C : Herm(C)≥0 = Q −→ R+

that satisfies the conditions IncQ and Cont+
Q
. Then, for every object C := (C, (∥.∥x)x∈X(C)) in

Vect
[0]

X , we may define:

ψ̃(C) := g̃C((∥.∥2x)x∈X(C)).

In this way, we have defined an invariant:

ψ̃ : Vect
[0]

X −→ R+

that extends the invariant ψ.

In concrete terms, for every object C := (C, (∥.∥x)x∈X(C)) in Vect
[0]

X , ψ̃(C) may be defined as the
limit:

(4.2.12) ψ̃(C) := lim
n→+∞

ψ((C, (∥.∥[n]x )x∈X(C)))

where ((∥.∥[n]x )x∈X(C))n∈N is any sequence of Hermitian structures on C such that, for every x ∈
X(C), (∥.∥[n]x )n∈N is a sequence of Hermitian norms on Cx converging pointwise to ∥.∥x that satisfies

∥.∥[n]x ≥ ∥.∥x for every n ∈ N.
A straightforward application of Lemma 4.2.5 shows that ψ̃, like ψ, satisfies the monotonicity

condition Mon1. Moreover the fact that the functions g̃C satisfy Cont+
Q

implies that ψ̃ satisfies

Cont+ on Vect
[0]

X .

4.2.3.4. The previous considerations establish the first assertion in the following proposition:

Proposition 4.2.6. For every invariant:

ψ : VectX −→ R+

satisfying conditions Mon1 and Cont+, there exists a unique invariant:

ψ̃ : Vect
[0]

X −→ R+

that extends ψ and satisfies Mon1 and Cont+.

If moreover ψ satisfies one of the following conditions: Mon1
K , SubAdd, Add⊕, or Max⊕ on

VectX , then ψ̃ satisfies this condition on Vect
[0]

X .

Proof. The validity of the second assertion in Proposition 4.2.6 concerning condition Mon1
K

also follows from Lemma 4.2.5. The one concerning SubAdd follows from the “downward con-
tinuity” of the construction of quotient seminorms established in Proposition 4.2.3, and the ones
concerning Add⊕, or Max⊕ are straightforward. □

15Corollary 4.2.2 thus shows that various variants of the condition Cont+ on the invariant ψ — some of them
a priori weaker than Cont+ (for instance condition (iii) in Corollary 4.2.2), some other one a priori stronger (for

instance condition (ii)) — are actually equivalent to it.
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With the notation of Proposition 4.2.6, the non-negative real number ψ(OX(δ)) is a non-
decreasing function of δ ∈ R, and its limit when δ goes to infinity is:

(4.2.13) lim
δ→+∞

ψ(OX(δ)) = ψ̃(OX(∞)),

where:

OX(∞) := (OX , (0)x∈X(C))

is the object of Vect
[0]

X defined by the structural sheaf OX equipped with the zero seminorms.

The previous construction of extensions to Vect
[0]

X of positive invariants on VectX turns out to
be compatible with the vectorization functor .vect : CohX → VectX constructed in Subsection 2.3.2
precisely when the limit (4.2.13) vanishes:

Proposition 4.2.7. Let ψ : VectX → R+ be an invariant satisfying conditions Mon1, SubAdd,

and Cont+, and let ψ̃ : Vect
[0]

X → R+ be its extension constructed in Proposition 4.2.6.

The following conditions are equivalent:

(i) ψ̃(OX(∞)) = 0;

(ii) for every object C in Vect
[0]

X , the following implication holds:

Cvect = 0 =⇒ ψ̃(C) = 0;

(iii) for every object C in Vect
[0]

X , the following equality holds:

(4.2.14) ψ̃(C) = ψ(Cvect).

Proof. The subadditivity of ψ shows that, for every N ∈ N,

ψ(OX(δ)⊕N ) ≤ Nψ(OX(δ)).

Consequently, when (i) holds, then for every N ∈ N:

lim
δ→+∞

ψ(OX(δ)⊕N ) = 0.

The implication (i) ⇒ (ii) follows from this observation, the characterization in Proposition

2.3.5 of the objects in CohX the vectorization of which is zero, and the monotonicity of ψ̃.

As shown in Subsections 2.3.1.1 and 2.3.2, to every object C in Vect
[0]

X we may associate the

admissible short exact sequence in Vect
[0]

X :

(4.2.15) 0 −→ ker νC ↪−→C
νB−→ Cvect −→ 0,

and the object ker νC satisfies:

ker νC
vect

= 0.

When C belongs to Vect
[0]

X , ker νC also belongs to Vect
[0]

X , and the monotonicity and the sub-

additivity of ψ̃ on Vect
[0]

X , applied to the morphism νC and to the admissible short exact sequence
(4.2.15), imply the estimates:

ψ(Cvect) ≤ ψ̃(C) ≤ ψ̃(ker νC) + ψ(Cvect).

When (ii) holds, this implies the equality (4.2.14).

This establishes the implication (ii) ⇒ (iii). The converse implication (iii) ⇒ (ii) is straight-
forward since the invariant ψ satisfies the normalization condition ψ(0) = 0, and the implication
(ii)⇒ (i) also, since OX(∞)vect = 0. □
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4.2.4. Extending invariants from Vect
[0]

X to CohX . Consider a positive invariant on the

category Vect
[0]

X :

φ : Vect
[0]

X −→ R+.

It clearly admits a unique extension to an invariant on CohX that satisfies condition NST, namely
the invariant:

φnst : CohX −→ R+

defined by the equality:

(4.2.16) φnst(C) := φ(C/tor)

for every object C of CohX .

Proposition 4.2.8. With the previous notation, if φ satisfies Mon1 (resp. Mon1
K) on Vect

[0]

X ,
then φnst satisfies Mon1 (resp. Mon1

K) on CohX .

When φ satisfies conditions Mon1
K and SubAdd on Vect

[0]

X , then φnst satisfies conditions
Mon1

K and SubAdd on CohX .

Finally, when φ satisfies Add⊕, Max⊕, or Cont+, then φnst also satisfies this condition.

Proof. (1) A morphism f : F → G in CohX (resp. in Coh
≤1

X ) induces a morphism:

f/tor : F/tor −→ G/tor

in Vect
[0]

X (resp. in Vect
[0]≤1

X ). Moreover f/tor (resp. f/tor,K = fK) is surjective if and only if f

(resp. fK) is. This implies the first assertion of the proposition concerning Mon1 and Mon1
K .

(2) Let us assume that φ satisfies Mon1
K and SubAdd, and consider an admissible short exact

sequence in CohX :

0 −→ E i−→ F p−→ G −→ 0.

The induced morphisms:

i/tor : E/tor −→ F/tor and p/tor : F/tor −→ G/tor
are respectively injective isometric and surjective admissible; moreover im i/tor is contained in
ker p/tor and the quotient (ker p/tor)/(im i/tor) is torsion.

Consequently we may consider the admissible short exact sequence in Vect
[0]

X :

(4.2.17) 0 −→ ker p/tor ↪−→F/tor
p/tor−→ G/tor −→ 0,

and the morphism:

(4.2.18) i/tor : E/tor −→ ker p/tor

in Vect
[0]≤1

X . The latter induces an isomorphism

E/tor,K = EK
∼−→ ker pK = ker p/tor,K .

The subadditivity of φ applied to (4.2.17) establishes the inequality:

(4.2.19) φ(F/tor) ≤ φ(ker p/tor) + φ(G/tor).

Moreover the monotonicity condition Mon1
K applied to the morphism (4.2.18) implies:

(4.2.20) φ(ker p/tor) ≤ φ(E/tor).

From (4.2.19) and (4.2.20), we deduce:

φ(F/tor) ≤ φ(E/tor) + φ(G/tor).
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This establishes the inequality:

φnst(F) ≤ φnst(E) + φnst(G/tor)
and shows that φnst satisfies SubAdd.

(3) The last assertion concerning Add⊕, Max⊕ and Cont+ is straightforward. □

Using Proposition 4.1.3, we immediately derive the following consequence from Proposition 4.2.8:

Corollary 4.2.9. For every invariant φ : Vect
[0]

X −→ R+, the following three conditions are
equivalent:

(i) φ satisfies Mon1
K and SubAdd on Vect

[0]

X ;
(ii) φnst satisfies Mon1

K and SubAdd on CohX ;
(iii) φnst satisfies Mon1 and SubAdd on CohX .

4.2.5. Extending invariants from VectX to CohX . By applying successively the construc-
tions in subsections 4.2.3 and 4.2.4 to an invariant ψ on VectX that satisfies some suitable conditions
of monotonicity, subadditivity, and downward continuity, we may extend it to an invariant on CohX .

Indeed we may extend it firstly to an invariant ψ̃ on Vect
[0]

X by the limit construction (4.2.12),

and then to an invariant ψ̃nst on CohX , by forcing the condition NST by means of definition
(4.2.16), namely by setting:

ψ̃nst(C) := ψ̃(C/tor)
for every object C of CohX .

For later reference, we gather in the following scholium various properties of the construction of

ψ̃nst which directly follows from Propositions 4.2.6 and 4.2.7 and Corollary 4.2.9 :

Scholium 4.2.10. For every invariant ψ : VectX → R+ that satisfies conditions Mon1
K ,

SubAdd and Cont+, the invariant

ψ̃nst : CohX −→ R+

is its unique extension to CohX that satisfies Mon1, SubAdd, Cont+, and NST. If ψ satisfies

Add⊕, then ψ̃nst satisfies it also.

When moreover:

lim
δ→+∞

ψ(OX(δ)) = 0,

the invariant ψ̃nst is also “compatible with vectorization”; namely it satisfies the relation:

ψ̃nst(C) = ψ(Cvect)

for every object C of CohX .

4.2.6. Invariants on CohX small on Hermitian coherent sheaves generated by small
sections. Let us consider an invariant

φ : CohX −→ R+

that satisfies the monotonicity condition Mon1.

The following property already appears implicitly in Proposition 4.2.7 and its proof, and will
play a key role in the construction of invariants on qCohX that vanish on antiprojective objects in
Subsection 4.3.5 below.

Definition 4.2.11. We shall say that the invariant φ is small on Hermitian coherent sheaves
generated by small sections when, for any nonnegative integer N , there exists a function C(N, .)
from R+

∗ to R+ such that:
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(i) limε→0 C(N, ε) = 0;
(ii) for any object C of CohX such that the OK-module C(X) admits a family of generators

(mi)1≤i≤N such that:

sup
1≤i≤N

∥mi∥π∗C < ε,

we have:

φ(C) ≤ C(N, ε).

When φ satisfies NST, a straightforward approximation argument using the monotonicity of φ
shows that (ii) holds for any C in CohX if it holds for any Hermitian vector bundle on X, that is,
when C(X) is torsion-free and ||.||π∗C is a Euclidean norm.

A simple variant of the arguments in the proof of Proposition 4.2.7 establishes the following
proposition. We leave the details of its proof to the interested reader.

Proposition 4.2.12. Consider an invariant φ : CohX → R+ that satisfies Mon1
K .

1) The following two conditions are equivalent:

(i) π is small on Hermitian coherent sheaves generated by small sections;
(ii) for every positive integer N , limδ→+∞ φ(OX(δ)⊕N ) = 0.

2) When conditions (i) and (ii) are satisfied, then the following implication holds for every object
C of CohX :

Cvect = 0 =⇒ φ(C) = 0.

In particular, φ satisfies VT.

3) When φ satisfies SubAdd, conditions (i)-(ii) are equivalent to:

(iii) limδ→+∞ φ(OX(δ)) = 0.

4) When φ satisfies SubAdd and Cont+, conditions (i)-(iii) are equivalent to:

(iv) φ(OX(∞)) = 0.

4.3. Lower and Upper Extensions to qCohX of Invariants on CohX

In this section, we consider an invariant of Hermitian coherent sheaves over X:

φ : CohX −→ [0,+∞],

and we assume that it satisfies condition Mon1.

4.3.1. Definitions. Let F be an object of qCohX .

Definitions 4.3.1. We shall denote by coh(F) the set of coherent OX -submodules of F (or
equivalently of finitely generated OK-submodules of F(X)), and by coft(F) the set of quasi-coherent
OX -submodules F ′ of F such that the quotient OX -module F/F ′ is coherent16 (or equivalently the
set of OK-submodules F ′(X) of F(X) such that the OK-module F(X)/F ′(X) is finitely generated).

For any C in coh(F), we may consider the seminormed Hermitian coherent sheaf C over X and
its invariant φ(C) in [0,+∞].

For any F ′ in coft(F), we may consider the quotient seminormed Hermitian coherent sheaf F/F ′

over X, and its invariant φ(F/F ′) in [0,+∞]. If F ′′ is an element of coft(F) contained in F ′, then
we may consider the quotient morphism

qF ′′F ′ : F/F ′′ −→ F/F ′.

16The notation “coft” stands for co-finite type.



4.3. LOWER AND UPPER EXTENSIONS TO qCohX OF INVARIANTS ON CohX 129

It is surjective and has norm at most 1, and therefore:

(4.3.1) φ(F/F ′) ≤ φ(F/F ′′).

The partially ordered sets (coh(F),⊆) and (coft(F),⊇) are directed sets, and we may introduce
the following definitions.

Definitions 4.3.2. We denote by

φ : qCohX −→ [0,+∞]

and

φ : qCohX −→ [0,+∞]

the upper and lower extensions of φ, namely the invariants defined by the following formulas:

(4.3.2) φ(F) := lim
F ′∈coft(F)

φ(F/F ′) = sup
F ′∈coft(F)

φ(F/F ′),

and

(4.3.3) φ(F) := lim inf
C∈coh(F)

φ(C),

where, as above, F is an arbitrary Hermitian quasi-coherent sheaf over X.

The existence of the limit in (4.3.2) and its equality with the right-hand side of (4.3.2) follows
from the estimates (4.3.1).

Consider the exhaustive filtrations of F by coherent OX -submodules, namely the sequences
(Ci)i∈N in coh(F) such that

C0 ⊆ C1 ⊆ · · · ⊆ Ci ⊆ Ci+1 ⊆ · · · and
⋃
i∈N
Ci = F .

These are precisely the ordered sequences that are cofinal in the directed set (coh(F),⊆). Among
these exhaustive filtrations, we may consider those that satisfy the condition:

(4.3.4) the limit limi→+∞ φ(Ci) exists in [0,+∞].

The following statement is a straightforward but useful reformulation of the definition of φ(F) as
an inferior limit over the directed set (coh(F),⊆).

Proposition 4.3.3. For every exhaustive filtration (Ci)i∈N of F by coherent OX-submodules,
we have:

lim inf
i→+∞

φ(Ci) ≥ φ(F).

Moreover, the set of the limits limi→+∞ φ(Ci), where (Ci)i∈N runs over the exhaustive filtrations
of F by coherent OX-submodules that satisfy (4.3.4) admits φ(F) as its smallest element.

Observe that in general the directed set (coft(F),⊇), which occurs in the definition of φ(F),
does not admit any cofinal increasing sequence. (It is already the case when OK = Z and F = Z(N).)

4.3.2. Basic inequalities and additivity. Calling φ and φ the lower and upper extensions
of φ is justified by the following proposition:

Proposition 4.3.4. For any object F of qCohX , the following inequality holds:

(4.3.5) φ(F) ≤ φ(F).

If moreover F is an object of CohX , then:

(4.3.6) φ(F) = φ(F) = φ(F).
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Proof. Let F ′ be an element of coft(F). There exists C′ in coh(F) such that the composition

C′↪−→F −→ F/F ′

is a surjective morphism. Then, for any C in coh(F) containing C′, the morphism

C↪−→F −→ F/F ′,

is surjective of norm at most one, and therefore:

φ(F/F ′) ≤ φ(C).
This proves the inequality

φ(F/F ′) ≤ inf
C∈coh(F), C⊇C′

φ(C),

which immediately implies (4.3.5).

When F is a coherent, then {0} (resp. F) is the largest element of the directed set (coft(F),⊇)
(resp. (coh(F),⊆)), and (4.3.6) follows. □

The lower extension φ is compatible with direct sums if φ is:

Proposition 4.3.5. If φ satisfies Add⊕ (resp. Max⊕) on CohX , then φ satisfies Add⊕ (resp.

Max⊕) on qCohX .

We do not expect a similar property to hold in general for the upper extension φ.

Proof. Let us consider two objects F1 and F2 of qCohX , and let

ιi : Fi ↪−→F1 ⊕F2, i = 1, 2

be the inclusion morphisms.

For any (G1,G2) in coh(F1)× coh(F2), the direct sum G1⊕G2 belongs to coh(F1⊕F2), and the
following equality holds:

φ((F1 ⊕F2)/(G1 ⊕ G2)) = φ(F1/G1 ⊕F1/G2).

Moreover for any G in coh(F1 ⊕ F2), its inverse image G1 := ι−1
1 (G) (resp. G2 := ι−1

2 (G)) is an
element of coh(F1) (resp. of coh(F2)), the direct sum G1 ⊕ G2 is contained in G, and therefore, by
the monotonicity of φ, we have:

φ((F1 ⊕F2)/G) ≤ φ((F1 ⊕F2)/(G1 ⊕ G2)).

These observations establish the equality:

sup
G∈coh(F1⊕F2)

φ((F1 ⊕F2)/G) = sup
G1∈coh(F1),G2∈coh(F2)

φ(F1/G1 ⊕F2/G2),

which immediately implies the proposition. □

4.3.3. Monotonicity, lower semicontinuity, and countable additivity.

Proposition 4.3.6. The invariants φ and φ on qCohX satisfy condition Mon1.

Proof. Let f : F → F ′
be a morphism in Sh

≤1
such that f : F → F ′ is a surjective morphism

of OK-modules.

For every G in coft(F), the OK-module f(G) belongs to coft(F ′) since the morphism f induces
a surjective morphism of OK-modules

f̃ : F/G −→ F ′/f(G).
Moreover the map

coft(F) −→ coft(F ′), G 7−→ f(G)
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is surjective; indeed, for every G′ in coft(F ′), G := f−1(G′) belongs to coft(F), and f(G) = G′
because f : F → F ′ is surjective.

Observe also that, with the above notation, the map f̃ defines a morphism

f̃ : F/G −→ F ′/f(G)

in Sh
≤1
. Since φ satisfies Mon1, this implies the inequality:

φ(F/G) ≥ φ(F ′/f(G)).

This establishes the estimate:

φ(F) = sup
G∈coftF

φ(F/G) ≥ sup
G∈coftF

φ(F ′/f(G)) = sup
G′∈coftF ′

φ(F ′/G′) = φ(F ′
),

and shows that φ satisfies Mon1.

The map

coh(F) −→ coh(F ′), C 7−→ f(C)
is surjective and order preserving, and therefore:

lim inf
C∈coh(F)

φ(f(C)) = lim inf
C′∈coh(F ′)

φ(C′).

Moreover, as φ satisfies Mon1, we have:

φ(C) ≥ φ(f(C))

for every C in coh(F), and therefore:

φ(F) = lim inf
C∈coh(F)

φ(C) ≥ lim inf
C∈coh(F)

φ(f(C)) = lim inf
C′∈coh(F ′)

φ(C′) = φ(F ′
).

This proves that φ also satisfies Mon1. □

The invariants φ and φ satisfy the following lower semicontinuity property:

Proposition 4.3.7. Let F be an object of qCohX . For every exhaustive filtration (Fi)i∈N of
F by OX-submodules, the following inequalities holds:

(4.3.7) φ(F) ≤ lim inf
i→+∞

φ(F i) and φ(F) ≤ lim inf
i→+∞

φ(F i).

Proof. Let G be an element of coft(F). For every i ∈ N, Gi := G ∩ F belongs to coft(Fi).
Indeed the injection morphism Fi↪−→F defines an injective map of OX -modules

ιi : Fi/Gi↪−→F/G,

the image of which is the image of Fi in F/G. Since F/G is finitely generated and the filtration
(Fi)i∈N is exhaustive, the morphism ιi is surjective when i is large enough. Moreover it defines a

morphism in Coh
≤1

X :

ιi : Fi/Gi −→ F/G.
Therefore, according to Mon1, the following inequality holds for i large enough:

φ(F/G) ≤ φ(Fi/Gi).

Consequently,

φ(F/G) ≤ lim inf
i→+∞

φ(Fi/Gi) ≤ lim inf
i→+∞

φ(Fi),

and finally we get:

φ(F) := sup
G∈coft(F)

φ(F/G) ≤ lim inf
i→+∞

φ(Fi).
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To establish the upper bound
φ(F) ≤ lim inf

i→+∞
φ(F i),

it is enough to show that, for every strictly increasing map ι : N→ N such that

(4.3.8) φ(F ι(k)) < t for every k ∈ N,
we have:

(4.3.9) φ(F) ≤ t.

Since F is countably generated, we may choose a sequence (fk)k∈N of elements of the OK-module
F that generates the OK-module F such that fk belongs to Fι(k) for every k ∈ N.

When (4.3.8) holds, for every k ∈ N there exist arbitrary large submodules C in coh(Fι(k))
such that φ(C) < t. Consequently we may construct inductively an increasing sequence (Ck)k∈N of
submodules Ck in coh(Fι(k)) such that, for every k ∈ N:

fk ∈ Ck and φ(Ck) < t.

By construction, the filtration (Ck)k∈N is exhaustive and satisfies:

lim inf
k→+∞

φ(Ck) ≤ t.

This establishes (4.3.9). □

Proposition 4.3.8. Let us assume that φ satisfies Add⊕. Then, for every countable family
(F i)i∈I of objects in qCohX , the following equality holds in [0,+∞]:

(4.3.10) φ(
⊕
i∈I
F i) =

∑
i∈I

φ(F i).

Moreover for every countable family (Ci)i∈I of objects in CohX , the following equality holds
in [0,+∞]:

(4.3.11) φ(
⊕
i∈I
Ci) =

∑
i∈I

φ(Ci).

Proof. Let us write I as the union of an increasing sequence (Ik)k∈N of finite subsets. According
to the lower semicontinuity of φ established in Proposition 4.3.7, we have:

(4.3.12) φ(
⊕
i∈I
F i) ≤ lim inf

k→+∞
φ(
⊕
i∈Ik

F i).

Moreover, for every k ∈ N, we may consider the projection morphism in qCoh
≤1

X :

pk :
⊕
i∈I
F i −→

⊕
i∈Ik

F i.

Since φ satisfies Mon1, the existence of this morphism implies the inequality:

φ(
⊕
i∈I
F i) ≥ φ(

⊕
i∈Ik

F i).

Consequently,

(4.3.13) φ(
⊕
i∈I
F i) ≥ lim sup

k→+∞
φ(
⊕
i∈Ik

F i).

From (4.3.12) and (4.3.13), we derive the equality:

φ(
⊕
i∈I
F i) = lim

k→+∞
φ(
⊕
i∈Ik

F i).
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Besides, the additivity of φ established in Proposition 4.3.5 implies:

lim
k→+∞

φ(
⊕
i∈Ik

F i) = lim
k→+∞

∑
i∈Ik

φ(F i) =
∑
i∈I

φ(F i).

This completes the proof of (4.3.10). A similar but simpler argument, using only the additivity
of φ on CohX , establishes the validity of (4.3.11). □

Corollary 4.3.9. For every countable family (Ci)i∈I of objects in CohX , we have:

φ(
⊕
i∈I
Ci) = φ(

⊕
i∈I
Ci).

4.3.4. Subadditivity.

Proposition 4.3.10. If φ satisfies SubAdd on CohX , then φ satisfies SubAdd on qCohX ;

moreover, for any object F of qCohX and any coherent submodule C of F , we have:

(4.3.14) φ(F) ≤ φ(C) + φ(F/C).

If φ satisfies SubAdd and Cont+ on CohX , then φ satisfies SubAdd on qCohX .

Proof. Assume that φ satisfies SubAdd on CohX .

(1) To prove that φ also satisfies SubAdd, let us consider an admissible short exact sequence

0 // E i // F
p // G // 0

in qCohX , and let us establish the inequality:

(4.3.15) φ(F) ≤ φ(E) + φ(G).

To achieve this, consider an element F ′ of coft(F). As discussed in paragraph 2.2.2.2, to F ′ we
may associate an admissible sort exact sequence:

(4.3.16) 0 // E/E ′
∼ ĩ // F/F ′ p̃ // G/G′ // 0,

where E ′ := i−1(F ′) and G′ := p(F ′), in such a way that the identity map induces a morphism in

qCoh
≤1

X :

IdE/E′ : E/E ′ −→ E/E ′
∼
.

The OX -modules E ′ and G′ belong to coft(E) and coft(G) respectively, and (4.3.16) is an ad-
missible short exact sequence in CohX . Using the subadditivity and the monotonicity of φ and the
definition of φ, we consequently obtain:

φ(F/F ′) ≤ φ(E/E ′
∼
) + φ(G/G′) ≤ φ(E/E ′) + φ(G/G′) ≤ φ(E) + φ(G).

By taking the supremum over F ′ in coft(F), this establishes (4.3.15).
(2) Let F be an object of qCohX and let C be an element of coh(F).
For any C′ in coh(F) containing C, we may consider the admissible short exact sequence in

CohX :

0 −→ C −→ C′ −→ C/C′ −→ 0.

By using SubAdd, we derive the inequality:

φ(C′) ≤ φ(C) + φ(C′/C),

and by taking the inferior limit over C′ in the directed set (coh(F),⊆), we obtain (4.3.14).
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(3) Let us finally assume that φ also satisfies Cont+, and let us return to the notation of part
(1) of this proof. To establish that φ satisfies SubAdd, we have to establish the inequality:

(4.3.17) φ(F) ≤ φ(E) + φ(G).

Equivalently, we have to show that, for any ε ∈ R∗
+ and any B′ in coh(F), there exists B in coh(F)

containing B′ such that the following inequality is satisfied:

(4.3.18) φ(B) < φ(E) + φ(G) + ε.

To achieve this, observe that, for any ε ∈ R∗
+, the following properties hold:

(i) for any A′ in coh(E), there exists A in coh(E) containing A′ and satisfying the inequality:

φ(A) ≤ φ(E) + ε/3;

(ii) for any C′ in coh(G), there exists C in coh(G) containing C′ and satisfying the inequality:

(4.3.19) φ(C) ≤ φ(G) + ε/3.

For any B′ in coh(F), its image C′ = p(B′) belongs to coh(G). Let C be an element of coh(G)
such that (4.3.19) holds. Since p is surjective, we may find B′′ in coh(F) containing B′ such that
C = p(B′′). A straigthforward induction based on (i) above allows us to construct an exhaustive
filtration (En)n≥0 on E by submodules in coh(E) such that, for any n ≥ 0,

(4.3.20) φ(En + i−1(B′′)) ≤ φ(E) + ε/3.

We may consider the admissible short exact sequences:

0 // En + i−1(B′′) i // i(En) + B′′
p // p(B′′)n // 0

where p(B′′)n is defined as p(B′′) = C equipped with the quotient seminorms deduced from the ones

of i(En) + B′′. The subadditivity SubAdd of φ applied to the exact sequences above shows that

(4.3.21) φ(i(En) + B′′) ≤ φ(En + i−1(B′′)) + φ(p(B′′)n),

for every n ≥ 0. Moreover, according to Proposition 2.2.6, the sequences of seminorms defining the
Hermitian coherent sheaves p(B′′)n are decreasing and converge pointwise toward the seminorms
defining C. Since φ satisfies Cont+, this implies:

(4.3.22) lim
n→+∞

φ(p(B′′)n) = φ(C).

The relations (4.3.19)-(4.3.22) imply that, when the integer n is large enough, then

B := i(En) + B′′

satisfies (4.3.18). □

4.3.5. Compatibility with killing torsion and antiprojective modules.

When the invariant φ satisfies VT, namely vanishes on torsion sheaves, then so does its upper
extension φ, and a fortiori its lower extension φ, as a straigthforward consequence of their definition.

To study how the properties NST and NSAp introduced in 4.1.4 are inherited by φ and φ, it
is convenient to introduce the following definition.

Definition 4.3.11. For any object F of qCohX , we denote by scoft(F) the subset of coft(F)
consisting of the quasi-coherent OX -submodules F ′ of F such that the quotient OX -module F/F ′

is coherent and torsion free, hence locally free.17

17The notation “scoft” stands for saturated of co-finite type.



4.3. LOWER AND UPPER EXTENSIONS TO qCohX OF INVARIANTS ON CohX 135

Observe that if G is an element of coft(F), then its saturation Gsat in F — namely the OK-
submodule of F containing G such that

Gsat/G = (F/G)tor
— is an element of scoft(F). Moreover the map

coft(F) −→ scoft(F), G 7−→ Gsat

coincides with the identity map on scoft(F), and for any G in coft(F), we have a canonical identifi-
cation:

F/Gsat ≃ F/G/tor.

Recall that that the property for an invariant on CohX of being small on Hermitian coherent
sheaves generated by small sections has been introduced in 4.2.6 above.

Proposition 4.3.12. Let us assume that φ satisfies NST on CohX .

For any object F of qCohX , we have:

(4.3.23) φ(F) = sup
G∈scoft(F)

φ(F/G).

The invariant φ satisfies NSAp, and a fortiori NST, on qCohX .

Moreover, φ satisfies NST on qCohX , and if φ is small on Hermitian coherent sheaves gener-
ated by small sections, φ satisfies VAp on qCohX .

Proof. Let F be an object of qCohX .

For any G in coft(G), the quotient F/G is an object of CohX , and therefore:

φ(F/G) = φ(F/G/tor).

Thanks to the observations above on the saturation operation, this implies:

sup
G∈coft(F)

φ(F/G) = sup
G∈coft(F)

φ(F/Gsat) = sup
G∈scoftF

φ(F/G).

This establishes the expression (4.3.23) for φ(F). Applied to F∨∨
, this expression becomes:

(4.3.24) φ(F∨∨
) = sup

G′∈scoft(F∨∨)

φ(F∨∨/G′).

Moreover, if G is an element of scoft(F), the OK-module F/G is projective, and therefore the
quotient morphism from F to F/G vanishes on the antiprojective module Fap and factors through
the biduality morphism δF : F → F∨∨. This shows that we have a bijection:

scoft(F∨∨)
∼−→ scoft(F), G′ 7−→ δ−1

F (G′).

For any G′ in scoft(F∨∨) of image G := δ−1
F (G′) in scoft(F), we have a canonical isometric isomor-

phism induced by δF :

F/G ∼−→ F∨∨/G′,
and therefore:

φ(F/G) = φ(F∨∨/G′).

This shows that the right-hand sides of (4.3.23) and (4.3.24) coincides. This establishes the
equality:

φ(F) = φ(F∨∨
),

and proves that φ satisfies NSAp on qCohX .
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For any submodule C in coh(F), we may consider the commutative diagram:

0 // Ctor //
� _

��

C //� _

��

C/tor� _

��

// 0

0 // Ftor
// F // F/tor // 0,

where the vertical arrows are isometric injections. The module C/tor may be identified to an element
of coh(F/tor), and the map

coh(F) −→ coh(F/tor), C 7−→ C/tor
is surjective and order preserving.

Moreover, since φ satisfies NST, we have:

φ(C) = φ(C/tor).
Consequently,

φ(F) = lim inf
C∈coh(F)

φ(C) = lim inf
C∈coh(F)

φ(C/tor) = lim inf
C′∈coh(F/tor)

φ(C′) = φ(F/tor),

and therefore φ also satisfies VAp.

Assume finally that φ is small on Hermitian coherent sheaves generated by small section, and
consider an object F of qCohX such that F(X) is antiprojective. Let F be a finite subset of F(X),
and let C(N, .) be some functions as in Definition 4.2.11. According to Proposition 2.2.9, for every
ε ∈ R∗

+, there exists C in coh(F) such that C(X) contains F and

(4.3.25) φ(C) ≤ C(2|F |, ε).
Since the right-hand side of (4.3.25) goes to zero with ε, this implies the vanishing of φ(F) :=
lim infC∈coh(F) φ(C). □

4.4. The Construction ev. Eventually Vanishing Invariants

Let us consider an invariant of Hermitian quasi-coherent sheaves over X:

ψ : qCohX −→ [0,+∞],

and let us assume that it satisfies the monotonicity condition Mon1.

4.4.1. Definitions.

Definitions 4.4.1. We denote by

evψ : qCohX −→ [0,+∞]

the invariant defined by the following formula:

(4.4.1) evψ(F) := lim
C∈coh(F)

ψ(F/C) = inf
C∈coh(F)

ψ(F/C),

where F is an arbitrary Hermitian quasi-coherent sheaf over X.

We say that the invariant ψ is eventually vanishing on F when

evψ(F) = 0.

The limit in (4.4.1) is taken over C in the directed set (coh(F),⊆). Here again, the existence of
the limit and its equality with the right-hand side of (4.4.1) follows from the monotonicity Mon1

of ψ, which shows that, for every elements C and C′ in coh(F), the following implication holds:

C ⊆ C′ =⇒ ψ(F/C) ≥ ψ(F/C′).
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Clearly, for every object F in qCohX , we have:

(4.4.2) evψ(F) ≤ ψ(F).

4.4.2. Permanence properties of the construction ev.

Proposition 4.4.2. The invariant evψ satisfies the condition Mon1. If moreover ψ satisfies
VT (resp. SubAdd), then evψ also satisfies VT (resp. SubAdd).

Proof. (1) Consider a morphism in qCohX ,

f : F −→ G,
such that f : F → G is surjective. Then, for every C in coh(F), the image f(C) belongs to coh(G),
and f induces a morphism from F/C onto G/f(C) that, seen as a morphism from F/C to G/f(C),
has norms ≤ 1. Since ψ satisfies Mon1, this implies the inequality:

ψ(F/C) ≥ ψ(G/f(C)).
Consequently,

ψ(F) := inf
C∈coh(F)

ψ(F/C) ≥ inf
C∈coh(F)

ψ(G/f(C)) ≥ inf
C′∈coh(G)

ψ(G/C′) =: evψ(G).

This proves that evψ satisfies Mon1.

(2) When ψ satisfies VT, then so does evψ, as a straightforward consequence of the inequality
(4.4.2).

(3) Let us assume that ψ satisfies SubAdd, and let us consider an admissible short exact
sequence in qCohX :

(4.4.3) 0 −→ F ′ i−→ F p−→ F ′′ −→ 0.

For any two elements C′ and C′′ of coh(F ′) and coh(F ′′) respectively, there exists C in coh(F)
mapped onto C′′ by p. After possibly replacing C by i(C′)+ C, we may assume that C contains i(C′),
or equivalently, that i−1(C) contains C′. Then, according to the monotonicity of ψ, we have:

ψ(F ′/i−1(C)) ≤ ψ(F ′/C′).

Moreover, since ψ satisfies Mon1 and SubAdd, according to Proposition 4.1.2, we have:

ψ(F/C) ≤ ψ(F ′/i−1(C)) + ψ(F ′′/p(C)).

This proves the inequality:

ψ(F/C) ≤ ψ(F ′/C′) + ψ(F ′′/C′′).
By taking the infimum over (C′, C′′) in coh(F ′)× coh(F ′′), this implies:

evψ(F) ≤ evψ(F ′
) + evψ(F ′′

),

and establishes that evψ satisfies SubAdd. □

Proposition 4.4.2 implies permanence properties for objects in qCohX with eventually vanishing
invariant ψ, namely:

Corollary 4.4.3. If f : F → G is a morphism in qCoh
≤1

such that f is surjective, and if the
invariant ψ is eventually vanishing on F , then it is eventually vanishing on G.

Let us assume that, besides Mon1, the invariant ψ also satisfies SubAdd. Then for every
admissible short exact sequence in qCohX ,

0 −→ F ′ −→ F −→ F ′′ −→ 0

if the invariant ψ is eventually vanishing on F ′
and F ′′

, then ψ is also eventually vanishing on F .
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Moreover, for every object E in qCohX and any two OK-submodules E1 and E2 of E , if ψ is
eventually vanishing on E1 and E2, it is also eventually vanishing on E1 + E2.

4.4.3. Approximating quotients by quotients by coherent subsheaves. If F is an object
of qCohX and G is a submodule of F , then we may consider the map:

coh(G) −→ [0,+∞], C 7−→ ψ(F/C).

Since ψ satisfies Mon1, it is decreasing and bounded below by ψ(F/G). Consequently:

(4.4.4) lim
C∈coh(G)

ψ(F/C) = inf
C∈coh(G)

ψ(F/C) ≥ ψ(F/G).

Proposition 4.4.4. Let us assume that, besides Mon1, the invariant ψ also satisfies SubAdd.
With the above notation, if

evψ(G) = 0,

then

(4.4.5) lim
C∈coh(G)

ψ(F/C) = inf
C∈coh(G)

ψ(F/C) = ψ(F/G).

Proof. For any C in coh(G), the subadditivity of ψ applied to the admissible short exact
sequence

0 −→ G/C −→ F/C −→ F/G −→ 0

establishes the inequality:

(4.4.6) ψ(F/C) ≤ ψ(G/C) + ψ(F/G).
The last equality in (4.4.5) follows by taking the infimum over C in coh(G) in (4.4.6) and by us-
ing (4.4.4). □

4.5. Upper Extensions and φ-Summable Hermitian Quasi-coherent Sheaves

In this section, we consider an invariant:

φ : CohX −→ R+

that satisfies the monotonicity and subadditivity conditions Mon1 and SubAdd.

Recall that, according to Propositions 4.3.4 and 4.3.6, the invariant:

φ : qCohX −→ [0,+∞]

coincides with φ on CohX and satisfies Mon1. Moreover the following implication is a straightfor-
ward consequence of the estimate (4.3.14) in Proposition 4.3.10:

(4.5.1) evφ(F) < +∞ =⇒ φ(F) < +∞.

4.5.1. Filtration by coherent subsheaves and φ-summable objects of qCohX .

4.5.1.1. Our main result concerning general positive invariants on CohX and their extensions
to qCohX is the following theorem, the proof of which is given in Subsection 4.5.2.

Theorem 4.5.1. Let F := (F , (∥.∥x)x∈X(C)) be an object of qCohX , and let C• := (Ci)i∈N be an
exhaustive filtration of F by elements of coh(F). If C• satisfies the condition:

(4.5.2) Sumφ(F , C•) :
+∞∑
i=0

φ(Ci/Ci−1) < +∞,

then the limit limi→+∞ φ(Ci) exists in R+, and moreover:

(4.5.3) φ(F) = lim
i→+∞

φ(Ci) and evφ(F) = 0.



4.5. UPPER EXTENSIONS AND φ-SUMMABLE HERMITIAN QUASI-COHERENT SHEAVES 139

By convention, in (4.5.2), we let C−1 := 0. We shall use the same convention in (4.5.4) and
(4.5.5) below.

Theorem 4.5.1 provides a convenient tool to establish that the upper extension φ takes a finite
value on some object of qCohX . It may be seen as an axiomatic version of a dual form of the results
in [Bos20b, 7.3.1 and 7.4], extended to a more general framework where no projectivity is required.
This theorem will play a central role in this monograph when φ is the theta invariant h1θ. However
the scope of Theorem 4.5.1 is not restricted to h1θ: it may notably be applied to the invariant ρ2,
the square of the covering radius, investigated in Chapter 6.

As mentioned in the introduction to the present chapter, the formulation and the proof of
Theorem 4.5.1, and the ones of Proposition 4.5.17 as well, are reminiscent of basic constructions
in measure and capacity theory, as developed for instance in [Sak37] and [Cho54]. However,
while these constructions concern numerical functions attached to subsets of a given set X and their
compatibility with the operations of (countable) union and intersection, here we deal with invariants
attached to objects in the categories CohX and qCohX and with their compatibility, not only with
the operation of taking intersections or sums of subobjects of a given object, but also with morphisms
in these categories and the construction of quotients.

4.5.1.2. Motivated by Theorem 4.5.1, it is natural to introduce the following definitions:

Definitions 4.5.2. Let F := (F , (∥.∥x)x∈X(C)) be an object of qCohX .

An exhaustive filtration C• of F by elements of coh(F) is called a φ-summable filtration of F
when it satisfies the condition Sumφ(F , C•), that is when

(4.5.4) Σφ(F , C•) :=
+∞∑
i=0

φ(Ci/Ci−1) < +∞.

The Hermitian quasi-coherent sheaf F is called φ-summable when there exists a φ-summable
exhaustive filtration of F by elements of coh(F).

We will denote by φΣ-qCohX and φΣ-qCoh
≤1

X the full subcategories of qCohX and qCoh
≤1

X

whose objects are the φ-summable Hermitian quasi-coherent sheaves over X. Every object of

CohX is clearly φ-summable, and the categories CohX and Coh
≤1

X appear as full subcategories of

φΣ-qCohX and φΣ-qCoh
≤1

X .

Observe that, if an exhaustive filtration C• := (Ci)i∈N of F by elements of coh(F) satisfies the
summability condition Sumφ(F , C•), then for every strictly increasing map ι : N→ N, the filtration
Cι(•) := (Ci)ι(i)∈N satisfies the same conditions. Indeed, as a consequence of the subaddivity SubAdd

of φ, we have:18

(4.5.5) φ(Cι(k)/Cι(k−1)) ≤
ι(k)∑

i=ι(k−1)+1

φ(Ci/Ci−1) for every k ∈ N,

and therefore:

Σφ(F , Cι(•)) ≤ Σφ(F , C•).

Observe also that, for every n ∈ N, the filtration C•+n := (Ci+n)i∈N satisfies:

(4.5.6) Σφ(F , C•+n) = φ(Cn) +
+∞∑
i=n+1

φ(Ci/Ci−1);

18By convention, we let ι(−1) := −1.
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Therefore, if C• is any φ-summable exhaustive filtration of F by submodules coh(F), the conclusion
of Theorem 4.5.1 implies:

(4.5.7) φ(F) = lim
n→+∞

Σφ(F , C•+n).

If we denote by CohFil(F) the set of exhaustive filtrations of F by submodules in coh(F), we
easily deduce from Theorem 4.5.1:

Corollary 4.5.3. For every object in φΣ-qCohX , the following equality holds:

φ(F) = inf
C•∈CohFil(F)

Σφ(F , C•).

Proof. The subaddivity of φ shows that for every C• in CohFil(F) and every k in N, we have:

φ(Ck) ≤
k∑
i=0

φ(Ci/Ci−1) ≤ Σφ(F , C•).

Together with (4.5.3), this establish the upper bound:

φ(F) ≤ inf
C•∈CohFil(F)

Σφ(F , C•).

The opposite inequality follows from (4.5.7). □

4.5.1.3. As a first illustration of the significance of φ-summable objects of qCohX , we may
show that, restricted to these objects, the upper extension φ inherits the additivity property Add⊕
from φ.

Corollary 4.5.4. Assume moreover that φ satisfies Add⊕ on CohX . Then, if two objects F
and F ′

in qCohX are φ-summable, then their direct sum F ⊕F ′
is φ-summable, and the following

equality holds:

(4.5.8) φ(F ⊕ F ′
) = φ(F)⊕ φ(F ′

).

Proof. Let C• and C′• be exhaustive filtrations of F and F ′ by coherent submodules that satisfy

Sumφ(F , C•) and Sumφ(F
′
, C′•) respectively. Then C̃• := (Ci ⊕ C′i)i∈N is an exhaustive filtration of

F ⊕ F ′ by coherent submodules, and the validity of Add⊕ implies, for every i ∈ N:

(4.5.9) φ(C̃i/C̃i−1) = φ(Ci/Ci−1 ⊕ C′i/C′i−1) = φ(Ci/Ci−1) + φ(C′i/C′i−1)

and

(4.5.10) φ(C̃i) = φ(Ci ⊕ C′i) = φ(Ci) + φ(C′i).

The relations (4.5.9) show that the condition Sumφ(F ⊕ F
′
, C̃•) is satisfied. This already

establishes that F ⊕ F ′
is φ-summable. Moreover Theorem 4.5.1, applied to F and C•, F

′
and C′•,

and F ⊕ F ′
and C̃• shows that:

φ(F) = lim
i→+∞

φ(Ci), φ(F) = lim
i→+∞

φ(Ci), and φ(F ⊕ F ′
) = lim

i→+∞
φ(C̃i).

Together with (4.5.10), this establishes (4.5.8). □

When the additivity property Add⊕ is satisfied, one may easily construct objects in φΣ-qCohX
that do not belong to CohX by means of countable direct sums.

Corollary 4.5.5. Let us assume that φ satisfies Add⊕. For every sequence (Di)i∈N of objects
in CohX , of direct sum F :=

⊕
i∈NDi, the following two conditions are equivalent:

(i) F is φ-summable;
(ii)

∑
i∈N φ(Di) < +∞.
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Recall that, with the notation of Corollary 4.5.5, the following equalities hold:

φ(F) = φ(F) =
∑
i∈N

φ(Di),

as shown in Proposition 4.3.8.

Proof. When (i) holds, then φ(
⊕

i∈NDi) is finite and therefore (ii) holds. Conversely, when
(ii) holds, then the submodules

Ci :=
⊕

0≤k≤i

Dk

define an exhaustive filtration C• of F =
⊕

i∈NDi by finitely generated submodules that is φ-

summable, since the subquotient Ci/Ci−1 may be identified withDi for every i ∈ N, and consequently:

Σφ(F , C•) =
∑
i∈N

φ(Di). □

It is actually possible to establish a permanence property of φ-summability under countable
direct sums that encompasses the previous two corollaries:

Proposition 4.5.6. Let us moreover assume that φ satisfies the condition Add⊕ on CohX .
Then for every countable family (Gi)i∈I of objects of φΣ-qCohX , the following equality holds in
[0,+∞]:

(4.5.11) φ(
⊕
i∈I
Gi) =

∑
i∈I

φ(Gi).

Moreover
⊕

i∈I Gi is φ-summable if and only if (4.5.11) is finite.

Proof. For any finite subset F of I, we may apply property Mon1 — that is satisfied by φ
according to Proposition 4.3.6 — to the projection:

G :=
⊕
i∈I
Gi −→

⊕
i∈F
Gi.

Together with the additivity of φ on φΣ-qCohX established in Corollary 4.5.4, this establishes the
following inequality:

φ(G) ≥ φ(
⊕
i∈F
Gi) =

∑
i∈F

φ(Gi),

and consequently, since the finite subset I is arbitrary:

φ(G) ≥
∑
i∈I

φ(Gi).

This shows that, if
∑
i∈I φ(Gi) is infinite, then G is not φ-summable and (4.5.11) holds.

Let us now assume that
∑
i∈I φ(Gi) is finite, and let us choose (εi)i∈I in R∗I

+ . For every i ∈ I,
we may choose a φ-summable exhaustive filtration Ci,• of Gi of Gi by coherent submodules such that:

Σφ(Gi, Ci,•) ≤ φ(Gi) + εi.

After replacing Ci,• by Ci,•+i, we may also assume that:

Ci,k = 0 if k < i.

Then, if we let:

C̃k :=
⊕
i∈I
Ci,k
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for every k ∈ N, then C̃• := (C̃k)k∈N is an exhausting filtration of G by coherent submodules.
Moreover, from the additivity of φ on CohX , we derive:

Σφ(G, C̃•) =
∑

k∈N,i∈I
φ(Ci,k/Ci,k−1) =

∑
i∈I

Σφ(Gi, Ci,•) ≤
∑
i∈I

φ(Gi) +
∑
i∈I

εi.

Since (εi)i∈I may be chosen so that
∑
i∈I εi is finite, this implies that G is φ-summable. It also

establishes the inequality:

φ(G) ≤
∑
i∈I

φ(Gi) +
∑
i∈I

εi.

As (εi)i∈I may be chosen so that
∑
i∈I εi is arbitrarily small, this completes the proof of (4.5.11). □

4.5.2. Proof of Theorem 4.5.1. Let us consider an object F of qCohX and exhaustive
filtration C• of F by elements of coh(F) such that

Σφ(F , C•) :=
+∞∑
i=0

φ(Ci/Ci−1) < +∞.

Lemma 4.5.7. The limit limi→+∞ φ(Ci) exists in R+ and, for any i ∈ N, satisfies the inequality

(4.5.12) lim
k→+∞

φ(Ck) ≤ φ(Ci) +
+∞∑
j=i+1

φ(Cj/Cj−1).

Proof. According to the subadditivity of φ, applied to the admissible short exact sequence

0 −→ Ci−1 −→ Ci −→ Ci/Ci−1 −→ 0,

the following estimates holds for every i ∈ N:

(4.5.13) φ(Ci) ≤ φ(Ci−1) + φ(Ci/Ci−1).

Therefore, if we let:

xi := φ(Ci)−
i∑

j=0

φ(Cj/Cj−1),

then the sequence (xi)i∈N is decreasing and lies in the interval

[−
+∞∑
j=0

φ(Cj/Cj−1),+∞).

Consequently, it admits a limit l in this interval. This shows that the sequence (φ(Ci))i∈N admits

l +

+∞∑
j=0

φ(Cj/Cj−1)

as a limit in R+.

The estimates (4.5.13) also imply the following upper bounds, valid for every (i, k) ∈ N2 such
that i < k:

(4.5.14) φ(Ck) ≤ φ(Ci) +
k∑

j=i+1

φ(Cj/Cj−1).

The estimates (4.5.12) follows by letting k go to infinity. □
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Lemma 4.5.8. For every C in coh(F), there exists ι(C) ∈ N such that C ⊆ Cι(C). The sequence

(φ(Ck/C))k≥ι(C) admits a limit l(C) in R+. Moreover l(C) is a decreasing function of C in the directed
set (coh(F),⊆) and satisfies:

(4.5.15) lim
C∈coh(C)

l(C) = inf
C∈coh(C)

l(C) = 0.

Proof. The existence of ι(C) follows from the exhaustive character of the filtration C•. The se-
quence (Ck/C)k≥ι(C) is an exhaustive filtration of F/C by submodules in coh(F/C), and the existence
in R+ of the limit

l(C) := lim
k→+∞

φ(Ck/C)

follows from Lemma 4.5.7 applied to F/C and to the filtration (Ck/C)k≥ι(C) instead of F and (Ck)k∈N.

Indeed, for every k > ι(C), the subquotient (Ck/C)/(Ck−1/C)) may be identified to Ck/Ck−1, and

consequently the summability condition Sumφ(F/C, (Ck/C)k≥ι(C)) is satisfied.
Moreover if two submodules C and C′ in coh(F) satisfy C ⊆ C′, then the monotonicity of φ

implies the inequality:

φ(Ck/C) ≥ φ(Ck/C′),
for every k ≥ max(ι(C), ι(C′)). Taking the limit when k goes to infinity, this establishes the inequality:

l(C) ≥ l(C′),
and shows that l(C) admits a limit when C runs over the directed set (coh(F),⊆):
(4.5.16) lim

C∈coh(C)
l(C) = inf

C∈coh(C)
l(C) ∈ R+.

When C = Ci for some i ∈ N, we may choose ι(C) := i, and the upper bound (4.5.12), with Ck
replaced by Ck/Ci, takes the form:

(4.5.17) lim
k→+∞

φ(Ck/Ci) ≤
+∞∑
j=i+1

φ(Cj/Cj−1).

When i goes to infinity, the right-hand side of (4.5.17) goes to zero, and therefore:

(4.5.18) lim
i→+∞

l(Ci) = 0.

This establishes the vanishing of (4.5.16), and completes the proof of (4.5.15). □

The subadditivity of φ, applied to the admissible short exact sequence

0 −→ C −→ Ck −→ Ck/C −→ 0,

shows that the following inequality holds, for every C ∈ coh(F) and every integer k ≥ ι(C):

φ(Ck) ≤ φ(C) + φ(Ck/C).
By taking the limit when k goes to infinity, this establishes the estimate:

(4.5.19) lim
k→+∞

φ(Ck) ≤ φ(C) + l(C),

valid for every C ∈ coh(F).
From (4.5.15) and (4.5.19), we get:

lim
k→+∞

φ(Ck) ≤ lim inf
C∈coh(F)

φ(C).

This establishes the equality:

(4.5.20) φ(F) = lim
k→+∞

φ(Ck).
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In turn, (4.5.20) applied to applied to F/C and to the filtration (Ck/C)k≥ι(C) instead of F and
(Ck)k∈N, shows that:

(4.5.21) φ(F/C) = l(C).
According to (4.5.15), the limit of (4.5.21) when C runs over the directed set (coh(F),⊆) vanishes.
This establishes the vanishing of evφ(F) and completes the proof of Theorem 4.5.1.

4.5.3. Permanence properties for φ-summable Hermitian quasi-coherent sheaves.

Proposition 4.5.9. If f : F → G is a morphism in qCoh
≤1

X such that the morphism of OK-
modules f : F → G is surjective, and if F is φ-summable, then G is φ-summable.

We shall actually establish the following more precise result, which will be used in the next
chapter when investigating the strong monotonicity properties of the upper extension φ:

Proposition 4.5.10. Under the hypotheses of Proposition 4.5.9, for any exhaustive filtration
C• = (Ci)i∈N by elements of coh(F), the image filtration f(C•) := (f(Ci))i∈N is an exhaustive filtration
of G by submodules in coh(G) and satisfies:

(4.5.22) Σφ(G, f(C•)) ≤ Σφ(F , C•).

When moreover the surjective morphism f from F to G is admissible and φ satisfies Cont+, if
we let H := ker f, then:

(4.5.23) φ(G) = lim
i→+∞

φ(Ci/Ci ∩H).

Proof. Let f : F → G be a morphism as in Proposition 4.5.9, and let C• := (Ci)i∈N be an
exhaustive filtration of F by elements of coh(F).

Then f(C•) is clearly an exhaustive filtration of G by submodules in coh(G). Moreover, for every

i ∈ N, the morphism f induces a morphism in Coh
≤1

X ,

fi : Ci/Ci−1 −→ f(Ci)/f(Ci−1),

which is surjective on the underlying OK-modules. As φ satisfies Mon1 on CohX , this implies the
inequality (4.5.22). In particular, if C• is φ-summable, the filtration f(C•) also is.

This notably establishes Proposition 4.5.9, and also the equality:

(4.5.24) φ(G) = lim
i→+∞

φ(f(Ci))

by applying Theorem 4.5.1 to G equipped with the filtration f(C•).
Let us now assume that f is admissible and that φ satisfies Cont+.

For every i ∈ N, the morphism f induces a morphism

Ci/(Ci ∩H) −→ f(Ci)

in qCoh
≤1

X that is an isomorphism between the underlying OK-modules. Since φ satisfies Mon1,
this implies the inequality:

φ(Ci/(Ci ∩H)) ≥ φ(f(Ci)).
Combined with (4.5.24), this establishes the lower bound:

(4.5.25) lim inf
i→+∞

φ(Ci/(Ci ∩H)) ≥ φ(G).

Observe that, for any two integer j ≥ i ≥ 0, the map f induces a morphism in qCoh
≤1

X ,

(Ci + Cj ∩H)/(Cj ∩H) −→ f(Ci),
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that is an isomorphism between the underlying OK-modules; using Mon1 again, this implies the
inequality:

φ((Ci + Cj ∩H)/(Cj ∩H)) ≥ φ(f(Ci)).
Actually, the sequence (φ((Ci + Cj ∩H)/Cj ∩H))j≥i is decreasing, again by Mon1, and since f is

admissible and φ satisfies Cont+, it satisfies:

(4.5.26) lim
j→+∞

φ((Ci + Cj ∩H)/(Cj ∩H)) = φ(f(Ci)),

as a consequence of Proposition 2.2.6, applied with E := H, F ′ := Ci, and En := Cn ∩H.
Moreover the subadditivity of φ, applied to the admissible short exact sequence in qCohX

0 −→ (Ci + Cj ∩H)/(Cj ∩H) −→ Cj/(Cj ∩H) −→ Cj/(Ci + Cj ∩H) −→ 0,

leads to the inequality:

φ(Cj/(Cj ∩H)) ≤ φ((Ci + Cj ∩H)/(Cj ∩H)) + φ(Cj/(Ci + Cj ∩H)).

The monotonicity and the subadditivity of φ also imply:

φ(Cj/(Ci + Cj ∩H)) ≤ φ(Cj/Ci) ≤
∑
i<k≤j

φ(Ck/Ck−1).

Thus we have:

φ(Cj/(Cj ∩H)) ≤ φ((Ci + Cj ∩H)/(Cj ∩H)) +
∑
i<k≤j

φ(Ck/Ck−1).

From this inequality and from (4.5.26), by letting j go to infinity, we derive the following
inequality, valid for any i ∈ N when f is admissible:

lim sup
j→+∞

φ(Cj/Cj ∩H) ≤ φ(f(Ci)) +
+∞∑
k=i+1

φ(Ck/Ck−1).

Finally, by letting i go to infinity and using (4.5.24), we obtain:

lim sup
j→+∞

φ(Cj/Cj ∩H) ≤ φ(G),

which completes the proof of (4.5.23). □

Remark 4.5.11. For future reference, observe that the proof of the inequality (4.5.25) actually
establishes the following result: for every invariant φ : CohX −→ [0,+∞] satisfying Mon1 and for

every morphism f : F → G in qCoh
≤1

X such that im f = G, the following inequality holds:

φ(G) ≤ lim inf
C∈coh(F)

φ(C/(C ∩ ker f)).

Proposition 4.5.12. If F ′
and F ′′

are φ-summable objects in qCohX and if

0 −→ F ′ i−→ F p−→ F ′′ −→ 0

is an admissible short exact sequence in qCohX , then F is φ-summable.

This proposition immediately follows from the second part of the next lemma.

Lemma 4.5.13. Consider an admissible short exact sequence in qCohX ,

0 −→ F ′ i−→ F p−→ F ′′ −→ 0,

and an exhaustive filtration C′• := (C′k)k∈N (resp. C′′• := (C′′k )k∈N) be an exhaustive filtration of F ′

(resp. F ′′) by elements of coh(F ′′) (resp. of coh(F ′′)).



146 4. MONOTONICITY, SUBADDITIVITY AND φ-SUMMABLE HERMITIAN QUASI-COHERENT SHEAVES

(i) For every sequence (εk)k∈N in R∗
+, there exists a strictly increasing map ι : N → N and an

exhaustive filtration C• := (Ck)k∈N of F by elements of coh(F) such that the following two conditions
are satisfied for every k ∈ N:
(4.5.27) i−1(Ck) = C′ι(k) and p(Ck) = C′′k
and:

(4.5.28) φ(Ck/Ck−1) ≤ φ(C′ι(k)/C
′
ι(k−1)) + φ(C′′k/C′′k−1) + εk.

(ii) For every ε ∈ R∗
+, there exists a strictly increasing map ι : N → N and an exhaustive

filtration C• := (Ck)k∈N of F by elements of coh(F) such that condition (4.5.27) is satisfied for every
k ∈ N, and moreover:

(4.5.29) Σφ(F , C•) ≤ Σφ(F
′
, C′ι(•)) + Σφ(F

′′
, C′′• ) + ε.

Proof. Since p is surjective, for every k ∈ N, we may find C̃k in coh(F) such that

p(C̃k) = Ck.

After possibly replacing C̃k by
∑k
i=0 C̃i, we may assume that the sequence (C̃k)k∈N is increasing.

The submodules i−1(C̃k) of F ′ are coherent; consequently there exists a strictly increasing map
ι0 : N→ N such that, for every k ∈ N, the following inclusion holds:

i−1(C̃k) ⊆ C′ι0(k).
Then, if we let, for k ∈ N:

Ck := i(C′ι0(k)) + C̃k,
then (Ck)k∈N is a filtration of F by elements of coh(F). This filtration is exhaustive — indeed⋃
k∈N Ck contains ⋃

k∈N
i(C′k) = i(F ′),

and its image by p is ⋃
k∈N

p(Ck) =
⋃
k∈N

i(C′′k ) = F ′′

— and satisfies the conditions (4.5.27) by construction.

Let us show that, for any given sequence (εk)k∈N in R∗
+, the estimates (4.5.28) also are satisfied

for a suitable choice of the map ι.

The short exact sequences

0 −→ C′ι(k)
i−→ Ck

p−→ C′′k −→ 0

induce short exact sequences relating the successive subquotients of the filtrations C′•, C•, and C′′• :

0 −→ C′ι(k)/C
′
ι(k−1)

ik−→ Ck/Ck−1
pk−→ C′′k/C′′k−1 −→ 0,

where, by convention, we let: C′′ι(−1) = C−1 = C′′−1 = 0.

Let us denote by C′ι(k)/C
′
ι(k−1), Ck/Ck−1, and C′′k/C′′k−1 the objects of qCohX defined by these

subquotients equiped with the Hermitian seminorms induced by the ones on F ′
, F , and F ′′

. We

shall also denote by C′ι(k)/C
′
ι(k−1)

∼
and C′′k/C′′k−1

∼
the objects of qCohX defined by C′ι(k)/C

′
ι(k) and

C′′k/C′′k−1 equipped with the Hermitian seminorms such that the following diagram is an admissible

short exact in qCohX :

0 −→ C′ι(k)/C
′
ι(k−1)

∼ ik−→ Ck/Ck−1
pk−→ C′′k/C′′k−1

∼
−→ 0.

In other words, these seminorms are the ones that make ik,x and the transpose of pk,x isometries for
every x ∈ X(C).
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Since φ satisfies SubAdd, the following inequality holds:

(4.5.30) φ(Ck/Ck−1) ≤ φ(C′ι(k)/C
′
ι(k−1)

∼
) + φ(C′′k/C′′k−1

∼
).

Moreover the morphism:

IdC′
ι(k)

/C′
ι(k−1)

: C′ι(k)/C
′
ι(k−1) −→ C

′
ι(k)/C

′
ι(k−1)

∼

has norms ≤ 1, and therefore, as φ satisfies Mon1, this implies the upper bound:

(4.5.31) φ(C′ι(k)/C
′
ι(k−1)

∼
) ≤ φ(C′ι(k)/C

′
ι(k−1)).

We are going to show that, if the values ι(k) of ι are successively chosen sufficiently large, then
we also have:

(4.5.32) φ(C′′ι(k)/C
′′
ι(k−1)

∼
) ≤ φ(C′′ι(k)/C

′′
ι(k−1)) + εk.

Together with (4.5.30) and (4.5.31), this will establish (4.5.28).

To achieve this, observe that C′′ι(k)/C
′′
ι(k−1) and C

′′
ι(k)/C

′′
ι(k−1)

∼
may be described by means of the

following admissible short exact sequence in qCohX :

0 −→ C̃k−1 + i(F ′)↪−→C̃k + i(F ′) −→ C′′ι(k)/C
′′
ι(k−1) −→ 0,

and

(4.5.33) 0 −→ C̃k−1 + i(Ca)↪−→C̃k + i(Ca) −→ C′′ι(k)/C
′′
ι(k−1)

∼
−→ 0,

where a = ι(k). It follows from Proposition 2.2.6 that the Hermitian seminorms of C′′ι(k)/C
′′
ι(k−1)

∼

defined by the admissible short exact sequences (4.5.33) decrease when the integer a increases, and

that they converge to the Hermitian seminorms of C′′ι(k)/C
′′
ι(k−1) when a goes to infinity.19 Since φ

satisfies Cont+, this implies that φ(C′′ι(k)/C
′′
ι(k−1)

∼
) converges to φ(C′′ι(k)/C

′′
ι(k−1)) when a goes to

infinity, and therefore that (4.5.32) holds if a = ι(k) is chosen large enough.

Part (2) follows from part (1) applied to the sequence (εk)k∈N defined by: εk := 2−k−1ε. □

Corollary 4.5.14. For any object E in qCohX and any two OK-submodules E1 and E2 of E,
if E1 and E2 are φ-summable, then E1 + E2 also is φ-summable.

Proof. This follows from the existence of the surjective morphism

E2 −→ (E1 + E2)/E1

in qCoh
≤1

X and of the admissible short exact sequence

0 −→ E1 −→ E1 + E2 −→ (E1 + E2)/E1 −→ 0,

to which we may apply Propositions 4.5.9 and 4.5.12. □

Corollary 4.5.15. Let us assume that φ satisfies condition VT, namely that it vanishes on
torsion modules, or equivalently20 condition Mon1

K . Then every torsion object in qCohX is φ-

summable. More generally, if f : F → G is a morphism in qCoh
≤1

X such that the K-linear map
fK : FK → GK is surjective and if F is φ-summable, then G is φ-summable.

19Apply Proposition 2.2.6 to E := C̃k + i(F ′), F := F , G := F ′′/C′′
k−1, En := C̃k−1 + i(C′

n), and F ′ := C̃k.
20by Proposition 4.1.3.
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Proof. (1) If F is an object of qCohX such that the OK-module F is torsion, then for every
exhaustive filtration C• := (Ci)i∈N of F by elements of coh(F), the subquotients Ci/Ci−1 are torsion
coherent modules, and therefore:

φ(Ci/Ci−1) = 0

since φ satisfies VT; consequently the condition Sumφ(C•) is verified, and F is φ-summable.

(2) Let G be a φ-summable object in qCohX , and let F be some OK-submodule of G such
that the quotient OK-module G/F is torsion. Then we may consider the associated admissible short
exact sequence in qCohX :

0 −→ F −→ G −→ G/F −→ 0.

We have just shown that G/F is φ-summable. Therefore, according to Proposition 4.5.12, if F is
φ-summable, then G also is.

This establishes the second assertion of the proposition when f is injective and isometric with
torsion cokernel.

(3) In general, a morphism f such that fK is surjective factors as

F f−→ im f ↪−→G,
where the quotient G/im f is torsion. If moreover G is φ-summable, then im f is φ-summable by
part (2), and F is φ-summable by Proposition 4.5.9. □

4.5.4. Downward continuity of φ on φ-summable Hermitian quasi-coherent sheaves.

Proposition 4.5.16. If φ satisfies Cont+ on CohX , then φ satisfies Cont+ on φΣ-qCohX .

In other words, consider a sequence (Fn)n∈N of objects

Fn := (F , (∥.∥n,x)x∈X(C)

in qCohX with the same underlying OK-modules F such that, for every x ∈ X(C), the sequence of
seminorms (∥.∥n,x)n∈N is decreasing, and let us denote by

(4.5.34) F := (F , (∥.∥x)x∈X(C))

the object in qCohX attached to the Hermitian seminorms on the Fx defined as the pointwise limits:

(4.5.35) ∥.∥x := lim
n→+∞

∥.∥n,x.

Proposition 4.5.16 asserts that if F0 is φ-summable, and therefore all the Fn and F by Proposition
4.5.9, then the decreasing sequence (φ(Fn))n∈N in R+ satisfies:

lim
n→+∞

φ(Fn) = φ(F).

Proof. We have to show that, for any given ε in R∗
+, the estimate

φ(Fn) < φ(F) + ε

is satisfied when n is large enough. To achieve this, choose an exhaustive filtration C• of F by
elements of coh(F) such that:

Σφ(F0, C•) :=
+∞∑
i=0

φ(Ci/Ci−10) < +∞,

where C−1 := 0 and where, for every i ∈ N and every n ∈ N∪{⊔}, we denote by Ci/Ci−1n the object

of CohX defined as Ci/Ci−1 equipped with the Hermitian seminorms deduced of the ones on Fn.
For every i ∈ N, the sequence (φ(Ci/Ci−1n))n∈N is decreasing with limit φ(Ci/Ci−1). Indeed the

Hermitian seminorms on Ci/Ci−1 are the limits of the decreasing sequences of Hermitian seminorms
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on Ci/Ci−1n when n goes to infinity, and φ satisfies the condition Cont+ on CohX . Consequently

(Σφ(Fn, C•))n∈N is a decreasing sequence in R+, of limit Σφ(F , C•). In particular, when n is large
enough, we have:

Σφ(Fn, C•) < Σφ(F , C•) + ε/2.

Besides, as observed in (4.5.7) above, we also have:

φ(F) = lim
k→+∞

Σφ(F , C•+k).

Consequently, after possibly replacing the filtration C• by C•+k with k large enough, we may assume:

Σφ(F , C•) < φ(F) + ε/2.

Therefore, when n is large enough, we have:

φ(Fn) ≤ Σφ(Fn, C•) < φ(F) + ε. □

4.5.5. General φ-summable filtrations. By mimicking the proof of Theorem 4.5.1 and using
properties of φ and evφ established in the previous paragraphs, we may prove the following continuity
property of the invariant φ with respect to suitable exhaustive filtrations, which complements the
general lower semicontinuity of φ established in Proposition 4.3.7.

Proposition 4.5.17. Let us moreover assume that φ satisfies Cont+ on CohX .

Let F be an object of qCohX and let F• := (Fi)i∈N be an exhaustive filtration of F by OK-

submodules. If the subquotients21 Fi/Fi−1 satisfy the condition of eventual vanishing:

(4.5.36) evφ(Fi/Fi−1) = 0 for every i ∈ N,
and the summability condition:

Sumφ(F•) :

+∞∑
i=0

φ(Fi/Fi−1) < +∞,

then the sequence (φ(F i))i∈N converges in R+, and we have:

(4.5.37) φ(F) = lim
i→+∞

φ(F i)

and

(4.5.38) evφ(F) = 0.

Observe that the vanishing conditions (4.5.36) are satisfied if the subquotients Fi/Fi−1 are φ-

summable. It is plausible that, when the subquotients Fi/Fi−1 are φ-summable and the summability
condition Sumφ(F•) holds, then F is actually φ-summable. In Section 5.6.1, Proposition 5.6.3, we
will prove that it is indeed the case when the invariant φ satisfies a strengthened form of the
subadditivity condition SubAdd.

Proof. Since the invariant φ satisfies the downward continuity condition Cont+, its upper
extension φ also satisfies SubAdd, as shown in Proposition 4.3.10. The subbaditivity of φ applied
to the admissible short exact sequences

0 −→ F i−1 −→ F i −→ Fi/Fi−1 −→ 0

shows that the following estimates holds for every i ∈ N:

(4.5.39) φ(F i) ≤ φ(F i−1) + φ(Fi/Fi−1).

Using these estimates, a straightforward variant of the proof of Lemma 4.5.7 establishes the
following lemma:

21Hre again, by convention, we let: F−1 = 0.
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Lemma 4.5.18. The limit limi→+∞ φ(F i) exists in R+ and, for any i ∈ N, satisfies the inequality

(4.5.40) lim
k→+∞

φ(Fk) ≤ φ(F i) +
+∞∑
k=i+1

φ(Fk/Fk−1).

Using Lemma 4.5.18 and a variant of the proof of Lemma 4.5.8, one then establishes the following
lemma:

Lemma 4.5.19. For every C in coh(F), there exists ι(C) ∈ N such that C ⊆ Fι(C). The sequence

(φ(Fk/C))k≥ι(C) admits a limit l(C) in R+. Moreover l(C) is a decreasing function of C in the directed
set (coh(F),⊆) and satisfies:

lim
C∈coh(C)

l(C) = inf
C∈coh(C)

l(C) = 0.

Let us only indicate the minor modifications of the proof of Lemma 4.5.8 required for the
derivation of Lemma 4.5.19.

The existence of the limit l(C) := limk→+∞ φ(FK/C) follows from Lemma 4.5.18 applied to F/C
and to the filtration (Fk/C)k≥ι(C) instead of F and F•. This limit satisfies the upper bound:

(4.5.41) l(C) ≤ φ(Fi/C) +
+∞∑
k=i+1

φ(Fk/Fk−1)

for every i ∈ N such that C ⊆ Fi. The monotonicity of φ implies that the function

l : coh(F) −→ R+

is decreasing, and therefore admits a limit over the directed set (coh(F),⊆):
(4.5.42) lim

C∈coh(F)
l(C) = inf

C∈coh(F)
l(C) ∈ R+.

Moreover the inequality (4.5.41) shows that, for every i ∈ N:

(4.5.43) inf
C∈coh(F)

l(C) ≤ evφ(F i) +
+∞∑
k=i+1

φ(Fk/Fk−1).

According to Corollary 4.4.3, the eventual vanishing of φ on the subquotients Fj/Fj−1 implies:

(4.5.44) evφ(Fi) = 0 for every i ∈ N,
by a straightforward induction argument. Together with (4.5.43) and the equality,

lim
i→+∞

+∞∑
k=i+1

φ(Fk/Fk−1) = 0,

this establishes the vanishing of (4.5.42):

(4.5.45) lim
C∈coh(C)

l(C) = inf
i∈N

inf
C∈coh(Ci)

l(C) = 0,

and completes the proof of Lemma 4.5.19.

The subadditivity of φ, applied to the admissible short exact sequence

0 −→ C −→ Fk −→ Fk/C −→ 0,

shows that the following inequality holds, for every C ∈ coh(F) and every integer k ≥ ι(C):

φ(Fk) ≤ φ(C) + φ(Fk/C).
By taking the limit when k goes to infinity, this establishes the estimate:

(4.5.46) lim
k→+∞

φ(Fk) ≤ φ(C) + l(C),
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valid for every C ∈ coh(F).
From (4.5.45) and (4.5.46), we get:

lim
k→+∞

φ(Fk) ≤ lim inf
C∈coh(F)

φ(C).

This establishes the inequality:

lim
k→+∞

φ(Fk) ≤ φ(F).

Together with Proposition 4.3.7, this completes the proof of (4.5.37).

Finally for any element C of coh(F), the equality (4.5.37) applied to F/C equipped with the
filtration F•/C shows that:

l(C) := lim
k→+∞

φ(Fk/C) = φ(F/C),

and consequently (4.5.45) establishes the vanishing (4.5.38) of evφ(F). □

4.6. Compatibility with Direct Images

In practice invariants attached to Euclidean (quasi-)coherent sheaves — that is to Hermitian
(quasi-)coherent sheaves over the arithmetic curveX = SpecZ— play a special role. Most invariants
attached to Hermitian (quasi-)coherent sheaves over a general arithmetic curve X are may indeed
be constructed from invariants of Euclidean (quasi-)coherent sheaves by using the direct images
functors:

π∗ : Coh
≤1

X −→ Coh
≤1

Z

and:

π∗ : qCoh
≤1

X −→ qCoh
≤1

Z

attached to the finite morphism:

π : X −→ SpecZ.

In this section, we briefly discuss this construction and its compatibility with the constructions
investigated in this chapter.

4.6.1. The invariant π∗φ.

Definition 4.6.1. If φ is an invariant on VectZ (resp. CohSpecZ, resp. CohZ, resp. qCohZ)

with values in R+ (resp. in [0,+∞]), we denote by π∗φ the invariant on VectX (resp. CohX , resp.

CohX , resp. qCohX) defined by:

(4.6.1) π∗φ(F) := φ(π∗F).

The following permanence properties of the construction of π∗φ from φ are straightforward
consequences of the definition.

Proposition 4.6.2. For every invariant ψ : VectZ → R+ that satisfies conditions Mon1
K ,

SubAdd, and Cont+, the invariant π∗ψ : VectX → R+ also satisfies these conditions, and the

invariants π∗ψ̃nst and (π∗ψ)∼nst on CohX coincide.

When moreover:

lim
δ→+∞

ψ(OZ(δ)) = 0,

we also have:

lim
δ→+∞

π∗ψ(OX(δ)) = 0.
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Proposition 4.6.3. Let φ be an invariant of objects of CohZ (resp. qCohZ) with values in
[0,+∞], and let π∗φ the invariant of objects of CohX (resp. qCohX) defined by (4.6.1).

If P is any of the following properties: Mon1, SubAdd, Cont+, VT, NST, VAp, NSAp,
Add⊕, or Max⊕, then the following implication holds:

(4.6.2) φ satisfies P =⇒ π∗φ satisfies P.

If φ satisfies Mon1
Q, then π

∗φ satisfies Mon1
K .

If φ is small on Euclidean coherent sheaves generated by small sections, then π∗φ is small on
Hermitian coherent sheaves over X generated by small sections.

4.6.2. Lower and upper extensions and direct images. Let us consider an invariant of
Euclidean coherent sheaves

φZ : CohZ −→ [0,+∞]

that satisfies the monotonicity condition Mon1. Then the invariant

φX := π∗φZ : CohX −→ [0,+∞]

satisfies also Mon1, and we may consider the lower and upper extensions of φZ and φX , namely:

φZ, φZ : qCohZ −→ [0,+∞],

and:

φ
X
, φX : qCohX −→ [0,+∞].

Proposition 4.6.4. With the above notation, for every object F of qCohX , the following in-
equalities hold:

(4.6.3) φ
X
(F) ≤ φZ(π∗F) ≤ φZ(π∗F) ≤ φ(F).

Proof. For every G in coft(F), π∗G is an element of coft(π∗F), the quotient π∗F/π∗G is

canonically isomorphic to π∗F/G and therefore:

(4.6.4) h1θ(F/G) = h1θ(π∗F/π∗G).

By considering the supremum of (4.6.4) over G in coft(F), this implies the first inequality in (4.6.3).

The second inequality in (4.6.3) has been established in Proposition 4.3.4.

For every C in coh(F), π∗C is an element of coh(π∗F) and satisfies:

h1θ(π∗C) = h1θ(C).

Moreover the image of the map so-defined:

π∗ : coh(F) −→ coh(π∗F)

is cofinal in the directed set (coh(π∗F),⊆). These observations imply the last inequality in (4.6.3).
□

Corollary 4.6.5. Every object F such that

φ
X
(F) = φX(F) < +∞

satisfies also:

φZ(π∗F) = φZ(π∗F) < +∞.

Moreover φ(F) := φ
X
(F) = φX(F) and φZ(π∗F) := φZ(π∗F) = φZ(π∗F) coincide.

Beweis. Klar. □
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Proposition 4.6.6. Let us assume that, besides condition Mon1, the invariant φZ (and there-
fore also φX) satisfies condition NST. Then, for every object F of qCohX , the following equality
holds:

(4.6.5) φ
X
(F) = φZ(π∗F).

Proof. According to Proposition 4.3.12, the following equalities hold:

(4.6.6) φ(F) = sup
G∈scoft(F)

φ(F/G)

and:

(4.6.7) φZ(π∗F) = sup
G′∈scoft(π∗F)

φZ(π∗F/G′).

The Euclidean quasi-coherent sheaves π∗F/π∗G is canonically isomorphic to π∗F/G, and therefore

φZ(π∗F/π∗G) and φ(F/G) coincide. Consequently the equality (4.6.6) may be also be written:

(4.6.8) φ(F) = sup
G∈scoft(F)

φZ(π∗F/π∗G)

Moreover, as shown in Corollary 1.3.6, the direct image functor π∗ defines a map

π∗ : scoft(F) −→ scoft(π∗F),

the image of which is cofinal in the directed set (scoft(π∗F),⊇). Together with the expressions (4.6.7)
and (4.6.8) for φZ(π∗F) and φ(F), this establishes their equality. □

4.6.3. The construction ev and direct images. Let us consider an invariant of Euclidean
quasi-coherent sheaves

ψZ : qCohZ −→ [0,+∞]

that satisfies the monotonicity condition Mon1. Then the invariant

ψX := π∗ψZ : qCohX −→ [0,+∞]

satisfies also Mon1, and we may apply the construction ev both to ψZ and ψX and define:

evψZ : qCohZ −→ [0,+∞] and ψX := π∗ψZ : qCohX −→ [0,+∞].

Proposition 4.6.7. With the above notation, for every object F of qCohX , the following equal-
ity holds:

evψX(F) = evψZ(π∗F).

Proof. This follows from the definitions of evψX(F) and evψZ(π∗F) as limits over the directed
sets (coh(F),⊆) and (coh(π∗F),⊆), and from the fact that the “inclusion map”

π∗ : coh(F) −→ coh(π∗F)

is trivially order preserving, of image cofinal in (coh(π∗F),⊆) since the OK-module generated by
some finitely generated Z-submodule of F(X) is finitely generated. □

4.6.4. φ-summability and direct images. Let us consider an invariant of Euclidean coherent
sheaves

φZ : CohZ −→ [0,+∞]

that satisfies the monotonicity and subadditivity conditionsMon1 and SubAdd. Then the invariant

φX := π∗φZ : CohX −→ [0,+∞]

satisfies also Mon1 and SubAdd, and we may introduce the categories φΣ − qCohZ and φΣ −
qCohX of φZ-summable and φX -summable objects in qCohZ and qCohX .
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Proposition 4.6.8. If F is a φX-summable object in qCohX , then π∗F is a φZ-summable
object in qCohZ and the following equality holds:

(4.6.9) φX(F) = φZ(π∗F).

Proof. Let us assume that F is φX -summable, and let us consider an exhaustive filtration
C• := (Ci)i∈N of F by elements of coh(F) that satisfies the summability condition:

(4.6.10) SumφX
(F , C•) :

+∞∑
i=0

φX(Ci/Ci−1) < +∞.

Then π∗C• := (π∗Ci)i∈N is an exhaustive filtration of π∗F by elements of coh(π∗F). Moreover for
every i ∈ N, we have:

φZ(π∗Ci/π∗Ci−1) = φZ(π∗Ci/Ci−1) = φX(Ci/Ci−1).

Therefore the summability condition

SumφZ(π∗F , π∗C•) :
+∞∑
i=0

φZ(Ci/Ci−1) < +∞

is satisfied, and π∗F is φZ-summable.

Moreover, according to Theorem 4.5.1, φX(F) and φZ(π∗F) satisfy:
φX(F) = lim

i→+∞
φX(Ci)

and:
φZ(π∗F) = lim

i→+∞
φZ(π∗Ci),

and therefore coincide. □



CHAPTER 5

Positive Invariants of Hermitian Quasi-coherent Sheaves over
Arithmetic Curves II:

Rank of Morphisms and Strong Monotonicity

As in the previous chapters, we denote by K a number field, by OK its ring of integers, and by
X the arithmetic curve SpecOK .

5.0.1. In this chapter, we pursue the study of positive invariants on the category CohX and of
their extensions to qCohX initiated in Chapter 4.

As before, we are interested in invariants that share the formal properties of the invariant:

(5.0.1) h1(C, .) : CohC −→ N, F 7−→ h1(C,F) := dimkH
1(C,F)

on the category CohC of coherent OC-modules over a smooth projective curve over some base
field k. Among these properties, there are some “obvious” ones, like the monotonicity Mon1 or the
subadditivity SubAdd, which are straightforward consequences of the vanishing of the cohomology
of coherent OC-modules in degree > 1. In Chapter 4, we focused on the consequences of these
properties for an invariant φ : CohX → R+, and we showed that, combined with a mild continuity
assumption, the downward continuity condition Cont+, they allow us to define some natural lower
and upper extension φ and φ to qCohX and to introduce a natural subcategory φΣ-qCohZ of

φ-summable objects in qCohX , on which the upper-extension φ may be computed be a simple limit
procedure.

In this chapter, we introduce some further property of an invariant φ : CohX → R+, the strong
monotonicity. We show that when φ satisfies it, its extensions φ and φ and the φ-summable objects

of qCohX are especially well-behaved.

A concise way to define the strong monotonicity of the invariant φ is as follows.

Recall that φ satisfies the monotonicity condition Mon1 when, for every morphism f : E → F
in Coh

≤1

X , the following implication holds:

(5.0.2) f(E) = F =⇒ φ(E) ≥ φ(F).

This condition may be reformulated as asserting that, for every object E := (E , (∥.∥x)x∈X(C) of

CohX and every OK-submodule E ′ of E , the following inequality holds:

(5.0.3) φ(E)− φ(E/E ′) ≥ 0,

and moreover, that φ(E) is an increasing function of the seminorms (∥.∥x)x∈X(C).

We shall say that φ is strongly monotonic when, for every E and E ′ as above and every morphism

f : E −→ F in Coh
≤1

X , the following inequality holds:

(5.0.4) φ(E)− φ(E/E ′) ≥ φ(F)− φ(F/F ′),

where F ′ := f(E ′) denote the image of E ′ by f .
Applied with E ′ = E , the strong monotonicity condition (5.0.4) implies the monotonicity (5.0.2).

The inequality (5.0.3) is also the special case of (5.0.4) when F = 0. Thus the strong monotonicity

155
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condition (5.0.4) constitutes a strengthening of the monotonicity condition Mon1, which involves

arbitrary morphisms in Coh
≤1

X .

5.0.2. The first two sections of this chapter are devoted to diverse formulations of the strong
monotonicity condition.

In Section 5.1, in the spirit of the work of McMurray Price [MP17],1 we associate its φ-rank
to every monotonic invariant φ : CohX → R+. It is the map rk1φ that attaches to a morphism

f : F → G in Coh
≤1

X the non-negative real number:

rk1φ(f) := φ(G)− φ(G/im f).

If the invariant φ is thought of as an arithmetic counterpart of the geometric invariant:

h1(C, .) : CohC −→ N, F 7−→ h1(C,F) := dimkH
1(C,F)

on the category CohC of coherent OC-modules over a smooth projective curve C defined over some
base field k, then rk1φf is the analogue of the rank rkkH

1(C, f) of the k-linear map:

H1(C, f) : H1(C,F) −→ H1(C,G)
associated to a morphism f : F −→ G in CohC .

The strong monotonicity of φ is defined in Section 5.2 by the compatibility of the φ-rank rk1φ
with the composition of morphisms. Namely a monotonic invariant φ : CohX → R+ is strictly
monotonic when the inequality:

(5.0.5) rk1φ(g ◦ f) ≤ min(rk1φf, rk
1
φg)

is satisfied for any two composable morphisms f and g in Coh
≤1

X . We refer the reader to Subsection
3.1.2 for a discussion of the properties of the invariant h1(C, .) on CohC which sheds some light on
the equivalence of the formulations (5.0.4) and (5.0.5) of the strong monotonicity of φ.

The strong monotonicity of the invariant φ actually implies a strengthened form of the subad-
ditivity SubAdd of φ, and some other remarkable properties as well, the submodularity and metric
monotonicity properties, which we also discuss in Section 5.2. The particular significance of the
submodularity condition for establishing that an invariant on CohX is strongly monotonic confirms
the analogy between our formalism and the one of measure and capacity theory; see Proposition
5.2.9 and 5.2.2.3 below.

5.0.3. Examples of non-zero strictly monotonic invariants are easily constructed. For instance,
the rank:

rk : Coh −→ N, F 7−→ rkF := dimK FK ,
and, for any non-zero prime ideal p of OK , of residue field Fp := OK/p, the dimension of the
reduction modulo p:

rk.Fp
: F 7−→ dimFp

FFp

are strongly monotonic. Indeed the right-exactness of the functors . ⊗OK
K and . ⊗OK

Fp implies
that the associated φ-ranks are respectively:

rk1φ(f) = rkKfK

and
rk1φ(f) := rkFp

fFp;

they clearly satisfy the inequality (5.0.5).

However the existence of strictly monotonic invariants vanishing on torsion sheaves distinct
from a multiple of the rank rk is not clear a priori. For instance, as will be shown in Chapter 6,

1MacMurray Price works with invariants that are counterparts of the invariant h0(C, .) on CohC — where C is

a smooth projective curve over some field — instead of h1(C, .).
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the invariant ρ2, defined as the square of the covering radius, is not strictly monotonic, although it
satisfies Mon1

K and SubAdd.

It turns out that the invariant:

h1θ : CohZ −→ R+

defined by the relation:

h1θ(E) := log
∑
v∈E∨

e−π∥v∥
2

E∨

is strongly monotonic on CohZ. This is a non-trivial result, whose proof relies on some remarkable
estimates satisfied by the theta series of Euclidean lattices that have been established by Banaszczyk2

and by Regev and Stephens-Davidowitz.3 A proof that the invariant h1θ onCohZ is strictly monotonic
will be presented in detail in Chapter 7. In Section 5.3, taking this fact for granted, we discuss various
constructions of strongly monotonic invariants on CohX .

5.0.4. The last three sections of this chapter are devoted to the consequences of the strong
monotonicity of some invariant φ : CohX → R+ concerning its lower and upper extensions φ and φ

and the category φΣ-qCohX of φ-summable objects in qCohX .

Notably in Sections 5.4 and 5.5, we show that, when φ is strongly monotonic, the φ-rank rk1φ

admits some natural lower and upper extensions rk1φ and rk
1

φ defined on the morphisms of qCohX .

These extensions satisfy properties similar to the ones of rk1φ, which imply that φ and φ are strongly

monotonic on suitable subcategories of qCohX .

Finally in Section 5.6, under the assumption of strong monotonicity on φ, we establish some
important complements to the results on φ-summable objects in qCohX presented in Section 4.5.
For instance we have shown in Theorem 4.5.1 that, when φ satisfies Mon1 and SubAdd, a φ-
summable object of qCohX satisfies:

(5.0.6) evφ(F) = 0.

In Subsection 5.6.1, we show that, when φ is strictly monotonic, the vanishing condition (5.0.6)
conversely implies the φ-summability of F , and we derive some remarkable permanence properties
of the φ-summable objects in qCohX . Finally in Subsection 5.6.3, we consider the objects of F
such that:

(5.0.7) φ(F) = φ(F) < +∞.

We show that, when φ is strongly monotonic, they satisfy (5.0.6) and therefore are φ-summable.

These results in Section 5.6 are the most advanced results in our axiomatic investigation of
the extensions to qCohX of invariants defined on CohX pursued in Chapter 4 and in this one.

When comparing these results and the properties of the invariants h1(C, .) = h1(C, .) and h
1
(C, .)

investigated in Chapter 3, notably in Theorem 3.2.7, it is natural to ask for simple sufficient criteria
on some object F of φΣ-qCohX that would imply the validity of (5.0.7).

Our axiomatic formalism does not appear to cover such criteria. However when φ is the θ-
invariant h1θ, we will be able to complete the results of Section 5.6 by the converse implication:

If F is φ-summable, then for every δ ∈ R∗
+, φ(F ⊗O(δ)) = φ(F ⊗O(δ)) < +∞.

It will be established in Section 8.4, by means of a detailed analysis of the invariant h1θ and of its

extensions h1θ and h
1

θ.

As mentioned in Subsection 5.3, the various strong monotonicity properties considered in this
chapter are compatible with the construction of invariants by direct images discussed in Section 4.6.

2See for instance [Ban00, Section 4]
3See [RSD17a]. This work has been motivated by a question of MacMurray Price; see also [MP17].
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We leave it to the reader to formulate the compatibility with direct images of the rank rk1φ and of

its extensions rk1φ and rk
1

φ .

5.1. The φ-Rank rk1φ Associated to a Monotonic Invariant φ : CohX → R+

In this section, we consider an invariant of Hermitian quasi-coherent sheaves over X with values
in R+:

φ : CohX −→ R+,

satisfying the monotonicity condition Mon1 introduced in 4.1.2 above.

5.1.1. The φ-rank rk1φ(f : F → G).
5.1.1.1. Geometric preliminary. In Section 3.1, we considered the numerical invariant

h1(C,F) := dimkH
1(C,F)

attached to a coherent sheaf F over a smooth projective curve C defined over some base field k,
and we investigated various inequalities satisfied by this invariant. It turned out to be useful to
introduce the rank rkkH

1(C,α) of the morphism of finite dimensional k-vector spaces:

H1(C,α) : H1(C,F) −→ H1(C,G)
associated to a morphism of coherent OC-modules:

α : F −→ G.

We notably observed the relation:

(5.1.1) rkkH
1(C,α) = h1(C,G)− h1(C,G/imα),

and the fact that rkkH
1(C,α) only depends on G and on the image imαη of α at the generic point

η of C. Moreover, in combination with the expression (5.1.1) for the rank of the induced morphism
between cohomology groups, the fact that, for every pair (α, β) of composable morphisms of coherent
OC-modules:

F α−→ G β−→ H,
the rank of the composed morphism:

H1(C, β ◦ α) = H1(C, β) ◦H1(C,α)

satisfies the (obvious) upper-bound:

rkkH
1(C, β ◦ α) ≤ min(rkkH

1(C, β), rkkH
1(C,α))

was shown to lead to non trivial inequalities involving the invariant h1(C, .) on CohC ; see Subsection
3.1.2, notably Proposition 3.1.2, and (3.1.11) and (3.1.11).

5.1.1.2. The φ-rank of a morphism in
....

CohX . In Chapter 4, we investigated positive invariants
on CohX and properties of those that are formally analogue to the one satisfied by the invariant

h1(C, .) : CohC −→ N.
From this perspective, the discussion in 5.1.1.1 suggests to associate to any morphism

f : F −→ G

in Coh
≤1

X its φ-rank defined as the non-negative real number:

(5.1.2) rk1φ(f) := φ(G)− φ(G/im f),

where

im f := f(F),
and to study its properties.
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The right-hand side of (5.1.2) is clearly independent of the Hermitian structure on F . It makes
sense when F is an object of CohX , G an object in CohX , and f : F → G a morphism of OK-
modules from F to the OK-module G underlying G. Such data may will be summarized by the

sentence: f : F → G is a morphism in
....

CohX . Using this terminology, we may introduce the
following definition:

Definition 5.1.1. The φ-rank of a morphism f : F −→ G in
....

CohX , is the real number:

rk1φ(f : F → G) := φ(G)− φ(G/im f).

When no confusion may arise, we will write rk1φ(f) instead of rk1φ(f : F → G).

The above definition in terms of morphisms in
....

CohX does not actually enlarge the scope of

the previous definition concerning morphisms in Coh
≤1

X . Indeed for any morphism f : F → G in....
CohX , if we let F := (F , (∥.∥x)x∈X(C)) for some large enough Hermitian norms (∥.∥x)x∈X(C) on the

C-vector spaces (Fx)x∈X(C), then the map f becomes a morphism f : F → G in Coh
≤1

X . However

working with morphisms in
....

CohX makes the formalism of the φ-rank more flexible, and its formal
properties clearer.

We will often use the (obvious) fact that the φ-rank of a morphism in
....

CohX is unchanged when
it is replaced by the inclusion morphism of its image. Namely, with the notation of Definition 5.1.1,
we have:

rk1φ(f : F → G) = rk1φ(ι : im f → G),
where ι : im f ↪→ G denotes the inclusion morphism.

One easily sees that, if the invariant φ “does not see torsion” — that is, if it satisfies the
condition NST introduced in 4.1.4 above — then the φ-rank rk1φ(f : F → G) depends only on G
and the K-vector subspace fK(FK) of GK . This is analogue to the fact, recalled in 5.1.1.1, that
rkkH

1(C,α) depends only of G and imαη.

5.1.2. Basic properties of rk1φ.

5.1.2.1. For every morphism of coherent OC-modules f : F → G as in 5.1.1.1 above, the rank of
the k-linear map:

H1(C, f) : H1(C,F) −→ H1(C,G)
is clearly non-negative and bounded from above by max(h1(C,F), h1(C,G)).

The φ-rank rk1φ(f) defined above satisfies similar properties:

Proposition 5.1.2. For any morphism f : F → G in
....

CohX , the following estimates hold:

(5.1.3) 0 ≤ rk1φ(f : F → G) ≤ φ(G).

When moreover the invariant φ is subadditive,4 for any morphism f : F → G in Coh
≤1

X , we also
have:

(5.1.4) rk1φ(f : F → G) ≤ φ(F).

Proof. The fact that rk1φ(f) is nonnegative is a direct consequence of the monotonicity of φ.
The inequality

rk1φ(f : F → G) ≤ rk1φ(G)

is obvious as φ(G/im f) is nonnegative.

4Namely when φ satisfies the condition SubAdd introduced in 4.1.2 above.
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Assume that φ is subadditive and that f : F → G is a morphism in Coh
≤1

X . Then, from the
admissible exact sequence in CohX :

0 −→ im f −→ G −→ G/im f −→ 0

we derive the estimate:

φ(G) ≤ φ(G/im f) + φ(im f).

Besides, the monotonicity of φ applied to the surjective morphism

F −→ im f

in Coh
≤1

X implies the inequality:

φ(im f) ≤ F .
This establishes the estimate:

φ(G) ≤ φ(G/im f) + φ(F),
or equivalently:

rk1φ(f : F → G) ≤ φ(F). □

5.1.2.2. Morphisms and diagrams in
....

CohX ,
....

Coh
≤1

X , q
....

CohX , q
....

Coh
≤1

X . When investigating
the properties of the φ-rank rk1φ, we will consider diagrams involving simultaneously morphisms in
....

CohX as defined above, morphisms of coherent OX -modules, and morphisms in Coh
≤1

X . It will

be convenient to talk of (commutative) diagrams in
....

CohX or in
....

Coh
≤1

X when dealing with such
diagrams.

For instance, we shall say that

F f−→ G g−→ H
is a diagram in

....
CohX to mean that f : F → G is a morphism of OX -modules and that g : G → H

is a morphism in
....

CohX as defined in 5.1.1.2 above. Similarly, we shall say that

F f−→ G g−→ H

is a diagram in
....

Coh
≤1

X to mean that f : F → G is a morphism in
....

CohX and that g : G → H is a

morphism in Coh
≤1

X .

In the same vein, by a commutative diagram in
....

Coh
≤1

X of the form:

F1
f1 //

p

��

G1

q

��
F2

f2 // G2,

we shall mean the data of a morphism:

q : G1 −→ G2

in Coh
≤1

X and of a diagram:

F1
f1 //

p

��

G1

F2
f2 // G2.
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in CohX , such that the following diagram in CohX is commutative:

F1
f1 //

p

��

G1
q

��
F2

f2 // G2.

Similarly we may consider morphisms in q
....

CohX , and (commutative) diagrams in q
....

CohX and

in q
....

Coh
≤1

X , by replacing coherent by countably generated quasi-coherent OX -modules and CohX
by qCohX in the above discussion.

5.1.2.3. In the geometric framework of 5.1.1.1, for any two composable morphisms

F f−→ G g−→ H
in CohC , the rank of the k-linear map

H1(C, g ◦ f) = H1(C, g) ◦H1(C, f) : H1(C,F) −→ H1(C,H)
clearly satisfies the following inequality:

(5.1.5) rkH1(C, g ◦ f) ≤ min(rkH1(C, g), rkH1(C, f)).

The following proposition asserts that an analogue of the inequality:

rkH1(C, g ◦ f) ≤ rkH1(C, g)

is satisfied by the φ-rank rk1φ. The analogue of the inequality:

(5.1.6) rkH1(C, g ◦ f) ≤ rkH1(C, f)

will be investigated in the next sections: it will define the strong monotonicity condition which
constitutes the subject of this chapter.

Proposition 5.1.3. (1) For any diagram in
....

CohX of the form:

F f−→ G g−→ H,
the following inequality holds:

(5.1.7) rk1φ(g ◦ f : F → H) ≤ rk1φ(g : G → H).

(2) If moreover the morphism of OK-modules f : F −→ G is surjective, or if φ satisfies condition
NST and fK : FK −→ GK is a surjective morphism of K-vector spaces, then we have:

(5.1.8) rk1φ(g ◦ f : F → H) = rk1φ(g : G → H).

Proof. (1) By definition of the φ-rank, we have:

rk1φ(g) = φ(H)− φ(H/im g)

and:

rk1φ(g ◦ f) = φ(H)− φ(H/im (g ◦ f)),
so that the inequality:

rk1φ(g ◦ f) ≤ rk1φ(g)

is equivalent to the inequality:

φ(H/im g) ≤ φ(H/im (g ◦ f)).
The latter follows from the monotonicity of φ applied to the quotient morphism:

H/im (g ◦ f) −→ H/im g.
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(2) If f is surjective, then im (g ◦ f) = im g and the equality (5.1.8) follows from the definition
of the φ-rank. If fK : FK −→ GK is a surjective morphism of K-vector spaces, then the surjection

H/im (g ◦ f) −→ H/im g

is an isomorphism modulo torsion. If moreover φ satisfies condition NST, this implies the equality:

φ(H/im g) = φ(H/im (g ◦ f)),

and (5.1.8) follows again from the definition of the φ-rank. □

The next two propositions have a more technical character.

Proposition 5.1.4. Assume that the invariant φ is subadditive. For any diagram in
....

Coh
≤1

X of
the form:

F f−→ G g−→ H,
the following inequality holds:

(5.1.9) rk1φ(g ◦ f : F → H) ≥ rk1φ(f : F → G) + rk1φ(g : G → H)− φ(G).

Proof. Using the definition of the φ-rank, the inequality (5.1.9) may be written:

φ(H)− φ(H/im (g ◦ f)) ≥
[
φ(G)− φ(G/im f)

]
+
[
φ(H)− φ(H/im f)

]
− φ(G),

and is equivalent to:

(5.1.10) φ(H/im (g ◦ f)) ≤ φ(G/im f) + φ(H/im g).

Consider the admissible short exact sequence in CohX :

0 −→ im (g)/im (g ◦ f) −→ H/im (g ◦ f) −→ H/im (g) −→ 0

where im (g)/im (g ◦ f) denotes the OK-module im (g)/im (g◦f) equipped with the Hermitian struc-

ture induced by the one of H/im (g ◦ f). The subadditivity of φ implies:

(5.1.11) φ(H/im (g ◦ f)) ≤ φ(im (g)/im (g ◦ f)) + φ(H/im g).

Considering the surjective morphism in Coh
≤1

X induced by g:

G/im (f) −→ im (g)/im (g ◦ f),

we obtain by monotonicity of φ:

(5.1.12) φ(G/im f) ≥ φ(im (g)/im (g ◦ f)).

The inequality (5.1.10) follows from (5.1.11) and (5.1.12). □

We may apply Proposition 5.1.4 to control the φ-rank of a morphism in terms of the φ-rank of
its composition with a quotient morphism.

Proposition 5.1.5. Assume that the invariant φ is subadditive. For every commutative diagram

in
....

Coh
≤1

X :

F1
f1 //

p

��

G1

q

��
F2

f2 // G2,

in which q : G1 → G2 is an admissible surjection, the following inequality holds:

rk1φ(f1 : F1 → G1) ≤ rk1φ(f2 : F2 → G2) + φ(ker q).
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Proof. Using Proposition 5.1.3 (1) and Proposition 5.1.4, we obtain:

rk1φ(f2 : F2 → G2) ≥ rk1φ(f2 ◦ p : F1 → G2) = rk1φ(q ◦ f1 : F1 → G2)

≥ rk1φ(f1 : F1 → G1) + rk1φ(q : G1 → G2)− φ(G1).

Since q is surjective, we have:

rk1φ(q : G1 → G2) = φ(G2).

Moreover, since q is an admissible surjection, the subadditivity of φ implies the inequality:

φ(G1) ≤ φ(G2) + φ(kerq),

which completes the proof. □

5.2. The Strong Monotonicity Condition StMon1

5.2.1. The condition StMon1: first formulations. As already indicated in 5.1.2.3 above,
the following definition highlights the invariants φ on CohX whose associated φ-rank satisfies an
analogue of the inequality (5.1.6):

rkH1(C, g ◦ f) ≤ rkH1(C, f),

or equivalently by Proposition 5.1.3, of the inequality (5.1.5):

rkH1(C, g ◦ f) ≤ min(rkH1(C, g), rkH1(C, f)).

Definition 5.2.1. We say that an invariant φ : CohX → R+ satisfies the strong monotonicity
condition StMon1 when it satisfies the monotonicity condition Mon1 and when, for any diagram
of the form:

F f−→ G g−→ H

in
....

Coh
≤1

X , the following inequality holds:

(5.2.1) rk1φ(g ◦ f : F → H) ≤ rk1φ(f : F → G).

Condition StMon1 may be rephrased as follows in terms of inequalities involving values of the
invariant φ.

Proposition 5.2.2. For every invariant φ : CohX → R+, the following three conditions are
equivalent:

(i) The invariant φ satisfies the strong monotonicity condition StMon1.

(ii) For every diagram in
....

Coh
≤1

X of the form:

(5.2.2) F f−→ G g−→ H,

the following inequality holds:

(5.2.3) φ(H) + φ(G/im f) ≤ φ(G) + φ(H/im (g ◦ f)).

(iii) For every morphism f : E → F in Coh
≤1

X and every coherent OX-submodule E ′ of E, of
image F ′ := f(E ′) in F , the following inequality holds:

(5.2.4) rk1φ(f ◦ ι : E ′ −→ F) := φ(F)− φ(F/F ′) ≤ rk1φ(ι : E ′ −→ E) := φ(E)− φ(E/E ′).

In (5.2.4), we have denoted by ι denotes the inclusion morphism from E ′ to E .
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Proof. Applied to a diagram in
....

Coh
≤1

X of the form

G′↪−→G −→ 0,

where G′ is some OK-submodule of G, the inequality (5.2.3) reads:

φ(G/G′) ≤ φ(G).

Moreover, applied to F = 0, the inequality (5.2.4) reads:

0 ≤ φ(E)− φ(E/E ′).

This shows that both conditions (ii) and (iii) imply the monotonicity of φ, and therefore that the
φ-rank rk1φ is well-defined with values in R+.

To prove the equivalence (i) ⇔ (ii), observe that, for every diagram in
....

Coh
≤1

X of the form
(5.2.2), the definition of the φ-rank implies the following equalities:

φ(H) + φ(G/im f) = rk1φ(g ◦ f) + φ(H/im (g ◦ f)) + φ(G/im f)

and

φ(G) + φ(H/im (g ◦ f) = rk1φ(f) + φ(H/im (g ◦ f)) + φ(G/im f),

and consequently the estimates (5.2.1) and (5.2.3) are equivalent.

The inequality (5.2.4) is the special instance of the inequality (5.2.1) applied to the diagram

E ′ ι−→ E f−→ F .

This establishes the implication (i)⇒ (iii).

Conversely let us assume that condition (iii) holds, and consider a diagram in
....

Coh
≤1

X of the
form (5.2.2). Let us consider the image G′ := f(F) of f and the inclusion morphism ι : G′ ↪→ G.
According to (iii) applied to the morphism g : G → H and to the submodule G′ of G, the following
inequality holds:

rk1φ(g ◦ ι : G′ → H) ≤ rk1φ(ι : G′ → G).

Moreover, we have:

rk1φ(g ◦ f : F → H) = rk1φ(g ◦ ι : G′ → H)

and

rk1φ(f : F → G) = rk1φ(ι : G′ → G),

since g ◦ f and g ◦ ι (resp. f and ι) have the same image. This establishes the inequality:

rk1φ(g ◦ f : F → H) ≤ rk1φ(f : F → G),

and completes the proof of the implication (iii)⇒ (i). □

5.2.2. The conditions StMon1
i for i ∈ {1, 2, 3, 4}. In this subsection, we try to clarify the

meaning of the strong monotonicity condition StMon1 by spelling out three special instances of the
strong monotonicity estimates (5.2.1), (5.2.3), and (5.2.4).

The three conditions thus obtained as consequences of condition StMon1 will be denoted by
StMon1

2, StMon1
3, and StMon1

4. It will be convenient to denote by StMon1
1 the monotonicity

condition Mon1. Indeed condition Mon1 was assumed to hold when introducing StMon1 in Defi-
nition 5.2.1, and was also observed to be a “trivial instance” of the estimates (5.2.3) and (5.2.4) in
the proof of Proposition 5.2.2.
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5.2.2.1. The strong subadditivity condition StMon1
2. Assume that an invariant φ : CohX → R+

satisfies condition StMon1. Consider an object F of CohX , and two submodules F ′′ ⊆ F ′ ⊆ F of

the OK-module F underlying F . We may form the diagram in
....

Coh
≤1

X :

F ′′ f−→ F ′ g−→ F ,
where f and g are the inclusion morphisms. The inequality (5.2.3) for this diagram may be written
as follows:

(5.2.5) φ(F) + φ(F ′/F ′′) ≤ φ(F ′
) + φ(F/F ′′).

Motivated by this observation, we introduce the following strong subadditivity condition on some
invariant φ : CohX → R+:

StMon1
2 : for every object F of CohX and any two OK-submodules F ′′ ⊆ F ′ ⊆ F , the inequality

(5.2.5) is satisfied.

Observe that, as φ(0) is zero, the inequality (5.2.5) with F ′′ = F ′ becomes the subadditivity
inequality

φ(F) ≤ φ(F ′
) + φ(F/F ′),

which enters in the subadditivity condition SubAdd introduced in 4.1.2 above. This establishes the
implication

StMon1
2 =⇒ SubAdd

and justifies the terminology “strong subadditivity” for condition StMon1
2.

Proposition 5.2.3. For every invariant φ : CohX → R+ satisfying5 Mon1, the following two
conditions are equivalent:

(i) the invariant φ satisfies the strong subadditivity condition StMon1
2 ;

(ii) for any diagram in
....

Coh
≤1

X of the form:

F f−→ G g−→ H
where g is an admissible injection, the following inequality holds:

rk1φ(g ◦ f) ≤ rk1φ(f).

Proof. By the definition of an admissible injection, in assertion (ii) we may assume that G
is H′

, where H′ is a submodule of the OK-module H underlying H, and g the inclusion morhism.
Moreover the invariants rk1φ(g ◦ f) and rk1φ(f) are unchanged when replacing F with its image by
f , so that we may assume that F = H′′, where H′′ is a submodule of the OK-module H′.

After these reductions, the inequality rk1φ(g ◦ f) ≤ rk1φ(f) equivalent to the strong subadditivity

condition StMon1
2 applied to the object H of CohX and to the submodules:

H′′ ⊂ H′ ⊂ H. □

5.2.2.2. The submodularity condition StMon1
3. Assume that φ satisfies condition StMon1.

Consider an object F of CohX and two OK-submodules F ′ and F ′′ of F , and consider the di-

agram in
....

Coh
≤1

X :

F ′′ f−→ F g−→ F/F ′,

where f is the inclusion and g the quotient map. The inequality (5.2.3) for this diagram reads as
follows:

(5.2.6) φ(F/F ′) + φ(F/F ′′) ≤ φ(F/(F ′ + F ′′)) + φ(F).

5The monotonicity condition Mon1 is required in Proposition 5.2.3, and in Proposition 5.2.7 as well, simply

because the φ-rank rk1
φ has been defined only under this monotonicity condition.
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When applied to the subspaces F ′/(F ′ ∩F ′′) and F ′′/(F ′ ∩F ′′) of F/(F ′ ∩F ′′), the inequality
(5.2.6) becomes:

(5.2.7) φ(F/F ′) + φ(F/F ′′) ≤ φ(F/(F ′ + F ′′)) + φ(F/(F ′ ∩ F ′′)).

Inequalities of this kind, relating the values of an invariant of two objects F ′ and F ′′ in some
lattice to its values over their greatest lower and least upper bounds (here F ′ ∩ F ′′ and F ′ + F ′′),
are classically related to as submodularity inequalities.

These observations lead us to introduce the following submodularity condition on some invariant
φ : CohX → R+:

StMon1
3 : for every object F of CohX and every two submodules F ′ and F ′′ of F , the inequality

(5.2.7) is satisfied.

Proposition 5.2.4. For every invariant φ : CohX → R+ satisfying Mon1, the following two
conditions are equivalent:

(i) the invariant φ satisfies the submodularity condition StMon1
3 ;

(ii) for any diagram in
....

Coh
≤1

X of the form:

F f−→ G g−→ H
where g is an admissible surjection, the following inequality holds:

(5.2.8) rk1φ(g ◦ f) ≤ rk1φ(f).

Proof. By the definition of admissible surjections, in statement (ii) we may assume that H =

G/G′, where G′ is a submodule of the OK-module G underlying G.
The invariants rk1φ(g ◦ f) and rk1φ(f) are unchanged when replacing F with its image by f , so

that to establish the inequality (5.2.8), we may assume that F = G′′, where G′′ is a submodule of
the OK-module G. After these reductions, (5.2.8) follows from the submodularity inequality (5.2.7)
applied to the subspaces G′ and G′′ of G and from the monotonicity of φ, which implies the inequality:

φ(G/(G′ + G′′)) ≤ φ(G).

This establish the implication (i) ⇒ (ii). The implication (ii) ⇒ (ii) follows from the fact,
discussed above, that the inequality (5.2.7) follows from (5.2.8) applied to the diagram:

F ′′/(F ′ ∩ F ′′)
f−→ F/F ′ ∩ F ′′ g−→ F/F ′. □

The following is a slight refinement of Proposition 5.2.4.

Proposition 5.2.5. Let φ : CohX → R+ be an invariant satisfying Mon1. For every object F
of CohX , the following two conditions are equivalent:

(i) for any two OK-submodules F ′ and F ′′ of F , the inequality (5.2.7) holds;

(ii) for any diagram in
....

Coh
≤1

X of the form:

A f−→ B g−→ C
where B is a quotient of F and g is an admissible surjection, the following inequality holds:

rk1φ(g ◦ f) ≤ rk1φ(f).

Proof. As noted above, the inequality (5.2.7) is equivalent to the inequality rk1φ(g◦f) ≤ rk1φ(f)
for the diagram

F ′′/(F ′ ∩ F ′′)
f−→ F/(F ′ ∩ F ′′)

g−→ F/F ′,

so that (ii) implies (i).
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Conversely, assume that (i) holds. Up to isomorphism, any diagram in (ii) may be written as

F ′′/G f−→ F/G g−→ F/F ′,

where G is an OK-submodule of F contained in OK-submodules F ′ and F ′′. The inequality

rk1φ(g ◦ f) ≤ rk1φ(f)

may be written as

(5.2.9) φ(F/F ′) + φ(F/F ′′) ≤ φ(F/(F ′ + F ′′)) + φ(F/G).

Since F/(F ′ ∩ F ′′) is a quotient of F/G, the monotonicity of φ shows that

φ(F/(F ′ ∩ F ′′)) ≤ φ(F/G),
and therefore (5.2.9) follows from (5.2.7). This completes the proof of (ii). □

5.2.2.3. Submodularity estimates. Recall that, if E is a set and P(E) the set of subsets of E, a
real valued function I on some subset of P(E) stable under ∪ and ∩ is classically said to be strongly
subadditive when it satisfies the estimates:

I(A ∩B) + I(A ∪B) ≤ I(A) + I(B).

Increasing positive set functions that are strongly subadditive play a central role in measure
and capacity theory, and are formally analogous to positive invariants on CohX satisfying the
monotonicity and submodularity conditions Mon1 and StMon1

3. Indeed a monotonic invariant
φ : CohX → R+ satisfies StMon1

3 if and only if, for every object F of CohX , the function

I : F ′ 7−→ φ(F)− φ(F/F ′),

defined on the set of OK-submodules F ′ of F , satisfies the following estimates6:

I(F1 ∩ F2) + I(F1 + F2) ≤ I(F1) + I(F2).

Using this analogy, the equivalent characterizations of strongly subadditive set functions —
established for instance in [Cho54] and [Mey66, III.2] — translate into the following reformulations
of the submodularity condition StMon1

3.

Proposition 5.2.6. For every invariant φ : CohX → R+ that satisfies Mon1 and every object
E of CohX , the following conditions are equivalent:

(i) for any two OK-submodules E1 and E2 of E , the following submodularity inequality holds:

(5.2.10) φ(E/E1) + φ(E/E2) ≤ φ(E/(E1 ∩ E2)) + φ(E/(E1 + E2)).
(ii) for any three OK-submodules X , X ′, and Y of E such that X ⊆ X ′, the following inequality

holds:

(5.2.11) φ(E/X ′) + φ(E/(X + Y)) ≤ φ(E/X ) + φ(E/(X ′ + Y));
(iii) if A1, A2, B1, and B2 are OK-submodules of E such that A1 ⊆ B1 and A2 ⊆ B2, then the

following inequality holds:

(5.2.12) φ(E/(A1 +A2)) + φ(E/B1) + φ(E/B2) ≤ φ(E/(B1 + B2)) + φ(E/A1) + φ(E/A2);

(iv) for any integer n ≥ 2, if A, . . . ,An and B1, . . . ,Bn are OK-submodules of E such that
Ai ⊆ Bi for i = 1, . . . , n, then the following inequality holds:

(5.2.13) φ(E/(A1 + · · ·+An)) + φ(E/B1) + · · ·+ φ(E/Bn)

≤ φ(E/(B1 + · · ·+ Bn)) + φ(E/A1) + · · ·+ φ(E/An).
6Note the unfortunate but difficultly avoidable terminological inconsistency: the strong subadditivity of set

functions is analogue to the submodularity of invariants on CohX .



168 5. RANK INVARIANTS AND STRONG MONOTONICITY

Somewhat surprisingly, contrary to condition (i), conditions (ii)-(iv) involve only sums, and not
intersections, of submodules of E .

Proof. Let us assume that the submodularity inequality (5.2.10) holds for any two submodules
E1 and E2 of E . Given submodules X , X ′, and Y of E such that X ⊆ X ′, consider the diagram

Y f−→ E/X g−→ E/X ′

in
....

Coh
≤1

X , where f and g are induced by the inclusion and quotient map respectively. Proposition
5.2.5 shows that rk1φ(g ◦ f) ≤ rk1φ(f), which is equivalent to the inequality (5.2.11). This establishes
the implication (i)⇒ (ii).

To prove the converse implication (ii)⇒ (i), observe that the submodularity inequality (5.2.10)
follows from (5.2.11) applied to X = E1 ∩ E2, X ′ = E2, and Y = E1.

Let us assume that (ii) holds. Then, for A1, A2, B1, and B2 as in (iii), the inequality (5.2.11)
applied to

(X ,X ′,Y) = (A1,B1,B2)
and to

(X ,X ′,Y) = (A2,B2,A1)

becomes:

φ(E/B1) + φ(E/(A1 + B2)) ≤ φ(E/A1) + φ(E/(B1 + B2))
and

φ(E/B2) + φ(E/(A1 +A2)) ≤ φ(E/A2) + φ(E/(A1 + B2)).
Consequently, we have:

φ(E/B1) + φ(E/B2) + φ(E/(A1 +A2)) ≤ φ(E/A1) + φ(E/A2) + φ(E/(B1 + B2)).

This establishes the implication (ii)⇒ (iii).

Let us prove the implication (iii) ⇒ (i). The inequality (5.2.12) applied with A1 = E1 ∩ E2,
B1 = E1, and A2 = B2 = E2 reads:

φ(E/E2) + φ(E/E1) + φ(E/E2) ≤ φ(E/(E1 + E2)) + φ(E/(E1 ∩ E2)) + φ(E/E2).

This implies (5.2.10).

Let us assume that (iii) holds. Then the inequalities (5.2.13) hold for every n ≥ 2, as shown
by the following induction argument: for any integer n ≥ 2 and any submodules A, . . . ,An+1 and
B1, . . . ,Bn+1 of E such that Bi ⊆ Ai for i = 1, . . . , n+ 1, the validity of (5.2.13) for the submodules
A1 +A2,A3, . . . ,An+1 and B1 + B2,B3, . . . ,Bn+1 establishes the inequality:

(5.2.14) φ(E/(A1 + · · ·+An+1)) + φ(E/B1 + B2) + φ(E/B3) + · · ·+ φ(E/Bn+1)

≤ φ(E/(B1 + · · ·+ Bn+1)) + φ(E/(A1 +A2)) + φ(E/A3) + · · ·+ φ(E/An+1).

Together with (5.2.12), this implies the inequality:

φ(E/(A1 + · · ·+An+1)) + φ(E/(B1 + B2)) + φ(E/B1) + · · ·+ φ(E/Bn+1)

≤ φ(E/(B1 + · · ·+ Bn+1)) + φ(E/(B1 + B2)) + φ(E/A1) + · · ·+ φ(E/An+1)

and therefore the inequality

(5.2.15) φ(E/(A1 + · · ·+An+1)) + φ(E/B1) + · · ·+ φ(E/Bn+1)

≤ φ(E/(B1 + · · ·+ Bn+1)) + φ(E/A1) + · · ·+ φ(E/An+1).

This establishes the implication (iii)⇒ (iv). The converse implication (iv)⇒ (iii) is clear. □
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5.2.2.4. The metric monotonicity condition StMon1
4. Assume that φ satisfies the strong mono-

tonicity condition StMon1. Let G := (G, (∥.∥x)x∈X(C) and G∼ := (G, (∥.∥∼x )x∈X(C) be two objects

in CohX with the same underlying OK-module G whose Hermitian metrics satisfy the condition:

∥.∥x ≥ ∥.∥∼x for every x ∈ X(C),

or equivalently, such that the identity map IdG defines a morphism IdG : G → G∼ in Coh
≤1

X .

Consider a diagram in
....

CohX :

f : F −→ G,

the associated diagram in
....

Coh
≤1

X :

F f−→ G IdG−→ G∼,
and the “composition”:

f := IdG ◦ f : F −→ G∼.

The strong monotonicity of φ yields the inequality:

(5.2.16) rk1φ(f : F → G∼) ≤ rk1φ(f : F → G).

This establishes the monotonicity of the φ-rank rk1φ(f : F → G) as a fonction of the Hermitian

metrics defining the Hermitian coherent sheaf G.
Observe also that, with the above notation, rk1φ(f : F → G∼) and rk1φ(f : F → G) are unchanged

when f is replaced by the inclusion map of its image in G:

G′ := f(F)↪−→G.

This shows that the inequality (5.2.16) is equivalent to the following one:

(5.2.17) φ(G∼) + φ(G/G′) ≤ φ(G/G′
∼
) + φ(G).

This leads us to introducing the following condition of metric monotonicity on some invariant
φ : CohX → R+ satisfying Mon1:

StMon1
4 : for any two objects G and G∼ of CohX with the same underlying OK-module G such

that IdG : G → G∼ is a morphism in Coh
≤1

X and for any subobject G′ of G, the inequality (5.2.17)
holds.

The following proposition is a straightforward consequence of the previous discussion:

Proposition 5.2.7. For every invariant φ : CohX → R+ satisfying Mon1, the following two
conditions are equivalent:

(i) the invariant φ satisfies the metric monotonicity condition StMon1
4;

(ii) for any diagram in
....

Coh
≤1

X of the form:

F f−→ G g−→ H

where g : G → H is an isomorphism of OK-modules, the following inequality holds:

rk1φ(g ◦ f) ≤ rk1φ(f).

5.2.3. Criteria of strong monotonicity. It turns out that the conditions StMon1
i for i ∈

{1, 2, 3, 4} provide sufficient conditions for the validity of condition StMon1.

Firstly as a consequence of Propositions 5.2.3, 5.2.4, and 5.2.7, we may prove:

Proposition 5.2.8. An invariants φ : CohX → R+ satisfies condition StMon1 if and only if
it satisfies the conditions StMon1

1, StMon1
2, StMon1

3, and StMon1
4.
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Proof. The direct implication:

StMon1 =⇒
[
StMon1

1,StMon1
2,StMon1

3, and StMon1
4

]
is clear.

To prove the converse implication, observe that any morphism

g : G −→ H

in Coh
≤1

X factors as

g = i ◦ g′ ◦ p : G p−→ G′ g′−→ G′′ i−→ H
where p is an admissible surjection, i is an admissible injection, and g′ is bijective at the level of

OX -modules. Consequently, for any diagram in
....

Coh
≤1

X of the form:

F f−→ G g−→ H,
the validity of StMon1

2, of StMon1
4, and of StMon1

1 and StMon3
1 implies the following successive

inequalities:

rk1φ(g ◦ f) = rk1φ(i ◦ g′ ◦ p ◦ f) ≤ rk1φ(g
′ ◦ p ◦ f) ≤ rk1φ(p ◦ f) ≤ rk1φ(f),

according to Propositions 5.2.3, 5.2.7, and 5.2.4. □

When dealing with additive and downward continuous invariants, one may establish the following
variant of Proposition 5.2.8 by an argument inspired by the proof of [MP17, Lemma 8.4].

Proposition 5.2.9. Let φ : CohX → R+ be an invariant that satisfies the conditions Add⊕ of
additivity on direct sums and Cont+ of downward continuity.7 Then φ satisfies the strong mono-
tonicity condition StMon1 if and only if it satisfies the monotonicity condition Mon1 = StMon1

and the submodularity condition StMon1
3.

In other words, for invariants satisfyingMon1, Add⊕, andCont+, the submodularity condition
StMon1

3 implies both the strong subadditivity StMon1
2 — and a fortiori the subadditivity SubAdd

— and the metric monotonicity StMon1
4 .

To put in perspective the criterion of strong subadditivity in Proposition 5.2.9, recall that the
submodularity for the invariant h1(C, .) of coherent OC-modules over of smooth projective curve C
follows from its additivity for direct sums and its subadditivity in short exact sequences, as discussed
in paragraph 3.1.2, (ii). Therefore one may ask whether a suitable argument would show that an
invariant on CohZ satisfying condition Add⊕, Mon1 and SubAdd would automatically satisfy
the submodularity condition StMon1

3, and therefore StMon1. This is actually not the case: in
Chapter 6, we will show that the square of the covering radius defines an invariant satisfying the
former conditions but not the latter.8

The proof of Proposition 5.2.9 will rely on the following construction of independent interest.

Proposition 5.2.10. Let F and G be two objects of CohX and let g : G −→ H be a morphism

in Coh
≤1

X of operator norms < 1.9 There exists a unique family of Hermitian metrics (∥.∥∼x )x∈X(C)
on the C-vector spaces (Hx)x∈X(C), invariant under complex conjugation, such that, if we introduce

the object of CohX :

H∼
:= (H, (∥.∥∼x )x∈X(C)),

7See 4.1.5 above
8Observe also that, when working with Euclidean lattices, the construction of the short exact sequence (3.1.13) is

not compatible with the Euclidean structures, and does not produce an admissible short exact sequence of Euclidean

lattices.
9Recall that this means that, for every x ∈ X(C), the Hermitian semi-norms ∥.∥F,x and ∥.∥G,x are actually

Hermitian norms, and satisfy : ∥gx(v)∥G,x < ∥v∥F,x for every non-zero v in Fx.
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then the map:
p := (g, IdH) : G ⊕H −→ H, (y, z) 7−→ g(y) + z

becomes an admissible surjective morphism in Coh
≤1

X :

(5.2.18) p : G ⊕H∼ −→ H.

Proof of Proposition 5.2.10. The surjective map p defines an admissible morphism (5.2.18)
if and only if, for every x ∈ X(C), the C-linear map:

px : Gx ⊕Hx −→ Hx, (y, z) 7−→ gx(y) + Z

defines a “coisometry” from Gx ⊕H
∼
x onto Hx, or equivalently, if the transpose map:

p∨x : Hx −→ G∨x ⊕H∨
x , ξ 7−→ g∨x (ξ)⊕ ξ

is an isometry from H∨
x into G∨x ⊕H

∼∨
x . This holds precisely when, for every ξ ∈ H∨

x , the following
equality holds:

(5.2.19) ∥g∨x (ξ)∥∨2
Gx

+ ∥ξ∥∼∨2
x = ∥ξ∥∨2

Hx
.

The morphism g : G → H has operator norms < 1 if and only if the transpose maps g∨x from H∨
x

to G∨x have operator norms < 1. When this holds, we may define some Hermitian norms (∥.∥x)x∈X(C)
on the C-vector spaces (H∨

x )x∈X(C) by the relations:

∥ξ∥2x := ∥ξ∥∨2
Hx
− ∥g∨x (ξ)∥∨2

Gx
,

and the previous discussion shows that the Hermitian norms:

(∥.∥∼x )x∈X(C) := (∥.∥∨x )x∈X(C),

duals of the Hermitian norms ∥.∥x, define the unique Hermitian structure H∼
on H that make

(5.2.18) an admissible surjective morphism. □

Proof of Proposition 5.2.9. The direct implication:

StMon1 =⇒
[
StMon1

1 and StMon1
3

]
is clear.

Conversely, assume that φ satisfies Add⊕, Cont+, StMon1
1 and StMon1

3, and consider a

diagram in
....

Coh
≤1

X of the form:

F f−→ G g−→ H.
To complete the proof of Proposition 5.2.9, we want to prove the inequality:

(5.2.20) rk1φ(g ◦ f : F → H) ≤ rk1φ(f : F → G).

Let us first assume that G and H are objects of CohX and that f has operator norms < 1.

Then we may introduce H∼
and p as in Proposition 5.2.10. The morphism of OK-modules:

f ′ := f ⊕ 0 : F −→ G ⊕H, x 7−→ f(x)⊕ 0

satisfies the relation:

(5.2.21) p ◦ f ′ = g ◦ f.

Moroever we have:
im f ′ = im f ⊕ 0,

and the quotient of G⊕H∼
by the image of f ′ may be identified with G/im f ⊕H∼

. Therefore, using
Add⊕, we obtain:
(5.2.22)

rk1φ(f
′ : F → G ⊕H∼

) = φ(G ⊕H∼
)− φ(G/im f ⊕H∼

) = φ(G)− φ(G/im f) = rk1φ(f : F → G).
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Finally, since p is an admissible surjection and φ satisfies StMon1
1 and StMon1

3, Proposition
5.2.4 implies the inequality:

(5.2.23) rk1φ(p ◦ f ′) ≤ rk1φ(f
′),

which together with (5.2.21) and (5.2.23) establishes the inequality (5.2.20).

We may now complete the proof of (5.2.20) when g : G → H is an arbitrary morphism in Coh
≤1

X

by an approximation argument.

Indeed we may construct sequences ((∥.∥Gx,n)x∈X(C))n∈N (resp. ((∥.∥Hx,n)x∈X(C))n∈N) of families
of Hermitian norms on the C-vector spaces (Gx)x∈X(C) (resp. (Hx)x∈X(C)) such that the following
conditions are satisfied:

• for every n ∈ N, the families (∥.∥Gx,n)x∈X(C) and (∥.∥Hx,n)x∈X(C) are invariant under

complex conjugation, and therefore define some objects of CohX :

Gn := (G, (∥.∥Gx,n)x∈X(C)) and Hn := (H, (∥.∥Gx,n)x∈X(C));

• for every n, the morphism g : Gn → Hn has operator norms < 1;
• for every x ∈ X(C), the sequence of norms (∥.∥Gx,n)n∈N (resp. (∥.∥Hx,n)n∈N) is decreasing
and converges to the norm ∥.∥G,x (resp. ∥.∥H,x).

For instance, we may choose some families Hermitian norms (∥.∥∼Gx
)x∈X(C) (resp. (∥.∥∼Hx

)x∈X(C)))
on the C-vector spaces (Gx)x∈X(C) (resp. (Hx)x∈X(C)), invariant under complex conjugation, such
that the morphisms gx from (Gx, ∥.∥∼Gx

) to (Hx, ∥.∥∼Hx
) have operator norms < 1 and define, for every

x ∈ X(C) and n ∈ N:
∥.∥2Gx,n := ∥.∥2G,x + 2−n∥.∥∼2

Gx
and ∥.∥2Hx,n := ∥.∥2H,x + 2−n∥.∥∼2

Hx
.

According to the first part of the proof, applied to the diagrams:

F f−→ Gn
g−→ Hn,

the following inequality holds for every n ∈ N :

rk1φ(g ◦ f : F → Hn) ≤ rk1φ(f : F → Gn).

Moreover, according to Cont+, when n goes to infinity, the φ-rank:

rk1φ(g ◦ f : F → Hn) := φ(Hn)− φ(H/im g ◦ fn)
(resp. the φ-rank:

rk1φ(f : F → Gn) := φ(Gn)− φ(G/im fn) )

converges to:
rk1φ(g ◦ f : F → H) := φ(H)− φ(H/im g ◦ f),

(resp. to:

rk1φ(f : F → G) := φ(G)− φ(G/im f), )

and (5.2.20) follows. □

5.2.4. The strong monotonicity of invariants with values in [0,+∞]. It is sometimes
useful to extend the notion of strong monotonicity introduced in Definition 5.2.1 above so that it
makes sense for arbitrary positive invariants:

φ : Sh −→ [0,+∞],

taking possibly the value +∞, defined on the category Sh := CohX or qCohX .

As already observed, the discussion in paragraph 5.1.2.2 concerning diagrams in
....

CohX and
....

Coh
≤1

X , immediately extends to this more general setting. This allows us to consider diagrams in
....
Sh and in

....
Sh

≤1
, and to introduce the following definition:
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Definition 5.2.11. With the previous notation, we say that φ satisfies the strong monotonicity
condition StMon1 when φ satisfies the monotonicity condition Mon1 and, for every diagram in
....
Sh

≤1
of the form:

F f−→ G g−→ H,
the following inequality holds:

(5.2.24) φ(H) + φ(G/im f) ≤ φ(G) + φ(H/im (g ◦ f)).

According to Proposition 5.2.2, this definition coincides with Definition 5.2.1 when Sh = CohX
and φ is valued in R+.

Clearly, in condition (5.2.24), the map f enters only through its image G′ := f(F). Consequently
the definition of the strong monotonicity of φ may be rephrased as follows: for every morphism

g : G → H in Sh
≤1

and every OK-submodule G′ of G, of image H′ := g(G′) in H, we have:

(5.2.25) φ(H) + φ(G/G′) ≤ φ(G) + φ(H/H′).

This plays the role, in the present more general setting, of condition (iii) in Proposition 5.2.2.

The conditions StMon1
i introduced in Subsection 5.2.2 still make sense in this more general

setting. Namely, we still define StMon1
1 to be the monotonicity condition Mon1, and we define

StMon1
i for i ∈ {2, 3, 4} as follows:

StMon1
2 : for every object F of Sh and any two OK-submodules F ′′ ⊆ F ′ ⊆ F , the following

inequality is satisfied:

φ(F) + φ(F ′/F ′′) ≤ φ(F ′
) + φ(F/F ′′).

StMon1
3 : for every object F of Sh and every two submodules F ′ and F ′′ of F , the following

inequality is satisfied:

φ(F/F ′) + φ(F/F ′′) ≤ φ(F/(F ′ + F ′′)) + φ(F/(F ′ ∩ F ′′)).

StMon1
4 : for any two objects G and G∼ of CohX with the same underlying OK-module G such

that IdG : G → G∼ is a morphism in Coh
≤1

X and for any subobject G′ of G, the following inequality
is satisfied:

φ(G∼) + φ(G/G′) ≤ φ(G/G′
∼
) + φ(G).

As before, these three conditions will be referred to as the strong subadditivity, submodularity
and metric monotonicity conditions respectively.

Clearly the implication:

StMon1 =⇒
[
StMon1

1,StMon1
2,StMon1

3, and StMon1
4

]
still holds. However, in this generality, it is not clear whether the converse implication holds.

The submodularity estimates of paragraph 5.2.2.3 extend to this general setting:

Proposition 5.2.12. For every invariant φ : Sh → [0,+∞] that satisfies Mon1 and every
object E of Sh, the conditions (i)–(iv) in Proposition 5.2.6 are equivalent.

Proof. The proof of Proposition 5.2.6 remains valid with the following some minor modifica-
tions.

The proof of (i) ⇒ (ii) may be rephrased as follows. Let us assume that the submodularity
inequality (5.2.10) holds for any two submodules E1 and E2 of E . For every submodules X , X ′, and
Y of E such that X ⊆ X ′, when applied to E1 = X ′ and E2 = X + Y, this inequality reads:

φ(E/X ′) + φ(E/(X + Y)) ≤ φ(E/(X ′ + Y)) + φ(E/(X ′ ∩ (X + Y)).
Moreover, according to the monotonicity of φ, we have:

φ(E/(X ′ ∩ (X + Y))) ≤ φ(E/X ),
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since X is a submodule of X ′ + (X ∩ Y). Consequently the inequality (5.2.11) holds.

The proof of (iii) ⇒ (i) is unchanged when φ(E/E2) < +∞. When φ(E/E2) is infinite, then

φ(E/(E1 ∩ E2)) also is by monotonicity of φ, and (5.2.10) trivially holds.

The proof of (iii) ⇒ (iv) is unchanged when φ(E/(B1 + B2)) is finite. When φ(E/(B1 + B2))
is infinite, then φ(E/(B1 + · · ·+ Bn+1)) also is, by monotonicity of φ, and therefore (5.2.15) still
holds. □

5.3. The Cone of Strongly Monotonic Invariants

At this stage, the existence of any non-trivial R+-valued invariant on CohX that satisfies con-
ditions StMon1 and Cont+, that vanish on torsion modules and are distinct from a multiple of the
invariant “rank”, is unclear. In Chapter 7, we will show that, when X = SpecZ, the theta-invariant

h1θ : VectZ −→ R+,

defined by the equality:

h1θ(E) := log θE∨(1) = log
∑
v∈E∨

e−π∥v∥
2

E∨

where E denotes a Euclidean lattice E and E
∨
its dual, does indeed induce by the construction of

4.2 an invariant h1θ on CohZ that satisfies these conditions.

Starting from the invariant h1θ on CohZ, we may construct some new invariants on CohX
satisfying StMon1 and Cont+ by means of the following three constructions.

(i) Inverse image. As discussed in Section 4.6, starting from some invariant φZ : CohZ → R+,
we define a new one π∗φZ : CohX → R+ by the formula:

π∗φZ(F) := φ(π∗F).

In this way, starting from the invariant φZ := h1θ on CohZ, one constructs the invariant still denoted
by h1θ:

h1θ : CohX −→ R+, F 7−→ h1θ(π∗F).

As observed in 4.6, the construction of π∗φZ from φZ preserves the validity of the conditions
Mon1, SubAdd, VT, and Cont+. It is straightforward that it also preserves the validity of the
strong monotonicity condition StMon1 and of each of the conditions StMon1

i , i = 2, 3, 4.

(ii) Tensor product. Starting from some invariant φ : CohX → R+ and from some object F of

Vect
[0]

X , we may form the new invariant:

φF : CohX −→ R+, C −→ φ(F ⊗ C).

Here again, it is easy to check that if φ satisfies one of the properties Mon1, SubAdd, VT,
Cont+, or StMon1, then so does φF .

(iii) Infinite linear combinations with positive coefficients. Consider a family (φα)α∈A of invari-
ants

φα : CohX −→ [0,+∞],

and a family (λα)α∈A of elements of [0,+∞]. As in Proposition 4.1.5, we may consider the invariant∑
α∈A

λαφα : CohX −→ [0,+∞].

As observed in Proposition 4.1.5, this construction preserves the validity of the conditions Mon1,
SubAdd, VT, as well as Cont+ when all the λα are finite. Again, this construction preserves
the validity of the strong monotonicity condition StMon1 and of each of the conditions StMon1

i ,
i = 2, 3, 4, understood in the generalized sense of Subsection 5.2.4.
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Furthermore, if the invariants (φα)α∈A satisfy Mon1 and SubAdd and if the condition:∑
α∈A

λαφα(O(−δ)) < +∞ for every δ ∈ R,

is satisfied, then Proposition 4.1.5 shows that the invariant

φ :=
∑
α

λαφα

takes finite values on CohX . Moreover we have:

rk1φ =
∑
α∈A

λαrk
1
φα
.

By combining the three constructions above, we finally obtain:

Construction 5.3.1. If (Fα)α∈A is a family of objects of Vect
[0]

X and (λα)α∈A is a family of
elements of R+ satisfying the condition:

(5.3.1)
∑
α∈A

λαh
1
θ(Fα ⊗O(−δ)) :=

∑
α∈A

λαh
1
θ(π∗Fα ⊗O(−δ)) < +∞ for every δ ∈ R,

then one defines an invariant φ on CohX with values in R+ that satisfies the conditions StMon1

and Cont+ by letting:

(5.3.2) φ(E) :=
∑
α∈A

λαh
1
θ(Fα ⊗ E) =

∑
α∈A

λαh
1
θ(π∗(Fα)⊗ E).

One may ask whether every R+-valued invariant on CohX satisfying StMon1, VT, and Cont+

belongs to the closure, in the topology of pointwise convergence on invariants, of the cone defined
by the sums of positive multiples of the invariant “rank” and of the invariants described in Con-
struction 5.3.1.10

5.4. The Lower φ-Rank rk1φ and the Strong Monotonicity of φ

In this section, we consider an invariant φ : CohX → R+ that satisfies the condition Mon1,
and we pursue the study of its lower extension:

φ : qCohX −→ [0,+∞]

initiated in the previous chapter (see Section 4.3) by investigating the consequence on φ of the strong
monotonicity of φ.

We notably show that when φ is strongly monotonic, the φ-rank rk1φ admits a natural “lower

extension” rk1φ, which attaches an element rk1φ(f : F → G) in [0,+∞] to any morphism f : F → G

in qCohX , and we establish the strong monotonicity of φ as a consequences of the properties of rk1φ.

5.4.1. The lower φ-rank rk1φ: definitions. Let φ : CohX −→ R+ be an invariant that

satisfies the monotonicity condition Mon1 and the submodularity condition StMon1
3.

10In the terminology of Chapter 8, if the Fα are θ1-finite objects in qCohX satisfying the convergence conditions

(5.3.1), then the formula (5.3.2) still defines some R+-valued invariant on CohX satisfying StMon1, VT, and Cont+,

which is easily proved to belong to the closure of this cone.



176 5. RANK INVARIANTS AND STRONG MONOTONICITY

5.4.1.1. Consider a morphism in q
....

CohX :

f : F −→ G.

The inverse image f−1(G′) of any OX -submodule G′ of G in coft(G) belongs to coft(F). Indeed the
morphism induced by f :

fG′ : F/f−1(G′) −→ G/G′

is injective, and accordingly F/f−1(G′) like G/G′ is coherent. The map fG′ defines a morphism in....
CohX :

fG′ : F/f−1(G′) −→ G/G′,
and we may consider its φ-rank:

(5.4.1) rk1φ

(
fG′ : F/f−1(G′) −→ G/G′

)
:= φ(G/G′)− φ(G/im f + G′) ∈ R+.

Observe that if G′′ is an element of coft(G) contained in G′, then the morphism

fG′′ : F/f−1(G′′) −→ G/G′′

associated to G′′ fits into a commutative diagram in q
....

Coh
≤1

X :

F/f−1(G′′)
fG′′ //

p

��

G/G′′

q

��
F/f−1(G′)

fG′ // G/G′

where p and q denote the quotient morphisms. Since p is surjective and q is an admissible surjection,
the submodularity condition StMon1

3 implies the following inequality:

rk1φ

(
fG′ : F/f−1(G′) −→ G/G′

)
≤ rk1φ

(
fG′′ : F/f−1(G′′) −→ G/G′′

)
.

In other words, the function

coft(G) −→ R+, G′ 7−→ rk1φ

(
fG′ : F/f−1(G′)→ G/G′

)
is increasing on the directed set (coft(G),⊇).

The previous observation leads us to introduce the following definition:

Definition 5.4.1. For every invariant φ : CohX → R+ that satisfies the conditions Mon1 and

StMon1
3, the lower φ-rank of a morphism f : F → G in q

....
CohX is defined as the following limit

over G′ in the directed set (coft(G),⊇):

rk1φ(f : F → G) := lim
G′∈coft(G)

rk1φ

(
f ′G : F/f−1(G′)→ G/G′

)
(5.4.2)

= sup
G′∈coft(G)

rk1φ

(
f ′G : F/f−1(G′)→ G/G′

)
∈ [0,+∞].

When f is a morphism in
....

CohX , rk1φ(f) clearly coincides with rk1φ(f).

The expression for rk1φ(f) together with the equality (5.4.1) show that it depends only on G and
on the submodule im f of G. In other words, if ι : im f → G denotes the inclusion morphism, we
have:

rk1φ(f : F −→ G) = rk1φ(ι : im f → G).

When moreover G is an object of CohX , this coincides with rk1φ(ι : im f → G).
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From the definitions of rk1φ and of the lower extension φ of φ, we immediately derive the following

identity, valid for any object F of qCohX :

rk1φ(IdF : F → F) = φ(F).

5.4.1.2. The above definition of the lower rank rk1φf of a morphism f : F → G in q
....

CohX admits
the following more flexible variant.

Let us introduce the following subset of coft(F)× coft(G):

coft(f) := {(F ′,G′) ∈ coft(F)× coft(G) | f(F ′) ⊆ G′} ,

and let us define a relation ⊇ on coft(f) by letting:

(F ′,G′) ⊇ (F ′′,G′′) def⇐⇒ [F ′ ⊇ F ′′ and G′ ⊇ G′′] ,

Then (coft(f),⊇) is easily seen to be a directed set, and to any (F ′,G′) in coft(f) is associated a

morphism in
....

CohX :

fF ′G′ : F/F ′ −→ G/G′

induced by f . Its φ-rank is:

rk1φ

(
fF ′G′ : F/F ′ → G/G′

)
= φ(G/G′)− φ(G/im f + G′) = rk1φ

(
fG′ : F/f−1(G′)→ G/G′

)
.

Moreover for every G′ in coft(G), the pair (f−1(G′),G′) belongs to coft(f), and the map

G′ 7−→ (f−1(G′),G′) (resp. (F ′,G′) 7−→ G′ )

from (coft(G),⊇) to (coft(f),⊇) (resp. from (coft(f),⊇) to (coft(G),⊇)) is increasing.
These observations show that rk1φ(fF ′G′) defines an increasing function from the directed set

(coft(f),⊇) to R+ and that the lower φ-rank of f coincides with its limit over this directed set:

rk1φf = lim
(F ′,G′)∈coft(f)

rk1φ

(
fF ′G′ : F/F ′ → G/G′

)
= sup

(F ′,G′)∈coft(f)

rk1φ

(
fF ′G′ : F/F ′ → G/G′

)
.

5.4.1.3. The following proposition shows that the lower φ-rank rk1φ(f) coincides with the rank
associated to the lower extension φ of φ, defined by the equality:

rk1φ(f : F → G) := φ(G)− φ(G/im f),

when its right-hand side makes sense, namely when φ(G/im f) is finite.

Proposition 5.4.2. For every invariant φ : CohX → R+ satisfying conditions Mon1 and

StMon1
3 and for every morphism f : F → G in q

....
CohX , the following equality holds:

(5.4.3) rk1φ(f : F → G) + φ(G/im f) = φ(G).

Proof. According to the definition of rk1φ, the following equality holds for every G′ in coft(G):

(5.4.4) rk1φ

(
fG′ : F/f−1(G′)→ G/G′

)
+ φ(G/im f + G′) = φ(G/G′).

Moreover the map:

coft(G) 7−→ coft(G/im f), G′ 7−→ (im f + G′)/im f

is surjective and increasing, and therefore:

(5.4.5) lim
G′∈coft(G)

φ
(
G/im f + G′

)
= lim

G̃∈coft(G/im f)
φ
(
(G/im f)/G̃

)
= φ(G/im f).

The equality (5.4.3) follows from (5.4.4) and (5.4.5) by taking the limit over G′ in the directed set
(coft(G),⊇). □
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Observe that, with the notation of Proposition 5.4.2, the following estimate holds:

rk1φ(f : F → G) ≤ φ(G),
as a straightforward consequence of the definition (5.4.3). The reader will easily show, by a limiting
argument similar to the one in the proof of Proposition 5.4.2, that when moreover φ satisfies the
subadditivity condition SubAdd, we also have:

rk1φ(f : F → G) ≤ φ(F).

5.4.2. First properties of rk1φ. In this subsection, we still consider an invariant φ : CohX →
R+ satisfying the conditions Mon1 and StMon1

3.

The following propositions show that the properties of the φ-rank rk1φ established in Propositions

5.1.3, 5.1.4, and 5.1.5 are still satisfied by the lower φ-rank of morphisms in q
....

CohX .

Proposition 5.4.3. (1) For any diagram in q
....

CohX of the form:

(5.4.6) F f−→ G g−→ H,
the following inequality holds:

(5.4.7) rk1φ(g ◦ f : F → H) ≤ rk1φ(g : G → H).

(2) If moreover the morphism of OK-modules f : F −→ G is surjective, or if φ satisfies condition
NST and fK : FK −→ GK is a surjective morphism of K-vector spaces, then we have:

(5.4.8) rk1φ(g ◦ f : F → H) = rk1φ(g : G → H).

Proof. For every H′ in coft(H), we may consider the diagram in
....

CohX induced by (5.4.6):

(5.4.9) F/(g ◦ f)−1(H′)
f ′

−→ G/g−1(H′)
g′−→ H/H′,

and apply Proposition 5.1.3 to (5.4.9). Assertion (1) follows by taking the supremum over H′ ∈
coft(H). Assertion (2) is a straightforward consequence of the definitions. □

Proposition 5.4.4. Assume that the invariant φ is also subadditive. For any diagram in

q
....

Coh
≤1

X of the form:

(5.4.10) F f−→ G g−→ H,
the following inequality holds:

(5.4.11) rk1φ(g ◦ f : F → G) + φ(G) ≥ rk1φ(f : F → G) + rk1φ(g : G → H).

Proof. The inequality (5.4.11) is clear when φ(G) is +∞.

Let us now assume that φ(G) is finite. Then φ(G/im f) also is finite by the monotonicity of φ,
and according to Proposition 5.4.2, the inequality (5.4.11) is equivalent to the following inequality:

(5.4.12) rk1φ(g ◦ f : F → H) + φ(G/im f) ≥ rk1φ(g : G → H).

For every (G′,H′) ∈ coft(g), we may consider the diagram in
....

CohX induced by (5.4.10):

(5.4.13) F/f−1(G′) f ′

−→ G/G′ g′−→ H/H′.

According to Proposition 5.1.4 applied to (5.4.13), the following inequality holds:

rk1φ

(
g′ ◦ f ′ : F/f−1(G′)→ H/H′

)
+ φ

(
G/im f + G′

)
≥ rk1φ

(
g : G/G′ → H/H′

)
.

Consequently, we have:

rk1φ
(
g ◦ f : F → H

)
+ φ(G/im f) ≥ rk1φ

(
g : G/G′,→ H/H′

)
.
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and (5.4.12) follows by taking the supremum over (G′,H′) ∈ coft(g). □

Proposition 5.4.5. Assume that the invariant φ is also subadditive. For every commutative

diagram in q
....

Coh
≤1

X :

(5.4.14) F1
f1 //

p

��

G1

q

��
F2

f2 // G2,

in which q : G1 → G2 is an admissible surjection, the following inequality holds:

(5.4.15) rk1φ(f1 : F1 → G1) ≤ rk1φ(f2 : F2 → G2) + φ(ker q).

Proof. Let G′1 be an element of coft(G1). Since the morphism q : G1 → G2 is surjective, the
submodule G′2 := q(G′1) of G2 belongs to coft(G2), and we may consider the commutative diagram in
....

Coh
≤1

X induced by (5.4.14):

(5.4.16) F1/f
−1
1 (G′1)

f ′
1 //

p′

��

G1/G′1

q′

��
F2/f

−1
2 (G′2)

f ′
2 // G2/G′2.

The map q′ still defines an admissible surjection, and therefore Proposition 5.1.4 may be applied to
(5.4.16) and establishes the inequality:

(5.4.17) rk1φ

(
f ′1 : F1/f

−1
1 (G′1)→ G1/G′1

)
≤ rk1φ

(
f ′2 : F2/f

−1
2 (G′2)→ G2/G′2

)
+ φ

(
ker q′

)
.

Observe that the isomorphism of OX -modules:

ker q/(G′1 ∩ ker q)
∼−→ (G′1 + ker q)/G′1 = ker q′

defines a morphism in Coh
≤1

X :

ker q/(G′1 ∩ ker q) −→ ker q′.

This shows that G′1 ∩ ker q belongs to coft(ker q) and that the following inequalities hold:

φ(ker q′) ≤ φ(ker q/(G′1 ∩ ker q)) ≤ φ(ker q).

Therefore the inequality (5.4.17) implies the following inequality:

rk1φ

(
f ′1 : F1/f

−1
1 (G′1)→ G1/G′1

)
≤ rk1φ

(
f2 : F2 → G2

)
+ φ(ker q)),

and finally (5.4.15) follows by taking the supremum over G′1 in coft(G1). □

5.4.3. The strong monotonicity of φ and φ.

5.4.3.1. The following proposition and its corollary show that the strong monotonicity of an
invariant φ : CohX → R+ is inherited by its associated lower φ-rank rk1φ and lower extension φ.

Proposition 5.4.6. For every invariant φ : CohX → R+ satisfying the strong monotonicity

condition StMon1 and for every diagram in qCoh
≤1

X of the form:

(5.4.18) F f−→ G g−→ H,
the following inequality holds in [0,+∞]:

(5.4.19) rk1φ(g ◦ f : F → H) ≤ rk1φ(f : F → G).
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Proof. For every H′ ∈ coft(H), we may consider the following diagram in
....

Coh
≤1

X induced by
the diagram (5.4.18):

(5.4.20) F/(g ◦ f)−1(H′)
f ′

−→ G/g−1(H′)
g′−→ H/H′.

Applied to (5.4.20), the strong monotonicity inequality (5.2.1) reads:

rk1φ

(
g′ ◦ f ′ : F/(g ◦ f)−1(H′)→ H/H′

)
≤ rk1φ

(
f ′ : F/(g ◦ f)−1(H′)→ G/g−1(H′)

)
.

Therefore we have:

rk1φ

(
g′ ◦ f ′ : F/(g ◦ f)−1(H′)→ H/H′

)
≤ rk1φ(f : F → G),

and the inequality (5.4.19) follows by taking the supremum over H′ in coft(H). □

Corollary 5.4.7. If an invariant φ : CohX → R+ satisfies the strong monotonicity condition
StMon1, then its lower extension φ : qCohX → [0,+∞] satisfies it also in the sense of definition

5.2.11; namely, for every diagram in q
....

Coh
≤1

X of the form:

F f−→ G g−→ H,

the following inequality holds:

(5.4.21) φ(H) + φ(G/im f) ≤ φ(G) + φ(H/im (g ◦ f)).

In particular, the invariant φ satisfies conditions StMon1
2, StMon1

4 and StMon1
3.

Proof. According to Proposition 5.4.2 applied to g ◦ f and to f, we have:

φ(H) + φ(G/im f) = rk1φ(g ◦ f) + φ(H/im (g ◦ f)) + φ(G/im f)

and

φ(G) + φ(H/im (g ◦ f) = rk1φ(f) + φ(H/im (g ◦ f)) + φ(G/im f).

The inequality (5.4.21) therefore follows from (5.4.19). □

5.4.3.2. It is actually possible to investigate the strong monotonicity properties of the lower
extension φ without introducing the lower φ-rank rk1φ, and to establish directly the following per-

manence properties satisfied by the conditions StMon1
i :

Proposition 5.4.8. For every invariant φ : CohX → R+ satisfying the monotonicity condition
Mon1, the following implications hold:

(5.4.22) φ satisfies StMon1
i for i ∈ {2, 3, 4} on CohX =⇒ φ satisfies StMon1

2 on qCohX ;

(5.4.23) φ satisfies StMon1
3 on CohX =⇒ φ satisfies StMon1

3 on qCohX ;

(5.4.24) φ satisfies StMon1
4 on CohX =⇒ φ satisfies StMon1

4 on qCohX .

We leave the proof of Proposition 5.4.8 as an exercise for the interested reader.
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5.4.4. Metric monotonicity of φ and downward continuity of φ. This subsection, de-

voted to the downward continuity property of the lower extension φ of an invariant φ : CohX → R+,
is logically independent from the content of the previous subsections 5.4.1-5.4.3.

The following proposition establishes that the downward continuity property Cont+ is inherited
from φ by its lower extension φ restricted to the subcategory of qCohX where it takes finite values,

provided that φ satisfies the metric monotonicity property StMon1
4 on CohX .

Proposition 5.4.9. Let (Fn)n∈N be a sequence of objects

Fn := (F , (∥.∥n,x)x∈X(C))

in qCohX with the same underlying OK-modules F such that, for every x ∈ X(C), the sequence of
seminorms (∥.∥n,x)n∈N is decreasing, and let

(5.4.25) F := (F , (∥.∥x)x∈X(C))

be the object of qCohX associated to the Hermitian seminorms ∥.∥x on the Fx, x ∈ X(C), defined
as the pointwise limits:

(5.4.26) ∥.∥x := lim
n→+∞

∥.∥n,x.

If an invariant φ : CohX → R+ satisfies conditions Mon1 = StMon1
1 , Cont+ and StMon1

4 ,
and if the following condition is verified:

(5.4.27) there exists n0 ∈ N such that φn0(F) < +∞,
then we have:

(5.4.28) φ(F) = lim
n→+∞

φ(Fn).

Recall that, according to the monotonicity of φ established in Proposition 4.3.6, the sequence

(φ(Fn))n∈N is decreasing and satisfies:

(5.4.29) φ(F) ≤ lim
n→+∞

φ(Fn).

The condition (5.4.27) precisely asserts that the right-hand side of (5.4.29) is finite.

Proof. Let us assume that φ satisfies Cont+ and StMon1
4 , and for every OK-submodule G of

F , let us denote by F/Gn and F/G the objects of CohX defined as the OK-module F/G endowed
with the Hermitian metrics deduced by quotient from (∥.∥n,x)x∈X(C) and (∥.∥x)x∈X(C) respectively.

Observe that, for every x ∈ X(C), if we denote by

px : Fx −→ Fx/Gx ≃ (F/G)x
the quotient map, the following equalities hold for any v ∈ (F/G)x:

∥v∥F/G,x = inf
ṽ∈p−1

x (v)
∥ṽ∥x = inf

ṽ∈p−1
x (v)

inf
n∈N
∥ṽ∥n,x

= inf
n∈N

inf
ṽ∈p−1

x (v)
∥ṽ∥n,x = inf

n∈N
∥v∥F/Gn,x

= lim
n→+∞

∥v∥F/Gn,x
.

Therefore, for any G in coft(F), we may apply the continuity condition Cont+ satisfied by φ to

the sequence (F/Gn)n∈N. Thus we get the equality:

φ(F/G) = lim
n→+∞

φ(F/Gn).

Since φ satisfies StMon1
4 , if G′ ⊆ G are two elements of coft(F), the difference

(5.4.30) φ(F/G′n)− φ(F/Gn)
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— which, according to Mon1, is non-negative — is a decreasing function of n ∈ N. By considering
the infimum of (5.4.30) over G′ ∈ coft(F), this shows that, for any G ∈ coft(F), the difference

(5.4.31) φ(Fn)− φ(F/Gn)
is a non-negative decreasing function of n ∈ N.

For any integer n ≥ n0 and any G ∈ coft(F), the definition of φ(F) and the decreasing character
of the expression (5.4.31) as a function of n imply:

0 ≤ φ(Fn)− φ(F) ≤
(
φ(Fn)− φ(F/Gn)

)
+
(
φ(F/Gn)− φ(F/G)

)
≤
(
φ(Fn0

)− φ(F/Gn0
)
)
+
(
φ(F/Gn)− φ(F/G)

)
.

For any ε ∈ R∗
+, we may choose G ∈ coft(F) such that

φ(Fn0
)− φ(F/Gn0

) < ε,

and then an integer n1 ≥ n0 such that, for any integer n ∈ N,

n ≥ n1 =⇒ φ(F/Gn)− φ(F/G) < ε.

Then, for any n ∈ N,
n ≥ n1 =⇒ 0 ≤ φ(Fn)− φ(F) < 2ε,

and consequently equality holds in (5.4.29). □

Example 5.4.10. Let us emphasize that equality does not hold in general in (5.4.29) without a
finiteness assumption on its right-hand side.

Indeed, let us assume that φ satisfies Add⊕ and that there exists some object C in CohX such
that

φ(C) > 0,

and such that the object C∼ of CohX defined by the underlying module C equipped with the zero
Hermitian seminorms satisfies:11

φ(C∼) = 0.

If for every n ∈ N, we let:

Fn :=
⊕
k∈N
Cnk

where

Cnk := C∼ if k < n

:= C if k ≥ n,

then the Fn have the same underlying module F = C(N), their Hermitian seminorms are decreasing
functions of n, and the limit seminorms vanish. We are in the situation of Proposition 5.4.9, with:

F = C∼⊕N
.

However, according to Proposition 4.3.8, we have:

φ(Fn) =
∑
k∈N

φ(Cnk) =
∑

0≤k<n

φ(C∼) +
∑
k≥n

φ(C) = +∞

for every n ∈ N, and:
φ(F) =

∑
k∈N

φ(C∼) = 0.

11These conditions are trivially verified by some invariants on CohX considered in the sequel, notably by h1θ,

which indeed satisfies Mon1, Add⊕, Cont+, and StMon1
4 .
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5.5. The Upper φ-Rank rk
1

φ and the Strong Monotonicity of φ

In this section, we still consider an invariant φ : CohX → R+ that satisfies the condition Mon1,
and we pursue the study initiated in Chapter 4 of its upper extension:

φ : qCohX −→ [0,+∞]

when φ satisfies suitable strong monotonicity conditions.

The content of this section is formally similar to the content of the previous section, with the
lower extension φ replaced by the upper extension φ. Notably we introduce a suitable upper φ-rank

rk
1

φ and we use it to investigate the strong monotonicity properties of φ.

The properties of the φ and rk
1

φ on the category qCohX are formally less satisfactory than those

of φ and rk1φ. However the “upper extensions” φ and rk
1

φ will play a key role in the development of
infinite dimensional geometry of numbers in Chapter 9, and establishing that they inherits suitable
strong monotonicity properties from φ will be important in the sequel.

In this perspective, at the end of this section we prove that, when φ satisfies the continuity
condition Cont+ and the strong monotonicity condition StMon1, the invariant

φ : φΣ-qCohX −→ R+,

defined by restricting φ to the subcategory of φ-summable objects in qCohX introduced in 4.5.1,
satisfies a convenient form of condition StMon1.

5.5.1. The upper φ-rank rk
1

φ: definition and first properties. In this subsection, we

denote by φ : CohX → R+ an invariant satisfying the monotonicity condition Mon1.

5.5.1.1. Definition and remarks.

Definition 5.5.1. The upper φ-rank of a morphism f : F → G in q
....

CohX is defined as the
following lower limit over the directed set (coh(G),⊆):

(5.5.1) rk
1

φ(f : F → G) := lim inf
C∈coh(G)

[
φ(C)− φ(C/(C ∩ im f))

]
∈ [0,+∞].

When f is a morphism in
....

CohX , rk
1

φ(f) clearly coincides with rk1φ(f).

One easily checks sees that rk
1

φ(f : F → G) satisfies the following two properties, which provide
an alternative definition of the upper φ-rank:

(i) For every exhaustive filtration (Cn)n∈N of G by coherent submodules, we have:

rk
1

φ(f : F → G) ≤ lim inf
n→+∞

[
φ(Cn)− φ(Cn/(Cn ∩ im f))

]
.

(ii) There exists an exhaustive filtration (Cn)n∈N of G by coherent submodules such that the

sequence
(
φ(C)− φ(C/(C ∩ im f))

)
n∈N

converges in [0,+∞] and

rk
1

φ(f : F → G) = lim
n→+∞

[
φ(Cn)− φ(Cn/(Cn ∩ im f))

]
.

Let us formulate a few remarks concerning the definition of rk
1

φ , which are parallel to the
remarks on the definition of the lower φ-rank in Subsection 5.4.1:

(a) Like its lower φ-rank, the upper φ-rank rk
1

φ(f : F → G) depends only on G and on the
submodule im f of G. In other words, if ι : im f → G denotes the inclusion morphism, we have:

rk
1

φ(f : F → G) = rk
1

φ(ι : im f → G).
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When moreover G is an object of CohX , this coincides with rk1φ(ι : im f → G).
(b) For every C in coh(G), there exists C′ in coh(F) satisfying the condition:

(5.5.2) f(C′) = C ∩ im f.

When this holds, we may introduce the morphism in
....

CohX :

fC′C := f|C′ : C′ −→ C,

and its φ-rank satisfies:

rk1φ(fCC′) := φ(C)− φ(C/f(C′) = φ(C)− φ(C/(C ∩ im f)).

We may introduce the subset coh(f) of coh(F)× coh(G) defined as:

coh(f) := {(C′, C) ∈ coh(F)× coh(G) | f(C′) = C ∩ im f} ,

and the order relation ⊆ on coh(f) defined by:

(F ′,G′) ⊆ (F ′′,G′′)⇐⇒ [F ′ ⊆ F ′′ and G′ ⊆ G′′].

Then the ordered set (coh(f),⊆) is a directed set, and the previous observation shows that the
upper-rank of f may also be defined as the following lower limit over this directed set:

rk
1

φ(f : F → G) := lim inf
(C′,C)∈coh(f)

rk1φ(fC′C : C′ → C).

(c) For every object F of qCohX , the following equality holds as a straightforward consequence
of the definitions:

rk
1

φ(IdF : F → F) = φ(F).

5.5.1.2. The upper and lower φ-ranks satisfy the expected comparison estimate, provided the
invariant φ satisfies suitable strong monotonicity properties.

Proposition 5.5.2. For every invariant φ : CohX → R+ satisfying the conditions Mon1,

StMon1
3 and StMon1

4, and for every morphism f : F → G in q
....

CohX , the following inequality
holds:

(5.5.3) rk1φ(f : F → G) ≤ rk
1

φ(f : F → G).

Proof. Let G′ be an element of coft(G). Since the quotient G/G′ is coherent, we may choose
an element C in coh(G) such that the composition of the inclusion and quotient morphisms:

C↪−→G −→ G/G′

is surjective.

Proposition 5.5.2 is a consequence of the following lemma:

Lemma 5.5.3. For every C′ in coh(G) containing C, the following inequality holds:

(5.5.4) φ(G/G′)− φ(G/(im f + G′)) ≤ φ(C′)− φ(C′/(im f ∩ C′)).

Indeed, by taking the lower limit over C′ in the directed set (coh(G),⊆), from (5.5.4) we derive
the inequality:

φ(G/G′)− φ(G/(im f + G′)) ≤ rk
1

φ(f : F → G),

and (5.5.3) follows by taking the supremum over G′ in coft(G). □
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Proof of Lemma 5.5.3. Let us consider the composition of the inclusion and quotient mor-
phisms:

q : C′↪−→G −→ G/G′.

It is surjective and defines a morphism q : C′ → G/G′ in Coh
≤1

X which fits into a commutative

diagram in
....

Coh
≤1

X :

im f ∩ C′

p

��

i // C′

q

��
(im f + G′)/G′

j // G/G′,
where i and j denote the inclusion morphisms.

According to StMon1
3 and StMon1

4, the following inequality holds:

rk1φ

(
j : (im f + G′)/G′ → G/G′

)
≤ rk1φ

(
i : im f ∩ C′ → C′

)
.

Taking into account the definition of rk1φ, this establishes (5.5.4). □

5.5.1.3. We now turn to some simple properties of the upper φ-rank associated to a monotonic
invariant φ : CohX → R+, similar to the properties of the lower φ-rank established in 5.4.1.3 and
5.4.2 above.

Observe that, due to the occurrence of a lower limit in the definition of rk
1

φ, instead of a limit

in the one of rk1φ, the properties of rk
1

φ are often weaker than those of rk1φ. This is exemplified by

the following proposition, to be compared with Proposition 5.4.2.

Proposition 5.5.4. Let φ : CohX → R+ be an invariant satisfying condition Mon1.

(1) For every morphism f : F → G in q
....

CohX , the following inequality holds in [0,+∞]:

(5.5.5) rk
1

φ(f : F → G) + φ(G/im f) ≤ φ(G).

(2) Moreover the following equality holds:

(5.5.6) rk
1

φ(f : F → G) + φ(G/im f) = φ(G)
when one of the following conditions is satisfied:

(a) im f lies in coft(G) – or equivalently G/im f is an object of CohX – and φ satisfies Cont+;
(b) φ satisfies the strong subadditivity condition StMon1

2.

Proof. According to Remark 4.5.11 applied to the quotient morphism G → G/im f , we have:

φ(G/im f) ≤ lim inf
C∈coh(G)

φ(C/(C ∩ im f)).

Consequently:

rk
1

φ(f : F → G) + φ(G/im f) ≤ lim inf
C∈coh(G)

[
φ(C)− φ(C/(C ∩ im f))

]
+ lim inf

C∈coh(G)
φ(C/(C ∩ im f))

≤ lim inf
C∈coh(G)

φ(C) =: φ(G).

When im f belongs to coft(G), the quotient morphism:

qC : C/(C ∩ im f) −→ G/im f

becomes an isomorphism when C ∈ coh(G) is large enough. Moreover, for every v ∈ (G/im f)R, the
fonction:

C 7−→ ∥q−1
C,R(v)∥C/(C∩im f)

,
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defined for C large enough in the directed set (coh(G),⊆), is decreasing and converges to ∥v∥G/im f
.

Consequently, when φ also satisfies Cont+, we have:

φ(G/im f) = lim
C∈coh(G)

φ(C/(C ∩ im f)).

Consequently:

rk
1

φ(f : F → G) + φ(G/im f) = lim inf
C∈coh(G)

[
φ(C)− φ(C/(C ∩ im f))

]
+ lim

C∈coh(G)
φ(C/(C ∩ im f))

= lim inf
C∈coh(G)

φ(C) =: φ(G).

Finally let us assume that φ satisfies StMon1
2. If C and C′ are two elements of coh(G) such that

C ⊆ C′, we may apply the strong subadditivity estimate (5.2.5) to the object C′ of CohX and to the
submodules C ∩ im f ⊆ C ⊆ C′; it reads:

(5.5.7) φ(C′) + φ(C/(C ∩ im f)) ≤ φ(C) + φ(C′/(C ∩ im f)).

The map (C′ 7→ C′/(C∩im f)) is order preserving and maps the set of elements C′ ∈ coh(G) containing
C onto the set of elements of coh(G/(C∩im f)) containing C/(C∩im f), which is cofinal in (coh(G),⊆).
Therefore, by taking the lower limit over C′ in the directed set (coh(G),⊆), we derive the following
inequality from (5.5.7):

φ(G) + φ(C/(C ∩ im f)) ≤ φ(C) + φ(G/(C ∩ im f)).

Together with the monotonicity of φ, this implies:

φ(G) ≤ φ(G/im f) +
[
φ(C)− φ(C/(C ∩ im f))

]
.

By taking the lower limit over C in the directed set (coh(G),⊆), this establishes the inequality:

φ(G) ≤ φ(G/im f) + rk
1

φ(f : F → G).
Together with (5.5.5), this completes the proof of (5.5.6). □

Proposition 5.5.5. (1) For any diagram in q
....

CohX of the form:

F f−→ G g−→ H,
the following inequality holds:

(5.5.8) rk
1

φ(g ◦ f : F → H) ≤ rk
1

φ(g : G → H).

(2) If moreover the morphism of OK-modules f : F −→ G is surjective, or if φ satisfies condition
NST and fK : FK −→ GK is a surjective morphism of K-vector spaces, then we have:

(5.5.9) rk
1

φ(g ◦ f : F → H) = rk
1

φ(g : G → H).

Proof. According to the definition of the upper π-rank and to the monotonicity of φ, we have:

rk
1

φ(g ◦ f) := lim inf
G′∈coh(G)

[
φ(G′)− φ(G′/(G′ ∩ im (g ◦ f)))

]
≤ lim inf

G′∈coh(G)

[
φ(G′)− φ(G′/(G′ ∩ im g))

]
=: rk

1

φ(g).

This proves (1).

If f is surjective or if φ satisfies condition NST and fK : FK −→ GK is a surjective morphism
of K-vector spaces, then we have, for any G′ ∈ coh(G):

φ(G′/(G′ ∩ im (g ◦ f))) = φ(G′/(G′ ∩ im (g))),

which completes the proof of (2). □
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5.5.2. The strong monotonicity of φ and φ. In this subsection, we denote by φ : CohX →
R+ an invariant satisfying the strong monotonicity property StMon1 and we investigate the strong

monotonicity properties of φ and rk
1

φ.

5.5.2.1. We begin with a simple consequence of Proposition 5.5.2 and of Proposition 5.5.4 (2),
which may be applied according to our assumption of strong monotonicity on φ.

Proposition 5.5.6. Let G be an object of qCohX satisfying the following condition:

(5.5.10) φ(G) = φ(G) < +∞.

Then for every OX-submodule G′ of G and every morphism f : F → G, the following conditions are
satisfied:

(5.5.11) φ(G/G′) = φ(G/G′) < +∞,
and

(5.5.12) rk1φ(f : F → G) = rk
1

φ(f : F → G) < +∞.

The significance of the condition (5.5.10) is discussed at the end of this chapter, in Subsection
5.6.3. This condition will also play an important an important role in the sequel when the invariant
φ is the θ-invariant h1θ; see notably Section 8.4.

Proof. According to the inequality φ ≤ φ and to the monotonicity of φ and φ, if φ(G) is finite,
then φ(G), φ(G/G′), and φ(G/G′) also are. Consequently, according to Propositions 5.4.2 and 5.5.4,

the lower and upper φ-rank of the inclusion morphism ι : G′ ↪→ G in q
....

CohX are finite and satisfy:

(5.5.13) rk1φ(ι) = φ(G)− φ(G/G′)
and

(5.5.14) rk
1

φ(ι) = φ(G)− φ(G/G′).

Moreover, according to Proposition 5.5.2, the following inequality holds:

rk1φ(ι) ≤ rk
1

φ(ι).

Combined with (5.5.13) and (5.5.14), this shows that, if the condition (5.5.10) is satisfied, then:

−φ(G/G′) ≤ −φ(G/G′).
Together with the inequality φ ≤ φ, this establishes the equality in (5.5.11).

According to (5.5.13) and (5.5.14), we also have:

rk1φ(ι) = rk
1

φ(ι) < +∞.
Applied to G′ := im f, this establishes (5.5.12). □

5.5.2.2. Contrary to the lower extensions φ and rk1φ, the strong monotonicity properties of φ

do not immediately transfer to φ and rk
1

φ. However, under some additional technical conditions, we
may establish the following counterparts of Propositions 5.4.6 and 5.4.7.

Proposition 5.5.7. For every diagram in q
....

Coh
≤1

X of the form:

(5.5.15) F f−→ G g−→ H,
the following inequality holds in [0,+∞]:

(5.5.16) rk
1

φ(g ◦ f : F → H) ≤ rk
1

φ(f : F → G)
when one of the following conditions is satisfied:
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(1) the morphism of OX-modules g : G → H is bijective;
(2) im f is coherent;

(3) φ(G/im f) < +∞, φ(H/im g ◦ f) < +∞, φ satisfies Cont+, and evφ(im f) = 0;
(4) φ(H) = φ(H) < +∞.

Proposition 5.5.8. For every morphism g : G → H in qCoh
≤1

X and every OX-submodule G′
of G, the following inequality holds in [0,+∞]:

(5.5.17) φ(H) + φ(G/G′) ≤ φ(G) + φ(H/g(G′)),
provided one of the following conditions is satisfied:

(1) the morphism of OX-modules g : G → H is an isomorphism;
(2) the submodule G′ belongs to coh(G);
(3) φ satisfies Cont+, and evφ(G′) = 0;
(4) φ(H) = φ(H) < +∞.

Proof of Propositions 5.5.7 and 5.5.8. We shall establish the two proposition in parallel.
With the notation of Proposition 5.5.8, we shall denote by ι : G′ → G the inclusion morphism.

(1) Let us assume that, in Proposition 5.5.7, the morphism g is bijective. Then it induces a
bijection:

coh(G) ∼−→ coh(G′), C 7−→ g(C),
and therefore:

rk
1

φ(g ◦ f : F → H) = lim inf
C′∈coh(H)

[
φ(C′)− φ(C′/(C′ ∩ im g ◦ f))

]
= lim inf

C∈coh(G)

[
φ(g(C))− φ(g(C)/g(C ∩ im f))

]
.

Moreover, according to StMon1
4, for every C ∈ coh(G), the following inequality holds:

φ(g(C)− φ(g(C)/g(C ∩ im f)) ≤ φ(C))− φ(C/g)(C ∩ im f)).

Together with the definition of rk
1

φ(f : F → G):

rk
1

φ(f : F → G) := lim inf
C∈coh(G)

φ(C))− φ(C/g)(C ∩ im f)),

this establishes (5.5.17).

In Proposition 5.5.8, when g is an isomorphism, by using successively Proposition 5.5.4 (2)
applied to g ◦ ι : F → H, the inequality (5.5.16) when f = ι, and Proposition 5.5.4 (2) applied to
ι : F → G, we obtain:

φ(H) + φ(G/G′) = rk
1

φ(g ◦ ι : G′ → H) + φ(H/H′) + φ(G/G′)

≤ rk
1

φ(ι : G′ → G) + φ(G/G′) + φ(H/H′) = φ(G) + φ(H/H′).
(5.5.18)

This establishes the equality (5.5.17).

(2) Let us assume that, in in Proposition 5.5.7, the module im f is coherent. For any C in coh(G)
containing C and any D in coh(H) containing g(C), we may consider the diagram:

F f−→ C
g|C−→ D

in
....

Coh
≤1

X . Since φ satisfies StMon1, the following inequality holds:

(5.5.19) rk1φ(g|C ◦ f : F → D) := φ(D)− φ(D/im g ◦ f) ≤ rk1φ(f : F → C) := φ(C)− φ(C/im f).

By taking firstly the lower limit over D in the directed set (coh(H),⊆), and then the lower limit
over C in the directed set (coh(G),⊆), one derives the inequality (5.5.16) from (5.5.19).
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When (2) is satisfied in Proposition 5.5.8, by the same reasoning as in part (1) of this proof, the
chain of (in)equalities (5.5.18) holds and establishes (5.5.17).

(3) Let us assume that, in Proposition 5.5.8, condition (3) is satisfied. In part (2) of this proof,
we have shown that (5.5.17) holds when G′ belongs to coh(G). In particular, for very C′ in coh(G′),
we have:

(5.5.20) φ(H) + φ(G/C′) ≤ φ(G) + φ(H/g(C′)).

Recall that we have shown in Chapter 4 that, when φ satisfies Mon1, SubAdd, and Cont+,
then φ satisfies Mon1 and SubAdd, and evφ satisfies Mon1; see Propositions 4.3.6, 4.3.10, and
4.4.2. Therefore we have:

evφ(G′) = 0,

and finally, according to Proposition 4.4.4 applied to ψ := φ, we have:

(5.5.21) φ(G/G′) = lim
C′∈coh(G′)

φ(G/C′)

and:

(5.5.22) φ(H/g(G′)) = lim
D′∈coh(g(G′))

φ(G/D′).

Since the map:

coh(G′) −→ coh(g(G′)), C′ 7−→ g(C′)
is surjective and order preserving, the equality (5.5.22) may also be written:

(5.5.23) φ(H/g(G′)) = lim
C′∈coh(G′)

φ(G/g(C′)).

Using (5.5.21) and (5.5.23), we derive the inequality (5.5.17) from (5.5.20) by taking the limit
over C′ in the directed set (coh(G′),⊆).

When (3) is satisfied in Proposition 5.5.7, we may use Proposition 5.5.4 (2) to express the upper
φ-rank of f and g ◦ f as:

rk
1

φ(f : F → G) = φ(G)− φ(G/im f),

and

rk
1

φ(g ◦ f : F → H) = φ(H)− φ(H/im g ◦ f),
and (5.5.16) follows from (5.5.17) applied to G′ := im f .

(4) When (4) is satisfied in Proposition 5.5.7, by applying successively Propositions 5.5.6, 5.4.6,
and 5.5.2, we obtain the following strengthened form of the estimate (5.5.16):

(5.5.24) rk
1

φ(g ◦ f : F → H) = rk1φ(g ◦ f : F → H) ≤ rk1φ(f : G → H) ≤ rk
1

φ(f : G → H).

When (4) is satisfied in Proposition 5.5.8, by the same reasoning as in part (1) of this proof, the
chain of (in)equalities (5.5.18) holds and establishes (5.5.17). □

5.5.2.3. Â Let us spell out some consequences of Propositions 5.5.7 and 5.5.8 concerning the
strong monotonicity properties of φ, when as above φ is assumed to satisfy StMon1.

Recall that, if f : F → G is a morphism in qCoh
≤1

X where F is φ-summable, then f(F) also

is φ-summable and therefore evφ(f(F)) = 0, as shown in Proposition 4.5.9 and Theorem 4.5.1.12

Therefore, as a consequence of Proposition 5.5.8, we obtain:

12In the next section, we shall investigate in more details the property of the φ-summable objects in qCohX and
their invariant φ when φ satisfies StMon1. Notably in Section 5.6 we shall prove that, when this condition holds,

the φ-summable objects in qCohX are characterized by the eventual vanishing of φ.
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Corollary 5.5.9. For every pair of composable morphisms in qCoh
≤1

X :

F f−→ G g−→ H,

the following inequality holds:

(5.5.25) φ(H) + φ(G/im f) ≤ φ(G) + φ(H/im (g ◦ f)),

provided one of the following conditions is satisfied:

(1) φ also satisfies the downward continuity condition Cont+, and F is φ-summable;
(2) φ(H) = φ(H) < +∞.

Applied to the situation where f and g are injective, Corollary 5.5.9 shows that φ satisfies the
following version of the strong subadditivity condition StMon1

2:

Corollary 5.5.10. Let F be an object of qCohX and let F ′ and F ′′ be two OX-submodules of
F such that F ′′ ⊆ F ′. The following inequality holds:

(5.5.26) φ(F) + φ(F ′/F ′′) ≤ φ(F ′
) + φ(F/F ′′),

provided one of the following conditions is satisfied:

(1) φ satisfies condition Cont+ and F ′′
is φ-summable;

(2) φ(F) = φ(F) < +∞.

We may also derive from Corollary 5.5.9 the following version of the submodularity condition
StMon1

3 on φ:

Corollary 5.5.11. Let F be an object of qCohX and let F ′ and F ′′ be two OX-submodules of
F . The following inequality holds:

(5.5.27) φ(F/F ′) + φ(F/F ′′) ≤ φ(F/(F ′ + F ′′)) + φ(F/(F ′ ∩ F ′′)),

provided one of the following conditions is satisfied:

(1) φ satisfies condition Cont+ and F ′
or F ′′

is φ-summable;
(2) φ(F) = φ(F) < +∞.

Proof. We may consider the following diagram in qCoh
≤1

X :

F ′′/(F ′ ∩ F ′′)
f−→ F/(F ′ ∩ F ′′)

g−→ F/F ′,

where f and g respectively denote the inclusion and the quotient morphism. Then the inequality
(5.5.25) becomes the inequality (5.5.27). Moreover, as observed above, Proposition 4.5.9 and The-

orem 4.5.1 show that condition (1), with F ′′
summable, implies condition (1) in Corollary 5.5.9.

Finally, according to Proposition 5.5.6, condition (2) implies condition (2) in Corollary 5.5.9.13 □

Observe finally that the validity of Proposition 5.5.8 under condition (1) precisely asserts that
φ satisfies StMon1

4, namely:

Corollary 5.5.12. For any two objects G and G∼ of qCohX with the same underlying OK-

module G such that IdG : G → G∼ is a morphism in qCoh
≤1

X and for any subobject G′ of G, the
following inequality is satisfied:

φ(G∼) + φ(G/G′) ≤ φ(G/G′
∼
) + φ(G).

13Clearly condition (2) could be replaced by the weaker condition: φ(F/F ′) = φ((F/F ′) < +∞ or φ(F/F ′′) =

φ((F/F ′′) < +∞.
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5.6. Strong Monotonicity of φ and Criteria of φ-Summability

In this section, we consider an invariant φ : CohX → R+ that satisfies the monotonicity and
subadditivity conditions Mon1 and SubAdd, and we complete the study of φ-summable Hermitian
quasi-coherent sheaves developed in Section 4.5 by establishing diverse criteria of φ-summability valid
under some assumption of strong monotonicity on φ, and by deriving some additional permanence
properties of φ-summability.

5.6.1. Criteria for φ-summability I: eventual vanishing of φ.

5.6.1.1. The following proposition establishes a partial of converse to Theorem 4.5.1 when φ
satisfies not only SubAdd, but also the strong subadditivity condition StMon1

2.

Proposition 5.6.1. Let us assume that φ satisfies condition StMon1
2.

If F := (F , (∥.∥x)x∈X(C) is an object of qCohX such that

evφ(F) = 0

and if C• := (Ci)i∈N is an exhaustive filtration of F by elements of coh(F) such that

(5.6.1) φ(F) = lim
i→+∞

φ(Ci),

then there exists a strictly increasing map ι : N→ N such that the following condition is satisfied14:

Sumφ(Cι(•)) : Σφ(F , Cι(•)) :=
∞∑
i=0

φ(Cι(i)/Cι(i−1)) < +∞.

As observed in Proposition 4.3.3, there always exists some exhaustive filtration of F by elements
of coh(F) satisfying (5.6.1). Consequently, Theorem 4.5.1 and Proposition 5.6.1 imply:

Corollary 5.6.2. When φ satisfies condition StMon1
2, an object F of qCohX is φ-summable

if and only if evφ(F) vanishes.

Proof of Proposition 5.6.1. Let (Ci)i∈N be an exhaustive fitration of F be elements of
coh(F) satisfying (5.6.1). For any two non-negative integers i and j such that i ≤ j and any
C in coh(F) containing Cj , the strong subbadditivity inequality (5.2.5), applied to C and to the
submodules

Ci ⊆ Cj ⊆ C,
reads as follows:

φ(C) + φ(Cj/Ci) ≤ φ(Cj) + φ(C/Ci).
By taking the inferior limit over C in the directed set (coh(F),⊆), this implies the following inequal-
ity:

φ(F) + φ(Cj/Ci) ≤ φ(Cj) + φ(F/Ci).
(When φ satisfies StMon1, this estimate is a special case of Corollary 5.5.10, (2).) Consequently,
for any i in N, the following estimate holds:

(5.6.2) sup
j∈N≥i

φ(Cj/Ci) ≤ sup
j∈N≥i

|φ(Cj)− φ(F)|+ φ(F/Ci).

As a consequence of (5.6.1) and of the vanishing of evφ(F), the right-hand side of (5.6.2)
converges to 0 when i goes to infinity. We may choose a strictly increasing map ι : N→ N such that:∑

i∈N

[
sup

j∈N≥ι(i)

|φ(Cj)− φ(F)|+ φ(F/Cι(i))

]
< +∞,

and then the condition Sumφ(Cι(•)) is satisfied. □

14By convention, we let: Cι(−1) = 0.
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5.6.1.2. If we combine the criterion of φ-summability in Corollary 5.6.2 and the result on
φ-summable filtrations established in Proposition 4.5.17, we obtain the following criterion of φ-
summability in terms of a general φ-summable filtration:

Proposition 5.6.3. Let us assume that, beside condition Mon1, the invariant φ also satisfies
conditions Cont+ and StMon1

2 on CohX .

Let F be an object of qCohX and let F• := (Fi)i∈N be an exhaustive filtration of F by OX-

submodules. If the subquotients15 (Fi/Fi−1)i∈N are φ-summable and if the condition

Sumφ(F•) : Σφ(F ,F•) :=

+∞∑
i=0

φ(Fi/Fi−1) < +∞

is satisfied, then F is φ-summable and

(5.6.3) φ(F) = lim
i→+∞

φ(F i).

Proposition 5.6.3 may be understood as a closure property of the construction of the category
φΣ-qCohX starting from the invariant:

φ : CohX −→ R+.

Roughly speaking, it asserts that, if we mimick the construction of φ-summable objects of qCohX ,
starting from the invariant:

φ : φΣ-qCohX −→ R+

instead of φ, we actually do not enlarge the class of summable objects in qCohX .

5.6.2. The φ-finite Hermitian quasi-coherent sheaves. By combining the argument in
the proof of Proposition 5.6.1 with a construction à la Mittag-Leffler, we may also establish the
following proposition.

Proposition 5.6.4. Let us assume that φ satisfies condition StMon1
2. For every object F in

qCohX , and every increasing sequence (δn)n∈N in R such that limn→+∞ δn = +∞, the following
conditions are equivalent:

(i) For every n ∈ N, F ⊗O(−δn) is φ-summable.
(ii) For every δ ∈ R, F ⊗O(−δ) is φ-summable.
(iii) For every n ∈ N, evφ(F ⊗O(−δn)) = 0.
(iv) For every δ ∈ R, evφ(F ⊗O(−δ)) = 0.
(v) There exists an exhaustive filtration C• := (Ci)i∈N of F by elements of coh(F) such that,

for every δ ∈ R, the following condition is satisfied:

(5.6.4) Σφ
(
F ⊗O(−δ), C•

)
:=

∞∑
i=0

φ
(
Ci/Ci−1 ⊗O(−δ)

)
< +∞.

Proof. The implications (ii)⇒ (i) and (iv)⇒ (iii) are straightforward, the implication (v)⇒
(ii) follows from the definition of φ-summability, and the implications (i) ⇒ (iii) and (ii) ⇒ (iv)
from Theorem 4.5.1.

To complete the proof of the proposition, we shall establish the implication (iii)⇒ (v). Let us
assume that condition (iii) is satisfied. To construct a filtration C• of F as in (v), let us choose a
sequence (εn)n≥1 of positive real numbers such that:

+∞∑
n=1

εn < +∞.

15Here again, we let: F−1 = 0.
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By a straightforward inductive construction, we may find an exhaustive filtration C• of F by
elements of coh(F) such that C0 = 0 and such that, for every integer n ≥ 1, the following estimates
holds:

(5.6.5) φ(F/Cn ⊗O(−δn)) ≤ εn
and

(5.6.6)
∣∣∣h1θ (F ⊗O(−δn−1)

)
− φ

(
Cn ⊗O(−δn−1)

)∣∣∣ ≤ εn.
Indeed evφ(F ⊗O(−δn)) vanishes and h

1

θ(F ⊗O(−δn−1)) is finite.

Recall that, as observed in the proof of Proposition 5.6.1, if C ⊆ C′ are two submodules in
coh(F), then the following inequality holds:

φ(F) + φ(C′/C) ≤ φ(C′) + φ(F/C).
By applying this estimate to F ⊗ O(−δn) and to C := Cn and C′ := Cn+1, we obtain the following
estimate16 for every n ∈ N:

φ
(
Cn+1/Cn ⊗O(−δn)

)
≤ φ

(
Cn+1 ⊗O(−δn))

)
− φ

(
F ⊗O(−δn)

)
+ φ

(
F/Cn ⊗O(−δn)

)
≤ εn+1 + εn.

For every k in N and every integer n ≥ k, we have: δk ≤ δn, and therefore:

φ
(
Cn+1/Cn ⊗O(−δk)

)
≤ φ

(
Cn+1/Cn ⊗O(−δn)

)
.

Consequently:

+∞∑
n=k

φ
(
Cn+1/Cn ⊗O(−δk)

)
≤

+∞∑
n=k

φ
(
Cn+1/Cn ⊗O(−δn)

)
≤

+∞∑
n=k

(εn+1 + εn) < +∞.

Finally, for every δ in R, we may choose k such that δk ≥ δ. The trivial estimate

Σφ
(
F ⊗O(−δ), C•

)
≤

k1∑
i=0

φ
(
Ci/Ci−1)⊗O(−δ)

)
+

∞∑
i=k

φ
(
Ci/Ci−1 ⊗O(−δk)

)
shows that (5.6.4) holds. □

Definition 5.6.5. Assume that, besides Mon1 and SubAdd, the invariant φ satisfies StMon1
2.

Then a Hermitian quasi-coherent sheaf F is called φ-finite when it satisfies the equivalent conditions
in Proposition 5.6.4.

We will denote by φf -qCohX and φf -qCoh
≤1

X the full subcategories of qCohX and qCoh
≤1

X

whose objects are the φ-finite Hermitian quasi-coherent sheaves over X.

The categories CohX and Coh
≤1

X are full subcategories of φf -qCohX and φf -qCoh
≤1

X , which

themselves are full subcategories of φΣ-qCohX and φΣ-qCoh
≤1

X .

The diverse permanence properties of the φ-summability established in Section 4.5 immediately
imply similar permanence properties of the φ-finiteness. For later reference, we spell out some of
them in the following Scholium.

Scholium 5.6.6. Assume that the invariant φ satisfies conditions Mon1
K , SubAdd, StMon1

2

and Cont+ on CohX .

1) If f : F → G is a morphism in qCoh
≤1

X such that the K-linear map fK : FK → GK is
surjective and if F is φ-finite, then G is φ-finite.

16We let ε0 := φ(F ⊗O(−δ0)).
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2) If F ′
and F ′′

are φ-finite objects in qCohX and if

0 −→ F ′ i−→ F p−→ F ′′ −→ 0

is an admissible short exact sequence in qCohX , then F is φ-finite.

3) For any object E in qCohX and any two OK-submodules E1 and E2 of E, if E1 and E2 are
φ-finite, then E1 + E2 also is φ-finite.

4) Let F be an object of qCohX and let F• := (Fi)i∈N be an exhaustive filtration of F by

OK-submodules. If the subquotient17 Fi/Fi−1 is φ-finite for every i ∈ N, and if, for every δ ∈ R:
+∞∑
i=0

φ(Fi/Fi−1 ⊗O(−δ)) < +∞,

then F is φ-finite, and for every δ ∈ R:
φ(F ⊗O(−δ)) = lim

i→+∞
φ(F i ⊗O(−δ)).

5) When φ also satisfies Add⊕ on CohX , then φf -qCohX is stable under direct sums. Moreover,

for every countable family (Gi)i∈I of φ-finite Hermitian quasi-coherent sheaves, their direct sum⊕
i∈I if φ-finite if and only if, for every δ ∈ R,∑

i∈I
φ(Gi ⊗O(−δ)) < +∞.

Proof. Assertion 1) follows from Corollary 4.5.15, Assertion 2) from Proposition 4.5.12, Asser-
tion 3) from Corollary 4.5.14, Assertion 4) from Proposition 4.5.17, and Assertion 5) from Corollary
4.5.4 and Proposition 4.5.6. □

5.6.3. Criteria for φ-summability II: coincidence of φ and φ.

5.6.3.1. By combining the characterization of φ-summable objects in qCohX as the ones for
which φ is eventually vanishing established in Corollary 5.6.2 and the version of the submodularity
condition StMon1

4 for φ established in Corollary 5.5.11, one may prove the following criterion of
φ-summability:

Proposition 5.6.7. Let us assume that φ satisfies the strong monotonicity StMon1. If an
object in qCohX satisfies:

(5.6.7) φ(F) = φ(F) < +∞,
then:

evφ(F) = 0,

and therefore F is φ-summable.

Proof. Let us assume that (5.6.7) holds.

For any ε in R∗
+, we may find G in coft(F) such that:

(5.6.8) φ(F/G) > φ(F)− ε = φ(F)− ε.
As the quotient F/G is finitely generated, for every large enough element C of coh(F), the compo-
sition of the inclusion and quotient maps

C↪−→F −→ F/G
is surjective, and therefore C+G = F . Then, according to Corollary 5.5.11 (2) and to the monotonicity
of φ, the following inequalities hold:

(5.6.9) φ(F/C) + φ(F/G) ≤ φ(F/(C ∩ G)) ≤ φ(F).

17Here again, by convention, we let: F−1 = 0.
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From (5.6.8) and (5.6.9), we deduce that every large enough C in coh(F) satisfies the estimate:

φ(F/C) < ε.

This establishes the upper bound:

evφ(F) ≤ ε,
and consequently, since ε is arbitrary, the vanishing of evφ(F). In turn this implies the φ-summability
of F by Corollary 5.6.2. □

5.6.3.2. At this stage, when comparing the last propositions and the properties of the invariants

h1(C, .) = h1(C, .) and h
1
(C, .) investigated in Chapter 3, notably in Theorem 3.2.7, it is natural to

ask for some converse to the implication:

φ(F) = φ(F) < +∞ =⇒ F φ-summable

established in Proposition 5.6.7.

For instance, we may wonder if the following implication holds, for every object F in qCohX :

(5.6.10) If F is φ-summable, then for every δ ∈ R∗
+, φ(F ⊗O(δ)) = φ(F ⊗O(δ)) < +∞.

To put into perspective the implication (5.6.10), we may point out that Minkowski’s Theorem
admits the following consequence, the proof of which is presented below:

Proposition 5.6.8. For every Hermitian line bundle L over X, there exists implies a non-zero

morphism f : O(δ)→ L in Vect
≤1

X , where:

(5.6.11) δ := [K : Q]−1
(
d̂egL− (1/2) log |∆K |

)
.

Consequently the validity of (5.6.10) implies that for every φ-summable object F of qCohX and

for every Hermitian line bundle L over X such that d̂egL > (1/2) log |∆K |, the following relations
hold :

φ(F ⊗ L) = φ(F ⊗ L) < +∞.
Indeed δ defined by (5.6.11) is positive and F ⊗ L ⊗ O(−δ) is φ-summable by Proposition 4.5.9.
This property may be seen as an analogue, concerning the invariant φ instead of h1(C, .), of the
implication (3) in Theorem 3.2.7.

The formalism of numerical invariants defined over qCohX developed in this chapter and the
previous one does not appear to cover criteria for the coincidence of the lower and upper invariants
φ and φ such as (5.6.10). However when φ is the θ-invariant h1θ, we will be able to establish the

validity of (5.6.10) by resorting to the specific features of h1θ; see Section 8.4, Theorem 8.4.7 and
Proposition 8.4.11.

Proof of Proposition 5.6.8. Consider the Euclidean lattice π∗L. Under the isomorphism

(5.6.12) (π∗L)C := LK ⊗Q C ∼−→
⊕

x∈X(C)

Lx, l ⊗Q λ 7−→ (l ⊗x λ)x∈X(C),

the real subspace (π∗L)R := LK⊗QR gets identified with the fixed points of the complex conjugation:⊕
x∈X(C)

Lx −→
⊕

x∈X(C)

Lx, (lx)x∈X(C) 7−→ (lx)x∈X(C).

Moreover the Hermitian metric ∥.∥π∗L
on (π∗L)C, expressed in terms of the isomorphism (5.6.12),

takes the following form:

∥(lx)x∈X(C)∥2π∗L
=

∑
x∈X(C)

∥lx∥2L,x.
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The rank of π∗L is [K : Q], and its Arakelov degree is easily seen to be:

(5.6.13) d̂eg π∗L = d̂egL+ d̂eg π∗OX(0) = d̂egL− (1/2) log |∆K |.

The morphisms f : O(δ) → L in Vect
≤1

X may be identified by the map f 7→ f(1) to the set
of lattice points of the Euclidean lattice π∗L that lies in the compact convex subset C of (π∗L)R
defined as follows, in terms of the isomorphism (5.6.12):

C := {(lx)x∈X(C) ∈ (π∗L)R | ∀x ∈ X(C), ∥lx∥L,x ≤ e
−δ}.

A choice compatible with complex conjugation of a unit vector in each of the one-dimensional
Hermitian C-vector space Lx, x ∈ X(C), determines an isomorphism of Hermitian vector spaces
between (π∗L)C and CX(C) equipped with the Hermitian norm:

(zx)x∈X(C) 7−→ (
∑

x∈X(C)

|zx|2)1/2.

Consequently the Euclidean R-vector space (π∗Lb)R is isomorphic to18 Rr1 ×Cr2 , equipped with the
Euclidean norm

(x1, . . . , xr1 , z1, . . . , zr2) 7−→ (x21 + · · ·+ x2r1 + 2|z1|2 + · · ·+ 2|zr2 |2)1/2,
by an isomorphism which maps C to

[−e−δ, e−δ]r1 ×D(0, e−δ)r2 .

Therefore the volume of C with respect to the Lebesgue measure of (π∗L)R is:

vol(C) = (2e−δ)r1(2πe−2δ)r2 = (π/2)r2(2e−δ)[K:Q].

Clearly it satisfies the lower bound:

vol(C) ≥ (2e−δ)[K:Q],

with equality when K is totally real. Using the definition (5.6.11) of δ and the relation (5.6.8), this
inequality may also be written as follows:

vol(C) ≥ 2[K:Q] exp
(
−d̂egL+ (1/2) log |∆K |

)
= 2rkπ∗L covol(π∗L).

According to Minkowski’s First Theorem applied to the Euclidean lattice π∗L and to compact
symmetric convex subset C in (π∗L)R, the intersection of C with the set of lattice points of π∗L is
therefore not reduced to 0. □

18As usual we denote by r1 (resp. r2) the number of real (resp. complex) places of K, or equivalently the number

of orbit of cardinlaitu 1 (resp. 2) of complex conjugation acting on X(C).



Interlude:

5.7. A Summary

We conclude this part by a summary of the main results established in Chapters 4 and 5.

This summary is written to be understandable with only a knowledge of the definitions of
conditions Mon1 (monotonicity), SubAdd (subadditivity), NST (“does not see torsion”), NSAp
(“does not see the antiprojective part”), Cont+ (downward continuity), Add⊕ (additivity), and
StMon1 (strong monotonicity) introduced in Sections 4.1 and 5.2.

Let us emphasize that this summary does not reflect the logical dependences in the derivation
of these results, and omits the properties of the φ-rank attached to an invariant φ and of its lower
and upper extensions, in spite of their conceptual significance and in their role in the proof of the
most advanced of these results.

We have also omitted the definition and the properties of the φ-finite objects in qCohX , stated
in Subsection 5.6.2, that are immediately accessible after reading this summary.

In this Subsection, we consider an invariant:

φ : CohX −→ R+

that satisfies the conditions StMon1, NST, and Cont+.

5.7.1. The upper extension φ. To the invariant φ, we may associate its upper extension,

φ : qCohX −→ [0,+∞]

defined by:

φ(F) := lim inf
C∈coh(F)

φ(C)

for every object F of qCohX , where the inferior limit is taken over the directed set (coh(F),⊆) of
coherent OX -submodules of F , or equivalently of finitely generated OK-submodules of F(X) (cf.
Definitions 4.3.1 and 4.3.2).

The invariant φ indeed extends φ — namely, for every C in CohX , we have:

φ(C) = φ(C)

(cf. Proposition 4.3.4). Moreover φ satisfies the conditions Mon1 and SubAdd on qCohX (cf.
Propositions 4.3.6 and 4.3.10).

When φ is small on Hermitian coherent sheaves generated by small sections (cf. Definition
4.2.11), then φ also satisfies NSAp on qCohX (cf. 4.1.4.2 and Proposition 4.3.12).

5.7.2. The category φΣ-qCohX of φ-summable Hermitian quasi-coherent sheaves.
To any object F of qCohX , we may also associate:

evφ(F) := lim
C∈coh(F)

φ(F/C) = inf
C∈coh(F)

φ(F/C) (∈ [0,+∞]),
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where the limit and the infimum are taken over the directed set (coh(F),⊆) (cf. Definitions 4.3.1
and 4.4.1). If moreover F• := (Fi)i∈N is a filtration of the OK-module F underlying F , we let:

Σφ(F ,F•) :=

+∞∑
i=0

φ(Fi/Fi−1) (∈ [0,+∞]),

where by convention F−1 = 0. In particular, if C• := (Ci)i∈N is a filtration of F by submodules in
coh(F), we have:

Σφ(F , C•) = Σφ(F , C•) :=
+∞∑
i=0

φ(Ci/Ci−1).

(cf. Definition 4.5.2 and Proposition 4.5.17.) An object F of qCohX is called φ-summable when
there exists an exhaustive filtration C• of F by submodules in coh(F) such that

Σφ(F , C•) < +∞

(cf. Definition 4.5.2). When this holds, we have:

φ(F) = lim
k→+∞

φ(Ck) ∈ R+

(cf. Theorem 4.5.1). Moreover, an object F of qCohX is φ-summable if and only if

evφ(F) = 0

(cf. Corollary 5.6.2).

The objects of CohX are clearly φ-summable. Moreover the φ-summable objects of qCohX
satisfy the following permanence properties:

(1) Let F be an object of qCohX , and let F• := (Fi)i∈N be an exhaustive filtration of the

OK-module F underlying F . If the subquotients Fi/Fi−1 are φ-summable and if

Σφ(F ,F•) < +∞,

then F is φ-summable and

φ(F) = lim
i→+∞

φ(F i)

(cf. Proposition 5.6.3).

(2) Let f : F → G be a morphism in qCoh
≤1

X . If F is φ-summable and if the K-linear map
fK : FK → GK is surjective, then G is φ-summable (cf. Corollary 4.5.15).

If we denote by φΣ-qCohX the subcategory of φ-summable objects in qCohX , then the invariant

φ : φΣ-qCohX −→ R+

satisfies the conditions Cont (cf. Proposition 4.5.16) and a version of StMon1 (cf. Proposition
5.5.8 and Corollaries 5.5.9 to 5.5.12).

5.7.3. The lower extension φ. To the invariant φ, we may also attach its lower extension

φ : qCohX −→ [0,+∞]

defined by:

φ(F) := lim
F ′∈coft(F)

φ(F/F ′) = sup
F ′∈coft(F)

φ(F/F ′),

where the limit is taken over the directed set (coft(F),⊇), defined by the set coft(F) of OK-
submodules G of F such that the quotient OX -module F/G is coherent (cf. Definition 4.3.2).

The lower extension φ still extends φ, and for every object F in qCohX , it satisfies:

φ(F) ≤ φ(F)
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(cf. Proposition 4.3.4). The invariant φ satisfies the conditions Mon1, SubAdd, NSAp, and

StMon1 on qCohX (cf. Propositions 4.3.6, 4.3.10, 4.3.12, and Corollary 5.4.7). Moreover its
restriction to the subcategory of qCohX where it takes finite values satisfies the condition Cont+

(cf. Proposition 5.4.9).

Any object F of qCohX such that

φ(F) = φ(F) < +∞
is φ-summable (cf. Proposition 5.6.7).

5.7.4. Additivity. Let us assume that φ also satisfies the condition Add⊕ on CohX .

Then φ satisfies Add⊕ on φΣ-qCohX ; more generally, for any countable family (F i)i∈I of
φ-summable objects in qCohX such that∑

i∈I
φ(F i) < +∞,

the direct sum
F :=

⊕
i∈I
F i

is φ-summable and satisfies

φ(F) =
∑
i∈I

φ(F i)

(cf. Proposition 4.5.6).

Moreover, for any countable family (F i)i∈I of objects in qCohX of direct sum F as above, we
have:

φ(F) =
∑
i∈I

φ(F i)

(cf. Proposition 4.3.8).
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CHAPTER 6

Covering Radius of Euclidean Quasi-coherent Sheaves and
Elementary Infinite-Dimensional Geometry of Numbers

6.0.1. Our purpose in this monograph is to develop a theory of Hermitian quasi-coherent sheaves
suited to Diophantine applications. More specifically, our aim is to develop a theory of invariants
attached to Hermitian quasi-coherent sheaves that play the role of the invariant

h1(C,F) := dimkH
1(C,F)

attached to a quasi-coherent sheaf F on a projective curve C over some base field k. We are notably
interested in the Hermitian quasi-coherent sheaves F on which such “h1-like invariants” take a finite
value.

Consider for instance Hermitian quasi-coherent sheaves over the arithmetic curve SpecZ, also
called Euclidean quasi-coherent sheaves in this monograph. By definition, these are pairs F :=
(F, ∥.∥) consisting in a countably generated1 Z-module M and a Euclidean seminorm ∥.∥ on the
R-vector space MR := M ⊗Z R. The finiteness of the invariants alluded to above (for instance the

finiteness of the upper θ-invariant h
1

θ(F )) turns out to mean that, in a sense to be made precise,
every point of FR may be well approximated, in terms of the seminorm ∥.∥, by some “integral point,”
namely by some element of the image M/tor ≃M/Mtor of the canonical map M →MR.

In this chapter, we study invariants of a Euclidean quasi-coherent sheaf M that are defined
in elementary terms, in the spirit of the classical geometry of numbers,2 and whose finiteness, or
eventual vanishing, also expresses the notion that the points of MR may be well approximated by
points of M/tor.

Among those elementary invariants of a Euclidean quasi-coherent sheaf M := (M, ∥.∥), the
covering radius ρ(M) will play a central role. It is defined by the following formula, which is a
straightforward generalization of the expression of the classical covering radius of Euclidean lattices:

(6.0.1) ρ(M) := sup
x∈MR

inf
m∈M/tor

∥x−m∥ ∈ [0,+∞].

The terminology “covering radius” expresses the fact that ρ(M) is the infimum of the positive real
numbers R such that MR is covered by the union of the open balls of radius R of centers the points
m of M/tor, that is such that:

MR =
⋃

m∈M/tor

{
x ∈MR | ∥x−m∥ < R

}
.

This chapter is basically devoted to the study of the covering radius ρ and of diverse extensions
and variants of it. In the final chapter of this monograph, we shall study the relations of this invariant

ρ with the more sophisticated θ-invariants h1θ and h
1

θ, relations that actually play a key role in the
Diophantine applications of θ-invariants. In contrast, the present chapter is of a rather elementary
nature, and extends basic properties of diverse simple invariants attached to (finite dimensional)
Euclidean lattices in the infinite dimensional framework of Euclidean quasi-coherent sheaves.

1or equivalently, countable
2which is concerned with (finite dimensional) Euclidean lattices.
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In accordance with this elementary character, this chapter has been written to be readable
with a minimal knowledge of the material introduced in the previous chapters.3 To minimize its
prerequisites, we have at several places given simple direct proofs of statements that are special cases
of results previously established in Chapters 4 and 5.

This chapter has also been written for an audience of diverse background. As for the remaining of
this monograph, the readership we firstly have in mind are the (less than ideal) arithmetic geometers
with no familiarity with classical geometry of numbers. For this reason, we have discussed in some
detail some basic facts of geometry of numbers, for instance concerning Voronoi cells in Section 6.2.
However we hope that this chapter will also be of interest to mathematicians or computer scientists
with already some expertise in Euclidean lattices. Indeed our “infinite dimensional perspective”
has led us to establish some new results concerning Euclidean lattices, for instance the elementary
formulae concerning Euclidean lattices of rank 2 in Section 6.2.3, and various estimates between
invariants of Euclidean lattices in Section 6.4, notably Corollary 6.4.16.

In spite of its elementary character, two of the central themes of this monograph already appears
in this chapter. Namely, in Section 6.4, the replacement, in estimates relating various invariants of
objects or morphisms in qCohZ, of the Euclidean seminorm ∥.∥ defining a Euclidean quasi-coherent
sheaf M := (M, ∥.∥) by a Euclidean seminorm ∥.∥′ on MR that is Hilbert-Schmidt relatively to ∥.∥.
And, in Section 6.7, the development of some relative geometry of numbers, which concerns not only
objects in qCohZ, but also morphisms between those.

6.0.2. Let us describe in more detail the content of this chapter.

Section 6.1 is devoted to the basic properties of the covering radius ρ, defined by the expression
(6.0.1) above. These properties actually demonstrate that the “right” invariant to consider is not the
covering radius ρ, but rather its square ρ2. The latter actually satisfies the properties of monotonicity
Mon1, of subadditivity SubAdd, and of additivity Add⊕ introduced in Section 4.1.

Section 6.2 discusses covering radii of Euclidean lattices in relation with the geometry of their
Voronoi cell. The content of this section will be of limited use in the remaining of this monograph.4

However it provides some useful geometric insight on covering radius — and actually suggests prop-
erties of this invariant that still hold in the infinite dimensional case, and geometric arguments to
establish them.5 The consideration of Voronoi cells, and the precise description of covering radii of
Euclidean lattices of rank 2 it leads to, also allows us to show that the invariant ρ2 does not satisfies
the strong monotonicity property StMon1 introduced in Chapter 5.

In Section 6.3, we resume our discussion of general properties of the invariants ρ and ρ2. We
establish their compatibility with the vectorization in CohZ and with the canonical dévissage in
qCohZ, and we discuss their continuity properties over CohZ. We also introduce and we discuss the
lower and upper covering radii ρ and ρ deduced from the invariant ρ on CohZ by the constructions
introduced in Section 4.3. These are variants of the invariant ρ, which are defined in terms of
“finite-rank approximations” of objects of qCohZ, and turn out to satisfy better properties than
the “naive” invariant ρ and to naturally occur in Diophantine applications.

In Section 6.4, we introduce two other basic invariants attached to a Euclidean quasi-coherent
sheaf M := (M, ∥.∥), the invariants λ[0](M) and γ(M). The invariant λ[0](M) (resp. γ(M)) is
defined as the infimum of the R ∈ R∗

+ such that the set of integral points of seminorm less than R,

3Notably we work over SpecZ, and not over an arbitrary arithmetic curve X = SpecOK . Accordingly only the

categories of Euclidean quasi-coherent sheaves qCohZ and qCoh
≤1
Z will be involved, and not the general categories

of Hermitian quasi-coherent sheaves qCohX and qCoh
≤1
X . From Chapters 4 and 5, we will basically only use the

terminology concerning properties of invariants introduced in Section 4.1, and the construction of the upper and lower
extensions to qCohZ of invariants on CohZ in Section 4.3.

4With the notable exception of the derivation of comparison estimates between θ-invariants and covering radii
in Section 9.1.

5See for instance the proof of the inequality γ(M) ≤ 2ρ(M) in 6.4.2 below.
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namely: {
m ∈M/tor | ∥m∥ < R

}
,

generates a R-subvector space of MR dense in MR for the topology defined by the seminorm ∥.∥
(resp. generates the Z-module M/tor).

The invariant λ[0](M) is a generalization, defined for an arbitrary Euclidean quasi-coherent sheaf
M , of the last of the successive minima classically attached to a Euclidean lattice. The invariant
γ(M) attached to Euclidean lattices does not seem to be explicitly investigated in the literature,
although it appears implicitly in various places.

These invariants λ[0](M) and γ(M) have definitions that are arguably still more elementary than
the one of the covering radius ρ(M), but they enjoy less satisfactory formal properties. However
simple comparison estimates relate the invariants ρ, λ[0], and γ. For instance, in Subsection6.4.2,
we establish the following inequalities:

λ[0](M) ≤ γ(M) ≤ 2ρ(M).

Estimates in the opposite direction — for instance an upper bound on ρ(M) in terms of γ(M)
— are easily seen not to be satisfied for M an arbitrary object in qCohZ. However such estimates
do hold when one restricts to Euclidean lattices of some given rank n, but involve some constant
depending on n. For instance, one may prove that for any Euclidean lattice E of rank n, the following
inequality holds:

(6.0.2) ρ(E) ≤
√
n/2λn(E).

It turns out that dimension dependent estimates like (6.0.2) have infinite dimensional coun-
terparts that concern an arbitrary Euclidean quasi-coherent sheaf M := (M, ∥.∥) together with a
second Euclidean seminorm ∥.∥′ on the R-vector space MR. These estimates involve the relative
trace6 Tr(∥.∥′2/∥.∥2) of the associated semipositive quadratic forms ∥.∥′2 and ∥.∥2 on MR in place of
the rank n of a Euclidean lattice.

For instance, with this notation, we will show in 6.4.3 that the following inequality holds:

(6.0.3) ρ(M, ∥.∥′) ≤
√
Tr(∥.∥′2/∥.∥2)/2 λ[0](M, ∥.∥).

When M is a Euclidean lattice of rank n and ∥.∥′ = ∥.∥, then:
Tr(∥.∥′2/∥.∥2) = n,

and the estimate (6.0.3) specializes to the classical estimate (6.0.2).

The consideration of pairs of Euclidean seminorms ∥.∥ and ∥.∥′ that satisfy the Hilbert-Schmidt
condition:

(6.0.4) Tr(∥.∥′2/∥.∥2) < +∞
— the validity of which is required for the estimate (6.0.3) to be non-trivial — will be a central
feature of the infinite dimensional geometry of numbers developed in this monograph.

Such pairs of seminorms will notably appear in the comparison estimates relating θ-invariants
and covering radii established in the final chapter of this monograph, and the role of the Hilbert-
Schmidt condition (6.0.4) is to be compared to the one it plays in measure theory on infinite di-
mensional topological vector spaces, as demonstrated by the classical work of Prokhorov, Sazonov,
and Minlos (see Appendix C). Moreover pairs of Euclidean seminorms satisfying condition (6.0.4)
naturally occur in Diophantine applications, as a consequence of the nuclearity properties of spaces
of sections of analytic coherent sheaves.

Section 6.5 is devoted to the property of eventual vanishing of the invariants ρ, λ[0], and γ.

6The definition and the basic properties of relative traces of semipositive quadratic forms are recalled in Appen-

dix B.
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These invariants indeed satisfy the monotonicity conditionMon1, and consequently, if φ denotes
one of them, we may consider the invariant evφ defined in Section 4.4 as follows. Let M := (M, ∥.∥)
be a Euclidean quasi-coherent sheaf, and let coh(M) denote the set of finitely generated submodules
of M . The monotonicity of φ implies that the function:

coh(M) −→ [0,+∞], C 7−→ φ(M/C)

is non-increasing on the directed set (coh(M),⊆), and we may consider the limit:

evφ(M) := lim
C∈coh(M)

φ(M/C) = inf
C∈coh(M)

φ(M/C).

We say that the invariant φ is eventually vanishing on M when evφ(M) vanishes.

When φ is one of the invariant ρ, λ[0], or γ, the eventual vanishing of φ turns out to admit
various equivalent formulations that we establish in Section 6.5. The eventual vanishing of each of
these three invariants on some some Euclidean quasi-coherent sheaf M expresses that, in a suitable
sense, every point of MR admits arbitrarily good approximations by points in M/tor, up to some
finite dimensional error. We also investigate the relations between these three eventual vanishing
properties.

In classical geometry of numbers, to a Euclidean lattice E of rank n are associated sequences of
n invariants, notably its successive minima (λ1(E, . . . , λn(E)). In Section 6.6, we discuss analogous
constructions of sequences of invariant in our infinite dimensional setting. These sequences are
indexed by some integer i ∈ N, and appear in two guises, depending on whether i represents either
the dimension or the codimension of some auxiliary finite dimensional subspace or quotient space.
In this way, we introduce some invariants λi and λ

[i], γi and γ
[i], and ρi and ρ

[i], that generalize the
invariants λ[0], γ, and ρ investigated in the previous sections.

Finally, in Section 6.7, we introduce a relative variant of the covering radius of objects of qCohZ,

associated to morphisms in qCoh
≤1

Z . Since the covering radius ρ and its square ρ2 do not satisfy
the strong monotonicity condition StMon1 introduced in Chapter 5, we do not define it as a “rank
invariant,” by means of the formalism of Sections 5.1 and 5.2. Instead we directly define the relative
covering radius of a morphism f :M → N in qCohZ as:

ρ(f) :=:= sup
x∈MR

inf
n∈N/tor

∥fR(x)− n∥ ∈ [0,+∞],

and we prove that it satisfies properties formally analogous to the ones of the φ-rank attached to a
strongly monotonic invariant φ that have been presented in Section 5.2.

By definition, ρ(f) is the supremum over the real vector space fR(MR) of the distance to N/tor.

When f is the identity morphism IdM of some objectM in qCohZ, ρ(f) coincides with the covering

radius of M , and accordingly the relative covering radius ρ(f) is a generalization of the invariant
ρ(M) investigated in the previous sections. Various properties of the covering radius may be extended
to the relative covering radius, which like the covering radius admits a lower and upper variant.

The results in Section 6.7 might at this stage appear as rather formal generalizations. However
they will play a key role in Chapter 9, in the comparison of covering radii and θ-invariant and in its
applications to density theorems.

6.0.3. In this chapter, we will use the following notation.

If M := (M, ∥.∥) is a Euclidean quasi-coherent sheaf, that is, an object of qCohZ, we denote
by M/tor the quotient M/Mtor of M by its torsion submodule, and we identify it to the image of M
in MR.

We write MR for the pair (MR, ∥.∥), which defines a “seminormed” real vector space. If m is an
element of M , we denote by mR its image in M/tor seen as a submodule of MR, and we let:

∥m∥ := ∥mR∥.
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Moreover, for every R ∈ R∗
+, we let:

B(M ;R) := {m ∈M | ∥m∥ < R} and B(M ;R) := {m ∈M | ∥m∥ ≤ R} ,
and:

B(MR;R) := {v ∈MR | ∥v∥ < R} and B(MR;R) := {v ∈MR | ∥v∥ ≤ R} .

Finally we denote by coh(M) (resp. coft(M), resp. scoft(M)) the set of the Z-submodules N
of M such that N is finitely generated (resp. M/N is finitely generated, resp. M/N is finitely
generated and torsion free).

We also use the basic notions and notation concerning pairs of Euclidean seminorms recalled
in Appendices A and B, notably the definitions of boundedness and compactness of a Euclidean
seminorm ∥.∥′ with respect to another one ∥.∥, of the relative supremum sup(∥.∥′/∥.∥), and of the
relative trace Tr(∥.∥′2/∥.∥2).

6.1. The Covering Radius of Euclidean Quasi-coherent Sheaves I. Definitions and
Basic Properties

6.1.1. Definition of the covering radius.

Definition 6.1.1. The covering radius of a Euclidean quasi-coherent sheaf M := (M, ||.||) is
the element of [0,+∞]:

ρ(M) := sup
x∈MR

inf
m∈M/tor

||x−m||.

Equivalently, ρ(M) is the supremum over MR of the function “distance to M/tor”:

(6.1.1) dM (.,M/tor) :MR −→ R+, x 7−→ inf
m∈M/tor

||x−m||.

The above definition of ρ(M) may also be rephrased as the equivalence, for every R ∈ R+, of
the following two conditions:

(1) ρ(M) ≤ R;
(2) for every R′ ∈ (R,+∞), MR =M/tor +B(MR;R

′).

When M is a Euclidean lattice — namely, when M is a finitely generated and torsion free,
and ∥.∥ is a Euclidean norm — the invariant ρ(M) is the classical covering radius, traditionally
considered in geometry of numbers.7

Let us formulate a few simple observations, which are straightforward consequences of the above
definition of the covering radius.

Firstly, the covering radius ρ(M, ||.||) is an increasing function of ∥.∥, and “does not see torsion”;
namely, for every Euclidean quasi-coherent sheaf M, we have:

ρ(M) = ρ(M/tor).

Moreover ρ(M) vanishes if and only if Mtor is dense in (MR, ∥.∥), and is finite when MR is a finite
dimensional R-vector space.

The covering radius ρ(M) of a Euclidean quasi-coherent sheafM = (M, ∥.∥) is a 1-homogeneous
function of the seminorm ∥.∥. Equivalently, for every δ ∈ R, we have:

(6.1.2) ρ(M ⊗O(δ)) = e−δ ρ(M).

7For classical results on the covering of radius of Euclidean lattices, we refer the reader to [Cas71, Chapter

XI] where it is noted µ, and to [CS99, Section 2.1.2] where it is noted R. See also [MG02, Chapters 7 and 8] and
[GMR05] for properties of the covering radius of Euclidean lattices from the perspective of lattice based cryptography

and complexity theory.
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When the Z-module M is cyclic with generator m, its covering radius is simply:

(6.1.3) ρ(Zm, ∥.∥) = ∥m∥/2.

Observe finally that, if M1 and M2 denote two Euclidean quasi-coherent sheaves, then we have:

(6.1.4) dM1⊕M2
((x1, x2),M1/tor ⊕M2/tor)

2 = dM1
(x1,M1/tor)

2 + dM2
(x2,M2/tor)

2,

for every (x1, x2) in M1,R ⊕M2,R, and consequently the following equality holds:

(6.1.5) ρ(M1 ⊕M2)
2 = ρ(M1)

2 + ρ(M2)
2.

In other words, the invariant ρ2 satisfies the additivity property Add⊕ introduced in 4.1.5 above.

The equality (6.1.5) is a first instance of the fact, which will be amply confirmed in the this
chapter and in Chapter 9, that the square of the covering radius is often a better behaved invariant
than the covering radius itself.

6.1.2. Semicontinuity, monotonicity, and countable aditivity properties. The invari-
ant ρ satisfies the following lower semicontinuity property:

Proposition 6.1.2. LetM := (M, ∥.∥) be a Euclidean quasi-coherent sheaf. For every increasing
family (Mi)i∈N of submodules of M such that M =

⋃
i∈NMi, we have:

(6.1.6) ρ(M) ≤ lim inf
i→∞

ρ(M i),

where M i := (Mi, ∥.∥Mi,R).

Proof. Let R′ be a positive real number such that

R′ > lim inf
i→∞

ρ(M i).

After replacing the sequence (Mi)i∈N by a suitable subsequence, we may assume that, for every
i ∈ N, we have:

R′ > ρ(M i),

and consequently:

Mi,R =Mi/tor +B(M i,R;R
′).

Since MR (resp. M/tor, resp. B(MR;R
′)) is the increasing union of the Mi,R (resp. Mi/tor, resp.

B(M i,R;R
′)), this implies the equality:

MR =M/tor +B(MR;R
′).

This establishes the estimate ρ(M) ≤ R and proves (6.1.6). □

Example 6.1.3. The inequality in (6.1.6) may be strict. Consider for instance the Euclidean
quasi-coherent sheafM whereM := Q(N) — so thatMR = R(N) — and where ∥(xk)k∈N∥ :=

∑
k∈N x

2
k,

and define, for every i ∈ N:

Mi := {(xk)k∈N ∈ Q(N) | xi ∈ Z and xk = 0 if k > i}.

Then one easily checks that the covering radii of M and of the M i satisfy:

ρ(M) = 0 and ρ(M i) = 1/2 for every i ∈ N.

Proposition 6.1.4. Let f :M → N be a morphism in qCoh
≤1

Z . If the image of fR :MR → NR
is dense in MR, then:

(6.1.7) ρ(M) ≥ ρ(N).
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The image of fR is clearly dense when fR is surjective, that is when fQ is surjective, or equiv-
alently when coker f := N/f(M) is a torsion Z-module. Consequently, as a special case, Proposi-

tion 6.1.4 asserts that the invariant ρ on qCoh
≤1

Z , and therefore ρ2 also, satisfies the monotonicity
condition Mon1

Q introduced in 4.1.4.

Proof. Let us consider R′ in (ρ(M),+∞), and let us choose R′′ in (ρ(M), R′). We have:

(6.1.8) MR =M/tor +B(MR;R
′′).

Moreover, fR(M/tor) ⊆ N/tor, and, since fR has norm at most one,

fR(B(MR;R
′′)) ⊆ B(NR;R

′′).

Therefore, applying fR to both sides of (6.1.8), we get:

fR(MR) ⊆ N/tor +B(NR;R
′′).

Since fR(NR) is dense in NR, this implies:

NR = N/tor +B(NR;R
′),

and completes the proof of (6.1.7). □

Using Propositions 6.1.2 and 6.1.4, we may extend the additivity property (6.1.5) of ρ2 to
countable direct sums:

Corollary 6.1.5. For every countable family (M i)i∈I of Euclidean quasi-coherent sheaves, the
following equality holds in [0,+∞]:

ρ
(⊕
i∈I

M i

)2
=
∑
i∈I

ρ(M i)
2.

Proof. According to the additivity (6.1.5) of ρ2, for every finite subset F of I, we have:

(6.1.9) ρ(
⊕
i∈F

M i)
2 =

∑
i∈F

ρ(M i)
2.

Moreover, since the projection

pF :
⊕
i∈I

M i −→
⊕
i∈F

M i, (xi)i∈I 7−→ (xi)i∈F

is surjective of norm ≤ 1, we have, as a special instance of Proposition 6.1.4:

ρ(M) ≥ ρ(
⊕
i∈F

M i).

Consequently:

ρ(M)2 ≥
∑
i∈F

ρ(M i)
2,

and therefore, as F is arbitrary:

ρ(M)2 ≥
∑
i∈I

ρ(M i)
2.

Consider an increasing sequence (Fk)k∈N of subsets of I such that I =
⋃
k∈N Fk. By using

successively Proposition 6.1.2 and (6.1.9) with F = Fk, we also have:

ρ(M)2 ≤ lim inf
k→+∞

ρ(
⊕
i∈Fk

M i)
2 = lim inf

k→+∞

∑
i∈Fk

ρ(M i)
2 =

∑
i∈I

ρ(M i)
2. □

6.1.3. Covering radius and admissible short exact sequences.
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6.1.3.1. The invariant ρ2 on qCohZ satisfies the subadditivity condition SubAdd introduced
in Subsection 4.1.2. Namely, we have:

Proposition 6.1.6. For any admissible short exact sequence in qCohZ,

0 −→M
′ −→M

f−→M
′′ −→ 0,

the following inequality holds:

(6.1.10) ρ(M)2 ≤ ρ(M ′
)2 + ρ(M

′′
)2.

The significance of the subaddivity inequality (6.1.10) when M , M
′
, and M

′′
are Euclidean

lattices has been emphasized in the work of Shapira and Weiss; see [SW16, Section 5.1 and Lemma
5.3]. The subadditivity inequality (6.1.10) for Euclidean lattices is also crucially used, although not
stated explicitly, in [RSD17b]; see notably the proof of Proposition 6.4 in [RSD17b].

As indicated in [SW16], the inequality (6.1.10) for Euclidean lattices goes back to the article
of Woods [Woo65], where a special case is stated in Lemma 2 and is established by an argument
valid for general Euclidean lattices.

Proof. Let us write M = (M, ∥.∥), M ′
= (M ′, ∥.∥′), and M ′′

= (M ′′, ∥.∥′′), and let us denote
by ⟨., .⟩ the scalar product on MR that defines the Euclidean seminorm ∥.∥. Let us consider x ∈MR

and two positive real numbers R′ ∈ (ρ(M
′
),+∞) and R′′ ∈ (ρ(M

′′
),+∞).

We may find m′′ ∈ M ′′
/tor and b′′ ∈ M ′′

R such that p(x) = m′′ + b′′ and ∥b′′∥′′ ≤ R′′. Then we

may choose m in M/tor such that m′′ = pR(m) and a sequence (b̃i)i∈N in p−1
R (b′′) such that:

lim
i→+∞

∥b̃i∥ = ∥b′′∥′′.

The sequence (b̃i)i∈N is a Cauchy sequence in (MR, ∥.∥), and for every y in M ′
R = ker pR, we have:

(6.1.11) lim
i→+∞

⟨b̃i, y⟩ = 0.

Indeed, we may consider the completions M cpt
R,∥.∥ and M ′′cpt

R,∥.∥′ of (MR, ∥.∥) and (M ′′
R , ∥.∥′′), and the

continuous linear map f cptR : M cpt
R,∥.∥ → M ′cpt

R,∥.∥ that extends fR. Then the image in M cpt
R,∥.∥ of the

sequence (b̃i)i∈N converges to the unique element of f cpt−1
R ([b′′]) orthogonal to ker f cptR . Indeed this

kernel coincides with the closure in M cpt
R,∥.∥ of (the image) of M ′

R, and may be identified with the

completion M cpt
R,∥.∥ of (M ′

R, ∥.∥′).
For every i ∈ N, we let:

x′i := x−m− b̃i.
It is an element of M ′

R, and we may choose m′
i ∈ M ′

/tor and b′i ∈ M ′
R such that x′i = m′

i + b′i and

such that ∥b′i∥ = ∥b′i∥′ satisfies the upper bound ∥b′i∥ ≤ R′.

Then, for every i ∈ N, we have:

x = m+ b̃i + x′i = m+m′
i + b′i + b̃i,

where m+m′
i belongs to M/tor. Moreover, using that (bi)i∈N (resp. (b̃i)i∈N) is bounded in (M ′

R, ∥.∥)
(resp. is a Cauchy sequence in (MR, ∥.∥)), and (6.1.11), we get:

lim
i→+∞

⟨b′i, b̃i⟩ = 0,

and therefore:
lim

i→+∞
(∥b′i + b̃i∥2 − ∥b′i∥2) = lim

i→+∞
∥b̃i∥2 = ∥b′′∥′′2.

This establishes the estimates:

lim sup
i→+∞

∥x− (m+mi)∥2 = lim sup
i→+∞

∥b′i + b̃i∥2 ≤ sup
i∈I
∥b′i|2 + ∥b′′∥′′2 ≤ R′2 +R′′2,
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and completes the proof of (6.1.10). □

Combined with the semicontinuity and the monotonicity of the covering radius established in
Subsection 6.1.2, Proposition 6.1.6 allows us to establish the following countable subadditivity prop-
erty of ρ2:

Corollary 6.1.7. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf and let (Mi)i∈N be an
increasing sequence of Z-submodules of M . For any i ∈ N, let ∥.∥i be the Euclidean semi-norm on

(Mi/Mi−1)R ≃ Mi,R/Mi−1,R quotient of ∥.∥|Mi,R and let Mi/Mi−1 be the Euclidean quasi-coherent
sheaf (Mi/Mi−1, ∥.∥i), where by convention M−1 := {0}.

If the R-vector space
⋃
i∈NMi,R is dense in MR, then we have:

ρ(M)2 ≤
+∞∑
i=0

ρ(Mi/Mi−1)
2.

Proof. Let us introduce the Z-submodule M∞ :=
⋃
i∈NMi of M and the Euclidean quasi-

coherent sheaf M∞ := (M∞, ∥.∥|M∞,R). Then the following inequalities hold:

ρ(M)2 ≤ ρ(M∞)2(6.1.12)

≤ lim inf
k→∞

ρ(Mk)
2(6.1.13)

≤ lim inf
k→∞

k∑
i=0

ρ(Mi/Mi−1)
2 =

+∞∑
i=0

ρ(Mi/Mi−1)
2.(6.1.14)

Indeed (6.1.12) follows from Proposition 6.1.4 applied to the inclusion morphism M∞ ↪→ M ; the
inequality (6.1.13) follows from Proposition 6.1.2, and (6.1.14) from Proposition 6.1.6. □

6.1.3.2. The following lifting result highlights the cohomological character of the covering radius:

Proposition 6.1.8. Consider an admissible short exact sequence in qCohZ:

0 −→M
′ −→M

p−→M
′′ −→ 0.

For every m′′ ∈M ′′ and every ε ∈ R∗
+, there exists m ∈M such that:

(6.1.15) f(m) = m′′

and

(6.1.16) ∥m∥2
M
≤ ∥m′′∥2

M
′′ + ρ(M

′
)2 + ε.

When M , and therefore M
′
and M

′′
, are Euclidean lattices, the conclusion of Proposition 6.1.8

still holds when ε = 0. This follows from Proposition 6.1.8 together with a straightforward finiteness
argument, or from an easy variant of the proof below.

Proof. Choose m̃ in M such that p(m̃) = m′′, and a sequence (m⊥
i )i∈N in MR such that, for

every i ∈ N:
pR(m

⊥
i ) = m′′

R

and:

(6.1.17) lim
i→+∞

∥m⊥
i ∥M = ∥m′′

R∥M ′′ .

Then (m⊥
i )i∈N is a Cauchy sequence in (MR, ∥.∥M ). Its limit in the completion M cpt

R,∥.∥M
of

(MR, ∥.∥M ) is actually orthogonal to (the image of) M ′′
R .
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Moreover, for every i ∈ N, m̃R −m⊥
i belongs to ker pR = M ′′

R , and we may choose m′′
i in M ′′

such that:

(6.1.18) ∥m̃R −m⊥
i −m′′

iR∥2 ≤ ρ(M
′
)2 + ε/2.

Then, for every i ∈ N, the difference:

mi := m̃−m′′
i

is an element of M which satisfies:

p(mi) = m′′.

Moreover we have:

miR = m̃R −m′′
iR = (m̃R −m⊥

i −m′′
iR) +m⊥

i .

Since (m̃R−m⊥
i −m′′

iR)i∈N is a bounded sequence in (M ′′
R , ∥.∥M ′′) and (m⊥

i )i∈N converges inM cpt
R,∥.∥M

to a vector orthogonal to the image of M ′′
R , this implies:

(6.1.19) lim
i→+∞

(
∥miR∥2M − ∥m̃R −m⊥

i −m′′
iR∥2M − ∥m

⊥
i ∥2M

)
= 0.

Using (6.1.17), (6.1.18), and (6.1.19), we obtain:

lim sup
i→+∞

∥miR∥2M ≤ ρ(M)2 + ε/2 + ∥m′′∥2
M

′′ ,

and, for i large enough, m := mi satisfies (6.1.15) and (6.1.16). □

6.2. Covering Radius and Voronoi Cells of Euclidean Lattices

In this section, we discuss how the properties of the covering radius of Euclidean lattices are
closely related to the geometry of their Voronoi cells.

These relations provide some geometric insight on the properties of the covering radius estab-
lished in the previous section, and will also play a key role when comparing the covering radius of
Euclidean lattices and Euclidean quasi-coherent sheaves to some others of their invariant, notably
in Subsection 6.4.2 and Section 9.1.

They are also useful when investigating the covering radius of specific Euclidean lattices. For
instance, we shall use the interpretation of the covering radius in terms of Voronoi cells to construct
an example showing that, although the invariant ρ2 on CohZ satisfies the properties Mon1

Q and

SubbAdd introduced in Chapter 4, it does not satisfies the strong monotonicity property StMon1

investigated in Chapter5.

6.2.1. Voronoi cells of Euclidean lattices. In this subsection, we recall a few basic facts
concerning the Voronoi cells of Euclidean lattices. We refer to [CS99, Section 2.1 and Chapter 21]
or [Mar03, Section 1.8] for more details and additional references concerning this topic.

LetM := (M, ∥.∥) be a Euclidean lattice of positive rank, and let us denote by ⟨., .⟩ the Euclidean
scalar product on MR that defines ∥.∥. Its Voronoi cell V(M) is the set of points x in MR such that
the distance minm∈M ∥x−m∥ of x to M is attained at m = 0. In other words:

V(M) : =
{
x ∈MR | ∀m ∈M, ∥x∥ ≤ ∥x−m∥

}
=

⋂
m∈M\{0}

{
x ∈MR | 2⟨m,x⟩ ≤ ⟨m,m⟩

}
.

By considering the tesselation of MR by the translates V(M) +m of V(M) by vectors m in M,
one establishes the following facts:
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(i) The Voronoi cell V(M) is a polytope in MR (that is, the convex hull of a finite subset of
MR). Its set of facets — that is, of faces of dimension rkM − 1 — is in bijection with the
set F of its facet (or Voronoi-relevant) vectors, defined as the elements m in M \ {0} such
that the polytope

V(M) ∩ (V(M) +m)

has dimension rkM − 1. The facet associated to m ∈ F coincides with this intersection,
and admits the vector m/2 as center of symmetry.

(ii) Let us denote by V(M)0 the set of vertices, or equivalently of extremal points or of zero-
dimensional faces, of V(M). Then the following equalities hold:

(6.2.1) ρ(M) = max
x∈V(M)

∥x∥ = max
x∈V(M)0

∥x∥.

Actually the set M + V(M)0 of translates of these vertices by M is precisely the set of
points in MR where the distance function

dM (.,M) :=MR −→ R+, v 7−→ inf
m∈M

∥v −m∥

achieves a local maximum. These points are the holes of the lattices; among them, those
at distance ρ(M) from M are the deep holes.

(iii) The set F of facet vectors generates the Z-module M . A vector f ∈ M \ {0} is a facet
vector if and only if the minimum value of ∥.∥ on the coset f +2M is achieved precisely at
f and −f .

6.2.2. The monotonicity and subadditivity of ρ2 and the geometry of Voronoi cells.
Consider an admissible short exact sequence of Euclidean lattices:

0 −→ F ↪−→E p−→ E/F −→ 0.

According to Propositions 6.1.4 and 6.1.6, the following relations holds between their covering radii:

(6.2.2) ρ(E/F )2 ≤ ρ(E)2 ≤ ρ(F )2 + ρ(E/F )2.

The following relations involving the Voronoi cells of these Euclidean lattices provide a geometric
interpretation of these inequalities.

Proposition 6.2.1. With the above notation, let

s⊥ : (E/F )R
∼−→ F⊥

R ↪−→ER

be the orthogonal splitting of the surjective R-linear map pR : ER → (E/F )R. The following inclusion
holds:

(6.2.3) s⊥(V(E/F )) ⊆ V(E).

Moreover, we have:

(6.2.4) E + V(F ) + s⊥(V(E/F )) = ER.

By definition, s⊥R is the composition

s⊥ : (E/F )R
∼−→ F⊥

R ↪−→ER,

where F⊥
R denotes the orthogonal complement of FR in the Euclidean R-vector space ER, and

coincides with the adjoint of the R-linear map pR from ER to E/FR In particular, it is an isometry

from E/FR to ER, and therefore the inclusion (6.2.3) immediately implies the inequality:

ρ(E/F ) ≤ ρ(E).
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Moreover the equality (6.2.4) implies the following relations:

(6.2.5) ρ(E)2 ≤ max
w∈V(F )+s⊥(V(E/F ))

∥w∥2 = max
u∈V(F )

max
v∈V(E/F )

(∥u∥2 + ∥v∥2)

= max
u∈V(F )

∥u∥2 + max
v∈V(E/F )

∥v∥2 = ρ(F )2 + ρ(E/F )2.

Proof of Proposition 6.2.1. For every z in ER/FR and any e in E, we have:

s⊥(z).e = z.p(e).

When z belongs to V(E/F ), we have, for every g ∈ E/F :

2z.g ≤ ∥g∥2
E/F

,

and therefore, for any e ∈ E:

2s⊥(z).e = 2z.p(e) ≤ ∥p(e)∥2
E/F
≤ ∥e∥2

E
.

This shows that s⊥(z) belongs to V(E).

To prove (6.2.4), consider a point x in ER and its image pR(x) in (E/F )R. Choose g in E/F
such that ∥p(x)− g∥

E/F
is the distance from p(x) to E/F in ((E/F )R, ∥.∥E/F ), and choose e in E

such that p(e) = g.

Then p(x)− g belongs to V(E/F ). Moreover the difference

y := (x− e)− s⊥(p(x− e))

belongs to FR, and consequently there exists f in F such that y − f belongs to V(F ).
Finally, we have:

x = (e+ f) + (y − f) + s⊥(p(x− e)) ∈ E + V(F ) + s⊥(V(E/F )). □

6.2.3. The covering radius of Euclidean lattices of rank 2. The second equality in (6.2.1)
shows that the determination of the Voronoi cell of some Euclidean lattice allows one to compute
its covering radius. See for instance [CS91] for an application of this method to the computation
of the covering radii of Euclidean lattices associated to root systems.

In this paragraph, we illustrate this method by deriving a formula for the covering radius of
a Euclidean lattice of rank 2. To achieve this, it is convenient to use the description of Euclidean
lattices of rank 2 by means of obtuse superbase as in [CS92] and [BK10, Appendix B], which deal
with more general Euclidean lattices “of Voronoi first kind”.

Recall that an obtuse superbase of a Euclidean lattice E := (E, ∥.∥) of rank 2 is a triple (v0, v1, v2)
of E satisfying the following three conditions:

(i) v0 + v1 + v2 = 0;
(ii) (v1, v2) is a Z-basis of E, and therefore (v2, v0) and (v0, v1) also;
(iii) for any 0 ≤ i < j ≤ 2, vi.vj ≤ 0.

where we denote by a.b the scalar product of two vectors a and b in the Euclidean vector space
(ER, ∥.∥).

To the obtuse superbase (v0, v1, v0), we attach a triple (p0, p1, p2) in R3
+ by letting:

pk := −vi.vj
for any permutation (i, j, k) of (0, 1, 2). The knowledge of (p0, p1, p2) allows one to recover the
Euclidean norm ∥.∥ on ER. Indeed we have:

∥vi∥2 = −vi.(vk + vj) = pj + pk,
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and by a straightforward computation, this implies that, for every (x0, x1, x2) ∈ R3:

(6.2.6) ∥x0v0 + x1v1 + x2v2∥2 =
∑

0≤i<j≤2

(xi − xj)2pk.

where in the right-hand side of (6.2.6), for every 0 ≤ i < j ≤ 2, we define k by {k} := {0, 1, 2}\{i, j}.
This notably implies that at most one of the pi’s vanish.

Every Euclidean lattice E of rank 2 admits an obtuse superbase as above. Indeed, if (v1, v2) is
a basis of E reduced in the usual sense — namely if it is a Z-basis of E satisfying the conditions:

∥v1∥ = λ1(E) := min
e∈E\{0}

∥e∥ and ∥v2∥ = min
e∈E\Zv1

∥e∥,

or equivalently:
∥v1∥ ≤ ∥v2∥ ≤ ∥v2 ± v1∥

— then, after possibly replacing v2 by −v2 to ensure that v1.v2 be non-positive, the triple (−v1 −
v2, v1, v2) is easily seen to be an obtuse superbase of E.

Conversely any triple (p0, p1, p2) in R3
+ such that at most one of the pi vanishes arises by the

above construction from an obtuse superbase of some Euclidean lattice E of rank 2: simply take
E := Z2, v1 := (1, 0), v2 := (0, 1), and v0 := (−1,−1), and define a Euclidean norm ∥.∥ on ER = R2

by (6.2.6).

The basic invariants of a Euclidean lattice E of rank 2 admit closed expressions in terms of the
parameters (p0, p1, p2) associated to some obtuse superbase (v0, v1, v2):

Proposition 6.2.2. With the above notation, we have:

(6.2.7) (covolE)2 = p0p1 + p1p2 + p2p0,

(6.2.8) λ1(E)2 = min(p0 + p1, p1 + p2, p2 + p0)

and

(6.2.9) ρ(E)2 =
(p0 + p1)(p1 + p2)(p2 + p0)

4(p0p1 + p1p2 + p2p0)
.

Surprisingly, closed formulae for the covering radius of Euclidean lattices of rank 2 do not seem
to appear in the literature. As an application of (6.2.9), the reader will easily check that the
dimensionless quotient ρ(E)2/covolE satisfies the lower bound:

(6.2.10)
ρ(E)2

covolE
≥ 2√

27
,

and that equality is achieved in (6.2.10) if and only if E is a “hexagonal lattice”, associated to
parameters p0 = p1 = p2; compare for instance with [FT72, Sections III.2-3].

Proof. The expression (6.2.7) for (covolE)2 follows from the equalities:

(covolE)2 =

∣∣∣∣v1.v1 v1.v2
v2.v1 v2.v2

∣∣∣∣ = ∣∣∣∣p0 + p2 −p0
−p0 p0 + p1

∣∣∣∣ = p0p1 + p1p2 + p2p0.

The value (6.2.8) for λ1(E)2 is a straightforward consequence of (6.2.6).

When for some permutation (i, j, k) of (0, 1, 2) we have pi = 0, then E is the “rectangular lattice”
Zvj ⊕ Zvk, its Voronoi cell V(E) is the rectangle of vertices ±vj/2± vk/2, and therefore:

ρ(E)2 = (∥vj∥2 + ∥vk∥2)/4 = (pk + pj)/4.

This establishes (6.2.9) when one the pi vanishes.

When the pi are all positive, the Voronoi cell V(E) and its vertices V(E)0 admit the following
description, which is the special instance when rkE = 2 of the description of the Voronoi cell of a
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Figure 1. The facet vectors and the Voronoi cell of a Euclidean lattice of rank 2

Euclidean lattice E of Voronoi’s first kind with strictly obtuse superbase in [BK10, Section B.3].
We refer the reader to loc. cit. for a detailed justification of this description, which actually becomes
considerably simpler in this special case.

Firstly the set facets vectors of E is

{v0, v1, v2,−v0,−v1,−v2}.

This follows from the characterization of facet vectors recalled in 6.2.1 (iii) above, combined with
the expression (6.2.6) for the Euclidean norm of E. Moreover the pairs of facets with non-empty
intersections are the pairs associated to two facet vectors vi and −vj . Consequently the Voronoi cell

V(E) is an hexagon, with vertices

V(E)0 := {vij , 0 ≤ i ̸= j ≤ 2},

where vij is the intersection of the bisectors of the segments [0, vi] and [0,−vj ]; see Figure 1.

The symmetry property of the facets of V(E) recalled in 6.2.1 (i) implies that the six points
vij have the same Euclidean norm. This also follows from a direct computation, which moreover
establishes (6.2.9). Indeed for every pair of basis vectors (a, b) in ER, the norm ∥x∥ of the intersection
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point x of the bisectors of [0, a] and [0, b] is easily checked to satisfy:

(6.2.11) ∥x∥2 =
∥a∥2∥b∥2∥a− b∥2

4(∥a∥2∥b∥2 − (a.b)2)
.

When a = vi and b = −vj , the right-hand side of (6.2.11) becomes the right-hand side of (6.2.9). □

6.2.4. The invariant ρ2 is not strongly monotonic. As established in Propositions 6.1.4
and 6.1.6, the invariant ρ2 satisfies the monotonicity and subadditivity conditions Mon1

Q and
SubbAdd of Chapter 4. At this stage, it is natural to ask whether it also satisfies the strong
monotonicity condition StMon1 studied in Chapter 5. As a special instance of the submodularity
inequality (5.2.7), this would imply the following inequality to hold:

(6.2.12) ρ(E/F ′)2 + ρ(E/F ′′)2 ≤ ρ(E)2,

for every Euclidean lattice E and for every pair of saturated Z-submodules F ′ and F ′′ of E such
that EQ = F ′

Q ⊕ F ′
Q.

To investigate the validity of (6.2.12) when E has rank 2 and F ′ and F ′′ have rank 1, we may
use the explicit expression (6.2.9) for the covering radius of Euclidean lattices of rank 2, combined
with the following proposition:

Proposition 6.2.3. Let us keep the notation of Proposition 6.2.2, and consider a saturated
Z-submodule F of rank 1 in E. If ξ denotes the element of E∨ well-defined up to a sign as the
composition:

ξ : E −→ E/F
∼−→ Z,

and if (ξ0, ξ1, ξ2) := (ξ(v0), ξ(v1), ξ(v2)), then:

(6.2.13) ρ(E/F )2 =
p0p1 + p1p2 + p2p0

4(p0ξ20 + p1ξ21 + p2ξ22)
.

Observe that the triples (ξ0, ξ1, ξ2) in Z3 occurring in this construction are precisely those sat-
isfying the condition:

(6.2.14) (ξ0, ξ1, ξ2) are coprime and ξ0 + ξ1 + ξ2 = 0.

Proof. Let us consider the admissible short exact sequence of Euclidean lattices:

0 −→ F −→ E −→ E/F −→ 0.

We obtain the following relation between Arakelov degrees:

(6.2.15) d̂egF + d̂egE/F = d̂egE.

The vector f := ξ2v1 − ξ1v2 is a generator of F . Moreover, according to (6.2.6), we have:

(6.2.16) ∥f∥2 = p0(ξ1 + ξ2)
2 + p1ξ

2
1 + p2ξ

2
2 = p0ξ

2
0 + p1ξ

2
1 + p2ξ

2
2 .

Moreover, if η is a generator of E/F, the equality (6.2.15) may be written:

∥f∥2 ∥η∥2
E/F

= (covolE)2.

Consequently, we have:

(6.2.17) ρ(E/F )2 =
1

4
∥η∥2

E/F
=

(covolE)2

4∥f∥2
.

Finally (6.2.14) follows from (6.2.7), (6.2.16) and (6.2.17). □
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With the notation of Propositions 6.2.2 and 6.2.3, if (ξ′0, ξ
′
1, ξ

′
2) and (ξ′′0 , ξ

′′
1 , ξ

′′
2 ) are two non-

colinear triples in Z3 that satisfy condition (6.2.14), we may consider the submodules F ′ and F ′′ of
E defined as the kernels of the corresponding elements ξ′ and ξ′′ in E∨. Then, according to (6.2.9)
and (6.2.13), the submodularity inequality (6.2.12) holds if and only if the following estimate is
satisfied:

(6.2.18)
p0p1 + p1p2 + p2p0

4(p0ξ′0
2 + p1ξ′1

2 + p2ξ′2
2)

+
p0p1 + p1p2 + p2p0

4(p0ξ′′0
2 + p1ξ′′1

2 + p2ξ′′2
2)
≤ (p0 + p1)(p1 + p2)(p2 + p0)

4(p0p1 + p1p2 + p2p0)
.

Rewritten in this form, the submodularity inequality is easily seen not to be always true. For
instance when

p0 = p1 = p2 = 1, (ξ′0, ξ
′
1, ξ

′
2) = (1,−1, 0) and (ξ′′0 , ξ

′′
1 , ξ

′′
2 ) = (0, 1,−1),

the left-hand side of (6.2.18) is 3/4 and its right-hand side is 2/3.

This counterexample to the submodularity inequality (6.2.12) may be equivalently described as
follows. Consider the Euclidean lattice E := (Z2, ∥.∥), where the Euclidean norm ∥.∥ is defined by:

∥(x, y)∥2 := 2(x2 − xy + y2),

and the submodules
F ′ := Z× {0} and F ′′ := {0} × Z.

The associated covering radii satisfy:

(6.2.19) ρ(E)2 = 2/3 and ρ(E/F ′)2 = ρ(E/F ′′)2 = 3/8,

and clearly violate (6.2.12).

The relations (6.2.19) may actually be established directly without recourse to Propositions 6.2.2
and 6.2.3, as demonstrated in Figure 2. The reformulation (6.2.18) of the submodularity inequality
has the interest to show that, when E has rank 2, it is satisfied for most choices of F ′ and F ′′,
since the left-hand side of “small” for most choices of (ξ′0, ξ

′
1, ξ

′
2) and (ξ′′0 , ξ

′′
1 , ξ

′′
2 ). More specifically,
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as the reader may check as an elementary exercise, one may deduce the following upper bound from
Propositions 6.2.2 and 6.2.3:

Corollary 6.2.4. With the notation of Propositions 6.2.2 and 6.2.3, if F is not Zv0, Zv1, or
Zv2 — or equivalently if min0≤i≤2 |ξi| ≥ 1 — then:

ρ(E/F )2 ≤ ρ(E)2/3.

Consequently, when E is a rank 2 Euclidean lattice with a strictly obtuse superbase, the inequal-
ity (6.2.12) may be violated only when F ′ or F ′′ is one of the three Z-submodules of E generated
by the facet vectors of E.

Observe finally that, when F ′ and F ′′ violate (6.2.12), then they a fortiori violate the stronger
estimate:

ρ(E/F ′) + ρ(E/F ′′) ≤ ρ(E).

Consequently the invariant ρ also is not strongly monotonic.

6.3. The Covering Radius of Euclidean Quasi-coherent Sheaves II. Further Properties

In this section, we investigate in more detail the properties of the invariant ρ on CohZ and on
qCohZ, motivated by the general formalism developed in Chapter 4.

6.3.1. Compatibility of the covering radius with vectorization and canonical dévis-
sage. In this subsection, we show how the invariant ρ on CohZ (resp. on qCohZ) is determined
by its values on Euclidean lattices (resp. on quasi-coherent Euclidean sheaves with free underlying
Z-module). Our results might be obtained as formal consequences of the properties on the invariant
ρ established in 6.1 and in 6.3.2 below, and of the general results concerning invariants on CohX
and qCohX of Chapter 4. However we have preferred to provide short direct proofs.

6.3.1.1. Covering radius and vectorization. The following proposition reduces the evaluation of
the covering radius of Euclidean coherent sheaves to the one of Euclidean lattices.

Proposition 6.3.1. If E is an object of CohZ and if νE : E → E
vect

denotes its “vectorization,”
as defined in Subsection 2.3.1 above, then the following equality holds:

(6.3.1) ρ(E) = ρ(E
vect

).

Proof. As in 2.3.1, consider the admissible short exact sequence (2.3.8) attached to νE :

0 −→ V ↪−→E
νE−→ E

vect −→ 0.

The last assertion in Proposition 2.3.6 shows that V/tor is dense in (VR, ∥.∥V ), or equivalently:

(6.3.2) ρ(V ) = 0.

Moreover, since ρ2 satisfies Mon1 and SubAdd, we have:

(6.3.3) ρ(E
vect

)2 ≤ ρ(E)2 ≤ ρ(Evect
)2 + ρ(V )2.

The equality (6.3.1) follows from (6.3.2) and (6.3.3). □

6.3.1.2. Covering radius and canonical dévissage. The following proposition and its corollary
establih that invariant ρ : qCohZ → [0,+∞] also satisfies the conditions VAp and NSap introduced
in paragraph 4.1.4.2.

Proposition 6.3.2. Every Euclidean quasi-coherent sheafM := (M, ∥.∥) such that the Z-module
M is antiprojective satisfies:

ρ(M) = 0.
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Proof. Let us assume that M , and therefore M/tor, is antiprojective, and let us consider an
element x of MR. Let us choose a finite family (f1, . . . , fk) of elements of M/tor such that its R-span∑k
i=1 Rfi contains x.
According to Proposition 2.2.9, for any ε > 0, there exists (f̃1, . . . , f̃2k) in M/tor such that∑2k

i=1 Zf̃i contains f1, . . . , fk and:

max
1≤i≤2k

∥f̃2i∥ < ε.

Then x belongs to
∑2k
i=1 Rf̃i, and we may write x =

∑2k
i=1 tif̃i for a suitable choice of (t1, . . . , t2k)

in R2k.

If we let:

m :=

2k∑
i=1

⌊ti⌋f̃i and r :=

2k∑
i=1

(ti − ⌊ti⌋)f̃i,

then m belongs to M/tor, and therefore:

d∥.∥(x,M/tor) ≤ ∥x−m∥ = ∥r∥ ≤
2k∑
i=1

∥f̃i∥ ≤ 2kε.

Since ε is arbitrary this proves that d∥.∥(x,M/tor) vanishes. □

More generally, the covering radius of a Euclidean quasi-coherent sheaf is unaltered when killing
its antiprojective part:

Corollary 6.3.3. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥), the following equal-
ity holds in [0,+∞]:

(6.3.4) ρ(M) = ρ(M
∨∨

).

Proof. We may consider the canonical dévissage of M , as defined in Section 2.2.4.

0 −→Map −→M
δM−→M

∨∨ −→ 0.

The monotonicity of the covering radius, established in Proposition 6.1.4, implies the inequality:

ρ(M) ≥ ρ(M∨∨
),

and its subadditivity, established in Proposition 6.1.6, implies:

ρ(M)2 ≤ ρ(M∨∨
)2 + ρ(Map)

2.

Moroever, according to Proposition 6.3.2, ρ(Map) vanishes. □

6.3.2. Continuity properties of the covering radius.

6.3.2.1. Regularity properties of the invariant ρ : VectZ → R+. The classical covering radius,
namely the restriction ρ : VectZ → R+ of the invariant ρ to Euclidean lattices, is easily seen to
depend continuously on the Euclidean norms defining Euclidean lattices.

To formulate precisely the regularity property of the invariant ρ : VectZ → R+, let us fix a
finitely generated free Z-module E. To any element ∥.∥ in the cone Q(ER) of Euclidean seminorms
over ER, we may attach the covering radius ρ(E, ∥.∥) of the object (E, ∥.∥) in CohZ. Let us also
choose a relatively compact subset ∆ of ER such that E +∆ = ER.

Proposition 6.3.4. The function

ρ(E, .) : Q(ER) −→ R+

is locally Lipschitz on the cone
◦
Q(ER) of Euclidean norms over ER.
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Actually, for every compact subset K of
◦
Q(ER), there exists a finite subset A of E such that, for

every ∥.∥ in K, the following equality holds:

(6.3.5) ρ(E, ∥.∥) = sup
x∈∆

min
a∈A
∥x− a∥.

We leave the details of the proof as an easy exercise. The locally Lipschitz character of the
function ρ(E, .) is also a formal consequence of the fact that ρ(E, ∥.∥) is both an increasing and
a 1-homogeneous function of the Euclidean norm ∥.∥. Observe also that the expression (6.3.5) for

ρ(E, ∥.∥) implies not only that ρ(E, .) is a locally Lipschitz function on
◦
Q(ER), but also that locally

its graph is subanalytic.

6.3.2.2. The property Cont+. In our study of invariants on CohX and qCohX in Chapter 4,
the property of downward continuity Cont+ plays a central role. In this subsection, we want to
discuss this property, as regards the invariant ρ on CohZ and qCohZ.

Recall the formulation of the property Cont+.

Consider an object M := (M, ∥.∥) of qCohZ and a decreasing sequence (∥.∥n)n∈N of Euclidean
seminorms on MR such that:

(6.3.6) lim
n→+∞

∥v∥n = ∥v∥ for every n ∈ N.

Then for any n ∈ N, we have:

∥.∥ ≤ ∥.∥n+1 ≤ ∥.∥n

and

ρ(M, ∥.∥) ≤ ρ(M, ∥.∥n+1) ≤ ρ(M, ∥.∥n).

Consequently the limit limn→+∞ ρ(M, ∥.∥n)and satisfies the inequality:

(6.3.7) ρ(M, ∥.∥) ≤ lim
n→+∞

ρ(M, ∥.∥n).

The downward continuity property Cont+ applied to the invariant ρ and to the Euclidean
quasi-coherent sheaves (Mn)n∈N asserts that the estimate (6.3.7) is actually an equality, namely:

(6.3.8) ρ(M, ∥.∥) = lim
n→+∞

ρ(M, ∥.∥n).

This property is easily seen not hold in full generality.

Example 6.3.5. Consider the Z-module M := Z(N) and the sequence of Euclidean norms
(∥.∥n)n∈N on MR defined by:

∥(xi)i∈N∥2n :=
∑
i≥n

x2i .

This sequence of norms is decreasing, and converges point wise to the seminorm ∥.∥ := 0. For every
n ∈ N, we have:

ρ(M, ∥.∥n) = +∞.

Moreover:

ρ(M, ∥.∥) = 0,

and (6.3.8) does not hold.
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6.3.2.3. The invariant ρ : CohZ → Z satisfies Cont+. In view of Example 6.3.5, one may
wonder whether the equality (6.3.8) is satisfied as soon as the left-hand side of (6.3.8) is finite (that
is, if for some n ∈ N, the covering radius ρ(M, ∥.∥n) is finite). We do not know the answer to this
question.8 However we can prove that (6.3.8) holds under a finite-dimensionality assumption:

Proposition 6.3.6. With the notation of 6.3.2.2, if the Q-vector space MQ — or equivalently
the R-vector space MR — is finite dimensional, then:

(6.3.9) ρ(M, ∥.∥) = lim
n→+∞

ρ(M, ∥.∥n).

Proof. Since M/tor generates the R-vector space MR, when the latter is finite dimensional, it
contains a compact subset K such that

MR =M/tor +K.

Consequently, for every Euclidean seminorm |.| on MR, we have:

ρ(M, |.|) = sup
x∈K

inf
m∈M/tor

|x−m|.

The function

d|.|(.,M/tor) :MR −→ R+, x 7−→ inf
m∈M/tor

|x−m|

is 1-Lipschitz on (MR, |.|), hence continuous on MR. Therefore there exists x ∈ K such that:

ρ(M, |.|) = d|.|(x,M/tor).

Since (6.3.7) holds, to prove (6.3.9), we are left to establish the following inequality:

(6.3.10) ρ(M, ∥.∥) ≥ lim
n→+∞

ρ(M, ∥.∥n).

To achieve this, for every n ∈ N choose xn in K such that:

ρ(M, ∥.∥n) = d∥.∥n
(x,M/tor).

Since K is compact, we may assume that the sequence (xn)n∈N admits a limit x in K. Let us prove
the inequality:

(6.3.11) d∥.∥(x,M/tor) ≥ lim
n→+∞

ρ(M, ∥.∥n),

which clearly implies (6.3.10).

To achieve this, let us consider ε ∈ R∗
+, and choose m ∈M/tor such that

d∥.∥(x,M/tor) ≥ ∥x−m∥ − ε.
If the integer n is large enough, we also have:

∥x−m∥ ≥ ∥x−m∥n − ε,
since the sequence (∥.∥n)n∈N converges pointwise towards ∥.∥. Then we have:

d∥.∥(x,M/tor) ≥ ∥x−m∥n − 2ε ≥ ∥xn −m∥n − ∥x− xn∥n − 2ε ≥ ρ(M, ∥.∥n)− ∥x− xn∥0 − 2ε.

This implies that, for every large enough integer n, the following inequality holds:

d∥.∥(x,M/tor) ≥ lim
n→+∞

ρ(M, ∥.∥n)− 3ε.

As ε ∈ R∗
+ is arbitrary, this establishes (6.3.11). □

As a special case of Proposition 6.3.6, we have:

Corollary 6.3.7. Restricted to CohZ, the covering radius ρ satisfies Cont+.

8Although we would expect that it is negative.
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Since ρ also satisfies Mon1, this implies that the invariant

ψ̃nst : CohZ −→ R+

deduced from the classical covering radius:

ψ := ρ : VectZ −→ R+

by the construction in Subsection 4.2.5 coincides with the invariant

ρ : CohZ −→ R+

defined by formula (6.0.1).

A related property of the covering radius ρ on CohZ is that it is small on Euclidean coherent
sheaves generated by small sections in the sense of Definition 4.2.11. This is a straightforward
consequence of the criteria in Proposition 4.2.12, and may also be seen directly on the definition.

6.3.2.4. The upper-semicontinuity of ρ(E, .) : Q(ER)→ R+. We return to the notation of 6.3.2.1.
Namely, we denote by E a finitely generated free Z-module and by Q(ER) the cone of Euclidean
seminorms over ER, and for every ∥.∥ in Q(ER), we consider the covering radius ρ(E, ∥.∥) in R+.

Proposition 6.3.8. The function ρ(E, .) : Q(ER) −→ R+ is upper semicontinuous.

Proof. This follows from Proposition 4.2.1 applied to Q :=
◦
Q(ER), Q := Q(ER), and g :=

ρ(E, .).

We may also recover the upper semicontinuity of ρ(E, .) from the results in this subsection as
follows.

Choose some Euclidean norm ∥.∥0 on ER. According to the downward continuity of the covering
radius established in Proposition 6.3.6, for every seminorm ∥.∥ in Q(ER) the following equality holds:

ρ(E, ∥.∥) = inf
n∈N>0

ρ
(
E, (∥.∥2 + ∥.∥20/n)1/2

)
.

This expresses the function ρ(E, .) as the infimum of the family of functions

Q(ER) −→ R+, ∥.∥ 7−→ ρ
(
E, (∥.∥2 + ∥.∥20/n)1/2

)
,

and each of these is continuous according to Proposition 6.3.4. □

It turns out that, when rkE ≥ 2, the function ρ(E, .) is not continuous on Q(ER). Its restriction
to the subcone Q(ER)1 of extremal rays of Q(ER) is already not continuous, as will be demonstrated
by Proposition 6.3.9 below.

Let us introduce some further notation. We choose a Euclidean metric ∥.∥0 on ER. To this
metric is canonically attached a height function:

ht : P(E)(Q) −→ R

on P(E)(Q) ≃ P(E)(Z). To a point P in P(E)(Z) defined by a rank one quotient E ↠ L of E, it
associates the real number:

ht(P ) := d̂egL,

where L is the rank one Euclidean lattice defined by L equipped with the Euclidean metric on LR
quotient of the Euclidean metric ∥.∥0 on ER. Any point P in P(E)(Q) is the class [ξ] of an element
ξ in E∨ \ {0} that is primitive9, and we have:

ht(P ) = log ∥ξ∥∨0 ,

where ∥.∥∨0 denotes the Euclidean norm on E∨
R dual to ∥.∥0.

9Namely, the submodule Zξ is saturated in E∨. Such a primitive ξ is unique up to a sign.
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In paragraph 2.3.1.5, to any ξ ∈ E∨
R \ {0}, we have associated the semipositive quadratic forms

ξ2 ∈ Q(ER)1 and the Euclidean coherent sheaf

Eξ := (E, |ξ|).

When the point [ξ] ∈ P2(R) belongs to P2(Q), we have defined t(ξ) ∈ R∗
+ by the relation:

Rξ ∩ E∨ = Z t(ξ)ξ,

or equivalently by the fact that t(ξ)ξ is a primitive representative of [ξ] in E∨ \ {0}.

Proposition 6.3.9. Let ξ be an element of E∨
R \ {0}.

If its class [ξ] in P(E)(R) does not belong to P(E)(Q), then:

(6.3.12) ρ(Eξ) = 0.

If [ξ] belongs to P(E)(Q), then:

(6.3.13) ρ(Eξ) = (2t(ξ))−1 = e−ht([ξ]) ∥ξ∥∨0 /2.

Proof. This follows from the equality:

ρ(Eξ) = ρ(E
vect

ξ ),

established in Proposition 6.3.1, from the description of E
vect

ξ in Proposition 2.3.9, and from the
relation, when [ξ] belongs to P(E)(Q):

ht([ξ]) = log ∥t(ξ)ξ∥∨0 = log t(ξ) + log ∥ξ∥∨0 . □

6.3.3. The lower and upper covering radii; ρ2-summable Euclidean quasicoherent
sheaves. To define the covering radius ρ(M) of a some Euclidean quasi-coherent sheaf with possibly
non-finitely generated underlying Z-module M , an alternative to the direct approach in Definition
6.1.1 would be to apply the general construction of invariants on qCohZ starting from invariants on
VectZ developed in Chapter 4.

Namely we could start from the invariant ρ on the category VectZ of Euclidean lattices (namely
from the covering radius as classically studied in geometry of numbers) and firstly extend it to CohZ
by downward continuity as discussed in Section 4.2. As discussed in paragraph 6.3.2.3 above, this
extension coincides with the restriction to CohZ of the invariant ρ introduced in Definition 6.1.1.

Then we could introduce its lower and upper extensions to qCohZ as defined in Section 4.3.
This second step leads one to introduce significant variants of the covering radius ρ, which we discuss
in this subsection.

6.3.3.1. The invariants ρ and ρ. By specializing to the covering radius the general construction

in Section 4.3, to any object M in qCohZ, we attach its lower covering radius:

(6.3.14) ρ(M) := sup
N∈coft(M)

ρ(M/N),

and its upper covering radius:

(6.3.15) ρ(M) := lim inf
C∈coh(M)

ρ(C).

By construction, they coincide with ρ(M) when M is an object of CohZ. Moreover various
properties of the covering radius on CohZ are inherited by ρ and ρ on qCohZ. For instance, they

satisfy the 1-homogeneity property (6.1.2), the monotonicity and subadditivity propertiesMon1 and
SubAdd (see Propositions 4.3.6 and 4.3.10 If), and the property NSAp (see Proposition 4.3.23). In
particular the relations (6.1.10) and (6.3.4) hold with ρ or ρ instead of ρ. According to Proposition
4.3.7, it is also the case for the lower semicontinuity estimate (6.1.6).
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One may wonder about the relation between the invariants ρ and ρ so-defined and the “di-

rect” definition of ρ on qCohZ proposed in Definition 6.1.1. The semi-continuity and monotonicity
properties of ρ already lead to the following estimates:

Proposition 6.3.10. For every Euclidean quasi-coherent sheaf M , the following inequalities
hold:

(6.3.16) ρ(M) ≤ ρ(M) ≤ ρ(M).

The first inequality in (6.3.16) may actually be strict, as demonstrated by the construction in
6.3.3.4 below. We do not expect equality to hold in general in the second inequality in (6.3.16).

Proof. For every N in coft(M), Proposition 6.1.4 applied to the quotient map M → M/N
establishes the estimate:

ρ(M/N) ≤ ρ(M).

The first inequality in (6.3.16) follows by taking the supremum over N ∈ coft(M).

Moreover, by the very definition of ρ(M), we may choose an exhaustive filtration (Ci)i∈N of M
by submodules in coh(M) such that:

ρ(M) = lim
i→+∞

ρ(Ci).

Then Proposition 6.1.2 applied to the filtration (Ci)i∈N establishes the second inequality in (6.3.16).
□

6.3.3.2. ρ2-summable Euclidean quasicoherent sheaves. Since the invariant ρ2 satisfies properties
Mon1 and SubAdd on CohZ, the whole formalism of the lower and upper extensions developed
in Chapter 4 applies to the invariant ρ2 on CohZ and to its extensions ρ2, and ρ2. Notably the

main theorem of Chapter 4, Theorem 4.5.1, concerning φ-summable objects in qCohZ, takes the
following form when applied to φ = ρ2:

Proposition 6.3.11. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf, and (Ci)i∈N ex-
haustive filtration of M by submodules in coh(M).

If the following summability condition holds:

(6.3.17)
∑
i∈N

ρ(Ci/Ci−1)
2 < +∞,

then the limit limi→+∞ ρ(Ci) exists in R+, and

(6.3.18) ρ(M) = lim
i→+∞

ρ(Ci).

Moreover, M has eventually vanishing upper covering radius, and therefore eventually vanishing
covering radius.10

As a special instance of the terminology of Chapter 4, a Euclidean quasi-coherent sheaf M such
that there exists an exhaustive filtration (Ci)i∈N of M by submodules in coh(M) satisfying (6.3.17)
will be called ρ2-summable.

Observe that, as a consequence of the 1-homogeneity (6.1.2) of the covering radius on CohZ, if
M is ρ2-summable, then M ⊗O(δ) also is ρ2-summable for every δ in R.

The general results concerning φ-summability in Section 4.5 apply to ρ2-summability. Notably

ρ2-summability is preserved by surjective morphisms in qCoh
≤1

Z (Proposition 4.5.9), and ρ2 sat-
isfies the downward continuity property Cont+ on ρ2-summable Euclidean quasi-coherent sheaves
(Proposition 4.5.16).

10See Sections 4.4 and 6.5 for the definitions of these properties of eventual vanishing.
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6.3.3.3. Euclidean quasi-coherent sheaves with positive lower covering radius. The following
proposition clarifies to some extent the meaning of the lower covering radius.

Proposition 6.3.12. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥), the following
two conditions are equivalent:

(i) ρ(M) > 0;
(ii) there exists an non-zero element ξ in M∨ := HomZ(M,Z) such that the R-linear form

ξR :MR −→ R

is continuous on (MR, ∥.∥).

Condition (ii) precisely asserts the existence of a non-zero morphism

ξ :M −→ OZ := (Z, |.|)

in qCohZ, or equivalently that the dual Ê :=M
∨
of M in proVect

[∞]

Z satisfies:

Ê ∩ EHilb
R ̸= {0}.

Proof. We first observe that the proposition holds when M is a Euclidean coherent sheaf.
Indeed, for every object E in CohZ, the following conditions are successively equivalent:

(a) ρ(E) > 0;

(b) ρ(E
vect

) > 0;

(c) E
vect ̸= 0;

(d) E
vect∨ ̸= 0;

(e) there exists ξ ∈ Hom(E,Z) such that ξR : ER → R is continuous on (ER, ∥.∥).

The equivalence (a) ⇔ (b) follows from Proposition 6.3.1; the equivalences (b) ⇔ (c) ⇔ (d) are
straightforward, and (d)⇔ (e) follows from Proposition 2.3.3.

In general, by the definition of ρ, a Euclidean quasi-coherent sheaf M satisfies (i) if and only if
there exists N ∈ coft(M) such that:

ρ(M/N) > 0.

When this holds, according to the implication (a) ⇒ (d) applied to E := M/N, there exists a
non-zero morphism:

ξ̃ :M/N −→ OZ

in CohZ, and then its composition with the quotient map:

ξ :=M −→M/N
ξ̃−→ OZ

is a non-zero morphism in qCohZ.

Conversely, when (ii) holds, the element ξ defines a non-zero morphism

ξ :M −→ OZ(δ)

in qCoh
≤1

Z if δ ∈ R is chosen large enough. Then N := ker ξ belong to coft(M), and ξ factorizes
through a non-zero morphism

ξ̃ :M/N −→ OZ(δ)

in Vect
≤1

Z . Consequently, by (a trivial case of) the monotonicity of ρ,

ρ(M/N) ≥ ρ(O(δ)) = e−δ/2. □
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6.3.3.4. An exotic Euclidean quasi-coherent sheaf. Let us indicate how to construct a Euclidean
quasi-coherent sheaf M such that:

ρ(M) = 0 and ρ(M) > 0.

This construction is a special instance of Banaszczyk’s “exotic groups” [Ban91, Section 5], and
already appears in [Bos20b, Section 6.4.4].

Let us equip R(N) with the usual Euclidean norm ∥.∥ defined by:

∥(xi)i∈N∥2 :=
∑
i∈N

x2i ,

and let us denote by (en)n∈N the standard basis of R(N) defined by en := (δin)i∈N, and by (ξn)n∈N
the family of linear forms defined as:

ξn : R(N) −→ R, (xi)i∈N 7−→ xn.

One easily see that there exists a sequence (fn)n∈N in Q(N) satisfying the following conditions:

(6.3.19) (fn)n∈N is dense in (R(N), ∥.∥)

and

(6.3.20) for every n ∈ N, fn ∈
⊕

0≤i<n

Qei.

Then the sequence (en + fn)n∈N is a Q-basis of Q(N) and a R-basis of R(N), and the Z-module

M :=
⊕
n∈N

Z(en + fn)

that it generates is free, the real vector space MR may be identified with R(N), and we may consider
the Euclidean quasi-coherent sheaf M := (M, ∥.∥).

The following properties are satisfied by this construction:

(i) There is no non-zero continuous linear form ξ on (R(N), ∥.∥) such that ξ(M) ⊆ Z.
(ii) Every element m in M \ {0} satisfies:

∥m∥ ≥ 1.

In particular, M is a discrete Z-submodule of (R(N), ∥.∥).
(iii) For every non-zero finite dimensional Q-vector space V of Q(N), the set

{n ∈ N | ξn|V ̸= 0}

is finite and non-empty. If n(V ) denotes its largest element, then we have:

ξn(V )(V ∩M) ⊂ Z.

Indeed to prove (i), consider ξ is a continuous linear form on (R(N), ∥.∥) mapping M to Z.
According to (6.3.19), every x in R(N) may be written as the limit in (R(N), ∥.∥) of a sequence
(fni

)i∈N for a suitable strictly increasing sequence (ni)i∈N in N, and therefore

ξ(x) = lim
i→+∞

ξ(fni) = lim
i→+∞

ξ(eni + fni)

is a limit of integers, hence an integer. Consequently ξ(R(N)) is contained in Z. This immediately
implies that ξ is zero.

To prove (ii), observe that ifm = (xi)i∈N is a non-zero element ofM , then, according to (6.3.20),
the last of its coordinates xi that is non-zero is an integer. The last assertion (iii) is proved similarly;
see [Bos20b, Proposition 6.4.6].
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According to Proposition 6.3.12, Property (i) is equivalent to the vanishing of ρ(M). Property
(ii) implies that the distance function

dM (.,M) : R(N) −→ R+

vanishes only on M , and therefore that its supremum ρ(M) is positive. More precisely, it satisfies
the following estimates:

1/2 ≤ ρ(M) ≤ 1.

Indeed, every x ∈ R(N) may be written as the limit in (R(N), ∥.∥) of a sequence (fni
)i∈N as above.

Then we have:

lim
i→+∞

∥x− (eni + fni)∥ = lim
i→+∞

∥eni∥ = 1,

and therefore

dM (x,M) ≤ 1.

Moreover, one easily establishes the equality:

dM (e0/2,M) = 1/2;

indeed f0 = 0 and thereforeM ∩Re0 = Ze0, and for every m ∈M \Re0, the last non-zero coordinate
of m− e0/2 is an integer.

Actually when the fn are chosen so that f1, f2, and f3 vanish, a similar argument shows the
following equality holds:

dM ((e0 + e1 + e2 + e3)/4,M) = 1.

Therefore in this case, ρ(M) = 1.

6.3.3.5. The results in this subsection show that, when dealing with objects in qCohZ not in
CohZ, the upper and lower covering radii ρ and ρ are arguably more sensible invariants than the
original covering radius ρ defined by the “naive formula” (6.0.1).

In particular Proposition 6.3.11 and the subsequent observations show that ρ2-summable objects
in qCohZ constitute a natural class on which the upper covering radius ρ is especially well-behaved.

From a formal perspective, another natural class of objects in qCohZ to consider are those
Euclidean quasi-coherent sheaves such that:

(6.3.21) ρ(M) = ρ(M) < +∞.

According to Proposition 6.3.10, they satisfy:

ρ(M) = ρ(M) = ρ(M).

Both classes are stable under change of scale11 and contain CohZ. Unfortunately we do not
know how these two classes compare, and actually the possibility to establish positive simple general
results on this question does not seem likely.

This is in stark contrast with the situation concerning invariants constructed from the θ-
invariants h1θ on CohZ. Indeed one the main results of this monograph, established in Chapter

8, will be that the objects M of qCohZ such that M ⊗ O(δ) is h1θ-summable for every δ ∈ R are
precisely those such that, for every δ ∈ R:

h1θ(M ⊗O(δ)) = h
1

θ(M ⊗O(δ)) < +∞.

The so-defined class of θ1-finite objects in qCohZ turns out to be especially flexible and useful in
Diophantine applications. The lack of a similar formalism concerning the covering radius limits its
use in applications.

11that is, under tensoring by O(δ) for δ in R.
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6.4. The Invariants λ[0](M) and γ(M) and the Covering Radius

6.4.1. The invariants λ[0](M) and γ(M): definitions and first properties.

6.4.1.1. Definitions. This section is devoted to the properties of the invariants λ[0] and γ on
qCohZ with values in [0,+∞] defined as follows:

Definition 6.4.1. For every Euclidean quasi-coherent sheaf M, we let:

λ[0](M) := inf
{
R ∈ R∗

+ | the R-vector space generated by B(M/tor;R) is dense in MR
}

and

γ(M) := inf
{
R ∈ R∗

+ | B(M ;R) generates the Z-module M
}
.

We say that M is generated by bounded sections when γ(M) is finite, or equivalently when there
exists R in R+ such that B(M ;R) generates the Z-module M .

The invariants λ[0] and γ clearly satisfy the following inequality:

(6.4.1) λ[0](M) ≤ γ(M).

Moreover, like the covering radius ρ, they are are 1-homogeneous; namely, for every δ in R, we have:

λ[0](M ⊗O(δ)) = e−δ λ[0](M) and ρ(M ⊗O(δ)) = e−δ ρ(M).

When the R-vector spaceMR, or equivalently the Q-vector spaceMQ, is finite dimensional (resp.

when the Z-module M/tor is finitely generated, for instance when M is a an object of CohZ), then

λ[0](M) (resp. γ(M)) is easily seen to be finite.

When M is a Euclidean lattice (that is, when the Z-module M is finitely generated and free
and the Euclidean seminorm ∥.∥ is a norm), the invariant λ[0](M) is finite and coincides with the
“ultimate of the successive minima” of M , namely with λn(M) where n := rkM :

λ[0](M) = λn(M) := min
{
R ∈ R+ | B(M ;R) generates the R-vector space MR

}
.

Similarly, still assuming that M is a Euclidean lattice, the invariant γ(M) is easily seen to be the
following minimum:

γ(M) := min
{
R ∈ R∗

+ | B(M ;R) generates the Z-module M
}
.

The invariants λ[0](M) and γ(M) attached to some object M of qCoh have arguably a more
intuitive definition than its covering radius ρ(M). However they enjoy less satisfactory formal
properties. In this section, we firstly discuss their basic properties, then we establish comparison
estimates relating the “naive” invariants λ[0] and γ, and the covering radius ρ.

In the remaining of this monograph, these results concerning λ[0] and γ will play a role by their
consequences concerning diverse eventual vanishing properties of Euclidean quasi-coherent sheaves
established in Section 6.5.

6.4.1.2. Monotonicity. The invariant γ is easily seen to satisfy the monotonicity propertyMon1,
namely:

Proposition 6.4.2. If f :M1 →M2 is a morphism in qCoh
≤1

Z such that f(M1) =M2, then:

(6.4.2) γ(M1) ≥ γ(M2).

Proof. To establish the inequality (6.4.2), it is enough to show that, for any R ∈ R∗
+, if

B(M1;R) generates the Z-module M1, then B(M2;R) generates the Z-module M2. This follows
from the surjectivity of f :M1 →M2 and from the inclusion f(B(M1;R)) ⊆ B(M2;R). □

A similar proof shows that λ[0] satisfies the monotonicity property Mon1
Q:
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Proposition 6.4.3. Let f :M1 →M2 be a morphism in qCoh
≤1

Z . If fQ(M1,Q) =M2,Q, then:

(6.4.3) λ[0](M1) ≥ λ[0](M2).

More generally, the estimate (6.4.3) holds as soon as fR(M1,R) is dense in M2,R.

6.4.1.3. Compatibility with direct sums and with admissible short exact sequences. The invariant
γ and λ[0] satisfy the condition Max⊕ introduced in 4.1.5. Indeed we have, as a straightforward
consequence of the definitions:

Proposition 6.4.4. For any two objects M1 and M2 in qCohZ, the following equalities hold:

γ(M1 ⊕M2) = max(γ(M1), γ(M2))

and:

λ[0](M1 ⊕M2) = max(λ[0](M1), λ
[0](M2)).

As a consequence of the lifting result involving the covering radius established in Proposi-
tion 6.1.8, the invariant γ and λ[0] satisfy the following compatibility with admissible short exact
sequences:

Proposition 6.4.5. For every admissible short exact sequence in qCohZ:

0 −→M
′ i−→M

p−→M
′′ −→ 0,

the following estimates hold:

(6.4.4) γ(M)2 ≤ max
(
γ(M

′
)2, γ(M

′′
)2 + ρ(M

′
)2
)
.

and:

(6.4.5) λ[0](M)2 ≤ max
(
λ[0](M

′
)2, λ[0](M

′′
)2 + ρ(M

′
)2
)
.

Proof. Let R be a positive real number such that:

(6.4.6) R2 > γ(M
′
)2

and:

(6.4.7) R2 > γ(M
′′
)2 + ρ(M

′
)2.

To prove (6.4.4), it is enough to prove that B(M,R) generates the Z-module M .

To achieve this, observe that, according to (6.4.7), we may find R′′ and ρ in R∗
+ such that:

(6.4.8) R2 = R′′2 + ρ2,

(6.4.9) R′′ > γ(M
′′
),

and:

(6.4.10) ρ > ρ(M
′
).

Together with (6.4.8) and (6.4.10), Proposition 6.1.8 shows that every element of B(M
′′
, R′′) is the

image by p of an element of B(M
′′
, R). Moreover (6.4.9) implies that B(M

′′
, R′′) generates the

Z-module M ′′. Consequently p(B(M,R)) generates the Z-module M ′′.

The inequality (6.4.6) implies that B(M
′
, R) generates the Z-moduleM ′. Since imaps B(M

′
, R)

into B(M,R), this shows that the Z-module generated by B(M,R) contains im i = ker p. Since this
Z-module is mapped onto M ′′ by p, it coincides with M .

The estimate (6.4.5) is established by a similar argument that we leave to the reader. □
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Corollary 6.4.6. If E is an object of CohZ and if νE : E → E
vect

denotes its “vectorization,”
then the following equalities holds:

(6.4.11) γ(E) = γ(E
vect

)

and:

(6.4.12) λ[0](E) = λ[0](E
vect

).

Moreover, for every Euclidean quasi-coherent sheaf M := (M, ∥.∥), the following equalities hold:

(6.4.13) γ(M) = γ(M
∨∨

)

and

(6.4.14) λ[0](M) = λ[0](M
∨∨

).

Proof. The monotonicity of γ and λ[0] imply the inequalities:

γ(E) ≥ γ(Evect
) and λ[0](E) ≥ λ[0](Evect

).

The converse inequalities follow from the estimates (6.4.4) and (6.4.5) applied to the admissible
short exact sequence (2.3.8) attached to νE :

0 −→ V ↪−→E
νE−→ E

vect −→ 0,

and from the vanishing of ρ(V ), already observed in (6.3.2) above.

The validity of (6.4.13) and (6.4.14) is established by a similar argument, using the canonical
dévissage of M introduced in Subsection 2.2.4:

0 −→Map −→M
δM−→M

∨∨ −→ 0,

and the vanishing of ρ(Map) established in Proposition 6.3.2. □

However the invariant γ and λ[0], even restricted to VectZ, does not satisfy the subaddivity
condition SubAdd. Actually, in an admissible short exact sequence of Euclidean lattices:

0 −→ E −→ F −→ G −→ 0,

the invariant γ(F ) (resp. λ[0](F )) cannot be bounded from above in terms of γ(E) and γ(G) (resp.
of λ[0](E) and λ[0](G)) only as demonstrated by the following example.

Example 6.4.7. For every integer n ≥ 2, let us consider the admissible short exact sequence in
VectZ:

0 −→ O⊕(n−1)

Z
in−→ V n

pn−→ OZ −→ 0

defined by the Euclidean lattice V n := (Zn, ∥.∥n), where:

∥(x1, . . . , xn)∥2n :=

n−1∑
i=1

(xi − xn/2)2 + x2n,

and by the morphisms:

in(x1, . . . , xn−1) := (x1, . . . , xn−1, 0) and pn(x1, . . . , xn) := xn.

It is straightforward that:

γ(O⊕(n−1)

Z ) = λ[0](O⊕(n−1)

Z ) = 1 and γ(OZ) = λ[0](OZ) = 1.

Moreover, for every v in Vn = Zn whose n-th component is not zero, we have:

∥v∥2n ≥ (n− 1)/2 + 1 = (n+ 3)/2.

This easily implies:

γ(V n) = λ[0](V n) =
√
(n+ 3)/2.
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6.4.1.4. Bases with controlled size. The monotonicity of λ[0] (Proposition 6.4.3) and the lifting
result in Proposition 6.1.8 also admit the following consequence, which has been used to derive the

characterizations of the object E of CohZ such that E
vect

= 0 in Proposition 2.3.5.

Proposition 6.4.8. Let E := (E, ∥.∥) be an object of CohZ with E a free Z-module of finite
rank N . For every ε ∈ R∗

+, there exists a basis (e1, . . . , eN ) of E such that, for every i ∈ {1, . . . , N}:

(6.4.15) ∥ei∥ ≤ α(N)
(
λ[0](E) + ε

)
,

where:

α(N) :=

{
0 if N = 0√
N + 3/2 if N ≥ 1.

When E is a Euclidean lattice, namely when the seminorm ∥.∥ defining E is a norm, the conclu-
sion of Proposition 6.4.8 holds with ε = 0. This follows from Proposition 6.4.8 by a straightforward
finiteness argument.

In general, when ∥.∥ is not a norm, it may happen that its conclusion does not holds when

ε = 0. This is for instance the case when E
vect

= 0 (in which case λ[0](E) = γ(E) = 0) and ∥.∥ ≠ 0.
Examples of such objects E of CohZ have been constructed in paragraph 2.3.1.5.

Proof of Proposition 6.4.8. The proposition is clear when N = 0. In general we proceed
by induction on N . So we assume that N is a positive integer and that Proposition 6.4.8 holds when
E has rank N − 1.

Consider an object E := (E, ∥.∥) of CohZ with E a free Z-module of rank N , and let choose
λ in (λ[0](E),+∞). We want to prove the existence of a basis (e1, . . . , eN ) of E such that, for
i ∈ {1, . . . , N}:

∥ei∥ ≤ α(N)λ.

By the very definition of γ(E), there exists a primitive vector eN in E such that:

(6.4.16) ∥eN∥ < λ.

We may introduce the following admissible short exact sequence in CohZ:

(6.4.17) 0 −→ ZeN ↪−→E
p−→ E

′
:= E/ZeN −→ 0.

As observed in (6.1.3), we have:

ρ(ZeN ) = ∥eN∥/2 < λ/2.

Moreover the Z-module E′ is free of rank N − 1, and according to Proposition 6.4.2,

λ[0](E
′
) ≤ λ[0](E) < λ.

Therefore, by our inductive assumption, there exists a basis (e′1, . . . , e
′
N−1) of E

′ such that:

∥e′i∥E′ ≤ α(N − 1)λ for every i ∈ {1, . . . , N − 1}.

According to Proposition 6.1.8 applied to the short exact sequence (6.4.17), for every i ∈
{1, . . . , N − 1}, there exists ei in E such that:

p(ei) = e′i and ∥ei∥2 ≤ ∥e′i∥2E′ + (λ/2)2.

Then (e1, . . . , eN ) is a basis of E. Moreover it satisfies:

max
1≤i≤N

∥ei∥2 ≤ max
(
α(N − 1)2 + 1/4, 1

)
λ2 = α(N)2 λ2. □
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Observe that the conclusion of Proposition 6.4.8 implies the inequality:

γ(E) ≤
√
N + 3/2λ[0](E).

We will establish a slightly sharper bound in Subsection 6.4.4. However this inequality is already
basically optimal, as demonstrated by the following example.

Example 6.4.9. For every integer n ≥ 4, denote by D∨
n the Euclidean lattice D∨

n dual of the
root lattice Dn. It may be realized as the lattice Zn + Z(1/2, . . . , 1/2) inside D∨

n,R = Rn equipped
with the standard Euclidean norm.

Using this description, it is straightforward that the Euclidean lattice D∨
n satisfies:

γ(D∨
n ) =

√
n/2 and λn(D

∨
n ) = 1.

In [CS91, Section 7], Conway and Sloane describe the Voronoi cell V(D∨
n ), and from this de-

scription deduce its covering radius:

ρ(D∨
n ) =

{√
n/8 if n ≥ 4 is even√
(2n− 1)/16 if n ≥ 5 is odd.

6.4.1.5. The invariants λ[0] and λ
[0]
, and γ and γ. Let us finally indicate some further properties

of the invariants λ[0] and γ and of their lower and upper extensions. These properties provide some
additional illustration of the general formalism of lower and upper extensions of invariants on CohX
introduced in Section 4.3. They will not be used in the sequel, and we shall leave the details of their
proofs to the interested reader.

Since the invariant λ[0] (resp. γ) is monotonic on qCohZ, hence on CohZ , we may consider the

lower and upper extensions λ[0] and λ
[0]

(resp. γ and γ) to qCohZ of the restriction of λ[0] (resp.

of γ) to CohZ. They are defined by formulae (6.3.14) and (6.3.15) with ρ replaced by λ[0] (resp.
by γ).

One easily sees that Proposition 6.1.2, which asserts the lower semicontinuity of the covering
radius, still holds with λ[0] or γ instead of ρ. This implies the inequalities, for every object M of
qCohZ:

λ[0](M) ≤ λ[0](M) and γ(M) ≤ γ(M).

The converse inequalities are straightforward consequences of the definition, and therefore we have:

λ[0](M) = λ
[0]
(M) and γ(M) = γ(M).

As a straightforward consequence of the monotonicity of γ, for every object M of qCohZ the
following inequalities holds:

(6.4.18) λ[0](M) ≤ λ[0](M) and γ(M) ≤ γ(M).

Moreover Proposition 6.3.12 remains valid with ρ replaced by λ[0] or γ; namely:

λ[0](M) > 0⇐⇒ γ(M) > 0⇐⇒ there exists a non-zero ξ :M → OZ in qCohZ.

Finally the inequality in (6.4.18) may be strict: the Euclidean quasi-coherent sheaf M in Example
6.3.3.4 satisfies:

λ[0](M) = γ(M) = 0 and 1 ≤ λ[0](M) ≤ γ(M).
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6.4.2. Comparing γ(M) and ρ(M). Contrary to the covering radius ρ(M) and to the last of
the successive minima λ[0](M), the invariant γ(M) of Euclidean lattices does not seem to have been
systematically investigated in the classical literature on Euclidean lattices.12 However some of its
basic properties follow directly from some well-known properties of the Voronoi cells of Euclidean
lattices.

Indeed from the properties of the Voronoi cell of a Euclidean lattice M recalled in 6.2.1 (i) and
(ii), we derive that every facet vector f of M satisfies:

∥f/2∥ ≤ ρ(M).

Together with the property (iii) in 6.2.1, this establishes the estimates:

(6.4.19) γ(M) ≤ max
f∈F
∥f∥ ≤ 2ρ(M).

Inspired by this geometric argument, we may extend (part of) the inequality (6.4.19) to arbitrary
Euclidean quasi-coherent sheaves:

Proposition 6.4.10. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥), the following
inequality holds in [0,+∞]:

(6.4.20) γ(M) ≤ 2ρ(M).

Combined with the obvious estimate (6.4.1), this implies:

(6.4.21) λ[0](M) ≤ 2ρ(M).

If M is a Euclidean lattice of rank n, (6.4.21) becomes the upper-bound

(6.4.22) λn(M) ≤ 2ρ(M),

on the last of the successive minima of the Euclidean lattice M . This upper-bound appears in
[Cas71, X1.3, p. 313, equation (2)], where it is established by a reasoning of a “finite-dimensional”
nature,13 and in [MG02, Theorem 7.9].

Proof of Proposition 6.4.10. Let m be an element of M/tor and let r be a positive real

number such that r > ρ(M). To establish (6.4.20), it is enough to show the existence of a finite
family (mα)α∈A of elements of M/tor such that the following condition are satisfied:

(6.4.23) m =
∑
α∈A

mα and ∥mα∥ ≤ 2r for every α ∈ A.

To achieve this, consider a continuous map

c : [0, 1] −→MR

into the seminormed space (MR, ∥.∥) such that c(0) = 0 and c(1) = m.14

Observe that, for any t ∈ [0, 1], there exists m(t) in M/tor such that ∥c(t) −m(t)∥ < r. Using
the continuity of c and the compactness of [0, 1], we see that there exists a subdivision

(6.4.24) t0 = 0 < t1 < · · · < tn = 1

12See [Cai03] for some recent work involving the invariant γ(M) and its generalizations γi(M) introduced in
Subsection 6.6.2 below.

13It may be summarized as follows. Let us choose a family (f1, . . . , fn) of vectors in 1
2
M such that their class

([f1], . . . , [fn]) in ( 1
2
M)/M ≃M⊗F2 is a F2-basis of M⊗F2. This implies that (f1, . . . , fn) is Q-linearly independent,

and therefore a R-basis of MR. Moreover, after possibly translating the fi by elements in M, we may assume that
they satisfy ∥fi∥ ≤ ρ(M). Then (2f1, . . . , 2fn) is a R-basis of MR consisting of vectors in M of norms at most 2ρ(M).

14We may choose c defined by c(t) := tm, but an arbitrary path will do.
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of this interval such that, for any i ∈ {1, . . . , n}, the element m(t) may be chosen to be independent
of t in [ti−1, ti]. In other words, there exists a subdivision (6.4.24) and a family (mi)1≤i≤n of elements
of M/tor such that, for every i ∈ {1, . . . , n} and every t ∈ [ti−1, ti],

∥c(t)−mi∥ < r.

Therefore we may write:

m = c(1) = (c(1)−mn) +

n∑
i=1

(mi −mi−1) +m(0).

The n+ 2 terms of this sum belong to M/tor. Moreover,

∥c(1)−mn∥ = ∥c(tn)−mn∥ < r,

∥m0∥ = ∥c(t0)−m0∥ < r,

and, for every i ∈ {1, . . . , n},

∥mi −mi−1∥ ≤ ∥mi − c(ti−1)∥+ ∥c(ti−1)−mi−1)∥ < 2r.

This establishes the existence of a decomposition ofm as in (6.4.23) and completes the proof. □

To derive comparison estimates involving the invariants γ and ρ, it is often useful to use the
following observation:

Proposition 6.4.11. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf, and let N be a
Z-submodule of M and N := (N, ∥.∥|NR) the Euclidean quasi-coherent sheaf it defines.

If NR is dense in MR := (MR, ∥.∥), then:

(6.4.25) γ(M) ≤ max(γ(N), ρ(N)).

For instance, together with Proposition 6.4.10 applied to N , the estimate (6.4.25) implies the
following amplified version of Proposition 6.4.10:

Corollary 6.4.12. With the notation of Proposition 6.4.11, the following inequality holds:

γ(M) ≤ 2ρ(N).

Proof of Proposition 6.4.11. For any ε ∈ R∗
+, N is generated by B(N ; γ(N)+ε). Moreover,

for every m ∈M/tor, there exists v in NR such that

∥m− v∥ < ε.

In turn, there exists n in N/tor such that

∥v − n∥ < ρ(N) + ε.

Then the element m− n of M/tor satisfies:

∥m− n∥ < ρ(N) + 2ε.

This shows that B(N ; γ(N) + ε) ∪ B(M ; ρ(N) + 2ε), and a fortiori B(M ; max(γ(N), ρ(N)) + 2ε),
generate the Z-module M . □
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6.4.3. Comparing ρ(M
′
) and λ[0](M).

Proposition 6.4.13. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf. For any Euclidean
semi-norm ∥.∥′ on MR, we have:

(6.4.26) ρ(M, ∥.∥′) ≤
√
Tr(∥.∥′2/∥.∥2)/2 λ[0](M, ∥.∥).

In particular, if λ[0](M) is finite and if ∥.∥′ is Hilbert-Schmidt relatively to ∥.∥, then ρ(M, ∥.∥′)
is finite.

Proof. To prove (6.4.26), we may and will assume that λ[0](M) is finite.

Let us choose R in (λ[0](M),+∞). By definition of λ[0](M), there exists a sequence (mk)k∈N of
elements of B(M ;R) such that the R-vector space

M∞,R :=
∑
k∈N

Rmk

is dense in (MR, ∥.∥). Then we may apply Corollary 6.1.7 to M
′
:= (M, ∥.∥′) and to the sequence

(Mi)i∈N of Z-submodules of M defined by:

Mi :=

i∑
k=0

Zmk.

This establishes the upper-bound:

(6.4.27) ρ(M
′
)2 ≤

+∞∑
i=0

ρ(Mi/Mi−1
′
)2.

Clearly, for any integer i ≥ 1, the Z-module Mi/Mi−1 is generated by the class mi of mi. As

observed in (6.1.3) above, the covering radius of the cyclic Euclidean coherent sheaf Mi/Mi−1
′
:=

(Mi/Mi−1, ∥.∥′i) may be expressed in terms of the norm of this generator:

(6.4.28) ρ(Mi/Mi−1
′
) = ∥mi∥′i/2,

and consequently:

(6.4.29) 4ρ(M
′
)2 ≤

+∞∑
i=0

∥mi∥
′2
i /4.

Moreover, according to Corollary A.3.4, we have:

(6.4.30)

+∞∑
i=0

∥mi∥
′2
i ≤ Tr (∥.∥′2/∥.∥2) sup

0≤i<+∞
∥mi∥2 ≤ Tr (∥.∥′2/∥.∥2)R2.

The estimate (6.4.26) follows from (6.4.29) and (6.4.30), since R is arbitrary in (λ[0](M),+∞).
□

Remark 6.4.14. For later reference, observe that the proof of Proposition 6.4.13 establishes
that, if a Euclidean quasi-coherent sheaf M := (M, ∥.∥) satisfies:

λ[0](M, ∥.∥) < +∞,

and if a Euclidean seminorm ∥.∥′ on MR is Hilbert-Schmidt with respect to ∥.∥, then there exists a
Z-submodule N of M such that NR is dense in (MR, ∥.∥) and that the Euclidean quasi-coherent sheaf

N
′
:= (N, ∥.∥′|NR

is ρ2-summable.
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When M is a Euclidean lattice of rank n, we may apply Proposition 6.4.13 with ∥.∥′ := ∥.∥.
Then we have:

Tr (∥.∥′2/∥.∥2)) = n,

and the upper-bound (6.4.26) becomes:

(6.4.31) ρ(M) ≤
√
n/2λn(M).

This estimate is established in [MG02, Theorem 7.9] as an application of the so-called nearest plane
algorithm, introduced by Babai in [Bab86]; see also [MG02, Section 2.3]. The introduction of
the sequence N0 = {0} ↪→ N1 ↪→ N2 ↪→ . . . of Euclidean coherent subsheaves of M and of the

subquotients (Nk/Nk−1)k≥1 may be seen as an infinite-dimensional avatar of Babai’s construction.

Observe also that Example 6.4.9 shows that the estimate (6.4.31), and therefore (6.4.26), is
optimal up-to a factor 2.

6.4.4. Comparing γ(M
′
) and λ[0](M). By combining Proposition 6.4.10 and Proposition

6.4.13, we obtain that, with the notation of Proposition 6.4.13, the following inequality holds:

(6.4.32) γ(M
′
) ≤

√
Tr (∥.∥′2/∥.∥2)λ[0](M).

It is actually possible to establish a slightly stronger inequality by means of Proposition 6.4.11:

Corollary 6.4.15. LetM := (M, ∥.∥) be a Euclidean quasi-coherent sheaf. For every Euclidean
seminorm ∥.∥′ over MR, the following estimate holds:

(6.4.33) γ(M
′
) ≤ max

(
sup(∥.∥′/∥.∥),

√
Tr (∥.∥′2/∥.∥2)/2

)
λ[0](M).

Proof. Let us consider a Euclidean seminorm ∥.∥′ that is Hilbert-Schmidt relatively to ∥.∥,
and R a real number in (λ[0](M),+∞).

Let introduce the Z-submodule N of M generated by B(M ;R). According to the definition of

λ[0](M), the R-vector space NR is dense in MR := (MR, ∥.∥), and therefore in M
′
R := (MR, ∥.∥′).

Proposition 6.4.11, applied to M
′
and N , shows that:

(6.4.34) γ(M
′
) ≤ max(γ(N

′
), ρ(N

′
)).

where N
′
:= (N, ∥.∥′|NR

). Moreover, by the very definition of the submodule N , we have:

(6.4.35) γ(N
′
) ≤ sup(∥.∥′/∥.∥) γ(N) ≤ sup(∥.∥′/∥.∥)R,

and, according to Proposition 6.4.13, we have:

(6.4.36) ρ(N
′
) ≤ 1

2

√
Tr (∥.∥′2/∥.∥2)λ[0](N) ≤ 1

2

√
Tr (∥.∥′2/∥.∥2)R.

The estimates (6.4.34), (6.4.35), and (6.4.36) imply the upper-bound (6.4.33) on γ(M
′
). □

Applied to a Euclidean lattice M and to the Euclidean (semi)norm ∥.∥′ = ∥.∥, Corollary 6.4.15
becomes:

Corollary 6.4.16. For every Euclidean lattice M of rank n, the following inequality holds:

(6.4.37) γ(M) ≤ max(1,
√
n/2)λn(M).

From the inequality (6.4.37), we recover that, when n ≤ 4, the invariants γ(M) and λn(M)
coincide. This is trivial when n = 1, and follows from some specific features of the reduction theory
of Euclidean lattices of low rank, which go back to Lagrange, Gauss, and Julia, when n = 2, 3, and
4; see for instance [vdW56, Â§7].
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Moreover for every n ≥ 5, the inequality

γ(M) ≤ (
√
n/2)λn(M)

may become an equality for some Euclidean lattice M of rank n, as demonstrated by the lattice D∨
n

described in Example 6.4.9.

This shows the constant max(1,
√
n/2) in the inequality (6.4.37) is optimal, and accordingly the

inequality (6.4.33) is in a sense optimal.

6.5. Euclidean Quasi-coherent Sheaves with Eventually Vanishing ρ2, λ[0], or γ

6.5.1. The invariants evλ[0], evγ, and evρ.

6.5.1.1. As recalled in the introduction of this chapter, if φ is one of the invariant λ[0], γ, or ρ,
the monotonicity of φ allows one to define a new invariant

evφ : qCohZ −→ [0,+∞]

by the formula:

evφ(M) := lim
C∈coh(M)

φ(M/C) = inf
C∈coh(M)

φ(M/C),

where the limit and the infimum are taken over the directed set (coh(M),⊆) of finitely generated
submodules of M ; see Section 4.4.

If (Ci)i∈N is an increasing sequence of finitely generated Z-submodules of M such that⋃
i∈N

Ci =M,

the family (Ci)i∈N is cofinal in (coh(M),⊆), and therefore:

evφ(M) = lim
i→+∞

φ(M/Ci).

Like φ itself, the invariant evφ satisfies the monotonicity conditionMon1, and is 1-homogeneous.
We refer to Subsection 4.4.2 for a more complete discussion of the properties of φ inherited by evφ,
and recall that the invariant φ is said to be eventually vanishing on some Euclidean quasi-coherent
sheaf M when evφ(M) vanishes.

We shall be interested in this eventual vanishing property notably when φ is the covering radius
ρ or the invariant γ. When evρ(M) vanishes, we shall say that M has eventually vanishing covering
radius; when evγ(M) vanishes, we shall say that M is eventually generated by small sections.

6.5.1.2. Let us indicate various relations between by the eventual vanishing and the finiteness of
the three invariants λ[0], γ and ρ that are consequences of their properties established in Section 6.4.

The estimates relating these three invariants:

λ[0](M) ≤ γ(M) ≤ 2ρ(M)

immediately imply:

evλ[0](M) ≤ evγ(M) ≤ 2 evρ(M).

In turn, this implies:

Proposition 6.5.1. For every Euclidean quasi-coherent sheaf M , the following implications
hold:

(6.5.1) evρ(M) = 0 =⇒ evγ(M) = 0 =⇒ evλ[0](M) = 0.

The following proposition relates the finiteness and the eventual vanishing for each of the in-
variants λ[0], γ, or ρ.
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Proposition 6.5.2. Let φ be any of the invariants λ[0], γ, or ρ.

For every Euclidean quasi-coherent sheaf M := (M, ∥.∥), and for every Euclidean seminorm

∥.∥′ on MR that is compact relatively to ∥.∥, the following implications hold, where M
′
denotes the

Euclidean quasi-coherent sheaf (M, ∥.∥′):

(6.5.2) evφ(M) < +∞ =⇒ φ(M) < +∞,
and:

(6.5.3) φ(M) < +∞ =⇒ evφ(M
′
) = 0.

Proof. When evφ(M) is finite, there exists C in coh(M) such that φ(M/C) is finite. Then
Proposition 6.4.5 (resp. Proposition 6.1.6) when φ is λ[0] or γ (resp. when φ is ρ) implies the
finiteness of φ(M), since ρ(C) is finite.

Let (Ci)i∈N be an exhaustive filtration of M by submodules in coh(M). For every i ∈ N, we
may consider the quotients M/Ci and M/Ci

′
of M and M

′
and define:

εi := sup(∥.∥
M/Ci

′/∥.∥
M/Ci

).

Then we have:

∥.∥
M/Ci

′ ≤ εi ∥.∥M/Ci
,

and, from the 1-homogeneity and the monotonicity of the invariant φ, we deduce the estimates:

φ(M/Ci
′
) ≤ εi φ(M/Ci) ≤ εi φ(M).

Moreover, according to Proposition A.1.2, the compactness of ∥.∥′ with respect to ∥.∥ implies:

lim
i→+∞

εi = 0,

and therefore, when φ(M) is finite, we have:

evφ(M) = lim
i→+∞

φ(M/Ci) = 0. □

The following proposition shows that, provided one replaces the Euclidean seminorm ∥.∥ defining
a Euclidean quasi-coherent sheaf by a Euclidean seminorm ∥.∥′ that is Hilbert-Schmidt with respect
to ∥.∥, one may establish some converse to the implications (6.5.1).

Proposition 6.5.3. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥) and for every
Euclidean seminorm ∥.∥′ on MR that is Hilbert-Schmidt relatively to ∥.∥, the following implication

holds, where M
′
denotes the Euclidean quasi-coherent sheaf (M, ∥.∥′):

λ[0](M) < +∞ =⇒ evρ(M
′
) = 0.

Proof. According to Proposition A.4.2, for every Euclidean seminorm ∥.∥′ over MR that is
Hilbert-Schmidt relatively to ∥.∥, we may choose a Euclidean seminorm ∥.∥∼ over MR such that
∥.∥∼ is Hilbert-Schmidt relatively to ∥.∥, and ∥.∥′ is compact relatively to ∥.∥∼.

Then Proposition 6.4.13 shows that ρ(M, ∥.∥∼) is finite, and Proposition 6.5.2 that evρ(M
′
)

vanishes. □

6.5.2. The invariants evγ(M) and infN∈coft(M) γ(N). The following proposition provides an
alternative interpretation of the invariant evγ.

Proposition 6.5.4. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥) the following esti-
mates hold:

(6.5.4) inf
N∈coft(M)

γ(N)/2 ≤ evγ(M) ≤ inf
N∈coft(M)

γ(N).
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A key point in the proof of Proposition 6.5.4 will be the following lemma.

Lemma 6.5.5. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf, and r a positive real
number.

If there exists a finitely generated Z-submodule C of M such that γ(M/C) < r, then there exists
a finite subset F of M such that F ∪B(M ; 2r) generates the Z-module M.

Proof. Let C be an element of coh(M) such that γ(M/C) < r.

Let us first assume that the Euclidean seminorm ∥.∥ is actually a norm. We shall denote by
⟨., .⟩ the scalar product that defines ∥.∥.

Observe that C/tor := (C/tor, ∥.∥|CR) is a Euclidean lattice, and in particular its covering radius

ρ(C/tor) = ρ(C) is finite.

Since CR is a finite-dimensional R-subvector space of MR, we may consider the orthogonal
projection:

p :MR −→ CR.

If (ei)1≤i≤n is an orthonormal basis of CR, the map p may be defined by the equality:

(6.5.5) p(v) :=

n∑
i=1

⟨v, ei⟩ei,

valid for any v in MR. Moreover, it satisfies:

(6.5.6) ∥v∥2 = ∥p(v)∥2 + ∥v − p(v)∥2,
and

(6.5.7) ∥v − p(v)∥ = ∥[v]∥
M/C

,

where [v] denotes the class of v in MR/CR ≃ (M/C)R. In particular, we have:

∥v∥ ≤ ∥p(v)∥+ ∥[v]∥
M/C

.

Let us choose two positive real numbers r′ and ε such that:

γ(M/C) < r′ < r and ε+ 2r′ ≤ 2r.

Let us choose a family (mi)i∈N of generators of M/C such that, for every i ∈ I,
∥mi∥M/C

≤ r′.

For every i ∈ I, we may choose an element mi in M such that its class [mi] in M/C coincides with
mi. After possibly adding to it a suitable element of C, we may actually assume that the following
upper-bound is satisfied:15

(6.5.8) ∥p(mi)∥ ≤ ρ(C).
The compactness of the closed ball B(CR; ρ(C)) in CR implies the existence of a non-negative integer
n and of a finite partition (Ij)1≤j≤n of I in disjoint non-empty subsets Ij such that, for every j in
{1, . . . , n}, the elements (p(mi))i∈If lie in a subset of diameter at most ε in the normed vector space
(CR, ∥.∥|CR).

For every j in {1, . . . , n}, let us choose an element ι(j) of Ij , and let us define, for every i ∈ Ij :
m̃i := mi −mι(j).

Clearly the elements (mι(j))1≤j≤n and (m̃i)i∈I generates the Z-module M . Moreover, if i belongs
to Ij , we have:

∥m̃i∥ ≤ ∥p(m̃i)∥+ ∥[m̃i]∥M/C
= ∥p(mi)− p(mι(j)∥+ ∥mi −mι(j)∥M/C

≤ ε+ 2r′ ≤ 2r.

15For simplicity, we still write mi for the image miR of mi in the additive subgroup M/tor of MR.
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Therefore, if we define F as the set of the mι(j) for j ∈ {1, . . . , n}, then F ∪B(M ; 2r) generates
the Z-module M .

The previous reasoning extends with the following minor modifications to the situation where
∥.∥ is an arbitrary Euclidean semi-norm:

(1) Since C is finitely generated, its covering radius

(6.5.9) ρ(C/tor) = ρ(C) := inf{R ∈ R∗
+ | C/tor +B(C;R) = CR}

is still finite, although the infimum in the right-hand side of (6.5.9) is possibly not a
minimum.

(2) We may choose a supplement C̃R of the R-subvector space

ker ∥.∥|CR := {v ∈ CR | ∥v∥ = 0}

in CR and an orthonormal basis (ei)1≤i≤n of the Euclidean vector space (C̃R, ∥.∥|C̃R
), and

define a R-linear map

p :MR −→ C̃R ⊆ CR

by the formula (6.5.5). Then the relations (6.5.6) and (6.5.7) still hold.
(3) We may assume that, instead of (6.5.8), the mi satisfy the upper-bounds:

(6.5.10) ∥p(mi)∥ ≤ ρ̃,

where ρ̃ denotes an arbitrary real number in the interval (ρ(C),+∞), and use the com-

pactness of the closed ball B(C̃R, ∥.∥|C̃R
; ρ̃) instead of the one of B(CR, ∥.∥|CR ; ρ(C)). □

Proof of Proposition 6.5.4. Observe that, with the notation of Lemma 6.5.5, the Z-sub-
module N of M generated by B(M ; 2r) belongs to coft(M) and satisfies γ(N) ≤ 2r. Consequently
Lemma 6.5.5 yields the following inequality:

(6.5.11) evγ(M) := inf
C∈coh(M)

γ(M/C) ≥ inf
N∈coft(M)

γ(N)/2.

Moreover, if N is an element of coft(M), then there exists C in coh(M) such that C +N =M .
Then the morphism

f : N ↪→M ↠M/C

in qCoh
≤1

Z (N,M/C), defined as the composition of the inclusion morphism (from N to M) and of

the quotient map (from M to M/C), satisfies:

f(N) =M/C.

Consequently, according to Proposition 6.4.2, we have:

γ(N) ≥ γ(M/C).

This establishes the inequality:

□(6.5.12) inf
N∈coft(M)

γ(N) ≥ inf
C∈coh(M)

γ(M/C) =: evγ(M).

6.5.3. Euclidean quasi-coherent sheaves with eventually vanishing covering radius,
or eventually generated by small sections. The following proposition spells out the geometric
meaning of the property, for a Euclidean quasi-coherent sheaf, to have eventually vanishing covering
radius.

Proposition 6.5.6. For every Euclidean quasi-coherent sheaf M , the following conditions are
equivalent:

(i) the Euclidean quasi-coherent sheaf M := (M, ∥.∥) has eventually vanishing covering radius;
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(ii) for every η ∈ R∗
+, there exists a finitely generated Z-submodule C of M such that

MR = CR +M/tor +B(MR; η);

(iii) for every η ∈ R∗
+, there exists a finitely generated R-vector subspace V of MR such that

MR = V +M/tor +B(MR; η).

Proof. The equivalence of (i) and (ii) is a consequence of the following straightforward obser-
vation:

Lemma 6.5.7. For every Z-submodule N of M and every ε ∈ R+, the following two conditions
are equivalent:

(i)’ the quotient M/N satisfies ρ(M/N) ≤ ε;
(ii)’ for every η ∈ (ε,+∞), we have: MR = NR +M/tor +B(MR; η). □

The implication (ii) ⇒ (iii) is clear, and the converse implication (iii) ⇒ (ii) follows from the
fact that any finite subset of MR is contained in CR, for a suitable finitely generated Z-submodule
C of M. □

In a similar vein, Proposition 6.5.4 leads to criteria for the vanishing of the invariant evγ(M)
attached to some Euclidean quasi-coherent sheaf M :

Proposition 6.5.8. For every Euclidean quasi-coherent sheaf M , the following conditions are
equivalent:

(i) M is eventually generated by small sections;
(ii) for every η ∈ R∗

+, there exists a finite subset Fη of M such that Fη ∪ B(M ; η) generates
the Z-module M ;

(iii) there exists A in N ∪ {+∞} and a sequence (mk)0≤k<A of elements of M which generate
the Z-module M and satisfies:

(6.5.13) lim
k→+∞

∥mk∥ = 0 if A = +∞.

The terminology “eventually generated by small sections” used to express the vanishing of evγ
has actually been chosen to reflect the content of conditions (ii) or (iii) in this proposition.

Proof. Condition (ii) is clearly equivalent to the vanishing of infN∈coft(M) γ(N), and therefore
to (i) by Proposition 6.5.4.

Let us assume that (iii) is satisfied. If A is finite, then (ii) is satisfied with Fη the set with
elements the mk, 0 ≤ k < A, for every η ∈ R∗

+. When A is +∞, for every η ∈ R∗
+, we may find

n(η) ∈ N such that:

k ≥ n(η) =⇒ ∥mk∥ < η,

and define Fη as the set with elements the mk, 0 ≤ k < n(η). Then Fη ∪ B(M ; η) contains all the
mk, k ∈ N, and therefore generates the Z-module M . This shows that (ii) is satisfied.

Finally, let us assume that (ii) is satisfied, and let us show that (iii) is satisfied. To achieve
this, for every positive integer n, let us choose a finite subset F1/n of M such that F1/n ∪B(M ; 1/n)
generates the Z-module M . After possibly increasing the F1/n, we may and will assume that their
union

⋃
n≥1 F1/n generates the Z-module M .

We may choose a finite sequence (m0
1, . . . ,m

0
n0
) that enumerates the elements of F1, and for

every positive integer k, a finite sequence (mk
1 , . . . ,m

k
nk
) in B(M, 1/k) that, together with F1/k,

generates a Z-submodule of M containing F1/(k+1). Then the sequence

(m0
1, · · · ,m0

n0
,m1

1, · · · ,m1
n1
, · · · ,mk

1 , · · · ,mk
nk
, · · · )
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defined by concatenation of these finite sequences is easily seen to generate the Z-module M and to
satisfy the condition (6.5.13). □

6.6. The Invariants λi and λ[i], γi and γ[i], and ρi and ρ[i]

6.6.1. The successive minima λi and λ[i]. Let M be a Euclidean quasi-coherent sheaf.

Definition 6.6.1. The successive minima of M are the elements λi(M) and λ[i](M) of [0,+∞]
defined as follows, for any nonnegative integer i:

(i) the invariant λi(M) ∈ [0,+∞] is the infimum of the set of those R ∈ R∗
+ such that the

R-vector space generated by B(M/tor;R) has dimension at least i or, equivalently, the

Z-submodule of M/tor generated by B(M/tor;R) has rank at least i ;

(ii) the invariant λ[i](M) ∈ [0,+∞] is the infimum of the set of those R ∈ R∗
+ such that the

closure in MR of the R-vector space generated by B(M/tor;R) has codimension at most i.

When i = 0, the invariant λ[i] defined in Definition 6.6.1 (ii) coincides with the invariant λ[0]

introduced in Definition 6.4.1. Definition 6.6.1 would actually make sense when M = (M, ∥.∥) is a
pair consisting of an arbitrary Z-module M and of a pseudonorm ∥.∥ on MR. Note that λi(M) is
finite if and only if i is at most the dimension of the real vector space MR.

Given a morphism of Z-modules f : M → N , we may also define a relative version λ(f) of the
first minimum by the formula:

λ(f) = inf {∥v∥ | f(v) ̸= 0} .

By definition, the invariant λ[0](M) is the infimum of those positive real numbers R such that
the R-vector space generated by B(M/tor;R) is dense in MR, and the following inequalities hold:

0 = λ0(M) ≤ λ1(M) ≤ λ2(M) ≤ . . .

and

λ[0](M) ≥ λ[1](M) ≥ λ[2](M) ≥ . . .
If the dimension of MR is infinite, then, for any nonnegative integers i and j, we have:

λi(M) ≤ λ[j](M).

As already observed in 6.4.1.1, when M is a Euclidean lattice (that is, when the Z-module M
is finitely generated and free and the Euclidean seminorm ∥.∥ is a norm), the invariant λ[0](M) is
finite and coincides with the “ultimate of the successive minima” of M , namely with λn(M) where
n := rkM :

λ[0](M) = λn(M) := min
{
R ∈ R+ | B(M ;R) generates the R-vector space MR

}
.

This may be generalized as follows.

Proposition 6.6.2. Let M = (M, ∥.∥) be a Euclidean quasi-coherent sheaf such that MR is a
finite-dimensional real vector space. For any nonnegative integer i, λ[i](M) is the infimum of the set
of those positive real numbers R such that the R-vector space generated by B(M ;R) has codimension
at most i in MR.

In other words, if MR has finite dimension n, then for any integer i between 0 and n, we have:

λ[i](M) = λn−i(M).

We start the proof of Proposition 6.6.2 with a lemma.
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Lemma 6.6.3. Let V be a finite-dimensional real vector space endowed with a Euclidean norm.
We denote by d the induced metric on V . Let W be a vector subspace of V , and let G be a Z-
submodule of V . Assume that the vector subspace of V generated by G contains W . Then, for any
ε > 0, the vector subspace of V generated by those elements g of G with

d(g,W ) < ε

contains W .

Proof. We immediately reduce to the case where W is a line L and G is a lattice in V . If L
contains a nonzero element of G, the result is clear. Assume that the intersection L ∩G is reduced
to 0. Let n be the dimension of V , and let

π : V −→ V/L

be the quotient map. Then π(G) is a Z-submodule of rank n of the vector space V/L, which has
dimension n− 1. Since π(G) generates V/L, the connected component of the identity of the closure
of π(G) in V/L is a line L′ in V/L.

For any ε > 0, we may find elements g of G such that π(g) lies in L′ \ {0} and π(g) is arbitrarily
close to 0 in V/L, i.e., such that d(g, L) is arbitrarily small. Given ε > 0, consider a primitive
element g of G such that π(g) lies in L′ \ {0} and d(g, L) < ε. Consider a primitive element h of G
such that π(h) lies in L′ \ {0} and d(h, L) < d(g, L). Since both π(g) and π(h) lie in L′, we may find
real numbers λ and µ, not both zero, such that

λπ(g) + µπ(h)h = 0,

i.e.:

λg + µh ∈ L.
Since g is primitive in G and d(h, L) < d(g, L), h does not lie in Qg, so that

λg + µh ̸= 0.

This proves that L is contained in the vector subspace of V generated by those g ∈ G such that
d(g, L) < ε. □

Proof of Proposition 6.6.2. Write µ[i](M) for the infimum of the set of those positive real
numbers R such that the R-vector space generated by B(M ;R) has codimension at most i in MR.
Certainly, we have:

λ[i](M) ≤ µ[i](M).

To prove the reverse inequality, consider the subspace K of MR consisting of those v with
∥v∥ = 0. Let

π :MR −→MR/K

be the quotient map. If V is a vector subspace of MR, then the closure of V in MR is π−1(π(V )).
In particular, the closure of V in MR has codimension at most i in MR if and only if π(V ) has
codimension at most i in MR/K.

Let R be a positive real number. Lemma 6.6.3 shows that the R-vector space generated by
B(M/tor;R) contains K, so that it is closed. Consider a real number R with R > λ[i](M). Then the

closure of the R-vector space V generated by B(M/tor;R) has codimension at most i in MR. Since
V is closed in MR, this proves that V has codimension at most i in MR, so that:

R ≥ µ[i](M).

This finishes the proof. □

The invariants λ[i] are easily seen to satisfy the monotonicity property Mon1, namely:
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Proposition 6.6.4. If f : M1 → M2 is a morphism in qCoh
≤1

Z such that f(M1) = M2, then,
for any nonnnegative integer i:

(6.6.1) λ[i](M1) ≥ λ[i](M2)

Proof. To establish the inequality (6.6.1), let R be a positive real number, and let V be the
closure in M1,R of the R-vector space generated by B(M1;R).

LetW be the closure inM2,R of the R-vector space generated by B(M2;R). Since f(B(M1;R))

is contained in B(M2;R), we obtain:

f(V ) ⊆W.

Since f : M1 → M2 is surjective, the codimension of f(V ) in M2,R is bounded above by the

codimension of V in M1,R. In particular, if R > λ[i](M1), then V has codimension at most i in

M1,R, so that W has codimension at most i in M2,R, and R > λ[i](M2). □

6.6.2. The invariants γi(M) and γ[i](M). Given a Euclidean quasi-coherent sheaf M , we
may also define successive invariants γ[i](M) and γi(M) as follows.

Definition 6.6.5. Let i be a nonnegative integer.

(i) The invariant γi(M) is the infimum of the set of those R ∈ R∗
+ such that the Z-submodule

of M/tor generated by B(M/tor;R) contains a Z-submodule N of M/tor that is saturated
of rank i, namely N has rank i and M/tor/N is torsion-free ;

(ii) the invariant γ[i](M) is the infimum of the set of those R ∈ R∗
+ such that the Z-submodule

of M/tor generated by B(M/tor;R) contains a Z-submodule N of M/tor that is saturated
of corank i, namely, M/tor/N is free of rank i.

In the case of Euclidean lattices, the invariants γi appear in [Cai03]. The invariant γ[0] coincides
with the invariant γ introduced in Definition 6.4.1.

The following inequalities hold:

0 = γ0(M) ≤ γ1(M) ≤ γ2(M) ≤ . . .
and

γ[0](M) ≥ γ[1](M) ≥ γ[2](M) ≥ . . .
If the dimension of MR is infinite, then, for any nonnegative integers i and j, we have:

γi(M) ≤ γ[j](M).

If MR has finite dimension n, then, for any integer i between 0 and n, we have:

γ[i](M) = γn−i(M).

Finally, for any nonnegative i, we have:

(6.6.2) λi(M) ≤ γi(M)

and

(6.6.3) λ[i](M) ≤ γ[i](M).

As in the case of successive minima, the invariants γ[i] are easily seen to satisfy the monotonicity
property Mon1 as in the following statement, whose proof is similar to that of Proposition 6.6.4
and left to the reader:

Proposition 6.6.6. If f : M1 → M2 is a morphism in qCoh
≤1

Z such that f(M1) = M2, then,
for any nonnegative integer i:

γ[i](M1) ≥ γ[i](M2).
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6.6.3. The successive covering radii ρi(M) and ρ[i](M). In similar fashion, the usual
covering radius fits into a sequence of successive covering radii defined as follows. Let M = (M, ∥.∥)
be a Euclidean quasi-coherent sheaf. If N is a Z-submodule of M , and

f : N↪−→M
is the inclusion map, we write ρ(N,M) for the relative covering radius ρ(f : N →M) as defined in
Subsection 6.7.1 below; namely:

ρ(N,M) := sup
x∈NR

inf
m∈M/tor

∥x−m∥.

Definition 6.6.7. Let i be a nonnegative integer.

(i) The invariant ρi(M) is the infimum of the set of real numbers of the form ρ(N,M), where
N is a Z-submodule of M such that NR has dimension i ;

(ii) The invariant ρ[i](M) is the infimum of the set of real numbers of the form ρ(N,M), where
N is a Z-submodule of M such that NR has codimension i in MR.

Proposition 6.6.8. The following equality holds:

ρ[0](M) = ρ(M).

For any two nonnegative integers i, j with i ≤ j, we have:

ρ[j](M) ≤ ρ[i](M)

and
ρi(M) ≤ ρj(M).

Proof. By definition, ρ[0](M) is the infimum of the quantity ρ(N,M), where N runs through
the Z-submodules of M that generate the real vector space MR. For any such N , we have

ρ(N,M) = sup
x∈NR

inf
m∈M/tor

∥x−m∥ = sup
x∈MR

inf
m∈M/tor

∥x−m∥ = ρ(M).

This proves the equality ρ[0](M) = ρ(M).

Consider nonnegative integers i and j with i ≤ j. If N is any Z-submodule of M such that NR
has codimension i in MR, we may find a Z-submodule N ′ of M contained in N such that NR has
codimension j in MR. In particular, N ′

R is contained in NR and we have:

ρ(N ′,M) ≤ ρ(N,M).

Taking the infimum over all such Z-submodules N , we find:

ρ[j](M) ≤ ρ[i](M).

The remaining inequality may be proved similarly. □

If MR has finite dimension n, then, for any integer i between 1 and n, we have:

ρ[i](M) = ρn−i(M).

If MR is infinite-dimensional, then, for any positive integers i and j, we have:

ρi(M) ≤ ρj(M).

As with the previous invariants, the successive covering radii ρ[i] are easily seen to satisfy the
monotonicity property Mon1 as in the following statement, whose proof is once again left to the
reader:

Proposition 6.6.9. If f : M1 → M2 is a morphism in qCoh
≤1

Z such that f(M1) = M2, then,
for any nonnegative integer i:

ρ[i](M1) ≥ ρ[i](M2).
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Successive invariants related to the covering radius, namely, the covering minima, were in-
troduced for Euclidean lattices by Kannan and Lovász in [KL88]. In Subsection 6.6.5, we will
investigate the relationship between covering minima and successive covering radii. As with the
other invariants we considered, the covering minima admit a natural generalization to Euclidean
quasi-coherent sheaves, that we leave to the reader.

6.6.4. Comparison estimates. The comparison estimates established in Subsection 6.4.2 ad-
mit generalizations concerning the successive invariants introduced in the last subsections.

Proposition 6.6.10. For every Euclidean quasi-coherent sheaf M := (M, ∥.∥) and any nonneg-
ative integer i ≤ dimMR, the following inequality holds in [0,+∞]:

(6.6.4) γ[i](M) ≤ 2ρ[i](M).

In particular:

(6.6.5) λ[i](M) ≤ 2ρ[i](M).

Similarly, we have:

(6.6.6) γi(M) ≤ 2ρi(M).

In particular:

(6.6.7) λi(M) ≤ 2ρi(M).

Proof of Proposition 6.6.10. We will prove (6.6.4) by a variant of the proof of Proposition
6.4.10 and leave it to the reader to adapt the argument to prove (6.6.6). The remaining inequalities
follow from the estimates (6.6.2) and (6.6.3).

Let N be a Z-submodule of M such that NR has codimension i in MR. We need to prove the
inequality:

(6.6.8) γi(M) ≤ ρ(N,M) := sup
x∈NR

inf
m∈M/tor

∥x−m∥.

We may replace N with M/tor ∩NR and assume that N is saturated in N/tor.

Let n be an element of N/tor and let r be a positive real number such that r > ρ(N,M). As NR
has codimension i in MR, to establish (6.6.8), it is enough to show the existence of a finite family
(mα)α∈A of elements of M/tor such that the following condition are satisfied:

(6.6.9) n =
∑
α∈A

mα and ∥mα∥ ≤ 2r for every α ∈ A.

To achieve this, we proceed exactly as in the proof of Proposition 6.4.10. Namely we consider a
continuous map

c : [0, 1] −→MR

into the seminormed space (NR, ∥.∥) such that c(0) = 0 and c(1) = n. For any t ∈ [0, 1], there exists
m(t) in M/tor such that ∥c(t)−m(t)∥ < r, and consequently there exists a subdivision

t0 = 0 < t1 < · · · < tn = 1

of the interval [0, 1] and a family (mj)1≤j≤n of elements of M/tor such that, for every j ∈ {1, . . . , n}
and every t ∈ [tj−1, tj ],

∥c(t)−mj∥ < r.

Therefore we may write:

m = c(1) = (c(1)−mn) +

n∑
j=1

(mj −mj−1) +m(0).
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The n+2 terms of this sum belong to M/tor and have norm bounded above by 2r. This establishes
the existence of a decomposition of m as in (6.6.9) and completes the proof. □

Corollary 6.6.11. For every Euclidean quasi-coherent sheaf M , the following equality holds:

ρ1(M) =
1

2
λ1(M).

Proof. By Proposition 6.6.10, we have:

ρ1(M) ≥ 1

2
λ1(M).

Let r be a positive real number with r > λ1(M). Let m be a nonzero element of M/tor with

∥v∥ < r.

Then clearly:

ρ1(M) ≤ ρ(Zm,M) = sup
λ∈R

inf
v∈M/tor

∥λm− v∥ ≤ 1

2
∥m∥ < 1

2
r. □

6.6.5. Comparison with the covering minima of Kannan-Lovász. Let E = (E, ∥.∥) be
a Euclidean lattice of rank n. In [KL88], Kannan and Lovász introduce the sequence of covering
minima µi(E) by defining, for any integer i between 0 and n, µi(E) to be the smallest nonnegative
real number R such that, for any affine subspace V of codimension i in the real vector space ER,
there exists v ∈ V and e ∈ E such that

∥v − e∥ ≤ R.

In particular, we have:

0 = µ0(E) ≤ µ1(E) ≤ . . . ≤ µn(E) = ρ(E).

It would be possible to generalize those covering minima to invariants µi and µ
[i] of arbitrary

quasi-coherent Euclidean sheaves along the lines of the preceding paragraphs.

As the following proposition shows, the relationship between the covering minima of E and its
successive covering radii is not tight, as the ρi(E) are controlled by the smallest nonzero invariant
µ1(E). The proof below makes use of the generalized transference inequalities proved in Chapter 9.
Since the invariants µi are not used in this text outside of this discussion, the proofs of Chapter 9
are independent of the proposition below.

Proposition 6.6.12. For any integer i between 0 and n− 1, we have:

ρi(E) ≤ 2nµ1(E).

Proof. By [KL88, Lemma 2.3], we have:

µ1(E) =
1

2λ1(E
∨
)
.

As a consequence, we find:

ρ(E)

µ1(E)
= 2ρi(E)λ1(E

∨
) ≤ 2ρi(E)λ1+n−i(E

∨
) ≤ n

π
+

4
√
n

π
,

where the last inequality is proved in Theorem 9.5.7. This finishes the proof. □

Conversely, there is no nonzero lower bound for the ratio

ρn−1(E)

µ1(E)
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as E runs through the Euclidean lattices of rank n, as may be seen by considering the norm ∥.∥ on
a lattice of rank n with orthogonal basis e1, . . . , en with

∥e1∥ = . . . = ∥en−1∥ = 1

and

∥en∥ = C.

Indeed, we have:

ρn−1(E) ≤ ρ(Ze1 ⊕ . . .⊕ Zen, ∥.∥) =
1

2

√
n− 1

and

µ1(E) ≥ C

2

as may be seen by considering the hyperplane

1

2
en + (Ze1 ⊕ . . .⊕ Zen).

In spite of the results above regarding the discrepancy between successive covering radii and
covering minima, we may obtain a better relationship between those invariants when, instead of
considering µi(E), we allow ourselves to discard some affine subspaces of codimension i:

Proposition 6.6.13. Let i be an integer between 0 and 1, and let G denote the grassmannian
of codimension i affine subspaces of ER. Then, for any ε > 0, there exists a nonempty Zariski open
subset U of G such that, for any V ∈ U , there exists v ∈ V and e ∈ E such that

∥v − e∥ ≤ ρi(E) + ε.

Proof. Let M be a Z-submodule of E of rank i such that

ρ(M,E) ≤ ρi(E) + ε.

Then, by construction, any element of MR is at distance at most ρi(E) + ε from E.

Let U be the open subset of G whose elements represent those codimension i affine subspaces
of ER which are not parallel to the dimension i subspace MR of ER. Let V be an element of U .
Then the intersection V ∩MR is nonempty, so that V contains a point which is at distance at most
ρi(E) + ε from E. □

6.7. The Relative Covering Radii of a Morphism in q
....

CohZ

6.7.1. Definitions and first properties of the relative covering radius ρ(f :M → N).

6.7.1.1. In this section, we study a relative variant of the covering radius, attached to a morphism
in qCohZ, and more generally to the data:

f :M −→ N

of a countably generated Z-module M , of an object N := (N, ∥.∥) of qCohZ, and of a morphism f

in HomZ(M,N) — that is, to a morphism in q
....

CohZ in the terminology of Chapter 5 (see 5.1.2.2).

Definition 6.7.1. The relative covering radius of a morphism f : M → N in q
....

CohZ is the
element of [0,+∞]:

(6.7.1) ρ(f :M → N) := sup
x∈MR

inf
n∈N/tor

∥fR(x)− n∥.
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Equivalently ρ(f : M → N) is the supremum over the real vector space f(MR) of the function
“distance to N/tor,” d(., N/tor), defined by (6.1.1) with N instead of M .

Every morphism f : M → N in qCoh
≤1

Z induces a morphism in q
....

CohZ and we will use the
notation ρ(f : M → N) for the relative covering radius of f : M → N . When no ambiguity may
arise, we will write ρ(f) instead of ρ(f :M → N) or ρ(f :M → N).

Observe that, for every objectM in CohZ, the identity morphism IdM ofM defines a morphism

IdM = M → M in q
....

CohZ and that, by the very definition (6.7.1) of the relative covering radius,
the following equality holds:

ρ(IdM :M →M) = ρ(M).

In this sense, the definition of the relative covering radius of a morphism in q
....

CohZ extends the
definition of the covering radius of an object in qCohZ.

Let us indicate a few simple properties of the relative covering radius, which are straightforward
consequences of its definition (6.7.1).

Firstly, the relative covering radius admits an alternative definition, which turns out to be useful

in application. Let f : M → N := (N, ∥.∥) be a morphism in q
....

CohZ, some data as above, and let
us denote by:

p : N −→ N/f(M) and pR : NR −→ (N/f(M))R ≃ NR/fR(MR)

the quotient morphisms.

Proposition 6.7.2. With the notation above, we have:

(6.7.2) ρ(f :M → N) = sup
y∈NR, pR(y)∈(N/f(M))/tor

inf
n∈N/tor

∥y − n∥.

Proof. We have the equality of sets:{
y ∈ NR, pR(y) ∈ (N/f(M))/tor

}
= fR(MR) +N/tor,

so that the right-hand side of (6.7.2) is equal to

sup
y∈fR(MR)+N/tor

inf
n∈N/tor

∥y − n∥,

which clearly equals

sup
x∈MR

inf
n∈N/tor

∥fR(x)− n∥ =: ρ(f :M → N). □

The relative covering radius ρ(f : M → N) of a morphism f : M → N := (N, ∥.∥) is a 1-
homogeneous increasing function of ∥.∥ and is finite if the Q-vector space MQ (or equivalently the
R-vector spaceMR) is finite dimensional. Moreover, “it does not see torsion.” Namely it is unchanged
when M (resp. N) is replaced by N/tor (resp. by N/tor := (N/tor, ∥.∥)), and f by induced morphism

f/tor :M/tor → N/tor.

For any two morphisms:

f1 :M1 −→ N1 and f2 :M2 −→ N2

in q
....

CohZ, the following relation — which generalizes the additivity property Add⊕ of the covering
radius stated in (6.1.5) — is satisfied:

(6.7.3) ρ(f1 ⊕ f2 :M1 ⊕M2 → N1 ⊕N2)
2 = ρ(f1 :M1 → N1)

2 + ρ(f2 :M2 → N2)
2.

Like (6.1.5), it is a straightforward consequence of (6.1.4) (with M i replaced with N i).

By definition, the relative covering radius ρ(f :M → N) only depends on N and the real vector
space fR(MR) in NR. This generalizes as follows:
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Proposition 6.7.3. Let f : M → N and f ′ : M ′ → N be two morphisms in q
....

CohZ with the
same range N := (N, ∥.∥). If the closures of f(MR) and f(M ′

R) in the seminormed vector space
(NR, ∥.∥) coincide, then:

ρ(f :M → N) = ρ(f ′ :M ′ → N).

Proof. Let M̃R be the closure of MR in (NR, ∥.∥). Since the function d(., N/tor) is 1-Lipschitz,
hence continuous, on the seminormed vector space (NR, ∥.∥), we have:

ρ(f :M → N) = sup
x∈MR

d(fR(x), N/tor) = sup
x∈M̃R

d(fR(x), N/tor).

This proves that ρ(f :M → N) depends only on N and on the real vector subspace M̃R of NR. □

6.7.1.2. The properties of semicontinuity, monotonicity, and countable additivity of the covering
radius established in Subsection 6.1.2 also generalizes to the relative covering radius.

The following proposition extends Proposition 6.1.2.

Proposition 6.7.4. Let f :M → N := (N, ∥.∥) be a morphism in q
....

CohZ, and let (Mi)i∈N and
(Ni)i∈N be increasing families of submodules of M and N respectively such that, for any i ∈ N.

fi(Mi) ⊆ Ni.

Consider the associated morphisms in q
....

CohZ:

fi := f|Mi
:Mi −→ N i,

where N i := (Ni, ∥.∥|Ni,R), and assume that M =
⋃
i∈NMi. Then we have:

(6.7.4) ρ(f :M → N) ≤ lim inf
i→∞

ρ(fi :Mi → N i).

Proof. The proof is a straightforward generalization of the one of Proposition 6.1.2.

Indeed consider a positive real number R with R > lim infi→∞ ρ(fi :Mi → N i). After replacing
the sequence (fi)i∈N by a suitable subsequence, we may assume that, for every i ∈ N, we have:

R > ρ(fi :Mi → N i),

and consequently:

fi(Mi,R) ⊂ Ni/tor +B(N i,R;R) ⊂ N/tor +B(NR;R).

Since MR is the increasing union of the Mi,R, this implies the equality:

f(MR) ⊂ N/tor +B(NR;R).

This establishes the estimate ρ(f :M → N) ≤ R and proves (6.7.4). □

The next proposition extends Proposition 6.1.4, which one recovers when Mi = Ni and fi =
IdMi

, i = 1, 2.

Proposition 6.7.5. For every diagram in q
....

Coh
≤1

Z :

M1
f1 // N1

g

��
M2

f2 // N2

such that the closure of g ◦ f1(M1)R in N2,R contains f2(M2)R, the following inequality holds:

(6.7.5) ρ(f1 :M1 → N1) ≥ ρ(f2 :M2 → N2).
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Let us spell out a few special cases of Proposition 6.7.5. When M2 = M1 and f2 = g ◦ f1, it
becomes:

Corollary 6.7.6. For every diagram in q
....

Coh
≤1

Z :

M
f−→ N1

g−→ N2,

the following inequality holds:

(6.7.6) ρ(g ◦ f :M → N2) ≤ ρ(f :M → N1).

When N1 = N2, M1 = N1, and f1 = IdN1
, Proposition 6.7.5 becomes:

Corollary 6.7.7. For every morphism f :M → N in q
....

Coh
≤1

Z : the following inequality holds:

(6.7.7) ρ(f :M → N) ≤ ρ(N).

When M1 =M2 = N1, f1 = IdN1
, and f2 = g, Proposition 6.7.5 becomes:

Corollary 6.7.8. For every morphism f :M → N in qCoh
≤1

Z : the following inequality holds:

(6.7.8) ρ(f :M → N) ≤ ρ(M).

The special case of Proposition 6.7.5 where N1 = N2 and g = IdN1
implies:

Corollary 6.7.9. For every diagram in q
....

CohZ of the form:

L
f−→M

g−→ N,

the following inequality holds:

(6.7.9) ρ(g ◦ f : L→ N) ≤ ρ(g :M → N).

Proof of Proposition 6.7.5. Let us consider a positive real number R such that:

R > ρ(f :M → N1).

We may choose R′ and ε in R∗
+ such that:

(6.7.10) R = R′ + ε

and

(6.7.11) R′ > ρ(f :M → N1).

According to (6.7.11), we have:

f1(M1)R ⊆ N1/tor +B(N1R, R
′).

Moreover, since gR has norm at most one, we have:

gR(B(N1,R, R
′)) ⊆ B(N2,R, R

′).

Consequently the following inclusion holds:

g ◦ f1(M1)R ⊆ g(N1)/tor +B(N2,R, R
′),

and therefore:

(6.7.12) g ◦ f1(M1)R ⊆ N2/tor +B(N2,R, R
′).

Since the closure of g ◦ f1(M1)R in N2,R contains f2(M2)R, we also have:

(6.7.13) f2(M2)R ⊆ g ◦ f1(M1)R +B(N2,R, ε).

Using (6.7.10), (6.7.12), and (6.7.13), we obtain:

f2(M2)R ⊆ N2/tor +B(N2,R, R),
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and therefore:
R ≥ ρ(f2 :M2 → N2). □

Using Proposition 6.7.4 and Corollary 6.7.6, we may extend the additivity of the relative covering
radius to countable direct sums.

Corollary 6.7.10. For every countable family (fi :Mi → N i)i∈I of morphisms in q
....

CohZ, the
following equality holds in [0,+∞]:

ρ
(⊕
i∈I

fi :
⊕
i∈I

Mi →
⊕
i∈I

N i

)2
=
∑
i∈I

ρ(fi :Mi → N i)
2.

The proof is a straightforward extension of the proof of Corollary 6.1.5, which we leave to the
reader.

6.7.1.3. The continuity properties of the covering radius established in Subsection 6.3.2 also
extend to the relative covering radius.

Consider a morphism f : M → N of countably generated Z-modules. For every Euclidean
seminorm ∥.∥ on NR, we may consider the morphism

f :M −→ (N, ∥.∥)

in q
....

CohZ and its relative covering radius:

ρ(f :M → (N, ∥.∥)).

The following proposition extends the downward continuity property of the covering radius
established in Proposition 6.3.6.

Proposition 6.7.11. If the R-vector space MR is finite dimensional, and if (∥.∥n)n∈N is a
decreasing sequence of Euclidean seminorms on MR, of pointwise limit ∥.∥, then:

ρ(f :M → (N, ∥.∥)) = lim
n→+∞

ρ(f :M → (N, ∥.∥n)).

This follows from a straightforward variant of the proof of Proposition 6.3.6 in 6.3.2.3. The
arguments in 6.3.2.1 and 6.3.2.4 also establish:

Proposition 6.7.12. If the R-vector space NR is finite dimensional, then the function:

Q(NR) −→ R+, ∥.∥ 7−→ ρ(f :M → (N, ∥.∥))
is upper semicontinuous on the cone Q(NR) of Euclidean seminorms over NR and locally Lipschitz

on the cone
◦
Q(NR) of Euclidean norms over NR.

We leave the details to the reader.

6.7.2. The relative covering radius as a substitute to a rank invariant. As shown above
in 6.2.4, neither the covering radius ρ nor its square ρ2 satisfy the strong monotonicity condition.

Consequently, the rank rkρ and rkρ2 attached to morphisms in
....

CohZ defined by formula (5.1.2)
with φ = ρ or φ = ρ2 do not satisfy in general the estimate (5.2.1) which characterizes the strong
monotonicity in Definition 5.2.1. However the estimate (6.7.6) in Corollary 6.7.6 precisely asserts
that the relative covering radius satisfies the estimate (5.2.1).

The relative covering radius may actually be seen as a suitable substitute for the rank invariant
rkρ attached to the covering radius ρ. Indeed, besides the estimate (6.7.6), it also satisfies estimates
similar to the ones satisfied by rkφ that have been established in Subsection 5.1.2 as a consequence
of the monotonicity and the subadditivity of φ, specialized to φ = ρ.

For instance the non-negativity of the relative covering radius and the estimate (6.7.7) are
the analogues of the estimates (5.1.3), the estimate (6.7.8) is the analogue of (5.1.4), and the
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estimate (6.7.9) the analogue of (5.1.7). In the same vein, the following proposition is an analogue
of Proposition 5.1.5.

Proposition 6.7.13. For every commutative diagram in q
....

Coh
≤1

Z

M1
f1 //

p

��

N1

q

��
M2

f2 // N2

where q is an admissible surjection in qCoh
≤1

Z , the following inequality holds in [0,+∞]:

(6.7.14) ρ(f1 :M1 → N1) ≤ ρ(f2 :M2 → N2) + ρ(ker q).

Proof. We may assume that both ρ(f2 :M2 → N2) and ρ(ker q) are finite. We make the abuse
of notation of denoting all seminorms by ∥.∥.

Let R (resp. R′) be a positive real number with ρ(f2 : M2 → N2) < R (resp. ρ(ker q) < R′),
and consider an element x of M1,R. We may find an element n2 of N2,/tor such that

∥(f2 ◦ p)R(x)− n2∥ < R,

or equivalently:

∥(q ◦ f1)R(x)− n2∥ < R.

Since q is an admissible surjection, we may find an element n1 of N1,/tor with q(n1) = n2, and an
element y of (ker q)R such that

∥f1,R(x)− y − n1∥ < R.

Finally, we may find an element v of (ker q)/tor such that

∥y − v∥ < R′.

We obtain:

∥f1,R(x)− (n1 + v)∥ < R+R′.

This proves (6.7.14). □

Finally the following proposition may be seen as a comparison estimate between the relative
covering radius and the rank invariant rkρ.

Proposition 6.7.14. For every morphism f :M → N in q
....

CohZ, the following inequality holds
in [0,+∞]:

(6.7.15) ρ(N) ≤ ρ(f :M → N) + ρ(N/f(M)).

Indeed, it immediately implies:

Corollary 6.7.15. For every morphism f : M → N in
....

CohZ, the following inequality holds
in R+:

(6.7.16) rkρ(f :M → N) ≤ ρ(f :M → N).

Proof of Proposition 6.7.14. We may assume that both ρ(f :M → N) and ρ(N/f(M)) are

finite. Let R (resp. R′) be a positive real number with ρ(f :M → N) < R (resp. ρ(N/f(M)) < R′),
and consider an element x of NR. We may find an element n of N/tor with

∥x− n∥
N/f(M)

< R,
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where x and n denote the images of x and n in (N/f(M))R respectively, and ∥.∥
N/f(M)

is the

quotient seminorm. As a consequence, we may find an element y of f(M)R such that

∥x− n− y∥ < R.

Finally, we may find an element n′ of N/tor such that

∥y − n′∥ < R′.

We obtain:

∥x− (n+ n′)∥ < R+R′.

This proves (6.7.15). □

6.7.3. Lower and upper extensions of the relative covering radius. As for the covering
radius of objects in qCohZ which admits variants ρ and ρ defined in terms of the covering radius

of objects in CohZ, we may define some lower and upper extensions of the relative covering radius

attached to morphisms in q
....

CohZ. In this final subsection, we briefly describe their construction,
which is parallel to the one of the lower and upper extensions of the rank invariants as described in
Sections 5.4 and 5.5.

Let us consider the data a morphism in q
....

CohZ:

f :M −→ N.

We define the lower relative covering radius of f by the formula:

(6.7.17) ρ(f :M → N) := sup
N ′∈coft(N)

ρ(fN ′ :M → N/N ′) ∈ [0,+∞],

where fN ′ denotes the composition of f with the quotient morphism N → N/N ′.

Note that the relative covering radius ρ(fN ′) is equal to the relative covering radius of the

morphism in
....

CohZ:

M/f−1(N ′) −→ N/N ′

induced by f . Moreover, using Corollary 6.7.6, it is readily checked that the relative covering radius

ρ(fN ′ :M → N/N ′)

is an increasing function of N ′ in the directed set (coft(N),⊇). Accordingly we may also write:

ρ(f :M → N) = lim
N ′∈coft(N)

ρ(fN ′ :M → N/N ′),

where the limit is taken over the directed set (coft(N),⊇).
Similarly, we define the upper relative covering radius of f by the formula:

(6.7.18) ρ(f :M → N) := lim inf
C∈coh(N)

ρ(f|f−1(C) : f
−1(C)→ C) ∈ [0,+∞].

Again, note that the relative covering radius ρ(f|f−1(C) : f−1(C) → C) in the right-hand side of

(6.7.18) is equal to the relative covering radius of the “inclusion morphism” in
....

CohZ:

C ∩ im f −→ C.

For every object M of qCohZ, as a straightforward consequence of the definitions, we have:

ρ(IdM :M →M) = ρ(M) and ρ(IdM :M →M) = ρ(M).

Moreover an analogue of Proposition 6.3.10 holds for the relative covering radius:

Proposition 6.7.16. For every morphim f :M → N in q
....

CohZ, the following inequalities hold:

(6.7.19) ρ(f :M → N) ≤ ρ(f :M → N) ≤ ρ(f :M → N).
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Proof. Let N ′ be an element of coft(N) and let

fN ′ :M −→ N/N ′

be the associated map. As fN ′ factors through f , Corollary 6.7.6 shows the inequality:

ρ(fN ′ :M → N/N ′) ≤ ρ(f :M → N).

This proves the first inequality in (6.7.19).

To prove the second inequality, we may assume that ρ(f) is finite and consider R a real number
with R > ρ(f). Consider also an exhaustive filtration (Ci)i∈N of N by submodules in coh(N) such
that

ρ(f :M → N) = lim
i→∞

ρ(fi : f
−1(Ci)→ Ci),

where fi is the restriction of f to f−1(Ci).

Let x be an element of MR. For any large enough integer i, we have R > ρ(fi : f
−1(Ci)→ Ci)

and fR(x) belongs to Ci,R. Then we may find n ∈ Ci,/tor ⊂ N/tor such that:

∥fR(x)− n∥ < R.

This proves the inequality:
ρ(f :M → N) ≤ R

and implies the second inequality in (6.7.19). □

Observe that, for every object N = (N, ∥.|) of qCohZ and any Z-submodule M of N, we may
define:

ρ(M,N) := ρ(ι :M → N),

where ι : M → N denotes the inclusion morphism. Finally we may define “lower variants” ρ[i](N)

of the successive covering radii ρ[i](N) by mimicking Definition 6.6.7 (ii). Namely, for every i ∈ N,
ρ[i](N) is the infimum of the set of real numbers of the form ρ(M,N), where M is a Z-submodule
of N such that MR has codimension i in NR.



CHAPTER 7

The Theta Invariants of Hermitian Coherent Sheaves over an
Arithmetic Curve

7.0.1 In this chapter, the main character of this monograph finally enters, namely the theta
invariant h1θ(E) attached to an object E of the category CohX of Hermitian coherent sheaves over
the arithmetic curve X := SpecOK attached to some number field K.

In the next chapter, we shall study in depth the extensions of the invariant h1θ to the cat-

egory qCohX , and investigate the theta invariants h1θ(E) of Hermitian quasi-coherent sheaves

E := (E, (∥.∥x)x∈X(C)) over X. In the present chapter, we focus on the construction and the

properties of h1θ(E) when E lies in the subcategory CohX , that is when the OK-module E is finitely
generated.

The invariant h1θ(E) attached to an object E of the category VectZ of Hermitian vector bundles

over the arithmetic curve X = SpecZ — in other words, to a Euclidean lattice E := (E, ∥.∥) defined
by a finitely generated free Z-module E and a Euclidean norm ∥.∥ on the real vector space ER — is

defined by the following expression, which involves the dual Euclidean lattice E
∨
:= (E∨, ∥.∥∨):

(7.0.1) h1θ(E) := h0θ(E
∨
) := log

∑
ξ∈E∨

e−π∥ξ∥
2

.

The series in the right-hand side of (7.0.1) is a special value of the theta series classically

associated to E
∨
. This fact is at the origin of the terminology theta invariant and of the notation

h0θ and h1θ, introduced in [Bos20b].

The invariant h1θ on VectZ defined by (7.0.1) is easily seen to satisfy the conditions of monotoni-

city Mon1
Q, of subadditivity SubAdd, and of downward continuity Cont+ introduced at the be-

ginning of Chapter 4, in Subsections 4.1.2–4.1.4 and 4.1.7. As discussed at the end of Chapter 4, in
Subsection 4.6.1, one defines an invariant h1θ on VectX that still satisfies these conditions by letting:

h1θ(E) := h1θ(π∗E)

for every Hermitian vector bundle E over the arithmetic curve X, where π denotes as usual he
morphism of schemes from X to SpecZ.

In turn, the invariant h1θ on VectX may be extended to an invariant on CohX by means of the
simple constructions discussed in Section 4.2. In this way, we construct an invariant:

h1θ : CohX −→ R+

that still satisfies Conditions Mon1
K , SubAdd, and Cont+. Consequently, the constructions of

extensions of invariants from CohX to qCohX developped in the main part of Chapter 4 — notably
the existence of a nice subcategory of “h1θ-summable objects” in qCohX —will apply to the invariant

h1θ on Coh.

The invariant h1θ on CohX actually satisfies the strong monotonicity condition StrMon1 in-

vestigated in Chapter 5, and consequently its extensions to qCohX will satisfy the significantly
stronger formalism developed in Chapter 5, notably in Section 5.6.

257
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Our first goal in this chapter is to present a proof of the strong monotonicity of h1θ on CohX .
Our proof is directly inspired by the work of Banaszczyk and of Regev and Stephens-Davidowitz,
and involve some remarkable estimates established by these authors concerning the function:

BE : ER −→ R∗
+

attached to a Euclidean lattice E := (E, ∥.∥), that is defined by the following equality, for every
x ∈ ER:

(7.0.2) BE(x) :=

∑
v∈E e

−π∥x−v∥2∑
v∈E e

−π∥v∥2 .

This function BE may also be expressed as the Fourier transform:

(7.0.3) BE = F−1(βE∨)

of the following probability measure on the dual vector space E∨
R :

(7.0.4) βE∨ :=

∑
ξ∈E∨ e−π∥ξ∥

∨2

δξ∑
ξ∈E∨ e−π∥ξ∥

∨2 .

The relation (7.0.3) is an avatar of the Poisson formula and of the functional equation satisfied
by the Riemann theta function, and plays a key role in Banaszczyk’s seminal paper [Ban93] and
in the large number of works concerning Euclidean lattice relying on the techniques introduced in
[Ban93], notably in papers of computed science devoted to lattice based cryptography.1 For this
reason, we call BE and βE∨ the Banaszczyk function and the Banaszczyk measure attached to the

Euclidean lattice E.

Beyond their role in the proof of the strong monotonicity of the invariant h1θ on CohX , the
function BE and the measure βE∨ defined by (7.0.2) and (7.0.4) and their generalizations will play
a key role in Chapter 8, in a possibly infinite dimensional setting, when studying the invariant
h1θ attached to Hermitian quasi-coherent sheaves. In the last sections of the present chapter, we
establish further properties of Banaszczyk functions and measures — still in a finite dimensional
setting — that will play a key role in Chapters 8 and 9.

The general philosophy concerning the invariant h1θ on VectZ, or more generally on CohX , that
comes out of this chapter might be summarized as follows:

(i) The invariant h1θ(E) attached to an object of CohX is a refined analytic invariant which
satisfies formal properties similar to the one of the invariant h1(C,F) attached to some coherent
sheaf F over a smooth projective curve C. This holds at a astonishing level of precision, and for
rather subtle reasons, as demonstrated by the work of Banaszczyk and of Regev and Stephens-
Davidowitz on which the proof of its strong monotonicity property relies.

(ii) The intuitive geometric meaning of the invariant h1θ(E) attached to some Euclidean lattice

E := (E, ∥.∥) is that h1θ(E) is small when, in the Euclidean vector space (ER, ∥.∥), every point is
close to some lattice point in E. This point of view will be comforted by the relations between the
theta invariant h1θ(E) and the covering radius ρ(E) established in Chapter 9.

(iii) The Banaszczyk function BE , or rather its logarithmic variant bE , is arguably a still more

fundamental invariant of a Euclidean lattice E than its theta invariant h1θ(E).

7.0.2 Let us describe the content of this chapter in more details.

In Section 7.1, we introduce our key analytic tools. We consider a Euclidean lattice E := (E, ∥.∥),
and we introduce the theta function θE on ER, defined by:

θE(x) :=
∑
v∈E

e−π∥x−v∥
2

,

1See for instance [Reg03], [MR07], [DRSD14], [ADRSD15].
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the Banaszczyk function BE := θE/θE(0) and its logarithmic variant bE , defined by:

BE = e−πbE ,

and the Banaszczyk measure βE∨ . We also introduce the theta invariants of E:

h0θ(E) := log θE(0) and h1θ(E) := h0θ(E
∨
).

The Poisson formula applied to the lattice E in ER and to the Gaussian function e−π∥.∥
2

leads
notably to the relation (7.0.3), and to the Poisson-Riemann-Roch formula:

h0θ(E)− h1θ(E) = d̂egE.

We also illustrate the significance of Banaszczyk function BE by various formulae where it enters
naturally, notably by a formula for the theta invariants of an extension of Euclidean lattices that
makes transparent the subadditivity of the invariants h0θ and h1θ on VectZ. We finally discuss the
relation between the theta functions attached to Euclidean lattices, as considered in this chapter,
and the classical complex analytic theta functions, à la Riemann.

In Section 7.2, we introduce the invariants h0θ and h1θ, previously defined on VectZ, attached to

objects of CohX . Up to a finite torsion submodule, the objects of CohX coincide with objects of

VectX , whose theta invariants have been studied in [Bos20b, Chapter 2], elaborating on [vdGS00].
The content of Section 7.2 may be seen as a minor variation of the results in loc. cit., and accordingly,
we have left some details of the proofs to the reader.

Section 7.3 is devoted to the extension of the invariant h1θ fromCohX toCohX , as an application
of the general recipe in Section 4.2.

At this stage, we have constructed an invariant:

h1θ : CohX −→ R+

that satisfies Conditions Mon1
K , SubAdd, and Cont+, and the next two sections are devoted to

proving it also satisfies StrMon1.

Section 7.4 is devoted to proving several key properties of the Banaszczyk functions BE and bE ,
and as such constitutes the heart of this chapter.

Firstly, following Banaszcyk [Ban22]2 and Regev and Stephens-Davidowitz [RSD17a], we prove
some general “quadratic inequalities” they satisfied by those. Notably, we show that, for every
Euclidean lattice E := (E, ∥.∥) and every x and y in ER, the following inequality holds:

(7.0.5) bE(x+ y) + bE(x− y) ≤ 2
(
bE(x) + bE(y)

)
.

This estimate is to be compared with the parallelogram identity satisfied by the squared norm
∥.∥2 on ER:

(7.0.6) ∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
.

Indeed, in various respects, the function bE may be seen as a counterpart, concerning the Euclidean

lattice E, of the function ∥.∥2 on the Euclidean vector space ER := (ER, ∥.∥).
Then, relying on the inequality (7.0.5), we establish a monotonicity property for the Banaszczyk

functions. Namely we show that, if f : E → F is a morphism in Vect
≤1

Z , then for every x ∈ ER, the
following inequality holds for every x ∈ ER:

(7.0.7) bF (fR(x)) ≤ bE(x).

2As indicated in [Ban22], Banaszczyk’s derivation of these estimates originally appeared in the preprint version

[Ban92] of his famous article [Ban93].
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In the same vein as the analogy between (7.0.5) and (7.0.6), the inequality(7.0.7) should be
compared with the estimate:

∥fR(x)∥2F ≤ ∥x∥
2
E
,

which expresses that a morphism of Z-modules f : E → F defines a morphism in Vect
≤1

Z .

In Section 7.5 we use this monotonicity property of the Banaszczyk functions to establish a
suitable strong monotonicity property of the invariant h0θ on CohX , which in turns implies by

duality the sought for strong monotonicity of h1θ on CohX .

Actually, in Sections 7.4 and 7.5, we work with Banaszczyk functions associated to data more
general than the one of a Euclidean lattice. The data of a Euclidean lattice E := (E, ∥.∥) is obviously
equivalent to the one of the Euclidean vector space ER := (ER, ∥.∥) and of the discrete cocompact
subgroup E of ER. To achieve the proof of the strong monotonicity properties of h0θ and h

1
θ, we need

to use the Banaszczyk function BV ,Λ associated to the data of a finite dimensional Euclidean vector

space V := (V, ∥.∥) and of an arbitrary discrete subgroup Λ of V . It is the function of x ∈ V defined
by the following straightforward generalization of (7.0.2):

(7.0.8) BV ,Λ(x) :=

∑
λ∈Λ e

−π∥x−λ∥2∑
v∈Λ e

−π∥λ∥2 .

Banaszczyk himself considers “his” functions in a significantly more general framework; see for
instance [Ban22] and its references. The generalization (7.0.8) of Banaszczyk functions associated
to Euclidean lattices does not explicitly occurs in [RSD17a]. However, when spelling out in detail
the proofs in [RSD17a], one is led to consider it.

Section 7.6 is devoted to some further properties of Banaszczyk functions, and to alternative
arguments for deriving special cases of their monotonicity properties established in Section 7.4. No-
tably, we consider the limit behavior of the functions BV ,Λ when Λ varies in decreasing or increasing
sequences of discrete subgroups.

In Section 7.7, the construction and the basic properties of the Banaszczyk functions BE and

bE and of the Banaszczyk measure βE∨ associated to some Euclidean lattice E are extended to the

situation when E is an object of CohZ. Here again the key point is the monotonicity property of
Banaszczyk functions established in Section 7.4.

In the final section 7.8, we establish some further estimates involving Banaszczyk functions and

measures, and morphisms in Coh
≤1

Z . Notably, by using an argument that goes back to Banaszcyk’s
paper [Ban93], we show that the uniform norm of the Banaszczyk function bE is attached to an

object E of CohZ is comparable with its theta invariant h1θ(E) when h1θ(E) is small enough. We
also establish some estimates in the opposite direction of the main monotonicity estimate (7.0.7).

Although their derivation is rather straightforward when compared to the one of (7.0.7), these
estimates will play an important technical role in the infinite dimensional setting of Chapter 8,
notably in Section 8.3. They will also be crucial in Chapter 9, when deriving upper bounds on
covering radii of objects and morphims in CohZ or qCohZ in terms of their theta invariants and
their theta ranks.

7.0.3 In this chapter, we denote by K a number field, by OK its ring of integers, and by X
the arithmetic curve SpecOK , and by VectX and CohX the categories of Hermitian vector bundles
and of Hermitian coherent sheaves over the arithmetic curve X.

Recall that Vect
[0]

X (resp. CohX) denotes the full subcategory of CohX the objects of which
are the Hermitian coherent sheaves (E, (∥.∥x)x∈X(C) such that E is torsion free (resp. such that the
Hermitian seminorms ∥.∥x are actually Hermitian norms).
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7.1. Theta Functions and Theta Invariants of Euclidean Lattices

7.1.1. Poisson formula, theta functions and theta invariants. Let E := (E, ∥.∥) be a

Euclidean lattice and E
∨
:= (E∨, ∥.∥∨) the dual Euclidean lattice. As usual, we identify E (resp.

E∨) to a lattice in the R-vector space ER (resp. in E∨
R ).

7.1.1.1. The Poisson formula. The Gaussian functions on the Euclidean vector spaces ER :=

(ER, ∥.∥) and E
∨
R := (E∨

R , ∥.∥∨), namely the functions:

e−π∥.∥
2

: ER −→ R, x 7−→ e−π∥x∥
2

and

e−π∥.∥
∨2

: E∨
R −→ R, ξ 7−→ e−π∥ξ∥

∨2

,

are exchanged by Fourier transform. Namely, with the notation introduced in Subsection 0.5.2 in
the Introduction, we have the equality of functions in the Schwartz space S(E∨

R ):

(7.1.1) FER
(e−π∥.∥

2

) = e−π∥.∥
∨2

.

Consequently, applied to the Gaussian function f := e−π∥.∥
2

on V := ER and to the lattice
Λ := E, the Poisson formula (0.5.5) becomes the following classical result, which plays a central role
in this monograph:

Theorem 7.1.1. For every x ∈ ER, the following equality holds:

(7.1.2) covol (E)
∑
v∈E

e−π∥x−v∥
2

=
∑
ξ∈E∨

e−π∥ξ∥
∨2+2πi⟨ξ,x⟩.

Specialized to x = 0, the equality (7.1.2) becomes the identity:

(7.1.3) covol (E)
∑
v∈E

e−π∥v∥
2

=
∑
ξ∈E∨

e−π∥ξ∥
∨2

,

which will play a particularly important role.

7.1.1.2. Definitions. To every Euclidean lattice E := (E, ∥.∥) as above , we may attach its theta
function:

θE : ER −→ R,
defined by the series in the left-hand side of (7.1.2). Namely, for every x ∈ ER, we let:

(7.1.4) θE(x) :=
∑
v∈E

e−π∥x−v∥
2

.

The function θE is the convolution product e−π∥.∥
2 ∗ δE of the Gaussian function e−π∥.∥

2

and of the
counting measure δE on the lattice E:

δE :=
∑
v∈E

δv.

It is clearly R-analytic and E-periodic on ER, and takes its values in [1,+∞).

We may also consider the following positive measure on E∨
R supported by E∨:

(7.1.5) γE∨ := e−π∥.∥
∨2

δE∨ =
∑
ξ∈E∨

e−π∥ξ∥
∨2

δξ.

Its total mass is:

γE∨(E∨
R ) = γE∨(E∨) =

∑
ξ∈E∨

e−π∥ξ∥
∨2

= θE∨(0) ∈ [1,+∞).
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Using this notation, the Poisson formula (7.1.2) may be written as the following equality of
functions on ER:

(7.1.6) covol (E) θE = F−1(γE∨),

and its special case (7.1.3) as the equality:

(7.1.7) covol (E) θE(0) = θE∨(0).

The equality (7.1.6) may equivalently derived from the distributional version of the Poisson formula:

covol (E) δE = F−1

ER
(δE∨),

by taking its convolution product with the Gaussian function:

e−π∥.∥
2

= F−1

ER
(e−π∥.∥

∨2

).

We may finally define the θ-invariants of Euclidean lattices as follows:

Definition 7.1.2. For every Euclidean lattice E := (E, ∥.∥), of dual lattice E∨
:= (E∨, ∥.∥∨),

we define:

(7.1.8) h0θ(E) := log θE(0) = log
∑
v∈E

e−π∥v∥
2

∈ R+,

and:

(7.1.9) h1θ(E) := h0θ(E
∨
) = log

∑
ξ∈E∨

e−π∥ξ∥
∨2

∈ R+.

The special case (7.1.3) of Poisson formula, or equivalently (7.1.7), may be expressed as follows
in terms of these theta invariants and of the Arakelov degree:

Corollary 7.1.3. For every Euclidean lattice E, the following equality holds:

(7.1.10) h0θ(E)− h1θ(E) = d̂egE.

Observe that the equality (7.1.10) is similar to the Rieman-Roch formula for a vector bundle
over a curve of genus g = 1. Accordingly we shall sometimes call (7.1.10) the Poisson-Riemann-Roch
formula for the Euclidean lattice E.

7.1.2. The functions BE and bE and the measure βE∨ .

7.1.2.1. Definitions. We may also introduce the E-periodic function on ER:

(7.1.11) BE := θE(0)
−1 θE ,

and the probability measure deduced from the measure γE∨ by dividing it by its total mass:

(7.1.12) βE∨ := γE∨(E∨
R )

−1 γE∨ =

∑
ξ∈E∨ e−π∥ξ∥

∨2

δξ∑
ξ∈E∨ e−π∥ξ∥

∨2 .

From the Poisson formula (7.1.2), we immediately deduce the following consequence:

Corollary 7.1.4. For every x ∈ ER, the following identity holds:

(7.1.13) BE(x) :=

∑
v∈E e

−π∥x−v∥2∑
v∈E e

−π∥v∥2 =

∑
ξ∈E∨ e−π∥ξ∥

∨2+2πi⟨ξ,x⟩∑
ξ∈E∨ e−π∥ξ∥

∨2 =: F−1(βE∨)(x).

In turn, this implies:
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Corollary 7.1.5. For every x ∈ ER, the following inequalities hold:

(7.1.14) 0 < BE(x) ≤ 1.

Moreover, we have:

(7.1.15) BE(x) = 1⇐⇒ x ∈ E.

As already mentioned in the introduction to this chapter, we will call BE and βE∨ the Banaszczyk

function and the Banaszczy probability measure associated to the Euclidean lattice E and its dual

E
∨
.

According to Corollary 7.1.5, we define a real analytic function:

bE : ER −→ R+,

which is E-periodic and vanishes precisely on E, by the relation:

(7.1.16) BE(x) = e−πbE(x).

As demonstrated by various results in this chapter, the function bE is arguably a more natural
function to consider than the function BE itself.

In the next paragraphs, we present two results concerning the theta invariants of Euclidean
lattices where the Banaszczyk function BE occurs naturally.

7.1.2.2. An integral formula for h1θ(E). We denote by λER
the Lebesgue measure on the Eu-

clidean vector space ER := (ER, ∥.∥), and also the Haar measure induced by λER
on the compact

torus ER/E. If we denote by:

q : ER −→ ER/E

the quotient map, then, for every Borel function φ : ER → [0,+∞], the following equality holds:

(7.1.17)

∫
ER/E

q∗φ([x]) dλER
([x]) =

∫
ER

φ(x) dλER
(x),

where the Borel function q∗φ : ER/E → [0,+∞] is defined by the following relation, for every x ∈ ER
of class [x] := q(x) in ER/E:

q∗φ([x]) :=
∑
v∈E

φ(x− v).

By the very definition of the covolume covol (E) of the Euclidean lattice E, we have:∫
ER/E

dλER
= covol (E).

Consequently, if we denote by λER/Z the Haar probability measure on the compact torus ER/E, the

following equality of measure on ER/E is satisfied:

(7.1.18) λER
= covol (E)λER/Z .

By a slight abuse of notation, we shall also denote by θE , BE and bE the functions on the
quotient ER/E defined from the E-periodic functions θE , BE and bE on ER.

The Gaussian function e−π∥.∥
2

on ER satisfies:∫
ER

e−π∥x∥
2

dλER
(x) = 1.

Consequently the identity (7.1.17) applied to e−π∥.∥
2

becomes:

(7.1.19)

∫
ER/E

θE([x]) dλER
([x]) = 1.
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Using (7.1.19) and (7.1.18), we obtain the following expression for the average value of the
function θE on the compact torus ER/E:

(7.1.20)

∫
ER/E

θE([x]) dλER/Z([x]) = covol (E)−1.

Equivalently, we have:

(7.1.21) d̂egE = log

∫
ER/E

θE([x]) dλER/Z([x]).

In turn, using the definition (7.1.11) of the function BE and the Poisson-Riemann-Roch formula
(7.1.10), we deduce from (7.1.21):

(7.1.22) h1θ(E) = − log

∫
ER/E

BE([x]) dλER/Z([x]).

The equality (7.1.22) may be written as follows in terms of the function bE :

(7.1.23) h1θ(E) = − log

∫
ER/E

e−πbE([x]) dλER/Z([x]).

This expression may be interpreted as a “free energy” in statistical physics; see for instance [Bos21,
Section 6].

7.1.2.3. Admissible short exact sequences and theta invariants. Consider an admissible short
exact sequence of Euclidean lattices:

E : 0 −→ E
i−→ F

p−→ G −→ 0.

According to the additivity of the Arakelov degree, the following equality holds:

d̂egE − d̂egF + d̂egG = 0.

Together with the Poisson-Riemann-Roch formula (7.1.10), this implies the equality:

hθ(E) := h0θ(E)− h0θ(F ) + h0θ(G) = h1θ(E)− h1θ(F ) + h1θ(G).

This real number is known to be non-negative. This subadditivity property of the theta in-
variants h0θ and h1θ, which plays a central role in the monograph [Bos20b], appears in Quillen’s
notebook [Qui] in the entry of 26/04/1973, and is established as Lemma 5.3 in [Gro01]; see also
[Bos20b, Section 2.8].

It is actually possible to write a closed formula for hθ(E), which involves the function bE , that
makes clear its non-negativity.

To achieve this, recall that, an “arithmetic extension class” [E ] in the arithmetic extension group:

Êxt
1

Z(G,E) := HomZ(G,E)⊗ R/Z ≃ HomZ(G,ER)

HomZ(G,E)
;

is canonically associated to the admissible short exact sequence E ; see [BK10] and [Bos20b, Section
1.4]. The class [E ] is defined as follows.

We may choose a Z-linear splitting:

sint : G −→ F

of the surjective morphism p : F → G. Besides we may consider the orthogonal splitting

s⊥R : GR −→ FR

of the surjective R-linear map pR : FR → GR, namely its splitting with values in the orthogonal
complement i(E)⊥R of i(E)R in the Euclidean vector space FR.
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The difference s⊥R − sint maps G into i(E)R, and consequently may be written:

s⊥R|G − s
int = iR ◦ T

for some uniquely determined T in HomZ(G,ER). The class [T ] of T in Êxt
1

Z(G,E) does not depend
of the choice of s and defines [E ]. This class may also be identified to an element of HomZ(G,ER/E)

Proposition 7.1.6 (compare [Bos20b], Proposition 2.8.3). With the above notation, the fol-
lowing equality holds:

(7.1.24) hθ(E) = − log

∑
g∈G e

−π∥g∥2
G
−πbE([T ](g))∑

g∈G e
−π∥g∥2

G

.

The fact that bE is non-negative on ER and vanishes precisely on E implies that hθ(E) is non-
negative and vanishes if and only if the admissible short exact sequence E splits.

Proof. For every g ∈ G, we have a bijection:

E
∼−→ p−1(g), e 7−→ i(e) + sint(g).

Moreover, for every e ∈ E, we have:

i(e) + sint(g) = i(e) + s⊥R (g)− iR ◦ T (g)

= iR(e− T (g)) + s⊥R (g),

and consequently:

∥i(e) + sint(g)∥2
F
= ∥iR(e− T (g)) + s⊥R (g)∥2F
= ∥e− T (g)∥2

E
+ ∥g∥2

G
.

Therefore we have: ∑
f∈p−1(g)

e−π∥f∥
2
F = e−π∥g∥

2
G

∑
e∈E

e−π∥e−T (g)∥2
E

= e−π∥g∥
2
G θE(0)BE(T (g))

= eh
0
θ(E)−π∥g∥2

G
−πbE([T ](g)).

By summing over g ∈ G and taking the logarithm, this implies:

h0θ(F )− h0θ(E) = log
∑
g∈G

e−π∥g∥
2
G
−πbE([T ](g)),

and (7.1.24) follows. □

7.1.3. Relation with classical theta functions. In this monograph, as in [Bos20b], we
use the terminology theta invariants for the invariants attached to Euclidean lattices and their
generalizations that are defined in terms of special values of the series (7.1.4). This is in contrast with
the seminal article of Banaszczyk [Ban93] and with the developments of Banaszczyk’s techniques
motivated by lattice-based cryptography,3 where these series appear under the name of “Gaussian
functions”, associated to “Gaussian-like measures on lattices” or “discrete Gaussian distributions.”

Our terminology is dictated by the fact that these series are special instances of the classical
theta series, which play a prominent role in the study of elliptic and abelian functions since the
beginning of the XIX-th century, notably in the work of Jacobi [Jac29] and Riemann [Rie57].

3See for instance [MR09] or [Pei16] for surveys and references, and more specifically in relation with the content

of this chapter [DRSD14], [ADRSD15], and [RSD17a].
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In this subsection, we briefly describe the specific relation between the theta series (7.1.4) and
Riemann theta functions.4

7.1.3.1. Recall that, for any g ∈ N, the Siegel upper halfspace Hg is the open tube of complex
symmetric matrixes τ = (τab)1≤a,b≤g in Mg(C) whose imaginary part Imτ is positive definite. The
Riemann theta function is the complex analytic function:

θ : Hg × Cg −→ C

defined by the series:

(7.1.25) θ(τ, z) :=
∑
n∈Zg

eπi
tn.τ.n+2πi tn.z.

The theta function θE attached to some Euclidean lattice E, as defined by (7.1.4), coincides up

to the normalization factor covolE with a special instance of the Riemann theta function defined
by the series (7.1.25).

Indeed, let us fix a free Z-module E of finite rank g. To study the theta function θE(x) as a

function of the Euclidean metric ∥.∥ defining E, we may introduce the open cone
◦
Q(E∨

R ) of positive
definite quadratic forms on E∨

R and the real analytic function:

ΘE :
◦
Q(E∨

R )× ER −→ R∗
+

defined by the convergent series:

(7.1.26) ΘE(q, x) :=
∑
ξ∈E∨

e−πq(ξ)+2πi⟨ξ,x⟩.

According to the Poisson formula (7.1.2), we have:

θE(x) = (covolE)−1 Θ(∥.∥∨2, x).

The choice of some Z-basis of E allows one to identify E with Zg, ER and E∨
R with Rg, and

◦
Q(E∨

R ) =
◦
Q(Rg) with the cone of positive definite symmetric matrices in Mg(R). This cone embeds

in Hg by means of the map:

◦
Q(Rg)↪−→Hg, Y 7−→ iY,

and, as a consequence of the definitions, the following equality holds for every (Y, x) in
◦
Q(Rg)×Rg:

(7.1.27) ΘZg (Y, x) = θ(iY, x).

In other words, if E = (E, ∥.∥) is the Euclidean lattice defined by:

(7.1.28) E = Zg and ∥x∥2 = tx.Y −1.x,

then:

(7.1.29) θE(x) = (detY )1/2 θ(iY, x) for every x ∈ ER ≃ Rg.

4The literature on theta functions is considerable. The reader might refer to [Igu72], [Mum83], or [BL04] for
modern treatments, to [Kem91] or [Deb05] for more concise introductions, and to [KW20] for historical references

concerning the study of theta functions during the XIX-th century.
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7.1.3.2. The function θE admits another expression in terms of the Riemann theta function,
which is a direct consequence of its definition (7.1.4), but takes a slightly less simple form than
(7.1.29). Namely, with the notation (7.1.28), we also have:

θE(x) = e−π∥x∥
2 ∑
v∈E

e−π∥v∥
2+2π⟨v,x⟩

= e−π
tx.Y −1.x

∑
n∈Zg

e−π
tn.Y −1.n+2πtn.Y.x

=: e−π
tx.Y −1.x θ(iY −1,−iY −1.x).

(7.1.30)

The equality of the two expressions (7.1.29) and (7.1.30) is a special instance of the functional
equation satisfied by the Riemann theta function:

(7.1.31) θ(−τ−1, τ−1.z) =
√

det(τ/i) exp(πi tz.τ−1.z) θ(τ, z),

valid for any (τ, z) in Hg × Cg, where the branch of the square root
√

det(τ/i) is used which has
positive value when τ is purely imaginary; see [Mum83, section II.5].

Conversely the equality of (7.1.29) and (7.1.30), established above by means of the Poisson
formula (7.1.2), implies the functional equation (7.1.31) by analytic continuation.

7.2. The Theta Invariants h0θ and h1θ on CohX

In Section 7.1, we have defined the theta invariants h0θ(E) and h1θ(E) associated to a Euclidean

lattice E, that is, to an element of VectSpecZ. We may easily extend these definitions to arbitrary

objects of CohSpecZ and then, by taking the direct image by the morphism of schemes:

π : X −→ SpecZ,
to an object of CohX , where X := SpecOK denotes the arithmetic curve defined by the ring of
integers OK of an arbitrary number field K.

In this section, we spell out the definitions and the basic properties of the theta invariants in
this setting. They may be seen as the arithmetic analogues of the non-negative integers h0(C,F)
and h1(C,F) attached to a coherent sheaf F on some smooth projective curve C over some field.

The framework of this section is a minor extension of the one in [Bos20b, Chapter 2], devoted
to the theta invariants h0θ(E) and h1θ(E) attached to objects in VectX : we now allow the objects E

to lie in CohX , and therefore to have a non-zero (but finite) torsion submodule Etor.

The properties of the theta invariants in this more general context may actually be easily deduced
from those in the more restrictive context of loc. cit. by considering the object E/tor := E/Etor of

VectX attached to some object E of CohX , and we shall leave the proofs of Theorems 7.2.3 and
7.2.4 below as exercises for the reader.5

Definition 7.2.1. For every object E := (E, ∥.∥) in CohSpecZ, we let:

(7.2.1) h0θ(E) := log
∑
v∈E

e−π∥v∥
2

and:

(7.2.2) h1θ(E) := h0θ(E
∨
).

Moreover for every object E in CohX , we let:

(7.2.3) hiθ(E) := hiθ(π∗E) for i = 0 or 1.

5The most delicate point in these proofs is the subadditivity of h0θ and h1θ, the proof of which on VectSpec Z is

subsumed in the one of Proposition 7.1.6, which may be easily extended to allow torsion.
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The invariants h0θ(E) and h1θ(E) belong to R+. Moreover h0θ(E) (resp. h1θ(E)) vanishes if and
only if E vanishes (resp. E is torsion).

Theorem 7.2.2. For every object E of CohX , the following equalities hold:

(7.2.4) h0θ(E) = h0θ(E/tor) + log |Etor|,

where Etor denotes the torsion submodule of E and |Etor| its cardinality, and E/tor := E/Etor;

(7.2.5) h1θ(E) = h1θ(E/tor);

(7.2.6) h1θ(E) = h0θ(E
∨ ⊗ ωπ);

and:

(7.2.7) h0θ(E)− h1θ(E) = d̂eg π∗E = d̂egE − (rkE/2). log |∆K |.

Indeed (7.2.2) and (7.2.5) follow from the definitions. The equality (7.2.6) follows from the
existence of an isometric isomorphism

(7.2.8) (π∗E)∨
∼−→ π∗(E

∨ ⊗ ωπ),

and will be referred to as the Hecke duality formula because of its implicit occurence in Hecke’s paper
[Hec17] when E is a Hermitian line bundle over X := SpecOK . The equality (7.2.7) is a straight-
forward consequence of the Poisson-Riemann-Roch formula for Euclidean lattices in Corollary 7.1.3,
and will also be referred to as the Poisson-Riemann-Roch formula.

Theorem 7.2.3. (1) The invariant h0θ(E) of an object E := (E, (∥.∥)x∈X(C)) of CohX de-
pends R-analytically of the Hermitian norms ∥.∥x on the finite dimensional complex vector spaces
(Ex)x∈X(C).

(2) The invariant h0θ is additive over CohX . Namely, for any two objects E1 and E2 in CohX ,
we have:

(7.2.9) h0θ(E1 ⊕ E2) = h0θ(E1) + h0θ(E2).

(3) The invariant h0θ is monotonic over CohX in the following sense. For every morphism

i : E1 −→ E2

in Coh
≤1

X such that the morphism of OK-module i : E1 −→ E2 is injective, we have:

(7.2.10) h0θ(E1) ≤ h0θ(E2).

Moreover equality holds in (7.2.10) if and only i is an isometric isomorphism.

(4) The invariant h0θ is subadditive over CohX . Namely, for every admissible exact sequence

(7.2.11) 0 −→ E
i−→ F

p−→ G −→ 0

in CohX , we have:

(7.2.12) h0θ(F ) ≤ h0θ(E) + h0θ(G).

Moreover equality holds in (7.2.12) if and only the admissible short exact sequence (7.2.11) is
split.6

6Namely if there exists a morphism s : G→ F in Coh
≤1

X
(necessarily isometric) such that s ◦ p = IdG.
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Theorem 7.2.4. (1) The invariant h1θ(E) of an object E := (E, (∥.∥)x∈X(C)) of depends contin-
uously of the Hermitian norms ∥.∥x on the finite dimensional complex vector spaces (Ex)x∈X(C).

(2) The invariant h1θ is additive over CohX . Namely, for any two objects E1 and E2 in CohX ,
we have:

(7.2.13) h1θ(E1 ⊕ E2) = h1θ(E1) + h1θ(E2).

(3) The invariant h1θ is monotonic over CohX in the following sense. For every morphism

p : E1 −→ E2

in Coh
≤1

X such that the morphism of K-vector spaces p : E1,K −→ E2,K is surjective, we have:

(7.2.14) h1θ(E1) ≥ h1θ(E2).

Moreover equality holds in (7.2.14) if and only the morphism p/tor : E1/tor → E2/tor induced by
p is an isometric isomorphism.

(4) The invariant h1θ is subadditive over CohX . Namely, for every admissible exact sequence

(7.2.15) 0 −→ E
i−→ F

p−→ G −→ 0

in CohX , we have:

(7.2.16) h1θ(F ) ≤ h1θ(E) + h1θ(G).

Moreover equality holds in (7.2.16) if and only the admissible short exact sequence (7.2.15) is
split.

Together with the Poisson-Riemann-Roch formula (7.2.7), the monotonicity properties of h0θ and
h1θ in Theorems 7.2.3 and 7.2.4 imply the following estimates:

Corollary 7.2.5. Let f : E1 → E2 be a morphism in Coh
≤1

X .

If the morphism of K-vector spaces fK : E1,K → E2,K is injective — that is, if ker f is a torsion
OK-module, or equivalently a finite set — then the following inequality holds:

(7.2.17) − log | ker f | ≤ h0θ(E2)− h0θ(E1).

If fK is surjective — that is, if coker f := E2/f(E1) is a torsion OK-modules, or equivalently a
finite set — then the following inequality holds:

(7.2.18) h0θ(E2)− h0θ(E1) ≤ d̂egE2 − d̂egE1 + (1/2)(rkE1 − rkE2) log |∆K |.

If fK is bijective, then the following inequality holds:

(7.2.19) − log | ker f | ≤ h0θ(E2)− h0θ(E1) ≤ − log | ker f |+ log |coker f | −
∑

x∈X(C)

∥ det fx∥x.

In the last sum in (7.2.19), for every x ∈ X(C), det fx denotes the element of detE∨
1,x⊗detE2,x

defined as the determinant of fx : E1,x → E2,x, and ∥.∥x denotes the Hermitian norm on the complex
line detE∨

1,x ⊗ detE2,x deduced from the Hermitian norms ∥.∥E1,x
and ∥.∥E2,x

on E1,x and E2,x by
exterior power, duality, and tensor product.

Proof. The inequality (7.2.17) is a straightforward consequence of the definition of h0θ. It

also follows from the monotonicity (7.2.10) of h0θ applied to the morphism f/tor : E1,/tor → E2,/tor

induced by f , from by the equality (7.2.4) applied to E = E1 and E = E2, and from the exact
sequence:

0 −→ ker f↪−→E1,tor
f−→ E2,tor,
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which implies the estimate:

| ker f |−1 |E1,tor| ≤ |E2,tor|.

When fK is surjective then its transpose f∨K : E2,K → E1,K is injective, and therefore we may
apply 7.2.4, (3) to the morphism:

f∨ : E
∨
2 → E

∨
1

in Vect
≤1

X . Therefore we have:

h1θ(E
∨
2 ) ≥ h1θ(E

∨
1 ),

and (7.2.18) follows thanks to the Poisson-Riemann-Roch formula (7.2.7) applied to E = E1 and
E = E2.

Finally, if fK is bijective, then:

rkE1 = rkE2,

and, according to the definition of the Arakelov degree, the following equality holds;

d̂egE2 − d̂egE1 = − log | ker f |+ log |coker f | −
∑

x∈X(C)

∥ det fx∥x. □

7.3. The Theta Invariant h1θ on CohX

7.3.1. Construction and basic properties. Theorems 7.2.2 and 7.2.4 assert notably that
the invariant:

h1θ : VectX −→ R+

satisfies conditions Mon1
K , SubAdd and Cont+, and condition Add⊕ as well. Consequently we

may apply to h1θ the construction of extensions of invariants from VectX to CohX described in
Section 4.2.

Moreover, if we let:

E := (π∗OX)∨,

then, for every δ ∈ R, we have:

h1θ(OX(δ)) = h0θ(E ⊗O(−δ)) = log
∑
v∈E

exp
(
− πe2δ∥v∥2

E

)
,

and therefore:

lim
δ→+∞

h1θ(OX(δ)) = 0.

Consequently Scholium 4.2.10 and Proposition 4.2.12 apply, and we obtain:

Scholium 7.3.1. There exists a unique invariant:

h1θ : CohX −→ R+

that extends the invariant

h1θ : VectX −→ R+

introduced in Definition 7.2.17 and that satisfies Mon1, SubAdd, Cont+, and NST.

This invariant satisfies Add⊕ and is small on Hermitian coherent sheaves generated by small
sections. Moreover, for every objects E of CohX , the following relation holds:

(7.3.1) h1θ(E) = h1θ(E
vect

).

7restricted to objects E of CohSpec Z or CohX with E torsion free.
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The notation h1θ for the invariant h1θ on CohX constructed in Scholium 7.3.1 does not conflict

with the notation in Definition 7.2.1. Indeed, as a consequence of Mon1, SubAdd, and NST, or
as a special case of (7.3.1), the invariant h1θ constructed in Scholium 7.3.1 satisfies the equality:

(7.3.2) h1θ(E) = h1θ(E/tor)

for every object E of CohX , and a fortiori for every object of CohX .

The compatibility with vectorization (7.3.1) of h1θ also implies the following equivalence, for

every object E of CohX :

h1θ(E) = 0⇐⇒ E
vect

= 0.

We refer the reader to Proposition 2.3.5 for diverse characterizations of the vanishing of E
vect

.

Moreover, according to Proposition 4.6.2, the invariants h1θ on CohZ and CohX are related by
the equality:

(7.3.3) h1θ(E) = h1θ(π∗E),

valid for every object E of CohX .

Finally recall that the invariant h1θ(E) of some object E of CohX may be expressed as a limit,

in terms of the value of h1θ on some objects of CohX or of VectX . Indeed, as a special instance of
the discussion in 4.2.3.3, combined with the equality (7.3.2), we obtain:

Scholium 7.3.2. For every object E := (E, (∥.∥x)x∈X(C)) in CohX , the following equality holds:

(7.3.4) h1θ(E) := lim
n→+∞

h1θ((E, (∥.∥[n]x )x∈X(C))) = lim
n→+∞

h1θ((E/tor, (∥.∥[n]x )x∈X(C))),

where ((∥.∥[n]x )x∈X(C))n∈N is any sequence of Hermitian structures on E such that, for every x ∈
X(C), (∥.∥[n]x )n∈N is a sequence of Hermitian norms on Ex converging pointwise to ∥.∥x that satisfies

∥.∥[n]x ≥ ∥.∥x for every n ∈ N.

7.3.2. The invariant h0θ on CohX and on Vect
[∞]

X and a duality formula. When E is

an object of CohX , its theta-invariant h1θ(E) has been defined by (7.2.1), (7.2.2), and (7.2.1) in
Definition 7.2.1, and therefore may be expressed in terms of the Euclidean lattice

(π∗E)∨ ≃ π∗(E
∨ ⊗ ωπ)

by the following closed formula:

(7.3.5) h1θ(E) = h0θ((π∗E)∨) = log
∑

ξ∈(π∗E)∨

e
−π∥ξ∥2

(π∗E)∨ .

One may wish to extend this expression to arbitrary object E in CohX , defined by Hermitian
seminorms that are possibly not Hermitian norms. This requires to extend the definition of the theta
invariant h0θ so that it makes sense for more general objects than Euclidean lattices or Hermitian
vector bundles over X.

7.3.2.1. The real valued invariant h0θ on VectX admits a straightforward generalization to an
invariant:

h0θ : CohX −→ [0,+∞].

Namely, for every object F := (F, (∥.∥x)x∈X(C)) in CohX , we let:

(7.3.6) h0θ(F ) = log
∑
s∈F

e
−π∥s∥2

π∗F .
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This extension of h0θ is natural, in so far as it satisfies a “limit formula” similar to the one
satisfied by h1θ spelled out in Scholium 7.3.2. Indeed, with the notation of Scholium 7.3.2, one easily
sees that the following equality holds in [0,+∞]:

h1θ(F ) := lim
n→+∞

h1θ((F, (∥.∥[n]x )x∈X(C))).

However the following proposition shows that this extension of the invariant h0θ to CohX has
no significant new content.

Proposition 7.3.3. Let F := (F, (∥.∥x)x∈X(C)) be an object of CohX .

If h0θ(F ) < +∞, then, for every x ∈ X(C), the Hermitian seminorm ∥.∥x is a norm. In other

words, F is an object of CohX .

This is a consequence of the following observation: if F := (F, ∥.∥) is an object of CohZ and if
the Euclidean norm ∥.∥ on FR is not a norm, then, for every ε > 0, the set:

{v ∈ F | ∥v∥ < ε}

is infinite. We shall not use Proposition 7.3.3, and we leave the details of its proof to the reader.

7.3.2.2. For our purpose, the relevant extension of the invariant h0θ on VectX is the invariant:

h0θ : Vect
[∞]

X −→ R+

on the category of definite Hermitian quasinormed vector bundles over X introduced in Chapter 2,
that is still defined by the equality (7.3.6) understood as follows.

An object F := (F, (∥.∥x)x∈X(C)) is pair consisting in a finitely generated OK-module and in a
family (∥.∥x)x∈X(C), invariant under complex conjugations, of definite Hermitian quasinorms on the
C-vector spaces (Ex)x∈X(C).

Its direct image π∗F is the object (π∗F, ∥.∥π∗F
) of Vect

[∞]

Z , where π∗F denotes F seen as a

Z-module and ∥.∥π∗F denotes the definite Hermitian quasinorm on:

(π∗F )C := F ⊗Z C ≃
⊕

x∈X(C)

Fx

such that, for every v = (vx)x∈C in (π∗F )C:

∥v∥2
π∗F

=
∑

x∈X(C)

∥vx∥2x.

The invariant h0θ(F ) is defined as:

(7.3.7) h0θ(F ) = log
∑
s∈F

e
−π∥s∥2

π∗F ,

where the function (x 7→ e−πx
2

) of x ∈ R+ that appears in the right-hand side of (7.3.7) is extended
by continuity to x ∈ [0,+∞] by letting:

e−π∞
2

:= 0.

The sum in the in the right-hand side of (7.3.7) is easily seen to lie in [1,+∞), and h0θ(F ) to satisfy:

h0θ(F ) = h0θ(π∗F ) ∈ R+.

As a straighforward consequence of the definitions, the invariant h0θ(F ) so defined by (7.3.7),
seen as a function of the quasinorms (∥.∥x)x∈X(C), satisfies the following continuity property:
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Proposition 7.3.4. For every n ∈ N, let (∥.∥nx)x∈X(C) be a family, invariant under complex
conjugations, of definite Hermitian quasinorms on C-vector spaces (Ex)x∈X(C). Assume that, for
every x ∈ X(C), the sequence (∥.∥nx)n∈N of quasinorms on Ex converges pointwise to ∥.∥x and
satisfies:

∥.∥nx ≥ ∥.∥∼x for every n ∈ N,
where ∥.∥∼x denotes some fixed definite quasinorm on Ex. Then we have:

h0θ(F ) = lim
n→+∞

h0θ(F, (∥.∥nx)x∈X(C)).

Recall finally that an object E := (E, (∥.∥)x∈X(C)) of CohX admits a dual object E
∨

:=

(E∨, (∥.∥∨)x∈X(C)) in Vect
[∞]

X . It is defined by the OK-module:

E∨ := HomOK
(E,OK)

and by the definite quasinorms ∥.∥x on the C-vector spaces:
E∨
x ≃ HomC(Ex,C)

dual to the seminorms ∥.∥x. Moreover the duality isomorphism (7.2.8) still holds in this setting.

7.3.2.3. Using the previous formalism, we may establish the following extension to objects of
CohX of the expression (7.3.5) for the invariant h1θ(E) of an object E in CohX .

Proposition 7.3.5. For every object E of CohX , the following equalities holds:

(7.3.8) h1θ(E) = h0θ(E
∨ ⊗ ωπ) = log

∑
ξ∈(π∗E)∨

e
−π∥ξ∥2

(π∗E)∨ .

Proof. This a straightforward consequences of (7.3.5) when the seminorms defining E are

actually norms, and of the continuity properties of the invariants h1θ on CohX and h0θ on Vect
[∞]

X

with respect to the seminorms (resp. quasinorms) defining the objects of CohX (resp. of Vect
[∞]

X )
in Scholium 7.3.2 (resp. in Proposition 7.3.4). □

Remark that, with the notation of Proposition 7.3.5, an element ξ of (π∗E)∨ satisfies

∥ξ∥(π∗E)∨ < +∞

if and only if ξ belongs to the (image of the module underlying) (π∗E
vect

)∨. This follows from
the description of the vectorization functor over SpecZ by duality in Corollary 2.3.3, and from the
compatibility of vectorization with direct images to SpecZ discussed in Subsection 2.3.2.

The right-hand side of (7.3.8) therefore coincides with:

h0θ((π∗E
vect

)∨) = h1θ(E
vect

),

and the equality (7.3.8) may be seen as a reformulation of the invariance of h1θ under vectorization
stated in (7.3.1).

7.3.3. The theta invariant h1(E, ∥.∥) as a function of the seminorm ∥.∥. In this subsec-
tion, we briefly discuss the regularity property of the theta invariant h1θ(E) of an object E of CohX
as a function of the Hermitian seminorms (∥.∥E,x)x∈X(C) that define E.

We only consider the situation where X is SpecZ, since the case of a general arithmetic curve
reduces to this one because of the compatibility (7.3.3) of h1θ with direct images. Our discussion will
be similar to the one concerning the regularity properties of the covering radius in 6.3.2 above.

Let E be a finitely generated free Z-module. The theta invariant h1θ defines a function on the
cone Q(ER) of Euclidean seminorms on ER:

(7.3.9) h1θ(E, .) : Q(ER) −→ R+, ∥.∥ 7−→ h1θ(E, ∥.∥).
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Proposition 7.3.6. The function h1θ(E, .) : Q(ER) → R+ is upper semi-continuous, and its

restriction to the open cone
◦
Q(ER) of Euclidean norms on ER is R-analytic.

Proof. Restricted to
◦
Q(ER), the function h0θ(E, .) is clearly increasing and R-analytic.

If we choose some element ∥.∥0 of
◦
Q(ER), and if, to an element ∥.∥ of Q(ER) and to a positive

integer k, we attach the element ∥.∥k of
◦
Q(ER) defined by:

(7.3.10) ∥.∥2k := ∥.∥2 + k−1∥.∥20,

then, according to Scholium 7.3.2, the sequence (h1θ(E, ∥.∥k))k≥1 is decreasing and satisfies:

(7.3.11) lim
k→+∞

h1θ(E, ∥.∥k) = h1θ(E, ∥.∥).

This exhibits the function h0θ(E, .) on Q(ER) as the pointwise limit of a decreasing sequence of
continuous functions, and therefore establishes its upper semicontinuity. □

When E has rank at least 2, the function h1θ(E, .) defined in (7.3.9) is not continuous on Q(ER).
Indeed, as was already shown to be the case for the covering radius in Proposition 6.3.9, the re-
striction of h1θ(E, .) to the subcone Q(ER)1 of extremal rays of Q(ER) is already non-continuous.
This follows from Proposition 7.3.7 below, which is similar to Proposition 6.3.9 and uses the same
notation.

Recall that, in paragraph 2.3.1.5, to any ξ ∈ E∨
R \ {0}, we have associated the semipositive

quadratic forms ξ2 ∈ Q(ER)1 and the Euclidean coherent sheaf:

Eξ := (E, |ξ|).

When the point [ξ] ∈ P2(R) belongs to P2(Q), we have defined t(ξ) ∈ R∗
+ by the relation:

Rξ ∩ E∨ = Z t(ξ)ξ,

or equivalently by the fact that t(ξ)ξ is a primitive representative of [ξ] in E∨ \ {0}.
We may assume to have chosen a Euclidean norm ∥.∥0 on ER. To this norm is attached a height

function:

ht : P(E)(Q) −→ R
on P(E)(Q) ≃ P(E)(Z). By definition, if a point P in P(E)(Q) is the class [ξ] of an element ξ in
E∨ \ {0} that is primitive, then:

ht(P ) = log ∥ξ∥∨0 ,
where ∥.∥∨0 denotes the Euclidean norm on E∨

R dual to ∥.∥0.
We may also introduce the function:

θ : R∗
+ −→ (1,+∞)

defined by:

θ(x) =
∑
n∈Z

e−πxn
2

.

Observe that, for every λ ∈ R∗
+, we have:

(7.3.12) h1θ(Z, λ |.|) = h0θ(Z, λ−1 |.|) = log θ(λ−2),

and that this expression defines an increasing R-analytic diffeomorphism:

R∗
+

∼−→ R∗
+, λ 7−→ log θ(λ−2).
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Proposition 7.3.7. Let ξ be an element of E∨
R \ {0}.

If its class [ξ] in P(E)(R) does not belong to P(E)(Q), then:

h1θ(E, |ξ|) = 0.

If [ξ] belongs to P(E)(Q), then:

h1θ(E, |ξ|) = log θ(t(ξ)2) = log θ
(
∥ξ∥∨−2

0 e2ht([ξ])
)
.

Proof. This follows from (7.3.1), which implies the equality:

h1θ(Eξ) = h1θ(E
vect

ξ ),

from the description of E
vect

ξ in Proposition 2.3.9, from (7.3.12), and from the relation, when [ξ]
belongs to P(E)(Q):

ht([ξ]) = log ∥t(ξ)ξ∥∨0 = log t(ξ) + log ∥ξ∥∨0 . □

7.4. The Banaszczyk Functions BV ,Λ and bV ,Λ and their Monotonicity Properties

In this section, we study in more details the Banascczyk functions attached to a Euclidean
lattice, or more generally, to a discrete subgroup of a finite dimensional Euclidean vector space. We
establish some remarkable estimates and monotonicity properties satisfies by these functions, which
are basically due to Banasczyk and to Regev and Stephens-Davidowitz.

The key role of Banascczyk functions in the study of Euclidean lattice is already conspicuous
in Banaszczyk’s seminal paper [Ban93]. Some of the properties discussed in this section were
established in the preprint version of this paper [Ban92], and used in further works by Banaszczyk
and by Banaszczyk and Steglinski; see notably [Ban00], [BS08], and [BS17]. Some of these have
been independently established in [RSD17a].

The recent paper [Ban22] by Banaszczyk investigates these properties in a more general frame-
work, which sheds some light on their significance from the perspective of harmonic analysis.

7.4.1. The functions BV ,Λ and bV ,Λ.

7.4.1.1. To a Euclidean lattice E := (E, ∥.∥), we have attached the two functions:

BE : ER −→ R∗
+ and bE : ER −→ R

defined by the following relations, for every x ∈ ER:

(7.4.1) BE(x) := θE(x)/θE(0) =

∑
v∈E e

−π∥v−x∥2∑
v∈E e

−π∥v∥2 =: eπbE(x).

More generally, if V := (V, ∥.∥) is a finite dimensional Euclidean vector space and Λ is a discrete
subgroup of the additive group (V,+)), we define the Banaszczyk functions attached to (V ,Λ):

BV ,Λ : V −→ R∗
+ and bV ,Λ : ER −→ R

by letting, for every x ∈ V :

(7.4.2) BV ,Λ(x) :=

∑
v∈Λ e

−π∥v−x∥2∑
v∈Λ e

−π∥v∥2 = e−πbV ,Λ(x).

In particular, for every Euclidean lattice E, we have:

BE = BER,E
and bE = bER,E
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— where as usual ER denotes the Euclidean vector space (ER, ∥.∥) — and for every Euclidean vector
space V := (V, ∥.∥) and every x ∈ V :

BV ,{0}(x) = e−π∥x∥
2

and bV ,{0}(x) = ∥x∥
2.

For typographical reasons, we shall also use the following alternative notation for the values of
the Banaszczyk functions attached to (V ,Λ):

BV ,Λ(x) = B(V ,Λ;x) = B(V, ∥.∥,Λ;x)
and:

bV ,Λ(x) = b(V ,Λ;x) = b(V, ∥.∥,Λ;x).

Proposition 7.4.1. If V 1 (resp. V 2) is a finite dimensional Euclidean vector space and if Λ1

(resp. Λ2) is a discrete subgroup of V1 (resp. of V2), the for every x1 ∈ V1 and x2 ∈ V2, we have:

(7.4.3) B(V 1 ⊕ V 2,Λ1 ⊕ Λ2; (x1, x2)) = B(V 1,Λ1;x1)B(V 2,Λ2;x2),

and:

(7.4.4) b(V 1 ⊕ V 2,Λ1 ⊕ Λ2; (x1, x2)) = b(V 1,Λ1;x1) + b(V 2,Λ2;x2).

Proof. This is a straightforward consequence of the definitions and of the identity:

e
−π∥(z1,z2)∥2

V 1⊕V 2 = e
−π∥z1∥2

V 1 e
−π∥z2∥2

V 2 ,

valid for every z1 ∈ V1 and z2 ∈ V2. □

7.4.1.2. Let us consider V := (V, ∥.∥) and Λ as above.

We shall denote by ΛR the R-vector subspace of V generated by Λ, which indeed may be identified
with Λ⊗ R, by

q : V −→ V/ΛR

the quotient map, by ∥.∥V/ΛR the Euclidean norm on V/ΛR defined as the quotient norm of ∥.∥, and
by

p⊥ : V −→ ΛR

the orthogonal projection from V onto ΛR.

Proposition 7.4.2. With the previous notation, if we introduce the Euclidean lattice:

Λ := (Λ, ∥.∥|ΛR),

then the following relations hold for every x ∈ V :

(7.4.5) BV ,Λ(x) = e−π∥q(x)∥
2
V/ΛR BΛ(p

⊥(x)),

and

(7.4.6) bV ,Λ(x) = ∥q(x)∥
2
V/ΛR

+ bΛ(p
⊥(x)).

Proof. Observe that, for every x in V and every v ∈ Λ, the following equalities holds:

∥v − x∥2 = ∥q(x)∥2V/ΛR
+ ∥v − p⊥(x)∥2.

Consequently:

e−π∥v−x∥
2

= e−π∥q(x)∥
2
V/ΛR e−π∥v−p

⊥(x)∥2

.

The relation (7.4.5) easily follows by summing over v ∈ Λ, and finally (7.4.6) by taking the loga-
rithms. □

Proposition 7.4.2 may also be seen as a special case of Proposition 7.4.1 and reduces the study
of the Banaszczyk functions attached to pairs (V ,Λ) as above to the ones attached to Euclidean
lattices.
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Proposition 7.4.3. For any (V ,Λ) as above, the Banaszcyk functions BV ,Λ and bV ,Λ are real
analytic and Λ-periodic.

Moreover, for every x ∈ V, we have:

(7.4.7) e−π∥x∥
2

≤ BV ,Λ(x) ≤ 1,

and

BV ,Λ(x) = 1⇐⇒ x ∈ Λ.

Equivalently, we have:

(7.4.8) 0 ≤ bV ,Λ(x) ≤ ∥x∥
2,

and

bV ,Λ(x) = 0⇐⇒ x ∈ Λ.

Proof. Proposition 7.4.2 shows that the validity of these properties for an arbitrary pair (V ,Λ)
follows from its validity when BV ,Λ and bV ,Λ are the Banaszczyk function BE and bE associated to

some Euclidean lattice E.

In this case, the assertions in Proposition 7.4.3 have already been observed in 7.1.1.2 and 7.1.2.1,
with the exception of the equivalent estimates:

(7.4.9) e−π∥x∥
2

≤ BV ,Λ(x),

and:

bV ,Λ(x) ≤ ∥x∥
2.

To establish (7.4.9), observe that, for every x ∈ V and every v ∈ Λ, we have:

(1/2)
(
e−π∥v−x∥

2

+ e−π∥v+x∥
2
)
≥ e−(π/2)(∥v−x∥2+∥v+x∥2) = e−π∥v∥

2

e−π∥x∥
2

.

Consequently the following estimate holds:∑
v∈Λ

e−π∥v∥
2

BV ,Λ(x) :=
∑
v∈Λ

e−π∥v−x∥
2

= (1/2)

(∑
v∈Λ

e−π∥v−x∥
2

+
∑
v∈Λ

e−π∥v+x∥
2

)
≥
∑
v∈Λ

e−π∥v∥
2

e−π∥x∥
2

. □

The first inequality in (7.4.7) admits the following amplification:

Corollary 7.4.4. With the notation of Proposition 7.4.3, for every x ∈ V, the following in-
equality holds:

(7.4.10) e−πdV (x,Λ)2 ≤ BV ,Λ(x),

or equivalently:

(7.4.11) bV ,Λ(x) ≤ dV (x,Λ)
2,

where

dV (x,Λ) := inf
λ∈Λ
∥x− λ∥

denotes the distance from x to Λ in the Euclidean vector space V .
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Proof. Since BV ,Λ is Λ-periodic, the first inequality in (7.4.7) implies that, for every (x, λ) in
V × Λ, we have:

e−π∥x−λ∥
2

≤ BV ,Λ(x− λ) = BV ,Λ(x).

The inequality (7.4.10) follows by taking the supremum over λ in Λ, and finally (7.4.11) by taking
logarithms. □

As we shall see in Chapter 9, the estimates in Corollary 7.4.4 immediately imply an upper bound
on the theta invariant h1θ(E) of some Euclidean lattice E in terms of its covering radius ρ(E); see
Section 9, Proposition 9.1.3.

7.4.1.3. It is possible to describe the behavior of bE near zero in ER:

Proposition 7.4.5. For every Euclidean lattice E := (E, ∥.∥), when x ∈ ER goes to zero, we
have:

(7.4.12) bE(x) = ∥x∥
2 − 2π

∑
v∈E e

−π∥v∥2⟨x, v⟩2∑
v∈E e

−π∥v∥2 +O(∥x∥4).

We have denoted by ⟨., .⟩ the scalar product on ER defining the Euclidean norm ∥.∥. The equality
(7.4.12) follows from an elementary computation that we leave as an exercise for the reader.

Observe that, if λER
denotes the Lebesgue measure on the Euclidean vector space ER :=

(ER, ∥.∥), we have, for every x ∈ ER:

(7.4.13)

∫
ER

e−π∥y∥
2

⟨x, y⟩2 dλER
(y) = (2π)−1∥x∥2.

Consequently, the first two terms in the right-hand side of (7.4.12) coincide, up to a factor 2π, with
the squared L2-norms of the function ⟨x, .⟩ with respect to the probability measures e−π∥.∥dλER

and

βE on ER and E respectively, and (7.4.12) may be written as follows:

(7.4.14) bE(x) = 2π∥⟨x, .⟩∥2
L2(e−π∥.∥2dλER

)
− 2π∥⟨x, .⟩2|E∥L2(βE) +O(∥x∥4).

7.4.1.4. Let us emphasize that, according to the results of this subsection, the function bV ,Λ on

the quotient Lie group V/Λ appears as a counterpart of the function ∥.∥2 on the Euclidean vector
space V := (V, ∥.∥) — a function that is actually the special case of bV ,Λ when Λ = {0}.

This analogy is comforted by the fact, established by Banaszcyk in [Ban22], that the function

b
1/2

V ,Λ
is subadditive.

7.4.2. The quadratic inequality satisfied by Banaszczyk functions. The following sim-
ple estimate will play a key role in the sequel.

Proposition 7.4.6. Let V := (V, ∥.∥) be a finite dimensional Euclidean vector space and let Λ
be a discrete subgroup of V . For every x and y in V, the following inequalities hold:

(7.4.15) BV ,Λ(x)
2BV ,Λ(y)

2 ≤ BV ,Λ(x+ y)BV ,Λ(x− y).

The estimate (7.4.15) may be reformulated as follows in terms of the function bV ,Λ:

(7.4.16) bV ,Λ(x+ y) + bV ,Λ(x− y) ≤ 2
(
bV ,Λ(x) + bV ,Λ(y)

)
.

This relation may be compared with the parallelogram law satisfied by the quadratic form ∥.∥2:
∥x+ y∥2 + ∥x− y∥2 = 2

(
∥x∥2 + ∥y∥2

)
,

and therefore appears as a further instance of the analogy mentioned in 7.4.1.4.8

8The parallelogram law also show that the validity of the estimates (7.4.15) and (7.4.16) for the Banaszczyk

functions attached to a pair (V ,Λ) follows from their validity for the Banaszczyk functions attached to a Euclidean

lattice.
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Observe also that the estimate (7.4.15) immediately implies:

Corollary 7.4.7. With the notation of Proposition 7.4.6, for every x and y in V , the following
inequality holds:

(7.4.17) BV ,Λ(x)BV ,Λ(y) ≤ (1/2)
(
BV ,Λ(x+ y) +BV ,Λ(x− y)

)
.

From the inequalities (7.4.15), we shall also derive estimates concerning the Hessian of the
function bV ,Λ. Recall that the space S2W∨ of quadratic forms, and consequently the space of

symmetric bilinear forms9 Γ2W∨, on a finite dimensional R-vector space W is equipped with an
order relation ⪯ defined by the equivalence:

(7.4.18) q1 ⪯ q2 ⇐⇒ the quadratic form q2 − q1 is semipositive.

Corollary 7.4.8. With the notation of Proposition 7.4.6, for every x ∈ V , we have:

(7.4.19) D2bV ,Λ(x) ⪯ D
2bV ,Λ(0).

Up to a factor 2, the quadratic form D2bV ,Λ(0) is the quadratic form given by the first two

terms in the right-hand side of (7.4.12) or of (7.4.13).

This subsection is devoted to the proof of Proposition 7.4.6 and Corollary 7.4.8, directly inspired
by the arguments in [RSD17a]. We shall follow a formal presentation to shed some light on the
algebraic structures that underlie the derivation of the above estimates.

7.4.2.1. From quadratic relations to lower bounds on Hessians.

Proposition 7.4.9. Let (A,+) be an additive group and let (H, ⟨. , .⟩) be a real Hilbert space. If
two maps φ : A→ R and ψ : A→ R satisfy the conditions:

(7.4.20) φ(x)φ(y) = ⟨ψ(x+ y), ψ(x− y)⟩, for every (x, y) ∈ A2,

and

(7.4.21) φ(0) ̸= 0,

then the function

β : A −→ R, x 7−→ φ(0)−1φ(x)

satisfies the estimates:

(7.4.22) β(x)2β(y)2 ≤ β(x+ y)β(x− y), for every (x, y) ∈ A2,

Proof. The condition (7.4.20) with y = 0 reads:

(7.4.23) φ(x)φ(0) = ⟨ψ(x), ψ(x)⟩ =: ∥ψ(x)∥2.

Moreover, according to Cauchy-Schwarz inequality, it also implies:

(7.4.24) φ(x)2φ(y)2 ≤ ∥ψ(x+ y)∥2∥ψ(x− y)∥2.

This establishes the estimates:

φ(x)2φ(y)2 ≤ φ(x+ y)φ(x− y)φ(0)2, for every (x, y) ∈ A2.

When (7.4.21) is satisfied, this may written as (7.4.22). □

9If E denotes denotes a vector space over some field k, one denotes by SnE and ΓnE the k-vector spaces of
coinvariants and invariants of V ⊗n under the action of the permutation group Sn. When the characteristic of k is 0

or > n, these spaces may be identified by the composite of the canonical maps ΓnE ↪→ E⊗n ↠ SnE.
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Observe that, besides (7.4.23), the validity also implies the relations:

(7.4.25) φ(y)φ(0) = ⟨ψ(y), ψ(−y)⟩.

and:

(7.4.26) φ(x)2 = ⟨ψ(2x), ψ(0)⟩.

This shows that, when (7.4.20) holds, φ(0) vanishes if and only if φ and ψ vanish everywhere on A,
and that φ is an even function10.

Corollary 7.4.10. Let us keep the notation of Proposition 7.4.9, and let us assume that (7.4.20)
and (7.4.21) are satisfied. If (A,+) is the underlying group underlying a finite dimensional real
vector space V and if φ is of class C2 and does not vanish on V , then, for every x ∈ V, the following
inequality holds in Γ2V ∨:

(7.4.27) D2 log β(0) ⪯ D2 log β(x).

Observe that, like φ, the function β is of class C2 and does not vanish on V , and is therefore
everywhere positive since β(0) = 1. Actually one may easily show that this condition of non-vanishing
is necessarily satisfied when φ is also assumed to be real analytic.

Proof. The estimates (7.4.22) may be written:

(7.4.28) log β(x) + log β(y) ≤ (1/2) (log β(x+ y) + log β(x− y)) , for every (x, y) ∈ V 2.

Since β is even and takes the value 1 at zero, both log β and D log β vanish at zero, and therefore,
when y ∈ V goes to zero in V , we have:

(7.4.29) log β(x) + log β(y) = log β(x) + (1/2)D2 log β(0).y⊗2 + o(∥y∥2).

Moreover, we also have, when y ∈ V goes to zero in V :

log β(x+ y) = log β(x) +D log β(x).y + (1/2)D2 log β(x).y⊗2 + o(∥y∥2),

and therefore:

(7.4.30) (1/2) (log β(x+ y) + log β(x− y)) = log β(x) + (1/2)D2 log β(x).y⊗2 + o(∥y∥2).

The inequality (7.4.27) follows by reporting (7.4.29) and (7.4.30) in (7.4.28). □

7.4.2.2. Banaszczyk functions and quadratic relations. Let V := (V, ∥.∥) be some finite dimen-
sional Euclidean vector space and let Λ be some discrete subgroup of V . To (V ,Λ), we may attach
the function

θV ,Λ : R∗
+ × V −→ R

defined by:

θV ,Λ(t, x) :=
∑
v∈Λ

e−πt∥x−v∥
2

.

Let us denote by [v] the class in ΛF2
≃ Λ/2Λ of an element v of Λ. For every c in Λ the coset

Λ + c/2 in VR depends only of the class [c], and the sum

(7.4.31) ψ[c](z) :=
∑

w∈Λ+c/2

e−π/2∥z−w∥2

= θV ,Λ(1/2; z − c)

defines a Λ-periodic function of z ∈ VR.
The following proposition, combined with Proposition 7.4.9 and Corollary 7.4.10, completes the

proof of Proposition 7.4.6 and Corollary 7.4.8.

10Namely, it satisfies: φ(−x) = φ(x) for every x ∈ A.
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Proposition 7.4.11. With the previous notation, for every x and y in VR, the following relation
holds:

(7.4.32) θV ,Λ(x)θV ,Λ(y) =
∑
α∈ΛF2

ψα(x+ y)ψα(x− y).

Indeed, we may consider H := RΛF2 equipped with the scalar product ⟨. , .⟩ defined by:

⟨(tα)α∈ΛF2
, (t′α)α∈ΛF2

⟩ :=
∑
α∈ΛF2

tαt
′
α,

and the map

ψ := (ψα)α∈ΛF2
: VR −→ H.

Then Proposition 7.4.11 show that the maps φ := θV ,Λ and ψ on V satisfy the assumptions of

Proposition 7.4.9 with A = V and of Corollary 7.4.10, and the estimates (7.4.22) and (7.4.27) are
precisely the estimates (7.4.15) and (7.4.19) in Proposition 7.4.6 and Corollary 7.4.8.

Proof of Proposition 7.4.11. Observe that we have an exact sequence of Z-modules:

0 −→ Λ⊕2 i−→ Λ⊕2 p−→ ΛF2
−→ 0,

where:

i(a, b) := (a+ b, a− b) and p(u, v) := [u− v].

Therefore, as an application of the parallelogram law, we obtain, for every x and y in VR,:

θV ,Λ(x)θV ,Λ(y) =
∑

(a,b)∈Λ2

e−π∥x−a∥
2−π∥y−b∥2

=
∑

(a,b)∈Λ2

e−
π
2 ∥(x+y)−(a+b)∥2−π

2 ∥(x−y)−(a−b)∥2

=
∑

(v,w)∈Λ2,[v]=[w]

e−
π
2 ∥(x+y)−v∥2−π

2 ∥(x−y)−w∥2

=
∑
α∈ΛF2

ψα(x+ y)ψα(x− y). □

7.4.3. Concerning the proof of the quadratic inequality (7.4.15). In striking contrast
with its elementary character, the derivation of the quadratic inequality (7.4.15) in Proposition
7.4.9 is closely related to various major results in algebraic and complex analytic geometry and in
probability theory.

Thanks to the formula (7.4.5), the existence of a decomposition of the product

θV ,Λ(x) θV ,Λ(y)

as a finite sum (7.4.32) for a general pair (V ,Λ) follows from its existence when V = ΛR, that is
when θV ,Λ is the theta function θE associated to some Euclidean lattice E.

In this case, using the dictionary relating theta functions attached to Euclidean lattices and
classical theta functions discussed in subsection 7.1.3, the relations (7.4.32) are a special instance
of the so-called Riemann relations satisfied by classical theta series; see for instance [Igu72, IV.1],
where they appear in Theorem 2 under the name “addition formula”, or [Mum83, section II.6],
where they appear under the name of “Riemann identity” (the identity (7.4.32) is actually a special

instance of equation (6.6) in loc. cit., applied with n = 1, and a⃗ = b⃗ = 0).

The apparent generality of the hypotheses in Proposition 7.4.9 and Corollary 7.4.10 would make
one expect them to have a wide range of possible applications besides the ones to theta functions
presented above. However, it follows from a remarkable theorem of Barsotti that, if φ, V, and H
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are as in Corollary 7.4.10 with φ real analytic and H finite dimensional, then φ admits a simple
expression in terms of theta functions associated to some abelian variety over R, hence in terms of
theta functions of Euclidean lattices; see [Bar70] and [Bar89].

In a more analytic or probabilistic perspective, one should also recall that the simple identity
that lies behind the quadratic relations (7.4.32) — namely:

e−∥x∥2

e−∥y∥2

= e−∥x+y∥2/2e−∥x−y∥2/2

— also implies that, ifX and Y are two independent identically distributed Gaussian random vectors
in some Banach space, then (X,Y ) and (X +Y )/

√
2, (X −Y )/

√
2) have the same distribution: this

is precisely the central point of the proof of Fernique’s theorem on the strong integrability of the
norm of Gaussian random vectors; see [Fer70].11

7.4.4. The monotonicity of Banaszczyk functions. The quadratic inequality on the Ba-
naszczyk functions established in Proposition 7.4.6 will be used, in the form of its Corollary 7.4.7,
to establish the following monotonicity property.

Theorem 7.4.12. For i = 1, 2, let us consider a finite dimensional Euclidean vector space
V i := (Vi, ∥.∥i) and a discrete subgroup Λi of Vi.

If some R-linear map f : V1 → V2 satisfies the conditions:

f(Λ1) ⊆ Λ2 and ∥f(x)∥2 ≤ ∥x∥1 for every x ∈ V1,

then following inequality holds for every x ∈ V1:

(7.4.33) BV 2,Λ2
(f(x)) ≥ BV 1,Λ1

(x).

The inequality (7.4.33) takes an arguably more pleasant form when expressed in terms of the
functions bV i,Λi

, namely:

bV 2,Λ2
(f(x)) ≤ bV 1,Λ1

(x).

Theorem 7.4.12 will be the key point in the proof of the strong monotonicity properties of the
invariants h0θ and h1θ in Section 7.5, and will play a central in our study of the theta invariants of
Hermitian quasi-coherent sheaves in Chapter 8.

Special instances of Theorem 7.4.12 appears in the work of Banasczyk and of Regev and
Stephens-Davidowitz quoted at the beginning of this section. Its validity when f is an isometry
from V 1 to V 2 is notably used in the papers of Banaszczyk and Stegliński. It is also established
in [RSD17a] when f : V1 → V2 is an isomorphism, Λ1 and Λ2 are cocompact in V1 and V2, and
f(Λ1) = Λ2.

Taking these special cases for granted, one easily sees that to prove Theorem 7.4.12 in full
generality, it is enough to handle the case of a map f associated by an admissible surjective morphism
of Euclidean lattices. In Subsection 7.6.2, we will see that the monotonicity of Banasczyk functions
in this case may be deduced from its validity when f is a morphism of Euclidean lattices such that
fR is an isometric isomorphism combined with the description, of independent interest, of the limit
of the Banaszczyk functions BV ,Λ when Λ varies over an increasing sequence of lattices in V .

In this subsection, we give a streamlined derivation of Theorem 7.4.12, based on the inequality on
Banaszczyk functions established in Corollary 7.4.7. In Section 7.6 below, we will present alternative
arguments for the monotonicity of Banaszczyk functions, which will provide some further insight on
their properties.

11See also [Str11, Section 8.2.1], where Fernique’s proof is presented as “arguably the most singularly beautiful

results in the theory of Gaussian measures on a Banach space.”
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Proof. We divide the proof of Theorem 7.4.12 in three successive steps.

(1) Proof of (7.4.33) when f is an isometry, that is when it satisfies:

∥f(x)∥2 = ∥x∥1 for every x ∈ V1.

In this case, f is injective, and we have:∑
[c]∈Λ2/f(Λ1)

BV 2,f(Λ1)
(c) =

∑
w∈Λ2

e−π∥w∥2
2∑

w∈f(Λ1)
e−π∥w∥2

2

,

and, for every x ∈ V1:
BV 2,f(Λ1)

(f(x)) = BV 1,Λ1
(x).

Consequently, using the estimates (7.4.17), we obtain, for every x ∈ V1:∑
w∈Λ2

e−π∥f(x)−w∥2
2 =

∑
[c]∈Λ2/f(Λ1)

∑
w∈f(Λ1)

e−π∥f(x)−c−v∥
2
2

=
∑

w∈f(Λ1)

e−π∥w∥2
2 .

∑
[c]∈Λ2/f(Λ1)

BV 2,f(Λ1)
(f(x)− c)

= (1/2)
∑

w∈f(Λ1)

e−π∥w∥2
2 .

∑
[c]∈Λ2/f(Λ1)

(
BV 2,f(Λ1)

(f(x)− c) +BV 2,f(Λ1)
(f(x) + c)

)
≥

∑
w∈f(Λ1)

e−π∥w∥2
2

∑
[c]∈Λ2/f(Λ1)

BV 2,f(Λ1)
(f(x))BV 2,f(Λ1)

(c)

= BV 1,Λ1
(x).

∑
w∈Λ2

e−π∥w∥2
2 .

This establishes the inequality (7.4.33).

(2) Proof of (7.4.33) when f is contracting, that is when f satisfies:

∥f(x)∥2 < ∥x∥1 for every x ∈ V1.

The map f factorizes as:
f = p ◦ i,

where
i : V1 −→ V1 ⊕ V2, x 7−→ (x, f(x)),

and
p : V1 ⊕ V2 −→ V2, (x, y) 7−→ y.

Since f is contracting from (V1, ∥.∥1) to (V2, ∥.∥2), we define a Euclidean norm ∥.∥′1 on V1 by
letting:

∥x∥′21 := ∥x∥21 − ∥f(x)∥22
for every x ∈ V1. Then the map i from the Euclidean vector space V 1 to the direct sum V

′
1 ⊕ V 2

of the Euclidean vector spaces V
′
1 := (V1, ∥.∥′1) and V 2 is an isometry. Moreover i maps Λ1 into

Λ1 ⊕ f(Λ1).
12 Therefore Step (1) applies to i and shows that, for every x ∈ V1:

(7.4.34) BV ′
1⊕V 2,Λ1⊕f(Λ1)

(x, f(x)) ≥ BV 1,Λ1
(x).

Moreover, according to Proposition 7.4.1, for every (x, y) ∈ V1 ⊕ V2, we have:

BV ′
1⊕V 2,Λ1⊕f(Λ1)

(x, y) = BV ′
1,Λ1

(x)BV 2,f(Λ1)
(y),

and therefore:

(7.4.35) BV 2,f(Λ1)
(y) ≥ BV ′

1⊕V 2,Λ1⊕f(Λ1)
(x, y).

12This construction and the one in Proposition 5.2.10 are dual of each other.
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In other words, Theorem 7.4.12 is valid for the projection p and the pairs (V
′
1⊕V 2,Λ1⊕f(Λ1)) and

(V 2, f(Λ1)).

The inequality (7.4.33) follows from (7.4.34) and (7.4.35).

(3) Proof of (7.4.33) for an arbitrary norm decreasing map f .

Let us choose a sequence (εn)n∈N in R∗
+ such that limn→+∞ εn = 0. Then, for every n ∈ N, we

have:

e−εn∥f(x)∥2 < ∥x∥1 for every x ∈ V1.
Therefore, according to Step (2), the following inequality holds for every x ∈ V1:

B(V2, e
−εn∥.∥2; f(x)) ≥ B(V1, ∥.∥1;x).

The inequality (7.4.33) follows by letting n go to infinity. □

7.5. Theta Ranks and Strong Monotonicity

The invariant h1θ : CohX −→ R+ defined in Sections 7.1 and 7.3 is already known to satisfy

diverse conditions introduced in Chapter 4, namely the conditions of monotonicity Mon1 and of
subadditivity SubAdd, as well as, for trivial reasons, the conditions VT and Cont.

This section is devoted to the proof of the following theorem:

Theorem 7.5.1. The invariant h1θ : CohX −→ R+ satisfies the strong monotonicity condition

StMon1.

The strong monotonicity of an invariant φ on CohX has been defined in Chapter 5 in terms of
the associated rank invariant rk1φ. When φ = h1θ, this rank invariant becomes the θ1-rank, which to

a morphism f : E −→ F in Coh
≤1

X attaches the non-negative real number:

(7.5.1) rk1θf := rk1h1
θ
f = h1θ(F )− h1θ(F/f(E)) ∈ R+.

As discussed in Subsection 5.1.1, this number does not depend of the actual choice of the
Hermitian semi-norms (∥.∥E,x)x∈X(C) defining E, but only of F and of image f(E) of the morphism

of OX -modules f : E −→ F . Actually, since h1θ “does not see torsion,” it depends only of F and of
the K-vector subspace im fK := fK(EK) of FK .

To emphasize this independence, the θ1-rank (7.5.1) will often be denoted as:

rk1θ(f : E → F ).

It is defined if E is any coherent OC-module, if F is an object of CohX , and if f : E → F is any
morphism of OC-modules — in brief, in the terminology introduced in Section5.1, if f : E → F is a

morphism in
....

CohX .

According to Proposition 5.2.2, the strong monotonicity of h1θ may be expressed as follows:

Theorem 7.5.2. Let f : E → F be a morphism in Coh
≤1

X and let E′ be a coherent OX-
submodule of E. If we denote by F ′ := f(E′) its image and ι the inclusion morphism from E′ to E,
the following inequality holds:

rk1θ(f ◦ ι : E′ → F ) ≤ rk1θ(ι : E
′ → E),

or equivalently:

(7.5.2) h1θ(F )− h1θ(F/F ′) ≤ h1θ(E)− h1θ(E/E′).

This formulation of the strong monotonicity of h1θ will be especially convenient for its proof. In
Subsection 7.5.2, we will actually establish a slightly stronger property, expressed in terms of the
invariant h0θ and of the attached θ0-rank rk0θ defined in Subsection 7.5.1, as a consequence of the
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monotonicity properties of the Banaszczyk functions. The strong monotonicity of h1θ will follow by
a duality argument.

7.5.1. The θ-rank rk0θ(f). The θ1-rank rk1θ admits a counterpart, the θ0-rank rk0θ, which plays
a role similar to rk1θ when one deals with the invariant:

h0θ : CohX −→ R+

instead of the invariant:
h1θ : CohX −→ R+.

In this subsection, we define rk0θ and we discuss its basic properties. We shall leave some details
of the proofs to the reader. Indeed they are often similar to the corresponding arguments concerning
rk1θ, or more generally the φ-rank rk1φ discussed in Section 5.1. Moreover in this monograph the

θ0-rank plays only a technical role in the derivation of the strong monotonicity StMon1 of h1θ.

7.5.1.1. A geometric analogue. If C is a smooth, projective, geometrically connected curve C
over some base field k. To any coherent OC-module F , we may attach the dimension of its space of
sections:

(7.5.3) h0(C,F) := dimkH
0(C,F) ∈ N.

For every morphism f : F −→ G of coherent OC-modules, we may also consider the rank of the
induced k-linear map f0 : H0(C,F) −→ H0(C,G). It satisfies the equality:

rkkf
0 = dimkH

0(C,F)− dimk ker f
0,

and may therefore be expressed as the difference:

(7.5.4) rkkf
0 = dimkH

0(C,F)− dimkH
0(C, ker f),

where ker f denotes the coherent OC-module kernel of f .

7.5.1.2. Definition of rk0θ. Motivated by the equality (7.5.4), to a morphism g : V −→ W in

Coh
≤1

X , we may attach its θ0-rank defined as:

(7.5.5) rk0θ(g) := h0θ(V )− h0θ(ker g) ∈ R+.

The positivity of rk0θ(g) is indeed a consequence of the monotonicity of h0θ.

Clearly this rank does not depend on the choice of the Hermitian semi-norms (∥.∥W,x)x∈X(C)

definingW, but only of V and of the kernel ker g the morphism of coherent OX -modules g : V →W .
Accordingly the θ0-rank rk0θ will often be denoted:

rk0θ(g : V →W ).

It is actually defined when V is an object of CohX and g : V → W is a morphism of coherent
OX -module, and it satisfies the equality:

rk0θ(g : V →W ) = rk0θ(g : V → im g).

One should beware that the definition of rk0θ is “torsion-sensitive”: when one “kills” the torsion
in W , the θ0-rank rk0θ(g : V →W ) may change.

More generally, the following proposition is a straightforward consequence of the definition of
rk0θ and of the monotonicity of h0θ.

Proposition 7.5.3. For every diagram

V
g−→W

h−→ U,

where V is an object of CohX , and W and U (resp. g : V → W and h) are coherent OC-modules
(resp. a morphism of OC-modules), the following inequality holds:

rk0θ(h ◦ g : V →W ) ≤ rk0θ(g : V → U).
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7.5.1.3. The strong monotonicity of h0θ. The following theorem is a counterpart concerning h0θ
and rk0θ of the strong monotonicity property StMon1 satisfied by the invariant h1θ on CohX . It will

be referred to as the strong monotonicity StMon0 of the invariant h0θ on CohX .

Theorem 7.5.4. For every diagram

V
g−→W

h−→ U,

where g : V →W is a morphism Coh
≤1

X , and U (resp. h :W → U) is a coherent OC-modules (resp.
a morphism of OC-modules), the following inequality holds:

(7.5.6) rk0θ(h ◦ g : V → U) ≤ rk0θ(h : V →W ).

Since both sides of (7.5.6) are unchanged when the morphism g : W → U is replaced by
the quotient map W → W/W ′ where W ′ := kerh, this theorem admits the following equivalent
formulation:

Theorem 7.5.5. For every morphism g : V →W in Coh
≤1

X and every coherent OX-submodule
W ′ of W , of inverse image V ′ := g−1(W ′) in V , the following inequality holds:

(7.5.7) h0θ(V )− h0θ(V
′
) ≤ h0θ(W )− h0θ(W

′
).

We defer the proof of Theorems 7.5.4 and 7.5.5 to the next subsection, and we spell out some
consequences of these theorems applied with X = SpecZ, that concern Euclidean lattices.

Corollary 7.5.6. (1) For every Euclidean lattice E := (E, ∥.∥) and every pair of Z-submodules
E′′ ⊆ E′, the following inequality holds:

(7.5.8) h0θ(E)− h0θ(E
′
) ≤ h0θ(E/E′′)− h0θ(E′/E′′).

(2) For every Euclidean lattice E := (E, ∥.∥) and any two Z-submodules F1 and F2 of E, the
following inequality holds:

(7.5.9) h0θ(F 1) + h0θ(F 2) ≤ h0θ(F1 ∩ F2) + h0θ(F1 + F2).

(3) For every Euclidean lattice E := (E, ∥.∥) and any Z-submodule E′ of E, the difference

h0θ(E)− h0θ(E
′
) is a decreasing function of the Euclidean norm ∥.∥.

Observe that, when E′′ = E′, the estimate (7.5.8) is nothing but the subadditivity of h0θ:

h0θ(E) ≤ h0θ(E
′
) + h0θ(E/E

′).

Observe that the right hand side of (7.5.8) admits the following expression in terms of invariants
h0θ attached to Euclidean lattices:

h0θ(E/E
′′)− h0θ(E′/E′′) = h0θ(E/E

′′sat)− h0θ(E′/(E′ ∩ E′′sat)) + log[E′ ∩ E′′sat : E′′].

The submodularity inequality (7.5.9) on h0θ has been established by Regev and Stephens-
Davidowitz in [RSD17a, Theorem 5.1] at the instigation of McMurray Price; see also [MP17].

Proof of Corollary 7.5.6. Assertion (1) follows from Theorem 7.5.5 applied to the quotient
morphism

g : V := E →W := E/E′′

and to the submodule W ′ := E′/E′′ of W .

Assertion (2) follows from Theorem 7.5.5 applied to the inclusion morphism

g : V := F −→W := F1 + F2

and to the submodule W ′ := F2 of W .
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To prove (3), observe that, if a Euclidean norm ∥.∥′ on ER satisfies the inequality:

∥.∥∼ ≤ ∥.∥,

then the identity map IdE defines a morphism

IdE : (E, ∥.∥)→ (E, ∥.∥∼)

in Vect≤1
Z . Consequently we may apply Theorem 7.5.5 to this morphism and to the submodule E′

of E. Thus we get:

h0θ(E, ∥.∥)− h0θ(E′, ∥.∥|E′
R
) ≤ h0θ(E, ∥.∥∼)− h0θ(E′, ∥.∥∼|E′

R
). □

The reader may prove that conversely one may deduce the validity of Theorems 7.5.4 and 7.5.5
when X = SpecZ from its various special instances appearing in Corollary 7.5.6; see Subsection
5.2.3 for a similar reasoning concerning the condition StMon1.

In turn, the validity of Theorems 7.5.4 and 7.5.5 when X = SpecZ implies their validity in
general according to the compatibility of the invariant h0θ with direct images under the morphism π
from X to SpecZ.

7.5.1.4. θ-ranks and duality. If E is a coherent OC-module, F is an object of CohX and

f : E −→ F

is a morphism of OC-modules, then E
∨

is a locally free coherent OX -module, F
∨

is objects of
VectX , and by duality, the morphism f defines a morphism of OX -modules:

(7.5.10) f∨ : F∨ −→ E∨.

According to the Hecke duality formula (7.2.6), we have:

(7.5.11) h1θ(F ) = h0θ(F
∨ ⊗ ωπ)

and:

h1θ(F/f(E)) = h1θ(F/f(E)sat) = h0θ(F/f(E)sat
∨
⊗ ωπ).

Moreover the Hermitian vector subbundle ker f∨ of F
∨

is canonically isomorphic to F/f(E)sat
∨
.

Consequently:

(7.5.12) h1θ(F/f(E)) == h0θ(ker f
∨ ⊗ ωπ).

From (7.5.11) and (7.5.12), we deduce the following proposition:

Proposition 7.5.7. For every object F in CohX and any morphism of coherent OX-modules
f : E → F as above, the following equality holds:

(7.5.13) rk1θ(f : E → F ) = rk0θ(f
∨ ⊗ Idωπ

: F
∨ ⊗ ωπ → E∨ ⊗ ωπ).

7.5.2. Proof of the strong monotonicity of h0θ and h1θ.

7.5.2.1. The rank rk0θ and the Banaszcyk functions. Proposition 7.1.6 already demonstrates the
relevance of Banaszczyk functions for establishing the subaddivity of the theta invariants. In the
same vein, the following observation will play a key role in the derivation of their strong monotonicity.

Proposition 7.5.8. For any object E := (E, ∥.∥) in CohSpecZ and any Z-submodule E′ of E,
the following equality holds:

(7.5.14) h0θ(E)− h0θ(E
′
) = log

∑
[c]∈E/E′

B(ER, E
′
/tor; c).
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In the right hand-side of (7.5.14), ER denotes the Euclidean vector space (ER, ∥.∥) and E′
/tor the

Z-module E′/E′
tor, identified to a discrete subgroup of ER. For every c ∈ E, the value B(ER, E

′
/tor; c)

of the function BER,E′
/tor

at the image, still denoted c, of c in ER depends only of the class [c] of c in

E/E′. This value actually depends only of the class of c in E/(E′ +Etor), and the equality (7.5.14)
might also be written:

h0θ(E)− h0θ(E
′
) = log

∑
[c]∈E/(E′+Etor)

B(ER, E
′
/tor; c) + log |Etor/(Etor ∩ E′)|.

In terms of the function bER,E′ , the equality (7.5.14) takes the more suggestive form:

(7.5.15) h0θ(E)− h0θ(E
′
) = log

∑
[c]∈E/E′

exp
[
−πbER,E′

/tor
(c)
]
.

More generally, we may consider an object E of CohSpecZ, a finitely generated Z-module F ,

and a morphism of Z-modules f : E −→ F. Applied to E′ := ker f, the equality (7.5.15) becomes
the following expression for the θ0-rank of f :

(7.5.16) rk0θf = log
∑

[c]∈E/ ker f

exp
[
−πbER,(ker f)/tor

(c)
]
.

For every element i in f(E), the preimage f−1(i) is a coset c in E/ ker f , and (7.5.16) may also be
written:

(7.5.17) rk0θf = log
∑

i∈f(E)

exp
[
−πbER,(ker f)/tor

(f−1(i))
]
.

This expression is formally similar to the one defining h0θ:

h0θ(E) := log
∑
v∈E

exp
(
− π∥v∥2

)
,

which is actually the instance of (7.5.17) when f is the morphism IdE .

Proof of Proposition 7.5.8. As usual, for every element v of E, we denote by ∥v∥ the
Euclidean norm of the class of v in E/tor := E/Etor, identified to a submodule of ER.

For every coset c+ E′ of E′ in E, we have:∑
v∈c+E′

e−π∥v∥
2

=
∑
v∈E′

e−π∥v−c∥
2

= B(ER, E
′
/tor; c).

∑
v∈E′

e−π∥v∥
2

.

Consequently, we have:∑
v∈E

e−π∥v∥
2

=
∑

[c]∈E/E′

∑
v∈c+E′

e−π∥v∥
2

=
∑

[c]∈E/E′

B(ER, E
′
/tor; c).

∑
v∈E′

e−π∥v∥
2

,

and (7.5.14) follows by taking logarithms. □

7.5.2.2. Proof of the strong monotonicity of h0θ. We may now complete the proof of Theo-
rem 7.5.5.

To achieve this, observe that we may assume that X is SpecZ. Indeed the general case reduces
to this one by means of the direct image operation π∗. Then, with the notation of Theorem 7.5.5,
Proposition 7.5.8 implies the relations:

(7.5.18) h0θ(V )− h0θ(V
′
) = log

∑
[d]∈V/V ′

B(V R, V
′
/tor; d)
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and

(7.5.19) h0θ(W )− h0θ(W
′
) = log

∑
[c]∈W/W ′

B(WR,W
′
/tor; c).

Moreover, according to Proposition 7.4.12, applied to the map gR of norm ≤ 1 from the Euclidean
vector space V R to WR which maps V ′

/tor to W
′
/tor, we have:

(7.5.20) B(V R, V
′
/tor; d) ≤ B(WR,W

′
/tor; g(d)) for every d ∈ V ′.

The inequality (7.5.7) follows from (7.5.18), (7.5.19), (7.5.20), and the injectivity of the map

g̃ : V/V ′ −→W/W ′

induced by g : V →W .

7.5.2.3. Proof of the strong monotonicity of h1θ. We may finally derive the strong monotonicity
of h1θ, in its formulation in Theorem 7.5.2, from Theorem 7.5.5.

Here again by considering direct images by π,, it is enough to prove Theorem 7.5.2 when X is
SpecZ. Moreover a straightforward approximation argument using the downward continuity Cont+

of h1θ and Proposition 4.2.3 shows that, to establish the inequality (7.5.2) in Theorem 7.5.2, we may

assume that E and F are objects of CohSpecZ, or equivalently that the Euclidean seminorms ∥.∥E
and ∥.∥F defining E and F are actually norms.

When this holds, the duals V := F
∨

and W := E
∨

are objects in VectZ, that is Euclidean
lattices, and according to the definition of h1θ, we have:

h1θ(F ) = h0θ(V ) and h1θ(E) = h0θ(W ).

The Z-submodule

W ′ := E′⊥ = {ξ ∈ E∨ | ξ|E′ = 0}

of W := E∨ may be identified to (E/E′)∨, and the Euclidean lattice W
′
to E/E′∨. In particular,

we have:

h1θ(E/E
′) = h0θ(W

′
).

Moreover the transpose g := f∨ of f defines a morphism in Coh
≤1

SpecZ from V to W , and the inverse

image of W ′ by g,

V ′ := g−1(W ′) = (f∨)−1(E′⊥),

is the Z-submodule:

f(E′)⊥ := {η ∈ F∨ | η|f(E′) = 0}.

Consequently the dual of F/f(E′) may be identified with V
′
, and therefore:

h1θ(F/f(E
′)) = h0θ(V

′
).

With these choices of g : V → W and of W ′ the inequality (7.5.7) in Theorem 7.5.5 becomes
the inequality (7.5.2).13

13We might as well have used the duality formula in Proposition 7.5.7.
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7.6. Further Properties of Banaszczyk Functions and Alternative Derivations of their
Monotonicity Properties

In the previous section, we have tried to give a proof of the monotonicity of Banaszczyk func-
tions (Theorem 7.4.12) that is as direct as possible. It turns out that the Banaszczyk functions
satisfies further remarkable properties that lead to alternative derivations of some special case of
this monotonicity.

In this section we discuss some of these properties, which moreover establish some intriguing links
between Banaszczyk functions and diverse classical topics related to Euclidean lattices. The results
of this section will not be used in the next chapters, and it could be skipped with no inconvenience.

7.6.1. The Banaszczyk function B(E,∥.∥) as a function of ∥.∥ and the heat equation.

7.6.1.1. A special instance of Theorem 7.4.12 is the following property of Banasczyk functions
of Euclidean lattices:

Corollary 7.6.1. For every finitely generated free Z-module E and every x in ER, considered as
a function of the Euclidean norm ∥.∥ on ER, the Banaszczyk function B(E,∥.∥)(x) = B(ER, ∥.∥, E;x)
is decreasing.

This corollary may be stated in terms of the real analytic function

ΘE :
◦
Q(E∨

R )× ER −→ R∗
+

introduced in paragraph 7.1.3.1 above.

Corollary 7.6.2. Let E be a finitely generated free Z-module. The function

BE :
◦
Q(E∨

R )× ER −→ R∗
+

defined by:

BE(q, x) := ΘE(q, x)/ΘE(q, 0)

is increasing in the first variable. Namely, for every pair (q1, q2) of elements of
◦
Q(E∨

R ), the following
implication holds14:

(7.6.1) q1 ⪯ q2 =⇒ BE(q1, x) ≤ BE(q2, x) for every x ∈ ER.

Indeed, with the notation of Corollary 7.6.2, for every Euclidean lattice E := (E, ∥.∥) and for
every x ∈ ER, we have:

BE(x) = BE(∥.∥
∨2, x)

and

(7.6.2) bE(x) = −π
−1 logBE(∥.∥∨2, x).

where ∥.∥∨ denotes the norm on E∨
R dual to the norm ∥.∥ on ER.

7.6.1.2. If f is a function of class C1 on the product
◦
Q(E∨

R )×ER, we shall denote by D1f(q, x)
or Dqf(q, x) (resp. D2f(q, x) or Dxf(q, x)) its differential with respect to the first (reps. second)

variable in
◦
Q(E∨

R ) (resp. in ER) evaluated at (q, x). It is an element of (S2ER)
∨ (resp. of E∨

R ).

Similarly, if f is of class C2, we shall denote by D2
2f(q, x) or D2

xf(q, x) its second differential,
or Hessian, in the second variable at (q, x). It is an element of Γ2(E∨

R ) ≃ (S2ER)
∨,15 and the Taylor

14The notation q1 ⪯ q2 has been introduced in (7.4.18).
15Recall that, if V is a vector space, one denotes by SkV and ΓkV the spaces of coinvariants and invariants

of V ⊗k under the action of the permutation group Sk. The canonical isomorphism (V ⊗k)∨ ≃ V ∨⊗k induces an

indentification (SkV )∨ ≃ ΓkV ∨.
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expansion at order 2 of f(q, x) as a function of x takes the form:

f(q, x+ h) = f(q, x) +Dxf(q, x).h+ (1/2)D2
xf(q, x).h

⊗2 + o(∥h∥2)
when h ∈ ER goes to zero.

Somewhat abusively, we shall denote by Dxf(q, 0) and D
2
xf(q, 0) the value of the first and second

differentials Dxf(q, x) and D
2
xf(q, x) when x = 0.

7.6.1.3. Using this notation, Corollary 7.6.2 may rephrased as follows, in term of the differential
D1BE of BE with respect with the first variable:

Corollary 7.6.3. Let E be a finitely generated free Z-module. For every q in
◦
Q(E∨

R ) and every
δq in S2ER, the following implication holds:

(7.6.3) δq ⪰ 0 =⇒ DqB(q, x).δq ≥ 0 for every x ∈ ER.

In the next paragraphs, we present an alternative derivation of this corollary, which will not
depend on Theorem above, but will directly rely on Corollary 7.4.8, itself a direct consequence of
the “parallelogram inequality” (7.4.16) satisfied by the function bE . This alternative derivations
follow the arguments in [RSD17a], with a few variations intended to clarify their relations with
some classical results on the Riemann theta function θ(τ, z).

The crucial point in this alternative derivation is the following result.

Proposition 7.6.4. The function ΘE satisfies the following linear partial differential equation:

(7.6.4) D2
xΘE(q, x) = 4πDqΘE(q, x);

The relation (7.6.4) is an equality of real analytic functions on
◦
Q(E∨

R ) × ER with values in
(S2ER)

∨ ≃ Γ2(E∨
R ).

A consequence of this relation is the well-known fact that, for every Euclidean lattice E :=
(E, ∥.∥), the function:

p : R∗
+ × ER/E −→ R

defined by:

p(t, x) := t−rkE/2
∑
v∈E

e−π∥x−v∥
2/t

satisfies the heat equation:
∂p(t, x)

∂t
=

1

4π
∆xp(t, x),

where ∆ denotes the Laplace operator on the compact torus ER/E endowed with the flat Riemannian
metric defined by the Euclidean norm ∥.∥.

Proof. It is a straightforward consequence of the definition of ΘE by means of the series
(7.1.26), and of the fact that, for every ξ ∈ E∨, the function exp(−πq(ξ) + 2πi⟨ξ, x⟩) satisfies:

D2
x exp(−πq(ξ) + 2πi⟨ξ, x⟩)(δx1, δx2) = (2πi)2⟨ξ, δx1⟩⟨ξ, δx2⟩ exp(−πq(ξ) + 2πi⟨ξ, x⟩)

for every (δx1, δx2) ∈ E2
R, and:

Dq exp(−πq(ξ) + 2πi⟨ξ, x⟩)(δq) = −π δq(ξ) exp(−πq(ξ) + 2πi⟨ξ, x⟩),
for every δq ∈ S2ER. □

The partial differential equation (7.6.4) satisfied by ΘE may be reformulated as a partial differ-
ential equation satisfied by logBE .

Corollary 7.6.5. The function logBE satisfies the following partial differential equation:

(7.6.5) 4πDq logBE(q, x) = D2
x logBE(q, x)−D2

x logBE(q, 0) + (Dx logBE(q, x))⊗2.
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Proof. Observe that, if f is a positive function of class C2 of one variable, we have:

(log f)′′ = (f ′/f)′ = f ′′/f − (f ′/f)2 = f ′′/f − (log f)′2.

Therefore, we have:

(7.6.6) Dx logBE(q, x) = Dx logΘE(q, x)

and

(7.6.7) D2
x logBE(q, x) = D2

x logΘE(q, x) = ΘE(q, x)
−1D2

xΘE(q, x)− (Dx logΘE(q, x))
⊗2.

Since ΘE(q, x) is an even function of x, we have:

Dx logΘE(q, 0) = 0,

and therefore, when x = 0, the equality (7.6.7) takes the form:

(7.6.8) D2
x logBE(q, 0) = ΘE(q, 0)

−1D2
xΘE(q, 0).

Moreover, we have:

Dq logBE(q, x) = Dq logΘ(q, x)−Dq logΘ(q, 0)

= Θ(q, x)−1DqΘ(q, x)−Θ(q, 0)−1DqΘ(q, 0).
(7.6.9)

Combined with the heat equation (7.6.4), this becomes:

(7.6.10) 4πDq logBE(q, x) = Θ(q, x)−1D2
xΘ(q, x)−Θ(q, 0)−1D2

xΘ(q, 0).

The relation (7.6.5) follows from this equation together with (7.6.6), (7.6.7), and (7.6.8). □

From Corollaries 7.4.8 and 7.6.5, we obtain a new proof of Corollary 7.6.3. Indeed, with the
notation of Corollary 7.6.3, if E = (E, ∥.∥) denotes the Euclidean lattice such that ∥.∥∨2 = q, then
according to (7.6.2) and (7.6.5), we have for every v ∈ ER:

4πDq logBE(q, x).v2 = π
(
D2bE(0)−D

2bE(x)
)
(v, v) + (DbE(x).v)

2.

According to Corollary 7.4.8, this is non-negative. Since the convex cone {δq ∈ S2ER | δq ⪰ 0} is
the convex hull of the set {v2; v ∈ ER}, this establishes (7.6.3).

7.6.1.4. Using the expression (7.1.27) of ΘE in terms of the Riemann theta function, the gener-
alized heat equation (7.6.4) appears as a special instance of the classical heat equation satisfied by
Riemann theta function θ on Hg × Cg, namely of the partial differential equations:

(7.6.11)
∂2θ(τ, z)

∂za∂zb
= 2πi(1 + δab)

∂θ(τ, z)

∂τab
, for every 1 ≤ a ≤ b ≤ g,

where θ(τ, z) is considered as a function of the variables z = (za)1≤a≤g and (τab)1≤a≤b≤g.

The relations (7.6.11) directly follow from the definition of the Riemann theta function by the
series (7.1.25), and may equivalently be formulated as the identity:∑

1≤a,b≤g

δτab
∂2θ(τ, z)

∂za∂zb
= 4πi

d

dt
θ(τ + t δτ, z)|t=0,

valid for every (τ, z) ∈ H × Cg and every symmetric matrix δτ = (δτab)1≤a,b≤g in Mg(C); see for
instance [Igu72, Section V.3].
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7.6.2. The Banaszczyk function BV ,Λ as a function of the closed subgroup Λ. In this
subsection, we briefly discuss the continuity properties of the Banasczyk function BV ,Λ as a function
of the subgroup Λ, notably the limit behavior of BV ,Λ when Λ varies in some decreasing or increasing
sequence of discrete subgroups.

To formulate these properties, it is convenient to define the Banasczyk function BV ,Λ in a more
general context than the one considered till now, namely when Λ is an arbitrary closed subgroup
of V .16

7.6.2.1. The Banaszczyk function BV ,Λ associated to a closed subgroup Λ. To formulate the limit
behavior of BV ,Λ when Λ varies in an increasing sequence of discrete subgroups of V , it is useful to
define the B. functions BV ,Λ in a slightly more general context, namely when Λ is a arbitrary closed
subgroup of V .

Definition 7.6.6. Let V := (V, ∥.∥) be a finite dimensional Euclidean vector space, and let Λ
be a closed subgroup of V . The Banaszczyk function

BV ,Λ : V −→ R∗
+

is the function defined by following equality:

(7.6.12) BV ,Λ(x) :=

∫
Λ
e−π∥v−x∥

2

dµ(v)∫
Λ
e−π∥v∥2 dµ(v)

,

where we denote by µ a Haar measure on the group Λ.

The right-hand side of (7.6.12) is clearly independent of the choice of the Haar measure µ. It is
easily seen to define a real analytic function of x ∈ V .

Actually, the construction of the function BV ,Λ associated to a general closed subgroup Λ of V
easily reduces to the construction of the Banaszczyk function associated to some discrete subgroup.

Indeed, with the notation of Definition 7.6.6, the closed subgroup Λ of V is a Lie group. Its
connected component Λ◦ is the largest R-subvector space of Λ, and the exact sequence

0 −→ Λ◦ −→ Λ −→ Λ/Λ◦ −→ 0

describes the commutative Lie group Λ as a (necessarily split) extension of a discrete free finitely
generated abelian group by a vector group.

Proposition 7.6.7. With the previous notation, if we denote by r : V → V/Λ◦ the quotient

map, and by V/Λ◦ the Euclidean vector space defined by the quotient V/Λ◦ endowed with the norm
quotient of the Euclidean norm ∥.∥ over V , then the following equality holds for every x ∈ V :

(7.6.13) BV ,Λ(x) = B
V/Λ◦,Λ/Λ◦(r(x)).

Proof. The Euclidean vector space V may be identified with the direct sum V/Λ◦⊕Λ◦, where
Λ◦ denotes the Euclidean vector space (Λ◦, ∥.∥|Λ◦ . Moreover this identification maps Λ to Λ/Λ◦⊕Λ◦.
Using this identification, (7.6.13) easily follows. □

Moreover Proposition 7.4.2 also easily extends to the present setting. Indeed a straightforward
variant of the proof of Proposition 7.4.2 establishes the following proposition.

Proposition 7.6.8. With the previous notation, let Vect(Λ) be the R-vector subspace of V

generated by Λ and Vect(Λ) the Euclidean vector space (Vect(Λ), ∥.∥|Vect(Λ)), let q : V → V/Vect(Λ)
be the quotient map and ∥.∥V/Vect(Λ) be the Euclidean norm on V/Vect(Λ) defined as the quotient

norm of ∥.∥, and let p⊥ : V −→ Vect(Λ) be the orthogonal projection from V onto Vect(Λ).

16This extended definition is a special instance of a general construction of Banaszczyk; see [Ban22].
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Then the following relation holds for every x ∈ V :

(7.6.14) BV ,Λ(x) = e−π∥q(x)∥
2
V/Vect(Λ) B

Vect(Λ),Λ
(p⊥(x)).

Using Propositions 7.6.7 and 7.6.8, we may write the function BV ,Λ as the product of a Gaussian
function and of the Banaszczyk function of a Euclidean lattice — namely the one defined by the
lattice Λ/Λ◦ in the Euclidean vector subspace Vect(Λ)/Λ◦ of V/Λ◦, where Vect(Λ) denotes the
R-vector subspace of V generated by Λ. Indeed, with the notation of these propositions, we obtain:

BV ,Λ(x) = e−π∥q(x)∥
2
V/Vect(Λ))B

Vect(Λ)/Λ◦,Λ/Λ◦(r ◦ p⊥(x)).

Using Proposition 7.6.7, one easily extends the compatibility of Banaszczyk functions with
direct sum in Proposition 7.4.1 and their monotonicity functions established in Theorem 7.4.12 to
the Banaszcyk functions BV ,Λ associated to general closed subgroups. For instance, we have:

Theorem 7.6.9. For i = 1, 2, let us consider a finite dimensional R-vector space Vi, a Euclidean
norm ∥.∥i, and a closed subgroup Λi of Vi.

If some R-linear map f : V1 → V2 satisfies the conditions:

f(Λ1) ⊆ Λ2 and ∥f(x)∥2 ≤ ∥x∥1 for every x ∈ V1,
then following inequality holds for every x ∈ V1:
(7.6.15) B(V2, ∥.∥2,Λ2; f(x)) ≥ B(V1, ∥.∥1,Λ1;x).

Corollary 7.6.10. For any finite dimensional vector space V and any x ∈ V , the Banaszczyk

function B(V, ∥.∥,Λ;x) is a decreasing function of ∥.∥ in the convex cone
◦
Q(V ) of Euclidean norms

over V , and an increasing function of Λ in the space SG(V ) of closed subgroups of V .

The expression (7.1.13) for the Banaszczyk function BE of a Euclidean lattice in terms of its

dual E
∨
also admits an extension to the Banaszczyk function BV ,Λ attached to an arbitrary closed

subgroup Λ of V . For simplicity, we shall spell it out in the situation when Λ is cocompact in V , or
equivalently when Vect(Λ) = V .

When this holds, the closed subgroup:

Λ⊥ :=
{
ξ ∈ V ∨ | ξ(Λ) ⊆ Z

}
of V is discrete, and the quotient topological group V ∨/Λ⊥ may be identified with the Pontrjagin

dual Λ̂ by the map

V ∨/Λ⊥ ∼−→ Λ̂, [ξ] 7−→
(
λ 7→ e2πi⟨ξ,λ⟩

)
.

Observe also that, when Λ is a lattice in V , Λ⊥ may be identified with the dual of Λ as a
Z-module:

Λ∨ := HomZ(Λ,Z)
by the map:

Λ⊥ ∼−→ Λ∨, ξ 7−→ ξ|Λ.

More generally, any ξ ∈ V ⊥ vanishes on Λ◦, and — still assuming that Vect(Λ) = V — the discrete
group Λ⊥ may be identified with the dual of the Z-module Λ/Λ◦ by means of the map:

(7.6.16) Λ⊥ ∼−→ (Λ/Λ◦)∨, ξ 7−→
(
[λ] 7→ ⟨ξ, λ⟩

)
.

Proposition 7.6.11. Let V := (V, ∥.∥) be a finite dimensional Euclidean vector space, V
∨
:=

(V ∨, ∥.∥∨) its dual, and Λ a closed subgroup of V such that Vect(Λ) = V . Then the following equality
holds for every x ∈ V :

(7.6.17) BV ,Λ(x) =

∑
ξ∈Λ⊥ e−π∥ξ∥

∨2+2πi⟨ξ,x⟩∑
ξ∈Λ⊥ e−π∥ξ∥

∨2 .
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Proof. When Λ is a lattice in V , this is a reformulation of the second equality in (7.1.13). One
reduces to this situation by means of Proposition 7.6.7 and of the identification (7.6.16). □

7.6.2.2. The limit behavior of Banaszczyk functions attached to a decreasing sequence of sub-
groups.

Proposition 7.6.12. Let V := (V, ∥.∥) be a finite dimensional Euclidean vector space, and let
let (Λn)n∈N be a sequence of closed subgroups of V . If the sequence (Λn)n∈N is decreasing and if

Λ :=
⋂
n∈N

Λn

is the closed subgroup of V defined as its intersection, then the following equality holds for every
x ∈ V :

(7.6.18) B(V ,Λ;x) = lim
n→+∞

B(V ,Λn;x).

Proof. Firstly assume that the subgroups Λn are discrete. Then, for every n ∈ N and every
x ∈ V, we have:

BV ,Λn
(x) =

∑
v∈Λn

e−π∥x−v∥
2∑

v∈Λn
e−π∥v∥2 .

The subgroup Λ also is discrete, and

BV ,Λ(x) =

∑
v∈Λ e

−π∥x−v∥2∑
v∈Λ e

−π∥v∥2 .

It is straightforward, that for every x ∈ V , the sequence
(∑

v∈Λn
e−π∥x−v∥

2)
n∈N is decreasing

and satisfies:

lim
n→+∞

∑
v∈Λn

e−π∥x−v∥
2

=
∑
v∈Λ

e−π∥x−v∥
2

;

in particular:

lim
n→+∞

∑
v∈Λn

e−π∥v∥
2

=
∑
v∈Λ

e−π∥v∥
2

.

The relation (7.6.18) immediately follows.

In general, the decreasing sequence (Λ◦
n)n∈N of vector subspaces of V is eventually constant,

and thanks to Proposition 7.6.7, one reduces the proof of Proposition 7.6.12 to the case where the
subgroups Λn are discrete. □

This easy result allows one to derive, by simple formal arguments, the validity for Banasczyk
functions associated to arbitrary pairs (V ,Λ), with Λ a discrete subgroup of V , of various results
concerning Banasczyk functions of Euclidean lattices.

7.6.2.3. The limit behavior of Banaszczyk functions attached to an increasing sequence of sub-
groups.

Proposition 7.6.13. Let (Λn)n∈N be a sequence of closed subgroups of V . If (Λn)n∈N is in-
creasing and if

Λ :=
⋃
n∈N

Λn

is the closed subgroup of V defined as the closure of its subgroup
⋃
n∈N Λn, then, for every x ∈ V,

the following equality holds:

(7.6.19) BV ,Λ(x) = lim
n→+∞

BV ,Λn
(x).
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Proof. The increasing sequence (Vect(Λn))n∈N of vector subspaces of V is eventually constant,
and may therefore be assumed to be constant. Then, using Proposition 7.6.8, one reduces the proof
of Proposition 7.6.13 to the case where Vect(Λn) = V for every n ∈ N. In this case, we also have
Vect(Λ) = V , and according to Proposition 7.6.11, for every x ∈ V and every n ∈ N, the following
equalities hold:

(7.6.20) BV ,Λn
(x) =

∑
ξ∈Λ⊥

n
e−π∥ξ∥

∨2+2πi⟨ξ,x⟩∑
ξ∈Λ⊥

n
e−π∥ξ∥∨2 ,

and

(7.6.21) BV ,Λ(x) =

∑
ξ∈Λ⊥ e−π∥ξ∥

∨2+2πi⟨ξ,x⟩∑
ξ∈Λ⊥ e−π∥ξ∥

∨2 .

Moreover the sequence (Λ⊥
n )n∈N of discrete subgroups of V ∨ is decreasing, and by Pontryagin

duality, it satisfies: ⋂
n∈N

Λ⊥
n = Λ⊥.

This implies the relations:

lim
n→+∞

∑
ξ∈Λ⊥

n

e−π∥ξ∥
∨2+2πi⟨ξ,x⟩ =

∑
ξ∈Λ⊥

e−π∥ξ∥
∨2+2πi⟨ξ,x⟩

and

lim
n→+∞

∑
ξ∈Λ⊥

n

e−π∥ξ∥
∨2

=
∑
ξ∈Λ⊥

e−π∥ξ∥
∨2

,

and finally the equality (7.6.19) according to (7.6.20) and (7.6.21). □

7.6.2.4. Application to the monotonicity of Banaszczyk functions. As indicated in the discussion
following the statement of the monotonicity property of Banaszczyk functions in Theorem 7.4.12,
by relying on Proposition 7.6.13 it is possible to derive the special case of Theorem 7.4.12 when f is
an admissible surjective morphism of Euclidean lattices from its special case when f is a morphism
of Euclidean lattices such that fR is an isometric isomorphism.

Indeed, for every admissible short exact sequence of Euclidean lattices:

E : 0 −→ G
i−→ E

p−→ F −→ 0,

we may perform the following constrcution.

For any positive integer N , we may consider the lattice

EN := N−1i(G) + E

inside the Euclidean vector space (ER, ∥.∥E). It defines a Euclidean lattice EN , whose underlying
R-vector space EN,R coincides with ER.

Moreover we may choose a strictly increasing sequence (Nn)n∈N of positive integers such that
Nn divides Nn+1 for every n ∈ N. Then (EN(n))n∈N is an increasing sequences of discrete subgroups

of ER, and we may apply Proposition 7.6.13 to the Euclidean R-vector space V := ER and to the
sequence of subgroups (Λn) := (EN(n)). Then we have:

Λ :=
⋃
n∈N

EN(n) = iR(GR) + E,

and therefore, according to Proposition 7.6.13,

(7.6.22) lim
n→+∞

B(EN(n);x) = B(ER,Λ;x).
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Moreover, we have :

Λ◦ = iR(GR),

the Euclidean lattice Λ/Λ◦ may be identified with F and the quotient map

r : ER −→ ER/Λ
◦

with the map

pR : ER −→ FR.

Consequently, according to Proposition 7.6.7, for every x ∈ ER, we have:

(7.6.23) B(ER,Λ;x) = B(F ; pR(x).

Moreover the monotonicity of the Banaszczyk functions stated in Theorem 7.4.12, applied to
the morphism of Euclidean lattices E → EN defined by the inclusion of lattices E ↪→ EN (and the
identity morphism of ER,) implies that, for every N ∈ N and every x ∈ ER, the following inequality
holds:

(7.6.24) B(E;x) ≤ B(EN ;x).

Finally the conjunction of (7.6.22), (7.6.23), and (7.6.24) implies the estimate:

B(E;x) ≤ B(F ; pR(x)),

namely the monotonicity of Banaszczyk functions applied to the surjective admissible morphism of
Euclidean lattices p : E → F .

7.6.2.5. Recall that the space SG(V ) of closed subgroups of the topological group (V,+) is
equipped with a natural topology, which makes it a metrizable compact space; see for instance
[Bou63, Chap. VIII, Â§ 5]. Both in Proposition 7.6.12 and in Proposition 7.6.13, the sequence
(Λn)n∈N converges to Λ in this topology, and it is natural to expect that the continuity properties
of BV ,Λ as a function of Λ established in these propositions hold in much greater generality.

For instance, one might expect that the map:

SG(V ) −→ C∞(V,R), Λ 7−→ BV ,Λ

is continuous when C∞(V,R) is equipped with its natural topology of Fréchet space.

As will be discussed in the next section, it is actually possible to extend the definition of BV ,Λ
to the situation where the Euclidean norm ∥.∥ defining the Euclidean vector space V := (V, ∥.∥) is
replaced by a Euclidean seminorm. The regularity properties of BV ,Λ as a function both of ∥.∥ and Λ
seem to be an especially interesting and delicate issue, as already demonstrated by the construction
in Proposition 7.3.7.

7.7. The Banaszczyk function BE and the measure βE∨ associated to an object E of

CohZ

7.7.1. Definitions and first properties of BE.

7.7.1.1. Definition of BE. Let us consider a finitely generated Z-module E, the convex cone

Q(ER) of semipositive quadratic forms on the finite dimensional R-vector space ER and
◦
Q(ER) its

interior, the cone of positive definite quadratic forms on ER. As usual, we shall identify E/tor :=
E/Etor with a discrete cocompact subgroup of ER.

For every x ∈ ER, the function

(7.7.1)
◦
Q(ER) −→ (0, 1], ∥.∥2 7−→ B(ER, ∥.∥, E)

is clearly R-analytic. Moreover, as observed in Corollary 7.6.1, it is decreasing.



298 7. THE THETA INVARIANTS OF HERMITIAN COHERENT SHEAVES OVER AN ARITHMETIC CURVE

Definition 7.7.1. For every Euclidean seminorm ∥.∥ on ER and every x ∈ ER, we let:

(7.7.2) B(ER, ∥.∥, E/tor;x) := sup

{
B(ER, ∥.∥′, E/tor;x); ∥.∥′2 ∈

◦
Q(ER) and ∥.∥′ ≥ ∥.∥

}
∈ (0, 1].

We shall also use the following notation:

(7.7.3) B(E,∥.∥)(x) := B(ER, ∥.∥, E/tor;x).

In this way we attach a Banaszczyk function BE over ER to any object E in CohZ. Clearly this

construction “does not see torsion”; namely, if E/tor = (E/Etor, ∥.∥), then:

BE = BE/tor
.

Observe that, according to Proposition 4.2.1, the function

Q(ER) −→ (0, 1], ∥.∥2 7−→ B(ER, ∥.∥, E),

which extends the function (7.7.1) to the closed cone Q(ER) satisfies the following condition of
downward continuity: for any decreasing sequence (∥.∥n)n∈N of Euclidean seminorms on ER, of
limit ∥.∥, and any x ∈ R, the following equality holds:

(7.7.4) lim
n→+∞

B(E,∥.∥n)(x) = B(E,∥.∥)(x).

7.7.1.2. Properties of BE. Using the definition (7.7.1) of BE and the downward continuity prop-
erty (7.7.4), various properties of the Banaszczyk functions of Euclidean lattices immediately extend
to the Banaszczyk functions of arbitrary Euclidean coherent sheaves. Notably from (7.4.7), (7.1.22),
and Theorem 7.4.12, we deduce:

Proposition 7.7.2. For every object E := (E, ∥.∥) of CohZ, we have:

(7.7.5) e−π∥x∥
2

≤ BE(x) ≤ 1 for every x ∈ ER,

and

(7.7.6) h1θ(E) = − log

∫
ER/E/tor

BE(x) dλER/Z(x).

Moreover, for every morphism f : E → F in Coh
≤1

Z and every x ∈ ER, the following inequality
holds:

(7.7.7) BF (fR(x)) ≥ BE(x).

In (7.7.6), we denote by λER/Z the normalized Haar measure on the compact torus ER/E/tor ≃
E ⊗ R/Z.

As before, we may introduce the function

bE := π−1 logB−1

E
,

and (7.7.7) may also be written as:

(7.7.8) bF (fR(x)) ≤ bE(x).
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7.7.2. The measure βE∨ . Compatibility with vectorization. Let E := (E, ∥.∥) be an

object of CohZ.

In paragraph 2.3.1, we have introduced its “vectorization”:

νE : E −→ E
vect

.

It is an admissible surjective morphism in Coh
≤1

Z whose range E
vect

:= (Evect, ∥.∥
E

vect) is a Eu-

clidean lattice. Heuristically E
vect

is “the best possible approximation of E among Euclidean lat-
tices.” To νE is associated the underlying R-linear map:

νE,R : ER −→ Evect
R

and its transpose:

ν∨
E,R∗ : Evect∨

R −→ E∨
R .

Recall also that the object E of CohZ admits a dual object E
∨
:= (E∨, ∥.∥∨) in Vect

[∞]

Z , defined
by the free Z-module E∨ := HomZ(E,Z) and the definite Euclidean quasinorm ∥.∥∨ =: ∥.∥E∨ on
E∨

R dual to the Euclidean seminorm ∥.∥ on ER.

According to the description of vectorization in terms of duality in Corollary 2.3.3, the map ν∨
E,R∗

is an isometry from the Euclidean vector space (Evect∨
R , ∥.∥

E
vect∨) into (E∨

R , ∥.∥∨). In particular, ν∨
E,R

is injective and its image is contained in:

E∨
R,f := {ξ ∈ E∨

R | ∥ξ∥∨ < +∞} .

Moreover it establishes a bijection:

(7.7.9) ν∨
E
: Evect∨ ∼−→ E∨ ∩ E∨

R,f .

The definition (7.1.5) of the measure γE∨ still makes sense in the present situation:

γE∨ := e−π∥.∥
∨2

δE∨ =
∑
ξ∈E∨

e−π∥ξ∥
∨2

δξ,

where, as before:

e−π∥ξ∥
∨2

:= 0 if ∥ξ∥∨ = +∞.

Using the isometric bijection (7.7.9), we also have:

γE∨ =
∑

ξ∈E∨∩E∨
R,f

e−π∥ξ∥
∨2

δξ =
∑

ξ∈E∨∩E∨
R,f

e−π∥ξ∥
∨2

δν∨
E
(ξ′).

This establishes the equality of measures on E∨
R supported by E∨ ∩ E∨

R,f :

(7.7.10) γE∨ = ν∨
E∗γEvect∨ .

In particular, the measures γE∨ and γ
E

vect∨ have the same total mass in [1,+∞)) and as already

observed in 7.3.2.3, we recover the invariance of h1θ under vectorization:
(7.7.11)

eh
1
θ(E) =

∑
ξ∈E∨∩E∨

R,f

e−π∥ξ∥
∨2

= γE∨(E∨
R ) = γ

E
vect∨(E∨

R ) =
∑

ξ∈E∨∩E∨
R,f

e−π∥ξ∥
∨2

= eh
1
θ(E

vect∨
).

Finally we define the Banaszczyk measure βE∨ by means of formula (7.1.12), namely as the
probability measure:

βE∨ := γE∨(E∨
R )

−1 γE∨ .
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Proposition 7.7.3. Let E := (E, ∥.∥) be an object of CohZ.

(1) If (∥.∥n)n∈N is a decreasing sequence of Euclidean seminorms on ER converging pointwise
to ∥.∥, then the sequence of probability measures (βE∨

n
)n∈N in M1

+(E
∨
R ) associated to the Euclidean

coherent sheaves En := (E, ∥.∥n) converges to βE∨ in the topology of narrow convergence.

Moreover the following equality of probability measures on E∨
R is satisfied:

(7.7.12) βE∨ = ν∨
E,R∗βEvect∨ .

(2) The following equality of functions on ER is satisfied:

(7.7.13) BE = F−1
ER

(βE∨).

Moreover, for every x ∈ ER, the following equality holds:

(7.7.14) BE(x) = B
E

vect(νE(x)).

Proof. (1) If (∥.∥n)n∈N is a decreasing sequence of Euclidean seminorms on ER converging
pointwise to ∥.∥, then the sequence (∥.∥∨n)n∈N of dual quasinorms on E∨

R is increasing and converges
pointwise to ∥.∥∨. This immediately implies the convergence, in the topology of narrow convergence,
of the sequence of measures (γE∨

n
)n∈N to γE∨ , and therefore of (βE∨

n
)n∈N to βE∨ .

The relation (7.7.12) is a straightforward consequence of (7.7.10) and of the definitions of βE∨

and β
E

vect∨ .

(2) We may choose a a decreasing sequence of Euclidean norms on ER converging pointwise to
∥.∥ that converges pointwise to ∥.∥. Then, as a special instance of (7.7.4), we have, for every x ∈ ER:

(7.7.15) lim
n→+∞

BEn
(x) = BE(x).

Moreover, according to Corollary 7.1.4 applied to the Euclidean lattice En/tor, we have:

(7.7.16) BEn
(x) = F−1(βE∨

n
)(x).

Finally the convergence of of (βE∨
n
)n∈N to βE∨ implies the equality:

(7.7.17) lim
n→+∞

F−1(βE∨
n
)(x) = F−1(βE∨)(x).

The relations (7.7.15)-(7.7.17) imply the equality:

BE(x) = F
−1
ER

(βE∨)(x).

This establishes (7.7.13).

The equality (7.7.14) follows from (7.7.12) and from the relations:

BE = F−1
ER

(βE∨) and B
E

vect = F−1
ER

(β
E

vect∨). □

According to (7.7.13) and to the definitions of γE∨ and βE∨ , BE(x) admits the following ex-
pression, for every x in ER:

(7.7.18) BE(x) = e−h
1
θ(E)

∑
ξ∈E∨∩E∨

R,f

e−π∥ξ∥
2

E∨+2πiξ(x) = e−h
1
θ(E)

∑
ξ∈E∨∩E∨

R,f

e−π∥ξ∥
2

E∨ cos(2πξ(x)).

Using that, when E is a Euclidean lattice, the Banaszczyk function BE is real analytic on ER
and takes the value 1 precisely over E, together with the description of ν−1

E,R(E
vect) in Corollary

2.3.7, we immediately derive from the equality (7.7.14).

Corollary 7.7.4. The function BE is real analytic of ER. Moreover, for every x ∈ ER, the

equality BE(x) = 1 holds if and only if x belongs to E/tor +K, the closure in ER of the sum of the

lattice E/tor and the vector subspace K := ∥.∥−1(0).
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7.8. A Lower Bound on BE and the Inverse Monotonicity of BE and βE∨

In this subsection we some additional estimates concerning the functions BE and the measures
βE∨ . Notably we show that the uniform norm of the Banaszczyk function bE is comparable with

the theta invariant h1θ(E), provided h1θ(E) is small enough. We also show that, besides the ba-
sic monotonicity estimate (7.7.7), the Banaszcyk functions BE satisfy estimates in the opposite
direction.

7.8.1. A lower bound on BE. The following lower bound on the Banaszczyk function BE
already appears in Banaszczyk’s seminal paper [Ban93], at least when E is a Euclidean lattice.

Proposition 7.8.1. Let E be an object of CohZ. For every x in ER, we have:

1 +BE(x) = e−h
1
θ(E)

∑
ξ∈E∨∩E∨

R,f

e−π∥ξ∥
2

E∨ (1 + cos(2π⟨ξ, x⟩))

= 2e−h
1
θ(E)

∑
ξ∈E∨∩E∨

R,f

e−π∥ξ∥
2

E∨ cos2(π⟨ξ, x⟩)).
(7.8.1)

Consequently:

(7.8.2) BE(x) ≥ 2e−h
1
θ(E) − 1.

Proof. The formulae (7.8.1) immediately follow from the expressions (7.7.11) and (7.7.18) for

eh
1
θ(E) and BE(x). The inequality (7.8.2) immediately follows. □

The inequality (7.8.2) is non-trivial only when its right-hand side is positive, namely when:

(7.8.3) h1θ(E) < log 2.

When (7.8.3) holds, the estimate (7.8.2) may be rephrased as follows:

(7.8.4) sup
x∈ER

bE(x) ≤ π
−1 log(2e−h

1
θ(E) − 1)−1.

7.8.2. The function κ(x) := π−1 log(2e−x−1)−1. When dealing with estimates such as (7.8.4),
it is convenient to introduce the function:

κ : [0, log 2) −→ R+, x 7−→ π−1 log(2e−x − 1)−1

It satisfies κ(0) = 0, and defines an increasing convex R-analytic diffeomorphism. Moreover, when
x goes to 0:

π−1 log(2e−x − 1)−1 =
2

π
x+O(x2).

The convexity of κ implies the following upper bound:

(7.8.5) x ∈ [0, 1/2] =⇒ κ(x) ≤ 2xκ(1/2) ≤ x.
Indeed we have:

2πκ(1/2) = 2 log(2e−1/2 − 1)−1 = 3.092... ≤ π.
It will also be convenient to let:

κ(x) := +∞ if x ∈ [log 2,+∞).

Then the inequality (7.8.4) may be reformulated as:

sup
x∈ER

bE(x) ≤ κ(h
1
θ(E)),

and implies:

(7.8.6) sup
x∈ER

bE(x) ≤ h
1
θ(E) if h1θ(E) ≤ 1/2.
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This upper bound on supx∈ER
bE(x) should be compared with the following consequence of the

expression (7.7.6) for the average value of BE :

inf
x∈ER

BE(x) ≤ e
−h1

θ(E),

which may be rephrased as the following lower bound on supx∈ER
bE(x):

sup
x∈ER

bE(x) ≥ π
−1h1θ(E).

For later reference, we gather these estimates on the supremum of the function bE in the following
scholium:

Scholium 7.8.2. For every object E of CohZ, the following estimates hold:

(7.8.7) π−1h1θ(E) ≤ sup
x∈ER

bE(x) ≤ κ(h
1
θ(E)).

7.8.3. Inverse monotonicity of BE.

Proposition 7.8.3. Let f : E → F be a morphism in Coh
≤1

Z . The following inequality between
positive measures on E∨

R is satisfied:

(7.8.8) f∨R∗γF∨ ≤ eh
1
θ(F/f(E)) γE∨ ,

or equivalently:

(7.8.9) f∨R∗βF∨ ≤ eh
1
θ(F/f(E))+h1

θ(E)−h1
θ(F ) βE∨ .

Moreover, for every x ∈ ER, the following inequality holds:

(7.8.10) 1 +BF (fR(x)) ≤ e
h1
θ(F/f(E))+h1

θ(E)−h1
θ(F ) (1 +BE(x)).

As usual, we have denoted by fR : ER → FR the R-linear map induced by f : E → F , and by
f∨R : E∨

R → F∨
R its transpose.

Proof. (1) A straightforward approximation argument show that, to establish (7.8.8), we may
assume that the Euclidean seminorms ∥.∥E and ∥.∥F defining E and F are actually Euclidean norms.

Then E
∨
and F

∨
are Euclidean lattices, the transpose f∨ of f defines a morphism

f∨ : E
∨ −→ F

∨

in Vect
≤1

Z , and the measures γE∨ and γF∨ satisfy:

γE∨ :=
∑
ξ∈E∨

e−π∥ξ∥
2

E∨ δξ and γF∨ :=
∑
η∈F∨

e−π∥η∥
2

F∨ δη.

Consequently we have:

f∨R∗γF∨ =
∑
η∈F∨

e−π∥η∥
2

F∨ δf∨(η),

and the inequality of measures (7.8.8) is equivalent to the validity of the following estimate for every
ξ ∈ E∨:

(7.8.11)
∑

η∈f∨−1(ξ)

e−π∥η∥
2

F∨ ≤ eh
1
θ(F/f(E)) e−π∥ξ∥

2

E∨ ;

here f∨−1(ξ) denotes the preimage of ξ by the Z-linear map f∨ : F∨ → E∨.

To prove (7.8.11), we may and shall assume that ξ belongs to f∨(F∨), and choose η0 ∈ F∨

such that ξ = f∨(η0). We may also consider the orthogonal projection η⊥ of η0 onto the orthogonal
(ker f∨R )

⊥ of ker f∨R in the Euclidean vector space (F∨
R , ∥.∥F∨). This orthogonal projection η⊥ is the

element of smallest norm ∥η⊥∥F∨ in f∨−1
R (ξ).
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We have a bijection:
ker f∨

∼−→ f∨−1(ξ), ε 7−→ ε+ η0,

and if we introduce the element
δ := η⊥ − η0 ∈ ker f∨R ,

then, for every ε ∈ ker f∨, the following equality holds:

∥ε+ η0∥2F∨ = ∥ε− δ + η⊥∥2
F

∨ = ∥ε− δ∥2
F

∨ + ∥η⊥∥2
F

∨ .

Moreover:
∥η⊥∥2

F
∨ ≥ ∥f∨R (η⊥)∥2E∨ = ∥ξ∥2

E
∨ .

Consequently the following inequality holds:

(7.8.12)
∑

η∈f∨−1(ξ)

e−π∥η∥
2

F∨ ≤ e−π∥ξ∥
2

E∨
∑

ε∈ker f∨

e−π∥ε−δ∥
2

F∨ .

Moreover, according to the inequality (7.1.14) applied to ker f∨ and δ in the role of E and x,
we have:

(7.8.13)
∑

ε∈ker f∨

e−π∥ε−δ∥
2

F∨ ≤
∑

ε∈ker f∨

e−π∥ε∥
2

F∨ =: eh
0
θ(ker f

∨).

From (7.8.12) and (7.8.13), we derive the inequality:∑
η∈f∨−1(ξ)

e−π∥η∥
2

F∨ ≤ eh
0
θ(ker f

∨) e−π∥ξ∥
2

E∨ .

To complete the proof of (7.8.11), simply observe that F/f(E)
∨
is canonically isomorphic to ker f∨,

and therefore:
h1θ(F/f(E)) = h0θ(ker f

∨).

(2) For any x ∈ ER, we may consider the non-negative function:

E∨
R −→ R, ξ 7−→ 2 cos2(π⟨ξ, x⟩).

According to Proposition 7.8.1, its integral against the measure γE∨ is:

(7.8.14) 2

∫
ER

cos2(π⟨ξ, x⟩) dγE∨(ξ) = eh
1
θ(E) (1 +BE(x)).

Similarly, according to Proposition 7.8.1 applied to F , its integral against the measure f∨R∗γF∨ is:

(7.8.15) 2

∫
ER

cos2(π⟨ξ, x⟩) f∨R∗ dγF∨(ξ) = 2

∫
FR

cos2(π⟨f∨R (η), x⟩) dγF∨(η)

= 2

∫
FR

cos2(π⟨η), fR(x)⟩) dγF∨(η) = eh
1
θ(F ) (1 +BF (fR(x))).

The estimate (7.8.10) therefore follows from the inequality of measures (7.8.8). □

When f = 0, the inequality (7.8.10) becomes the lower bound (7.8.2) on BE . More generally,
from (7.8.10) we may derive the following lower bound on BE :

Corollary 7.8.4. Let E := (E, ∥.∥) be an object of CohZ and let E′ be a Z-submodule of E.
For every x′ ∈ E′

R, the following inequality holds:

(7.8.16) BE(x
′) ≥ 2e−h

1
θ(E)+h1

θ(E/E
′) − 1.

Proof. This follows from Proposition 7.8.3 applied to the quotient morphism f from E to
F := E/E′, and to x in E′

R := ker fR. Indeed, with this choice of f and x, we have:

F/f(E) = 0 and BF (fR(x)) = BF (0) = 1. □
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Corollary 7.8.5. For every admissible short exact sequence in CohZ:

(7.8.17) 0 −→ G
i−→ E

p−→ F −→ 0,

the following inequality between positive measures on E∨
R is satisfied:

(7.8.18) p∨R∗βF∨ ≤ eh
1
θ(G) βE∨ ,

and for every x ∈ ER, the following inequality holds:

(7.8.19) 1 +BF (pR(x)) ≤ e
h1
θ(G) (1 +BE(x)).

Proof. This follows from Proposition 7.8.3 applied to f = p, which implies the vanishing of
F/f(E), from the relations:

βE∨ = e−h
1
θ(E) and βF∨ = e−h

1
θ(F ),

and from the subadditivity of h1θ, which implies the inequality:

h1θ(E)− h1θ(F ) ≤ h1θ(G). □

7.8.4. Formulation in terms of θ1-ranks. In Corollary 7.8.4, if we denote by i : E′ → E
the inclusion morphism, then we may consider its θ1-rank, as defined in Sections 5.1 and 7.5:

rk1θ(i : E
′ → E) := rk1h1

θ
(i : E′ → E) := h1θ(E)− h1θ(E/E′),

and the lower bound (7.8.16) may equivalently be stated as follows:

(7.8.20) BE(x
′) ≥ 2e−rk1

θ(i:E
′→E) − 1,

or equivalently:

(7.8.21) bE(x
′) ≤ κ(rk1θ(i : E′ → E)).

In the same vein, in Proposition 7.8.3, if we introduce the θ1-rank of f :

rk1θ(f : E → F ) := h1θ(F )− h1θ(F/f(E)),

then the inequality (7.8.10) may be reformulated as follows:

(7.8.22) erk
1
θ(f :E→F ) (1 +BF (fR(x))) ≤ e

h1
θ(E) (1 +BE(x)).



CHAPTER 8

The Theta Invariants of Hermitian Quasi-coherent Sheaves
over an Arithmetic Curve

We denote by K a number field, by OK its ring of integers, and by X the arithmetic curve
SpecOK .

8.0.1. In this chapter, we develop a theory of theta invariants attached to objects in qCohX .

To every object F in qCohX , we may attach an invariant h0θ(F) in [0,+∞] by a straightforward

extension of the definition of the invariant h0θ(F) attached to objects in VectX and in CohX .

Extending to qCohX the invariant h1θ, previously defined on CohX with values in R+, requires
more care and relies on the general machinery developed in Chapters 4 and 5.

Firstly, using the monotonicity and subadditivity of h1θ, the constructions of Chapter 4 provides

two natural extensions of h1θ to the category qCohX with values in [0,+∞], namely the lower

extension h1θ and the upper extension h
1

θ, which satisfy the inequality

h1θ(F) ≤ h
1

θ(F)

for every object F in qCohX .

In Chapter 7, we have shown that the invariant h1θ is not only monotonic and subadditive on

CohX , but is also strongly monotonic, as a consequence of the works of Banaszczyk and of Regev
and Stephens-Davidowitz on Euclidean lattices. This implies that the full strength of the results in

Chapter 5 applies to h1θ and h
1

θ.

In this way, the axiomatic approach of Chapters 4 and 5, together with the “advanced theory” of
the invariant h1θ on CohX developed in Chapter 7, allows us to define a full subcategory θ1Σ-qCohX
of θ1-summable objects in qCohX , on which the invariant h

1

θ takes finite values and satisfy suitable
properties of strong monotonicity and of compatiblity with exhaustive filtrations. In particular,

there is a good notion of θ1-rank associated to morphisms in θ1Σ-qCoh
≤1

X .

At this stage, it is natural to consider the objects F that satisfy the condition:

(8.0.1) h1θ(F) = h
1

θ(F) < +∞.

When this holds, we shall say that F admits a well-defined and finite invariant h1θ(F).
Indeed the results of Chapter 3, concerning the invariant h1(C,F) attached to a quasi-coherent

sheaf over a smooth projective curve F , and the properties of the elementary invariants attached to
objects of qCohZ in Chapter 6, indicate that, when an object F in qCohX satisfies (8.0.1), then
the “right definition” of the invariant h1θ attached to F has to be:

(8.0.2) h1θ(F) := h1θ(F) = h
1

θ(F).

It is actually possible to complete our earlier results concerning the invariants h1θ, h
1

θ, and the
category θ1Σ-qCohX by a complete description of the objects F in qCohX satisfying condition

(8.0.1). Indeed we shall prove that (8.0.1) holds precisely when F is θ1-summable and furthermore
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satisfies an additional “tameness condition” concerning the Banaszcyzk measure βπ∗F
∨ that is asso-

ciated to the object π∗F in qCohZ by extending to the infinite dimensional setting the construction
in Chapter 7 of the Banaszczyk measure βE∨ associated to an object E of CohZ.

We shall also prove that if for some ε ∈ R∗
+, the object F ⊗ O(−ε) is θ1-summable, then F

satisfies (8.0.1). In particular its invariant h
1

θ(F) may be defined by (8.0.2). This implies that, for
every object F in qCohX , the following conditions are equivalent:

(i) for every δ in R, F ⊗O(−δ) is θ1-summable;

(ii) for every δ in R, F ⊗O(−δ) has a well-defined and finite invariant h1θ(F ⊗O(−δ)).
The objects of qCohX satisfying these conditions will be called θ1-finite. Condition (i) is indeed

the special instance when φ = h1θ of the condition of φ-finiteness defined in Subsection 5.6.2 by the
equivalent conditions in Proposition 5.6.4. When φ = h1θ, these conditions turn out to be equivalent
to the very natural condition (ii).

An object F of qCohX is θ1-finite if and only if the object π∗F := (F , ∥.∥) of qCohZ is θ1-
finite. In turn this holds precisely, when for every Euclidean seminorm ∥.∥′ on FR such that ∥.∥′/∥.∥
is bounded, the object (F , ∥.∥′) of qCohZ has a well-defined and finite invariant h1θ(F , ∥.∥′).

The θ1-finite objects in qCohX are the arithmetic counterparts of the h
1
-finite quasi-coherent

sheaves of countable type over a projective curve C considered in Section 3.5. They turn out to
be the objects of interest in the applications of the invariant h1θ and of its finiteness properties to
Diophantine geometry.

8.0.2. Let us describe the content of this chapter in more details.

In Section 8.1, we discuss the definition and the properties of the invariant h0θ on qCohX . In
striking contrast with the invariant h1θ investigated in the sequel, these are straightforward exten-

sions of the results concerning h0θ on CohX discussed in Section 7.2. We also show that every objects

of qCohX such that h0θ(F) is finite is the direct sum of a torsion coherent OX -module (or equiva-

lently of a finite OK-module) and of an object of the subcategory1 indVectX already investigated
in [Bos20b].

In Section 8.2, we spell out the main results of Chapters 4 and 5 concerning the extensions
φ and φ to qCohX of suitable invariants φ on CohX when specialized to φ = h1θ. This section
should be readable with a limited knowledge of the content of Chapters 4 and 5. Their summary
in Section 5.7, together with the content of Subsection 5.6.2 on φ-finiteness, should constitute a
sufficient background. Some of the results of Section 8.2 already appear in dual form in [Bos20b,
Chapters 6 and 7]. However the theory in loc. cit. deals with objects of indVectX only, and
was developed without recourse to the strong monotonicity of h1θ. For these reasons, our results in
Section 8.2 are considerably more general than the ones in loc. cit..2

Section 8.3 contains the most important technical results in this chapter. In this section, we
extend to Euclidean quasi-coherent sheaves — that is, to objects in qCohZ — the constructions of
the Banaszczyk function BE and of the Banaszczyk measure βE∨ developed in Section 7.7 when E

is an object of CohZ. It is striking that BE and βE∨ make sense when E is replaced by an arbitrary

Euclidean quasi-coherent sheaf F := (F, ∥.∥) in qCohZ.

The measure βF∨ is defined as a probability measure on the Fréchet space

F∨
R := HomZ(F,R) ≃ HomR(FR,R).

1Recall that an objects F := (F , (∥.∥x)x∈X(C)) of qCohX belongs to indVectX when the countably generated

OK -module F(X)
2For instance Theorem 8.2.3 (1), even restricted to suitable objects of indVectX , is out of reach by the methods

of [Bos20b].
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We establish various criteria that ensure that the measure βF∨ is actually supported by the Hilbert

space F∨Hilb
R of continuous R-linear forms on (FR, ∥.∥). Our proofs rely on various classical facts

concerning Borel probability measures on certain infinite dimensional locally convex spaces, due
notably to Bochner, Prokhorov, Sazonov, and Minlos. These are discussed with some details, in a
formulation appropriate to their use in this chapter, in Appendix C.

In Section 8.4, the results concerning the measures βF∨ established in Section 8.3 are used to
investigate when condition (8.0.1) is satisfied. Here again the results of this chapter considerably
extend the related results concerning objects in indVectX established in a dual form in [Bos20b,
Chapter 7].3 The central role of the property for the measure βF∨ to be supported by the Hilbert

space F∨Hilb
R in the characterization of the objects F of qCohZ admitting a well-defined and finite

invariant h1θ is an essential feature of the more efficient approach in this chapter.4

Section 8.5 is devoted to a discussion of the θ1-finite objects in qCohX . Basically it gathers
various facts that have been previously established, and does not establish any actual new result.
However the definition and the properties of the category θ1f -qCohX of θ1-finite objects in qCohZ
will play an important role in applications to Diophantine geometry.

The final section 8.6 discusses an intriguing side issue: the existence of objects F in qCohX
such that both h0θ(F) and h1θ(F) are finite, and the underlying OX -module F is not coherent.

8.1. The Invariant h0θ of Hermitian Quasi-coherent OX-Modules

8.1.1. Definitions of h0θ(F). Let F = (F , (||.||x)x∈X(C)) be an object in the category qCohX
of Hermitian quasi-coherent OK-module.

We shall denote by coh(F) the set of coherent OX -submodules C of F , or equivalently, the set
of finitely generated OK-submodules C(X) of F(X).

For any C in coh(F), we may consider the semi-normed Hermitian coherent sheaf C, defined as
C equipped with the restrictions of the Hermitian semi-norms (||.||x)x∈X(C). As discussed in 7.3.2
above, it admits a well-defined theta invariant:

(8.1.1) h0θ(C) :== log
∑
s∈C

e
−π||s||2

π∗C(X) ∈ [0,+∞].

The function

coh(F) −→ [0,+∞], C 7−→ h0θ(C)
is clearly nondecreasing over coh(F) ordered by inclusion, and we may define h0θ(F) as its supremum:

(8.1.2) h0θ(F) = sup
C∈coh(F)

h0θ(C) ∈ [0,+∞].

The partially ordered set (coh(F),⊆) is directed, and this supremum may also be written as the
limit:

(8.1.3) h0θ(F) = lim
C∈coh(F)

h0θ(C) ∈ [0,+∞].

3For instance the existence and the properties of the measure βF∨ — established for a general object in qCohZ
by relying on the properties of the Banaszczyk functions BE that constitute the main result in Chapter 7 — appear

(implicitly) in loc. cit. only when F belongs to indVectZ and is θ1-summable, and its construction a priori depends

on the choice of some θ1-summable filtration of F by saturated finitely generated submodules. Even when F := (F, ∥.∥)

admits a free underlying Z-module F , the equivalence of (i) and (iv) in Theorem 8.4.7 is established in [Bos20b,
Chapter 7] only when the seminorm ∥.∥ is a norm. An extension of the reasoning in [Bos20b, Chapter 7], where the

norms ∥.∥i are replaced by definite quasi-norms, would be required to achieve this with the techniques of [Bos20b].
4Our new approach allows us also to avoid the recourse to the “convexity trick” that plays a key role in the

proofs of [Bos20b, Chapter 7] (see notably [Bos20b, Corollary 7.3.3 and Section 7.5].
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Observe that any finite subset of F(X) is contained in C(X) for some C ∈ coh(F). This
immediately implies that h0θ(F) may be defined as the logarithm of a theta series, defined by a

straightforward extension of the formula (8.1.1) defining h0θ(C) when C is coherent. Namely, we
have:

(8.1.4) h0θ(F) = log
∑

s∈F(X)

e
−π||s||2

π∗F .

This definition of h0θ(F) extends the one in [Bos20b, 6.1], where it is introduced when F is an

object of indVectX , namely when the countably generated OK-module F(X) is projective and the
Hermitian semi-norms (||.||x)x∈X(C) are Hermitian norms.

Finally observe that, for every object F in qCohX , we may consider its direct image π∗F in
qCohZ and that the following equality holds in [0,+∞]:

h0θ(π∗F) = h0θ(F).

8.1.2. The objects F in qCohX such that h0θ(F) < +∞. The additional generality brought

forth by the definition of h0θ(F) for arbitrary objects F in qCohX turns out to be limited when
compared to its definition in [Bos20b, 6.1], as shown by the next proposition.

If F = (F , (||.||x)x∈X(C)) is an object in qCohX , we denote by F/torthe object of qCohX
defined by the OK-module

F/tor(X) := F(X)/F(X)tor

and the Hermitian norms (||.||x)x∈X(C).

Proposition 8.1.1. For every object F in qCohX , the following equality holds in [0,+∞]:

(8.1.5) h0θ(F) = log |F(X)tor|+ h0θ(F/tor).

Moreover if F satisfies the condition:

(8.1.6) h0θ(F) < +∞,
then the torsion OK-module F(X)tor is finite, the quotient OK-module F/tor(X) = F(X)/F(X)tor
is projective, and the Hermitian semi-norms (||.||x)x∈X(C) are Hermitian norms.

In other words, when h0θ(F) is finite, F is the direct sum of a torsion coherent OX -module and

of an object in indVectX .

Proof. The expression (8.1.4) for h0θ(F) implies the validity of (8.1.5). In turn (8.1.5) implies

that, when (8.1.6) holds, then F(X)tor is a finite OK-module and h0θ(F/Ftor) is finite.

We are thus reduced to proving that, when F(X)tor = 0 and h0θ(F) is finite, then the following
holds:

(a) the seminorms (||.||x)x∈X(C) are norms;
(b) the countably generated OK-module F(X) is projective.

Observe that the finiteness of h0θ(F) implies the finiteness of h0θ(C) for any C in coh(F), and
therefore, by Proposition 7.3.3, (i), that for any x ∈ X(C)), the seminorm ||.||x restricted to Cx is a
norm. Since

Fx =
⋃

C∈coh(F)

Cx,

this implies (a).

Finally, formula (8.1.4) shows that, when h0θ(F) is finite, the image of F(X) in (FR, ||.||π∗F ) has
finite intersection with any bounded subset of the pre-Hilbert space (FR, ||.||π∗F ), and a fortiori is
a discrete subgroup of this pre-Hilbert space. A fortiori, the image of F(X) in FR endowed with its
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inductive topology (see 1.4.1 above) is discrete, so that F(X) is a projective Z-module by Corollary
1.4.3. (This is also a consequence of [Bos20b, Corollary 5.8.3].) According to Proposition 1.3.2,
this implies that F(X) is a projective OK-module and completes the proof of (b). □

The following proposition is a simple consequence of the expression (8.1.4) for h0θ on qCohX ,
and the details of its proof will be left to the reader.

Proposition 8.1.2. Let F be an element of qCohX such that

h0θ(F) < +∞.
For every ε ∈ R−, we have:

h0θ(F ⊗O(ε)) < +∞.
Moreover the function

R− −→ R+, ε 7−→ h0θ(F ⊗O(ε))
is continuous, increasing, and satisfies:

lim
ε→−∞

h0θ(F ⊗O(ε)) = 0.

Finally the decreasing continuous function

[1,+∞) −→ R+, t 7−→ h0θ(F ⊗O(−(1/2) log t))
is convex.

8.1.3. Monotonicity and Subadditivity Properties of h0θ on qCohX . The basic property
of the invariant

h0θ : CohX −→ R+

stated in Theorem 7.2.3 and its strong monotonicity property StMon0 established in Theorems
7.5.4 and 7.5.5 easily extends to the invariant:

h0θ : qCohX −→ [0,+∞].

In particular h0θ satisfies the following countable additivity property, as a straightforward con-

sequence of the expression (8.1.4) for h0θ on qCohX :

Theorem 8.1.3. For every countable family (F i)i∈I of objects in qCohX , the following equality
holds in [0,+∞]:

(8.1.7) h0θ(
⊕
i∈I
F i) =

∑
i∈I

h0θ(F i).

It also satisfies the following strong monotonicity properties.

Theorem 8.1.4. Let f : F → G be a morphism in qCoh
≤1

X .

(1) If the morphism of OX-module f : F → G is injective, then:

(8.1.8) h0θ(F) ≤ h0θ(G).

(2) For every quasi-coherent OC-submodule G′ of G, of inverse image F ′ := f−1(G′) in F , the
following inequality holds:

(8.1.9) h0θ(F) + h0θ(G′) ≤ h0θ(F ′) + h0θ(G).

Indeed, starting from the validity of these properties when f is a morphism in Coh
≤1

X , one may

extend it first to morphisms in Coh
≤1

X , by writing the Hermitian seminorms defining objects in

Coh
≤1

X as limits of decreasing sequences of Hermitian norms, and then to arbitrary morphisms in

qCoh
≤1

X , by using the definitions (8.1.2) and (8.1.3) of the invariant h0θ on objects of qCohX .
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The easy details are left to the reader, as well as the formulation of the analogue of Corollary
7.5.6 in the present framework. Let us only indicate that as a special instance of Theorem 8.1.4 (2),
one derives the subadditivity of h0θ on qCohX . Namely for every object F in qCohX and every
quasi-coherent OC-submodule F ′, the following inequality holds:

(8.1.10) h0θ(F) ≤ h0θ(F
′
) + h0θ(F/F ′).

8.1.4. θ0-finite objects in qCohX .

Definition 8.1.5. We shall say that an object F of qCohX is θ0-finite when the condition

(8.1.11) h0θ(F ⊗O(δ)) < +∞

is satisfied for every δ in R, or equivalently by Proposition 8.1.2, when (8.1.11) holds for every δ in
a subset D of R such that supD = +∞.

The terminology “θ0-finite” reflects that, as shown by the expression (8.1.4) for h0θ, an object F
of qCohX is θ0-finite precisely when the theta series:

θπ∗F (t) :=
∑

s∈F(X)

e
−πt||s||2

π∗F

has a finite sum for every t ∈ R∗
+.

An object F of qCohX is θ0-finite precisely when its directs image π∗F in qCohZ is θ0-finite.
Proposition 8.1.2 shows that this holds if and only if it is the direct sum of a finite OK-module and
of a θ0-finite object of indVectX .

Moreover the estimates (8.1.8) and (8.1.10) show that the full subcategory θ0f -qCoh
≤1

X of

qCoh
≤1

X defined by the θ0-finite objects is stable under subobjects and under extensions, in a
sense we leave the reader to formulate precisely.

8.2. The Invariants h1θ and h
1

θ, and the θ1-Summable Quasi-coherent OX-Modules

In Chapter 7, we have shown that the invariant:

h1θ : CohX −→ R+

satisfies the strong monotonicity condition StMon1 (and notably conditions Mon1 adn SubAdd),
the downward continuity condition Cont+, and the additivity condition Add⊕ introduced in Chap-
ters 4 and 5. Moreover the invariant h1θ is small on Hermitian coherent sheaves generated by small
sections, in the sense of Definition 4.2.11, and in particular, it satisfies condition VT.

We may therefore apply to φ := h1θ the results of Chapters 4 and 5 as they are summarized in
Section 5.7. In the Subsections 8.2.1–8.2.4, we recapitulate these results in a form that makes them
accessible without familiarity with the content of these chapters; we refer the reader to Section 5.7
for precise references to their proofs in Chapters 4 and 5. Instead of h1θ-summable, we will use the
terminology θ1-summable.

In Subsection 8.2.5, we discuss the compatibility properties of the invariant h1θ and of the previous

constructions with the operation of tensoring by a fixed object in CohX . This discussion would
actually be valid in the more general context of Chapter 4, and has not been included there to limit
formal developments.

Finally in Subsection 8.2.6, we spell out the compatibility properties presented in Section 4.6 of
the invariants attached to φ := h1θ with the direct image functor:

π∗ : qCohX −→ qCohZ.



8.2. h1
θ, h

1
θ AND θ1-SUMMABLE HERMITIAN QUASI-COHERENT SHEAVES 311

8.2.1. The invariant h
1

θ. To the invariant h1θ on CohX , we may associate its upper extension,

h
1

θ : qCohX −→ [0,+∞]

defined by:

h
1

θ(F) := lim inf
C∈coh(F)

φ(C)

for every object F of qCohX , where the inferior limit is taken over the directed set (coh(F),⊆) of
coherent OX -submodules of F , or equivalently of finitely generated OK-submodules of F(X).

The invariant h
1

θ extends h1θ — namely, for every C in CohX , we have:

h
1

θ(C) = h1θ(C)

Moreover h
1

θ is monotonic and subadditive on qCohX :

Proposition 8.2.1. For every morphism f : F → G in qCoh
≤1

X such that the morphism of
K-vector spaces fK : FK → GK is surjective, we have:

h
1

θ(F) ≥ h
1

θ(G).
Moreover, for every admissible short exact sequence in CohX :

0 −→ E −→ F −→ G −→ 0,

the following inequality holds:

h
1

θ(F) ≤ h
1

θ(E) + h
1

θ(G).

Moreover h
1

θ does not see the antiprojective part of Hermitian quasi-coherent sheaves. Namely,
we have:

Proposition 8.2.2. For every object F of qCohX , the following equality holds:

h
1

θ(F) = h
1

θ(F
∨∨

).

8.2.2. The category θ1Σ-qCohX of θ1-summable Hermitian quasi-coherent sheaves.

To any object F of qCohX , we may also associate:

evh
1

θ(F) := lim
C∈coh(F)

h
1

θ(F/C) = inf
C∈coh(F)

h
1

θ(F/C) ∈ [0,+∞],

where the limit and the infimum are taken over the directed set (coh(F),⊆).
If moreover F• := (Fi)i∈N is a filtration of the OK-module F underlying F , we let:

Σ
h
1
θ
(F ,F•) :=

+∞∑
i=0

h
1

θ(Fi/Fi−1) (∈ [0,+∞]),

where by convention F−1 = 0. In particular if C• := (Ci)i∈N is a filtration of F by submodules in
coh(F), we have:

Σ
h
1
θ
(F , C•) = Σh1

θ
(F , C•) :=

+∞∑
i=0

h1θ(Ci/Ci−1).

Definition and Theorem 8.2.1. An object F of qCohX is called θ1-summable when there
exists an exhaustive filtration C• of F by submodules in coh(F) such that

Σh1
θ
(F , C•) < +∞.

When this holds, we have:

(8.2.1) h
1

θ(F) = lim
k→+∞

h1θ(Ck) ∈ R+.
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Moreover, an object F of qCohX is θ1-summable if and only if

evh
1

θ(F) = 0.

The objects of CohX are θ1-summable. Moreover the φ-summable objects of qCohX satisfy
the following permanence properties:

Theorem 8.2.3. (1) Let F be an object of qCohX , and let F• := (Fi)i∈N be an exhaustive

filtration of the OK-module F underlying F . If the subquotients Fi/Fi−1 are θ1-summable and if

Σ
h
1
θ
(F ,F•) < +∞,

then F is θ1-summable and
h
1

θ(F) = lim
i→+∞

h
1

θ(F i)

(2) Let f : F → G be a morphism in qCoh
≤1

X . If F is θ1-summable and if the K-linear map
fK : FK → GK is surjective, then G is θ1-summable.

If we denote by θ1Σ-qCohX the subcategory of θ1-summable objects in qCohX , then the invari-
ant

h
1

θ : θ
1
Σ-qCohX −→ R+

satisfies the conditions Cont+ (cf. Proposition 4.5.16) and a version of StMon1 (see Proposition
5.5.8 and Corollaries 5.5.9 to 5.5.12).

8.2.3. The invariant h1θ. To the invariant h1θ is also attached its lower extension

h1θ : qCohX −→ [0,+∞]

defined by:

h1θ(F) := lim
F ′∈coft(F)

h1θ(F/F ′) = sup
F ′∈coft(F)

h1θ(F/F ′),

where the inferior limit is taken over the directed set (coft(F),⊇), defined by the set coft(F) of
OK-submodules G of F such that the quotient OX -module F/G is coherent.

The lower extension h1θ also extends h1θ, and for every object F in qCohX , it satisfies:

h1θ(F) ≤ h
1

θ(F)
Moreover any object F of qCohX such that:

h1θ(F) = h
1

θ(F) < +∞
is θ1-summable.

The invariant φ satisfies the conditions Mon1, SubAdd and NSAp on qCohX (cf. Proposi-

tions 4.3.6, 4.3.10, and 4.3.12). Moreover its restriction to the subcategory of qCohX where it takes
finite values satisfies the conditions Cont+ and StMon1 (cf. Propositions 5.4.9 and 5.4.8).

8.2.4. Countable additivity. The invariant h
1

θ (resp. h
1
θ) is countably additive on θ1Σ-qCohX

(resp. on qCohX):

Proposition 8.2.4. For any countable family (F i)i∈I of φ-summable objects in qCohX such
that ∑

i∈I
h
1

θ(F i) < +∞,

the direct sum F :=
⊕

i∈I F i is θ1-summable and satisfies:

h
1

θ(F) =
∑
i∈I

h
1

θ(F i).
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Moreover, for any countable family (F i)i∈I of objects in qCohX of direct sum F as above, we
have:

h1θ(F) =
∑
i∈I

h1θ(F i).

8.2.5. Tensor product with objects in CohX . The following easy proposition turns out to
be useful in applications, and would actually be valid in the general context of Chapter 4.

Proposition 8.2.5. Let C be an object of CohX .

(1) Their exists N ∈ N, η ∈ R, and a morphism

p : OX(−η)⊕N −→ C

in Coh
≤1

X such the underlying morphism of OX-modules p : O⊕N
X → C is surjective.

(2) For N and η as in (1), and for every object F in qCohX , the following estimates hold:

(8.2.2) h1θ(F ⊗ C) ≤ N h1θ(F ⊗O(−η)),
and:

(8.2.3) h
1

θ(F ⊗ C) ≤ N h
1

θ(F ⊗O(−η)).

(3) If moreover F ⊗O(−η) is θ1-summable, then F ⊗ C is θ1-summable.

Proof. Let us choose a finite family (si)1≤i≤N of generators of the OK-module F(X). Then,
if η is a large enough positive real number, condition (1) is satisfied by the morphism

p := (s1, . . . , sN ) : (fi)1≤i≤N 7−→
∑

1≤i≤N

fisi.

If N, η, and p satisfy (1), then for every object F in qCohX , the map:

p⊗ IdF : [F ⊗O(−η)]⊕N ≃ F ⊗OX(−η)⊕N −→ F ⊗ C

is a morphism in qCoh
≤1

X such that the underlying morphism ofOX -modules is surjective. Moreover,
according to Proposition 8.2.4, we have:

h1θ(F ⊗O(−η)⊕N ) = N h1θ(F ⊗O(−η)) and h1θ(F ⊗O(−η)⊕N ) = N h1θ(F ⊗O(−η)).

The estimates (8.2.2) and (8.2.3) now follow from the monotonicity property of h1θ and h
1

θ; see 8.2.3
and Proposition 8.2.1.

When F(−η) is θ1-summable, we may choose an exhaustive filtration C• := (Ci)i∈N of F by
submodules in coh(F) such that:

Σh1
θ
(F ⊗O(−η), C•) :=

+∞∑
i=0

h1θ(Ci/Ci−1 ⊗O(−η)) < +∞.

If C′i denotes the image of Ci ⊗ C in F ⊗ C, then the subquotient C′i/C′i−1 may be identified to the
quotient of Ci/Ci−1 ⊗ C′ by a torsion module, and therefore we have:

h1θ(C′i/C′i−1) = h1θ(Ci/Ci−1 ⊗ C).

Moreover the inequality (8.2.3), applied to Ci/Ci−1 instead of F , establishes the following estimate:

h1θ(Ci/Ci−1 ⊗ C) ≤ N h1θ(Ci/Ci−1 ⊗O(−η)).
This implies that the exhaustive filtration C′• := (C′i)i∈N of F by elements of coh(F ⊗C) satisfies the
summability condition:

Σh1
θ
(F ⊗ C, C′•) :=

+∞∑
i=0

h1θ(C′i/C′i−1) < +∞,
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and completes the proof of the θ1-summability of F ⊗ C. □

8.2.6. Compatibility with direct images. The following proposition follows from Proposi-
tions 4.6.4 and 4.6.6 applied to φ = h1θ.

Proposition 8.2.6. For every object F of qCohX , the following relations hold:

(8.2.4) h1θ(F) = h1θ(π∗F) ≤ h
1

θ(π∗F) ≤ h
1

θ(F).
If moroever F is an object of θ1Σ-qCohX , then π∗F is an object of θ1Σ-qCohZ and the following
equality holds:

(8.2.5) h
1

θ(π∗F) = h
1

θ(F).

Let us emphasize that the equality (8.2.5) is not expected to hold for an arbitrary Hermitian
quasi-coherent OX -module F . We refer to [Bos20b, Section 9.3.3] for a related counter-example in
the geometric setting of quasi-coherent sheaves over projective curves considered in Chapter 3.

8.3. The Function BF and the Measure βF∨ Attached to an Object F in qCohZ

In this section, we consider a Euclidean quasi-coherent sheaf F := (F, ∥.∥). As before, we denote
by F/tor the quotient F/Ftor, and we identify it with the image of F in FR.

We also consider:
F∨
R = HomZ(F,R) = HomR(FR,R),

and we equip it with the topology of pointwise convergence (over F , or equivalently over FR). This
topology makes F∨

R a Fréchet space. Indeed if (fa)a∈A is a (countable) basis of the R-vector space
FR, the map

F∨
R

∼−→ RA, ξ 7−→ (ξ(fa))a∈A

is an isomorphism of topological vector spaces between F∨
R and RA equipped with the product

topology of the usual topology on each factor R.
The Z-module

F∨ := HomZ(F,Z) ≃ HomZ(F/tor,Z) ≃ HomZ(F/ap,Z)
defines a closed subgroup of the Fréchet space F∨

R . The Z-module F/ap is a free Z-module with a
countable basis (gb)b∈B , and the map

F∨ ≃ HomZ(F/ap,Z)
∼−→ ZB , ξ 7−→ (ξ(gb))b∈B

is an isomorphism of topological groups when ZB is endowed with the product topology of the
discrete topology on each factor Z.

On F∨
R is defined the definite quasi-norm:

∥.∥F∨ : F∨
R −→ [0,+∞]

defined by:
∥ξ∥F∨ := sup {|ξ(x)|;x ∈ FR and ∥x∥F ≤ 1} .

As a function on the Fréchet space F∨
R , it is lower semicontinuous. Moreover the R-vector

subspace
F∨Hilb
R :=

{
ξ ∈ F∨

R | ∥ξ∥F∨ < +∞
}

of F∨
R , when equipped with ∥.∥F∨ , is a Hilbert space.

Observe that F∨Hilb
R is a Borel subset of F∨

R . It is actually a countable union of compact subsets
since, for every R ∈ R+, the closed ball in F∨Hilb

R ,

BF∨Hilb
R

(R) :=
{
ξ ∈ F∨

R | ∥ξ∥F∨ ≤ R
}

is a compact subset of F∨
R .
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8.3.1. Constructions and basic properties of BF and βF∨ .

8.3.1.1. The function BF .

Definition 8.3.1. For every Euclidean quasi-coherent sheaf F := (F, ∥.∥) and every x ∈ FR, we
define:

(8.3.1) BF (x) := sup {BC(x);C ∈ coh(F ) and x ∈ CR} .

Observe that, for every x ∈ FR, the subset

coh(F )x := {C ∈ coh(F ) | x ∈ CR}
of coh(F ) is cofinal in the directed set (coh(F ),⊆). Moreover, according to the monotonicity property
of the Banaszczyk functions attached to objects in CohZ stated in Proposition 7.7.2), for every two
elements C1 and C2 of coh(F )x, the following implication holds:

C1 ⊆ C2 =⇒ BC1
(x) ≤ BC2

(x).

Consequently the right hand side of ((8.3.1)) is actually a limit over the directed set (coh(F ),⊆):
(8.3.2) BF (x) := lim

C∈coh(F )
BC(x).

In particular, for every increasing filtration (Cn)n∈N of F by finitely generated Z-submodules
and for every x ∈ FR, the value BCn

(x) is defined when the integer is large enough, the sequence

(BCn
(x)) is increasing and satisfies:

(8.3.3) BF (x) := lim
n→+∞

BCn
(x).

Clearly the function BF takes values in (0, 1], and its construction “does not see torsion”:

BF = BF/tor.

Proposition 8.3.2. For every object F := (F, ∥.∥) of qCohZ, the function BF is a function of
positive type on FR, is continuous on (FR, ∥.∥), and satisfies the following inequalities:

(8.3.4) e−π∥x∥
2

≤ BF (x) ≤ 1 for every x ∈ FR.

Moreover, for every morphism f : F → F
′
in qCoh

≤1

Z and every x ∈ FR, the following inequality
holds:

(8.3.5) BF ′(fR(x)) ≥ BF (x).

As for the Banaszczyk function associated to objects of VectZ and CohZ, we shall define the
function bF on FR, or on FR/F/tor, by the relation:

BF (x) = e−πbF (x).

It satisfies the estimates:
0 ≤ bF (x) ≤ ∥x∥

2.

Proof of Proposition 8.3.2. Being of positive type is clearly preserved by pointwise conver-
gence. Since the functions BC , for C in coh(F ), are of positive type as shown in Corollary 7.7.4, this
establishes the first assertion. The estimates (8.3.4) also directly follow from the similar estimates
(7.7.5) satisfied by the Banaszczyk functions of objects of CohZ. Clearly (8.3.4) implies the conti-
nuity at the point 0 of the function BE with respect to the seminorm ∥.∥. Since BE is a function of
positive type, this implies its continuity on (FR, ∥.∥).

The inequality (8.3.5) follows its special case when F and F
′
are objects in CohZ, stated in

Proposition 7.7.2, and from the expression of BF and BF ′ as suprema of the functions BC for C in
coh(F ) or coh(F ′), as in Definition 8.3.1. □
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8.3.1.2. The measure βF∨ . With the notation of Proposition 8.3.2, the continuity of BF on
(FR, ∥.∥) trivially implies its continuity on ER equipped with the inductive topology. Moreover,
BF (0) = 1. According to the theorem of Bochner, the function BF is the Fourier transform of a
unique Borel probability measure on the Fréchet space F∨

R .
5

Definition 8.3.3. For every Euclidean quasi-coherent sheaf F , we denote by βF∨ the unique
Borel probability measure on F∨

R such that:

(8.3.6) BF = F−1
FR
βF∨ .

The relation (8.3.6) precisely means that, for every x ∈ FR, the following equality holds:

(8.3.7) BF (x) =

∫
F∨

R

e2πi⟨ξ,x⟩ dβF∨(ξ).

Since the function BF is real valued, the measure βF∨ on the Fréchet space F∨
R is symmetric.

Namely, it satisfies:

[−1]∗βF∨ = βF∨ .

Observe also that the following generalized form of the identities (7.8.1) and (7.8.14) also holds, for
every x ∈ FR:

(8.3.8) 1 +BE(x) = 2

∫
ER

cos2(π⟨ξ, x⟩) dβE∨(ξ)

8.3.2. The measure βF∨ as a limit.

8.3.2.1. Positive Borel measures on F∨
R . Let us consider an exhaustive filtration (Cn)n∈N of F

by finitely generated Z-submodules. For any two integers 0 ≤ i ≤ j, let us denote by

ιji : Ci↪−→Cj
the inclusion morphism and by

pij := ι∨ji,R : C∨
j,R −→ C∨

i,R

the transpose of the associated injective R-linear map

ιji,R : Ci,R↪−→Cj,R.
The maps (pji)0≤i≤j define a projective systems of surjective R-linear maps between the finite
dimensional spaces (C∨

i,R)i∈N.

For every i ∈ N, the transpose of the inclusion map

Ci,R↪−→FR

defines a surjective R-linear map:

qi : F
∨
R −→ C∨

i,R.

The maps (qi)i∈N define an isomorphism

F∨
R

∼−→ lim
i
C∨
i,R

of locally convex spaces between the Fréchet space F∨
R and the projective limit of the C∨

i,R, equipped

with their usual (Hausdorff locally convex) topology.

We may also consider the maps between spaces of positive bounded measures induced by the
maps pji:

(8.3.9) pij∗ :Mb
+(C

∨
j,R) −→Mb

+(C
∨
i,R).

5We refer the reader to Appendix C, section C.1, for an exposition of the theorems of Bochner and P. Lévy

concerning probability measures on Fréchet spaces like F∨
R and their Fourier transforms used in this section.
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and by the maps (qi):

qi∗ :Mb
+(F

∨
R ) −→Mb

+(C
∨
i,R).

They induce a map from Mb
+(F

∨
R ) to the limit (in the category of sets) of the projective system

(8.3.9), which according to a classical theorem of Kolmogorov, is a bijection:

(8.3.10) q∗ :Mb
+(F

∨
R )

∼−→ lim
i
Mb

+(C
∨
i,R), µ 7−→ (qi∗µ)i∈N.

By restriction the bijection (8.3.10) defines a bijection:

(8.3.11) q∗ :Mb
+(F

∨)
∼−→ lim

i
Mb

+(C
∨
i ).

Moreover it is compatible with the ordering of positive bounded measures. Namely, for any two
measures µ and µ′ inMb

+(F
∨
R ), the following equivalence holds:

(8.3.12) µ′ ≥ µ ⇐⇒ for every i ∈ N, qi∗µ′ ≥ qi∗µ.

8.3.2.2. Constructing βF∨ from the βC∨
n
. The following proposition exhibits a limiting procedure

that allows one to construct the measure βF∨ on the Fréchet space F∨
R directly from the Banaszczyk

measures βC∨
n
on the finite dimensional R-vector spaces C∨

n,R.

Proposition 8.3.4. For every i ∈ N, the sequence (pij∗βC∨
j
)j∈N≥i

converges to some limit βi

inM1
+(C

∨
i,R) equipped with the topology of narrow convergence.

The sequence of measures (βi)i∈N in
∏
i∈NM1

+(C
∨
i,R) satisfies the relations:

(8.3.13) pij∗βj = βi for every 0 ≤ i ≤ j,
and therefore defines an element of limiM1

+(C
∨
i,R). Finally,

q∗(βF∨) = (βi)i∈N.

Proof. For every C ∈ coh(F ), we have:

BC = F−1
CR
βC∨ .

Consequently, for every i ∈ N and every j ∈ N≥i, we have:

F−1(pij∗βC∨
j
) = p∨∗

ij (F−1βC∨
j
) = ι∗ji,RBCj

= BCj |Ci,R
.

Therefore the sequence of inverse Fourier transforms (F−1(pij∗βC∨
j
))j∈N≥i

converges pointwise to

BF |Ci,R
. Moreover, according to the definition of βF∨ , we have:

BF |Ci,R
= (F−1

FR
βF∨)|Ci,R = F−1

Ci,R
= F−1

Ci,R
(qi∗βF∨).

According to P. Lévy’s continuity theorem, this establishes that, in the topology of narrow conver-
gence, the sequence of measures (pij∗βC∨

j
)j∈N≥i

converges to βi := qi∗βF∨ . □

Using the bijections (8.3.10) and (8.3.11), Proposition 8.3.4 immediately implies:

Corollary 8.3.5. The measure βF∨ on the Fréchet space F∨
R is supported by the closed subgroup

F∨ := HomZ(F,Z) of F∨
R .

Proposition 8.3.4 admits the following alternative formulation, which we leave as an exercise for
the interested reader.

Corollary 8.3.6. If (β̃i)i∈N is a sequence of Borel probability measures on F∨
R such that

(8.3.14) qi∗β̃i = βC∨
i

for every i ∈ N,

then (β̃i)i∈N converges to βF∨ in the topology of narrow convergence.
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Observe that, as the measures βC∨
i
are supported by the countable sets C∨

i , the existence of

measures β̃i satisfying (8.3.14) is straightforward.

8.3.3. Inequalities between Banaszczyk measures and inverse monotonicity of Ba-
naszczyk functions attached to Euclidean quasi-coherent sheaves. At this stage, the mono-
tonicity properties concerning the functions BE and the measures βE∨ attached to objects of CohZ
established in Section 7.8 may be extended to objects of qCohZ.

Namely we shall prove the following generalizations of Proposition 7.8.3 and Corollary 7.8.4,
reformulated in terms θ1-ranks as in Subsection 7.8.4, and of Corollary 7.8.5.

Proposition 8.3.7. Let f : E → F be a morphism in qCoh
≤1

Z . The following inequality between
positive measures on E∨

R is satisfied:

(8.3.15) erk
1
θ(f :E→F ) f∨R∗βF∨ ≤ eh

1
θ(E) βE∨ .

Moreover for every x ∈ ER, the following inequality holds:

(8.3.16) erk
1
θ(f :E→F ) (1 +BF (fR(x))) ≤ e

h
1
θ(E) (1 +BE(x)).

Proposition 8.3.8. Let M be a countably generated Z-module, N an object of qCohZ, and
f :M → N a morphism of Z-modules. For every x ∈MR, the following inequality holds:

(8.3.17) BN (fR(x)) ≥ 2e−rk
1
θ(f :M→N) − 1.

Using the function κ introduced in 7.8.2, the inequality (8.3.17) may be rephrased as:

(8.3.18) bN (fR(x)) ≤ κ
(
rk

1

θ(f :M → N)
)
.

Proposition 8.3.9. For every admissible short exact sequence in qCohZ:

(8.3.19) 0 −→ G
i−→ E

p−→ F −→ 0

and for every x ∈ ER, the following inequality holds:

(8.3.20) e−h
1
θ(G) (1 +BF (pR(x))) ≤ 1 +BE(x).

In the left-hand side of (8.3.21) and (8.3.20), the term e−h
1
θ(E) is by definition 0 when h

1

θ(E)
is +∞.

With the notation of Proposition 8.3.9, it is actually possible to establish the following inequality
between positive measures on E∨

R :

(8.3.21) e−h
1
θ(G) p∨R∗βF∨ ≤ βE∨ .

This inequality is a refinement of the inequality (8.3.20) between Banaszczyk functions,6 and gener-
alizes the inequality (7.8.18) in Corollary 7.8.5. Starting from (7.8.18), the inequality (8.3.21) may
be proved by arguments similar to the ones in the proofs of Propositions 8.3.7 and 8.3.9; we shall
leave the details to the interested reader.

Proof of Proposition 8.3.7. When E and F are objects in CohZ, the inequality (8.3.15)
may be written:

(8.3.22) eh
1
θ(F )−h1

θ(F/f(E)) f∨R∗βF∨ ≤ eh
1
θ(E) βE∨ .

and has been established in Proposition 7.8.3.

6Indeed (8.3.20) follows from (8.3.21) by integrating the non-negative function (ξ 7→ 2 cos2(π⟨ξ, x⟩)), as in the

proof of Corollary 7.8.5.
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To establish the validity of (8.3.15) when f : E → F is an arbitrary morphism in qCoh
≤1

Z , let
us first choose an exhaustive filtration (Ei)i∈N of E by submodules in coh(E) such that:

(8.3.23) h
1

θ(E) = lim
i→+∞

h1θ(Ei).

Then we may also choose an exhaustive filtration (Fi)i∈N of F by submodules in coh(F ) such that:

f(Ei) = Fi ∩ f(E) for every i ∈ N.

According to the definition of rk
1

θ, the following estimate holds:

(8.3.24) rk
1

θ(f : E → F ) ≤ lim inf
i→+∞

rk1θ(f|Ei
: Ei → F i) := lim inf

i→+∞

(
h1θ(F i)− h1θ(Fi/f(Ei))

)
.

For every pair (i, j) of integers such that 0 ≤ i ≤ j, let us introduce the R-linear maps

pEij : E
∨
j,R −→ E∨

i,R

and

pFij : F
∨
j,R −→ F∨

i,R

defined as the transposes of the inclusion morphisms Ei,R ↪→ Ej,R and Fi,R ↪→ Fj,R. For every i ∈ N,
we shall also consider the R-linear maps

qEi : E∨
R −→ E∨

i,R

and

qFi : F∨
R −→ F∨

i,R

defined as the transposes of the inclusion morphisms Ei,R ↪→ ER and Fi,R ↪→ FR.

The inequality (8.3.22) applied to

fj := f|Ej
: Ej −→ F j ,

shows that the following inequality between measures on E∨
j,R holds for every j ∈ N:

eh
1
θ(F j)−h1

θ(Fj/f(Ej)) f∨j,R∗βF∨
j
≤ eh

1
θ(Ej) βE∨

j
.

Consequently, for every pair (i, j) of integers such that 0 ≤ i ≤ j, the following inequality between
measure on E∨

i,R holds:

(8.3.25) eh
1
θ(F j)−h1

θ(Fj/f(Ej)) pEij∗(f
∨
j,R∗βF∨

j
) ≤ eh

1
θ(Ej) pEij∗βE∨

j
.

Observe also that the diagrams

Ei,R
fi,R //

��

��

Fi,R��

��
Ej,R

fj,R // Fj,R

and

F∨
j,R

f∨
j,R //

pFij
����

E∨
j,R

pEij
����

F∨
i,R

f∨
i,R // E∨

i,R

are commutative. Therefore we have:

pEij∗(f
∨
j,R∗βF∨

j
) = f∨i,R∗(p

F
ij∗βF∨

j
),
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and the inequality between measures (8.3.25) may also be written:

(8.3.26) eh
1
θ(F j)−h1

θ(Fj/f(Ej)) f∨i,R∗(p
F
ij∗βF∨

j
) ≤ eh

1
θ(Ej) pEij∗βE∨

j
.

For every i ∈ N, when j ∈ N≥i goes to infinity, pFij∗βF∨
j
(resp. pEij∗βE∨

j
) converges to qFi∗(βE∨)

(resp. to qEi∗(βE∨) in the topology of narrow convergence. Taking (8.3.23) and (8.3.24) into account,
the estimates (8.3.26) therefore implies, for every i ∈ N, the validity of the following inequality of
measures on E∨

i,R:

(8.3.27) erk
1
θ(f :E→F ) f∨i,R∗(q

F
i∗(βE∨)) ≤ eh

1
θ(E) qEi∗(βE∨).

Observe that the diagrams

Ei,R
fi,R //

��

��

Fi,R��

��
ER

fR // FR

and

F∨
R

f∨
R //

qFi ����

E∨
R

qEi����
F∨
i,R

f∨
i,R // E∨

i,R

also are commutative. Consequently we have:

f∨i,R∗(q
F
i∗(βE∨)) = qEi∗(f

∨
R∗βF∨),

and the estimates (8.3.27) may be rephrased as:

(8.3.28) erk
1
θ(f :E→F ) qEi∗(f

∨
R∗βF∨) ≤ eh

1
θ(E) qEi∗(βE∨).

According to the compatibility (8.3.12) of the Kolmogorov isomorphism (8.3.11) with the order-
ing of measures, the validity of (8.3.28) for every i ∈ N is equivalent to the inequality (8.3.15).

The inequality (8.3.16) follows from (8.3.15) by integration of the measures appearing in this
inequality of measures against the non-negative function (ξ 7→ 2 cos2(π⟨ξ, x⟩)), as in the second part
of the proof of Proposition 7.8.3. It also follows from the estimate (7.8.10) in Proposition 7.8.3
applied to the morphisms fi : Ei → F i by letting i go to infinity. □

Proof of Proposition 8.3.8. When M and N are finitely generated Z-modules, and there-
fore N is an object of CohZ, Proposition 8.3.8 as already been established as Corollary 7.8.4; indeed
the inequality 7.8.16, or equivalently 7.8.20, becomes (8.3.17) when E = N and E′ = f(M).

To establish Proposition 8.3.8 in general, let us choose some exhaustive filtrations (Mi)i∈N and
(Ni)i∈N by finitely generated submodules ofM and N respectively such that the following conditions
are satisfied:

• M0,R contains x;
• for every i ∈ N, f(Mi) = f(M) ∩Ni;
• rk

1

θ(f :M → N) = limi→+∞ rk1θ(fi :Mi → N i), where fi := f|Mi
.

Then, as observed above, for every i ∈ N, Proposition 8.3.8 holds for fi :Mi → N , and therefore:

BNi
(fR(x)) ≥ 2e−rk1θ(fi:Mi→Ni) − 1.

The inequality (8.3.17) follows by letting i go to infinity. □
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Proof of Proposition 8.3.9. When E, and therefore F and G, are objects of CohZ, Propo-
sition 8.3.9 has been established as Corollary 7.8.5.

For every x ∈ ER and every ε ∈ R∗
+, we may choose D in coh(F ) such pR(x) is contained in DR

and the following estimate is satisfied:

BD(pR(x)) ≥ BG(pR(x))− ε.
Since p is surjective, we may find C in coh(E) such that:

p(C) = D.

Moreover there exists an exhaustive filtration (Bn)n∈N of G by submodules in coh(G) such that:

lim
n→+∞

h1θ(Bn) = h
1

θ(G).

For every n ∈ N, let us consider the submodule

Cn := C + i(Bn)

of E. It is finitely generated, and if n is large enough — say n ≥ n0 — the kernel of p|C is contained
in i(Cn), and therefore the diagram

0 −→ Bn
i|Bn−→ Cn

p|Cn−→ D −→ 0

is an exact sequence of Z-modules. Let us denote by

(8.3.29) 0 −→ Bn
i|Bn−→ Cn

p|Cn−→ Dn −→ 0

the associated admissible short exact sequence in CohZ. By definition, the Euclidean seminorms
defining Bn and Cn are the restrictions of the seminorms defining G and E, and the seminorm ∥.∥n
on DR defining Dn is the quotient seminorm deduced from the one on Cn.

The sequence of seminorms (∥.∥Dn
)n≥n0 is decreasing and converges to the seminorm ∥.∥D on

DR defined as the restriction of the seminorm of F . As discussed in 7.7.1.1, this implies the equality:

BD(pR(x)) = lim
n→+∞

BDn
(pR(x)).

By the very definition of BE , we also have:

BE(x) = lim
n→+∞

BCn
(x).

Moreover Corollary 7.8.5 applied to the admissible short exact sequence (8.3.29) establishes the
following estimates, for n ≥ n0:

1 +BCn
(x) ≥ e−h

1
θ(Bn)(1 +BDn

(pR(x))).

By taking the limit when n goes to infinity, we finally obtain:

1 +BF (x) ≥ e
−h1

θ(E) (1 +BD(pR(x)) ≥ e
−h1

θ(E) (1 +BG(pR(x))− ε).
Since ε ∈ R∗

+ is arbitrary, this establishes (8.3.20). □

For later reference, we spell out some simple consequences of Propositions 8.3.7, 8.3.8 and 8.3.9.

Recall that a Borel probability measure µ on the Polish space F∨
R is said to be discrete when

there exists a countable subset C of F∨
R such that µ(F∨

R \ C) = 0, or equivalently such that there
exists (λc)c∈C in [0, 1]C satisfying the conditions:∑

c∈C
λc = 1 and µ =

∑
c∈C

λcδc.

Corollary 8.3.10. Let f : E → F be a morphism in qCoh
≤1

Z such that fQ is surjective. If the

measure βE∨ is discrete and if h
1

θ(E) is finite, then the measure βF∨ is discrete.
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Proof. The finiteness of h
1

θ(E) implies the finiteness of rk
1

θ(f : E → F ). Therefore Proposition

8.3.7 shows that, when h
1

θ(E) is finite, the measure f∨R∗βF∨ is bounded from above by some positive
multiple of βE∨ , and therefore is discrete if βE∨ is. When moreover fQ — or equivalently fR — is
surjective, then f∨R∗ : F∨

R → E∨
R is injective, has a closed image, and establishes a homeomorphism

from F∨
R onto this image. Therefore βF∨ also is a discrete measure. □

Applied to M = N and f = IdM , Proposition 8.3.8 becomes the following generalization of the
lower bound (7.8.2) in Proposition 7.8.1.

Corollary 8.3.11. For every object N of qCohZ and every x ∈ NR, the following inequality
holds:

(8.3.30) BN (x) ≥ 2e−h
1
θ(N) − 1.

Equivalently, we have:

(8.3.31) bN (x) ≤ κ(h1θ(N)).

From Proposition 8.3.9, we deduce :

Corollary 8.3.12. For every admissible short exact sequence in qCohZ :

(8.3.32) 0 −→ G
i−→ E

p−→ F −→ 0,

such that:
h
1

θ(G) = 0,

the following equality of positive measures on E∨
R is satisfied:

(8.3.33) βE∨ = p∨R∗βF∨ ,

and for every x ∈ ER, we have:

(8.3.34) BE(x) = BF (pR(x))).

Proof. This is a straightforward consequence of the inequality (8.3.21) mentioned after the

statement of Proposition 8.3.9. Indeed, when h
1

θ(G) vanishes, the inequality (8.3.21) becomes the
following inequality of measures:

p∨R∗βF∨ ≤ βE∨ .

Since both p∨R∗βF∨ and βE∨ are probability measures, this inequality is actually an equality. This
proves (8.3.33). Finally the equality (8.3.34) follows from (8.3.33) by Fourier transform.

The equality (8.3.34) is also a consequence of the monotonicity of Banaszczyk functions ap-
plied to the morphism p — which implies the estimate BE(x) ≤ BF (pR(x))) — and of the esti-
mate (8.3.20) established in Proposition 8.3.9. Indeed the estimate (8.3.20) becomes the estimate

BE(x) ≥ BF (pR(x)) when h
1

θ(G) vanishes. Moreover the equality (8.3.33) follows from (8.3.34) by
the injectivity of the Fourier transform. □

Corollary 8.3.12 applies notably to the canonical dévissage of an arbitrary object E of qCohZ :

(8.3.35) 0 −→ Eap −→ E
δE−→ E/ap := E

∨∨ −→ 0.

Thus we obtain:

Corollary 8.3.13. For every object E of qCohZ, the isomorphism of topological groups

δ∨E : E∨
/ap

∼−→ E∨

maps the measure βE∨
/ap

to the measure βE∨ ; namely the following equality holds:

(8.3.36) δ∨E∗βE∨
/ap

= βE∨ .
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Moreover the functions BE and BE/ap
associated to E and E/ap satisfy:

(8.3.37) BE(x) = BE/ap
(δE,R(x)) for every x ∈ ER.

8.3.4. Criteria for βF∨ to be supported by F∨Hilb
R . In the next section, we will show that

the invariants h1θ(F ) and h
1

θ(F ) attached to a θ1-summable object in qCohZ coincide if and only
if the measure βF∨ is supported by FHilb

R . In this paragraph, we establish diverse criteria ensuring

that the measure βF∨ associated to an object F of qCohZ satisfies this property.

8.3.4.1. The following proposition is basically a consequence of the theorem of Prokhorov-
Sazonov characterizing the Borel measures on a Hilbert space in terms of their Fourier transform
and of their continuity for the Sazonov topology. We refer the reader to Appendix C, section C.2,
for an exposition of this theorem fitted to its present application — notably for a definition of the
Sazonov topology — and for further references.

Proposition 8.3.14. The following conditions are equivalent:

(i) The measure βF∨ is supported by F∨Hilb
R .

(ii) The function BF is continuous with respect to the Sazonov topology on (FR, ∥.∥).
(iii) The function BF is continuous at 0 with respect to the Sazonov topology on (FR, ∥.∥).

Equivalently, for every ε ∈ R∗
+ there exists a Euclidean seminorm ∥.∥′ on ER such that:

Tr(∥.∥′2/∥.∥2) < +∞,

and such that the following implication holds, for every x ∈ FR:

∥x∥′ < 1 =⇒ bF (x) < ε.

By definition, condition (i) is equivalent to the equality:

(8.3.38) βF∨(F∨
R \ F∨Hilb

R ) = 0,

or alternatively to the equality:

(8.3.39) βF∨(F∨Hilb
R ) = 1.

Proof of Proposition 8.3.14. This follows from Theorem C.2.3 applied to V := FR and
µ := βF∨ . Indeed, then we have:

Φ := FβF∨ = BF = 1− e−πbF ,

and condition (i) (resp. (iii), resp. (iv)) in Theorem C.2.3 becomes condition (i) (resp. (ii), resp.
(iii)) in Proposition 8.3.14. □

8.3.4.2. The following proposition is a consequence of the construction of the measure βF∨ by
means of the limiting procedure in Proposition 8.3.4. It leads to simple sufficient conditions for βF∨

to be supported by F∨Hilb
R .

Proposition 8.3.15. Let C• := (Cn)n∈N be an exhaustive filtration of F by finitely generated
Z-submodules, and let ε be an element of R+ and η := e2ε − 1.

Assume that the following two limits exist in R+:

h1θ(C•) := lim
n→+∞

h1θ(Cn) and h1θ(C• ⊗O(ε)) := lim
n→+∞

h1θ(Cn ⊗O(ε)).

Then the following inequality between finite positive Borel measures on F∨
R is satisfied:

(8.3.40) eh
1
θ(C•) e−πη∥.∥

2

F∨ βF∨ ≥ eh
1
θ(C•⊗O(ε)) βF∨⊗O(−ε).
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In the left hand side of (8.3.40), the function e−πη∥.∥
2

F∨ is a Borel function7 from F∨
R to [0, 1],

which vanishes precisely on F∨
R \ F∨Hilb

R when ε > 0, and its product with the probability measure
βF∨ is a well-defined finite positive measure on F∨

R .

Proof. We shall use the description of the measures βF∨ and βF∨⊗O(−ε) provided by Propo-

sition 8.3.4, and will accordingly use the notation introduced in 8.3.2.1.

For every n ∈ N, consider the following measures on C∨
n,R, supported by C∨

n :

γC∨
n
:= eh

1
θ(Cn)βC∨

n
= e

−π∥.∥2

C∨
n

∑
ξ∈C∨

n

δξ

and:

γC∨
n⊗O(−ε) := eh

1
θ(Cn⊗O(ε))βC∨

n⊗O(−ε) = e
−π∥.∥2

C∨
n⊗O(−ε)

∑
ξ∈C∨

n

δξ.

By the very definition of O(−ε), we have:

∥.∥2
C

∨
n⊗O(−ε) = e2ε ∥.∥2

C
∨
n

.

This implies the following equality of measures on C∨
n,R:

γC∨
n⊗O(−ε) = e

−πη∥.∥2

C∨
n γC∨

n
,

or equivalently:

eh
1
θ(Cn⊗O(ε)) βC∨

n⊗O(−ε) = e
−πη∥.∥2

C∨
n eh

1
θ(Cn) βC∨

n
.

Consequently, if two integers i and j satisfy 0 ≤ i ≤ j, the following equality holds between
measures over C∨

i :

(8.3.41) eh
1
θ(Cj⊗O(ε)) pij∗βC∨

j ⊗O(−ε) = eh
1
θ(Cj) pij∗

(
e
−πη∥.∥2

C∨
j βC∨

j

)
.

Moreover, since pij : C
∨
j → C

∨
i is a morphism if Vect

[∞]≤1

Z , the following inequality holds
between functions over C∨

j,R:

p∗ij∥.∥C∨
i
≤ ∥.∥C∨

j
,

and consequently:

p∗ije
−πη∥.∥2

C∨
i ≥ e

−πη∥.∥2

C∨
j .

This implies the following inequality between measures over C∨
i :

(8.3.42) pij∗

(
e
−πη∥.∥2

C∨
j βC∨

j

)
≤ pij∗

(
p∗ije

−πη∥.∥2

C∨
i βC∨

j

)
= e

−πη∥.∥2

C∨
i pij∗βC∨

j
.

From (8.3.41) and (8.3.42), we get the inequality of measures:

eh
1
θ(Cj⊗O(ε)) pij∗βC∨

j ⊗O(−ε) ≤ e
h1
θ(Cj) e

−πη∥.∥2

C∨
i pij∗βC∨

j
.

Using Proposition 8.3.4, applied to F and F ⊗O(ε), and letting j go to infinity, this establishes the
inequality:

(8.3.43) eh
1
θ(C•⊗O(ε)) βi(ε) ≤ eh

1
θ(C•) e

−πη∥.∥2

C∨
i βi,

where

βi := qi∗βF∨ and βi(ε) := qi∗βF∨⊗O(−ε).

7It is actually upper semi-continous.
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By applying pi′i∗ to (8.3.43), we obtain that, for any two integers i′ and i such that 0 ≤ i′ ≤ i,
the following inequality holds:

eh
1
θ(C•⊗O(ε)) qi′∗βF∨⊗O(−ε) ≤ e

h1
θ(C•) qi′∗

(
e
−πη∥qi∥2

C∨
i βF∨

)
.

When i goes to infinity, the sequence of functions

(
e
−πη∥qi∥2

C∨
i

)
i

on F∨
R is decreasing and converges

pointwise to the function e−πη∥.∥
2

F∨ . Therefore, by dominated convergence, the measure on F∨:

e
−πη∥qi∥2

C∨
i βF∨

converges in the topology of narrow convergence to the measure:

e−πη∥.∥
2

F∨ βF∨ .

Therefore, for every i′ ∈ N, the following inequality holds between measures on C∨
i :

eh
1
θ(C•⊗O(ε)) qi′∗βF∨⊗O(−ε) ≤ e

h1
θ(C•) qi′∗

(
e−πη∥.∥

2

F∨ βF

)
.

According to the equivalence (8.3.12), this sequence of inequalities is equivalent to the inequality
(8.3.40). □

Corollary 8.3.16. If there exists an exhaustive filtration (Cn)n∈N of F by finitely generated
Z-submodules and ε0 in R∗

+ such that, for every ε ∈ [0, ε0], the limit

h1θ(C• ⊗O(ε)) := lim
n→+∞

h1θ(Cn ⊗O(ε))

exists in R+, and if

(8.3.44) lim
ε→0+

h1θ(C• ⊗O(ε)) = h1θ(C•),

then βF∨ is supported by F∨Hilb
R .

Proof. When ε ∈ R∗
+ decreases to 0, the function on F∨

R :

exp
(
−π(e2ε − 1)∥.∥2

F
∨

)
increases and converges pointwise to the characteristic function of F∨Hilb

R . Therefore, by dominated
convergence, the following equality holds:

(8.3.45) βF∨(F∨Hilb
R ) = lim

ε→0+

∫
F∨

R

exp
(
−π(e2ε − 1)∥ξ∥2

F
∨

)
dβF∨(ξ).

Under the hypotheses of Corollary 8.3.16, we may apply Proposition 8.3.15 to any ε in (0, ε0].
Thus we have:

(8.3.46)

∫
F∨

R

exp
(
−π(e2ε − 1)∥ξ∥2

F
∨

)
dβF∨(ξ) ≥ eh

1
θ(C•⊗O(ε))−h1

θ(C•) for every ε ∈ (0, ε0].

From (8.3.45), (8.3.46), and (8.3.44), we obtain:

βF∨(F∨Hilb
R ) ≥ 1.

Since βF∨ is a probability measure, this establishes that it is supported by F∨Hilb
R . □

Corollary 8.3.17. If there exists an exhaustive filtration (Cn)n∈N of F by finitely generated
Z-submodules and ε in R∗

+ such that the limits

h1θ(C• ⊗O(−ε)) := lim
n→+∞

h1θ(Cn ⊗O(−ε)) and h1θ(C•) := lim
n→+∞

h1θ(Cn)

exist in R+, then βF∨ is supported by F∨Hilb
R .
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Proof. Under the hypothesis of Corollary 8.3.17, we may apply Proposition 8.3.15 with F
replaced by F ⊗O(−ε). Then the estimate (8.3.40) reads:

βF∨ ≤ eh
1
θ(C•⊗O(−ε))−h1

θ(C•) e−πη∥.∥
2

F∨ βF∨⊗O(ε).

Since η := e2ε − 1 is strictly positive, the function e−πη∥.∥
2

F∨ vanishes on F∨
R \ F∨Hilb

R , and (8.3.38)
follows. □

Remark 8.3.18. For every ε ∈ R∗
+, there exists an exhaustive filtration (Cn)n∈N of F such that:

h1θ(C•) = h1θ(F ) (resp. h1θ(C• ⊗O(−ε)) = h1θ(F ⊗O(−ε)))

and such that the limit defining h1θ(C•⊗O(ε)) (resp. h1θ(C•)) exists in [0,+∞]. This limit is actually

bounded from above by h1θ(F ) (resp. by h
1
θ(F ⊗O(−ε))).

Consequently Proposition 8.3.15 implies that, when h1θ(F ) < +∞, the following inequality holds,
where cε denotes some positive real number and η := e2ε − 1:

βF∨⊗O(−ε) ≤ e
cε e−πη∥.∥

2

F∨ βF∨ ,

and Corollary 8.3.17 shows that, if h
1

θ(F ⊗O(−ε)) < +∞ for some ε ∈ R∗
+, then βF∨ is supported

by FHilb
R .

8.4. Coincidence of h1θ and h
1

θ, θ
1-summability, and Banaszczyk Measures

8.4.1. The invariant h1θ(F ) as the logarithm of a θ-series.

Proposition 8.4.1. For every object F in qCohZ, the following equality holds:

(8.4.1) h1θ(F ) = log
∑

ξ∈F∨∩F∨Hilb
R

e−π∥ξ∥
2

F∨ .

The sum in the right hand-side of (8.4.1) is the supremum in [0,+∞] of the sums
∑
ξ∈A e

−π∥ξ∥2

F∨

when A runs over the finite subsets of the set F∨∩F∨Hilb
R , which is possibly non-countable. We also

use the convention: log(+∞) := +∞.
Since the quasi-norm ∥.∥F∨ takes the values +∞ and consequently e−π∥.∥

2

F∨ vanishes on F∨
R \

F∨Hilb
R , the equality (8.4.1) may equivalently be written as:

(8.4.2) h1θ(F ) = log
∑
ξ∈F∨

e−π∥ξ∥
2

F∨ .

Proof. Consider F := (F, ∥.∥) an object of qCohZ. Recall that the invariant h1θ(F ) is defined
as:

(8.4.3) h1θ(F ) := sup
C∈coft(F )

h1θ(F/C).

To prove that the right-hand sides of (8.4.1) and (8.4.3) coincide, we proceed in three steps.

(1) For every C in coft(F ), we may consider the following admissible surjective morphisms in
qCohZ: the quotient map

pC : F −→ F/C,

the vectorization of F/C

ν
F/C

: F/C −→ F/C
vect

,

and their composition

ν
F/C
◦ pC : F −→ F/C

vect
.
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The kernel of this composition:

Cvect := ker ν
F/C
◦ pC

is a submodule of F in

covect(F ) :=
{
C ∈ scoft(F ) | CR closed in (FR, ∥.∥)

}
.

Moreover, according to Scholium 7.3.1 applied to F/C, the following equalities hold:

h1θ(F/C
vect) = h1θ(F/C

vect
) = h1θ(F/C).

This establishes the following alternative expression for h1θ(F ):

(8.4.4) h1θ(F ) := sup
C∈covect(F )

h1θ(F/C).

(2) Let us consider the set cohsat(F∨ ∩F∨Hilb
R ) of finitely generated saturated Z-submodules of

F∨ ∩ F∨Hilb
R . There is a canonical bijection:

covect(F )
∼−→ cohsat(F∨ ∩ F∨Hilb

R ), C 7−→ C⊥ := {ξ ∈ F∨ | ξ|C = 0}.

Moreover the Euclidean lattice F/C
∨
is canonically isomorphic to C⊥ equipped with the restriction

∥.∥F∨|(C⊥)R
of the quasi-norm ∥.∥F∨ . Notably we have the following equality of θ-invariants:

(8.4.5) h1θ(F/C) = h0θ(C
⊥).

This easily follows from the definitions, and we leave the details to the reader.

(3) If A is a finite subset of F∨ ∩F∨Hilb
R , then the saturation Z⟨A⟩sat in F∨ of the Z-submodule

Z⟨A⟩ generated by A is finitely generated8 and is clearly contained in F∨∩F∨Hilb
R . Therefore Z⟨A⟩sat

belongs to cohsat(F∨ ∩ F∨Hilb
R ).

This establishes the equality:

log
∑

ξ∈F∨∩F∨Hilb
R

e−π∥ξ∥
2

F∨ = sup
D∈cohsat(F∨∩F∨Hilb

R )

log
∑
ξ∈D

e−π∥ξ∥
2

F∨

= sup
D∈cohsat(F∨∩F∨Hilb

R )

h0θ(D, ∥.∥F∨|DR
).

(8.4.6)

Finally the equality (8.4.1) follows from (8.4.4), (8.4.5), and (8.4.6). □

For later reference, observe that Proposition 8.4.1 admits the following straigthtforward corol-
lary.

Corollary 8.4.2. For every object F in qCohZ, the following implication holds:

h1θ(F ) < +∞ =⇒ F∨ ∩ F∨Hilb
R is countable.

Proposition 8.4.1 also implies the following characterization of the objects in qCohZ with non-
vanishing invariant h1θ, to be compared with Proposition 6.3.12.

Corollary 8.4.3. For every object F in qCohZ, the following conditions are equivalent:

(i) h1θ(M) > 0;
(ii) F∨ ∩ F∨Hilb

R ̸= {0};
(iii) there exists a non-zero morphism ξ :M −→ OZ := (Z, |.|) in qCohZ.

8This is a special case of [Bos20b, Corollary 4.4.2].
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Example 8.4.4. Using Corollary 8.4.3, we may show as in [Bos20b, Section 6.4.4] that the
Euclidean quasi-coherent sheaf M introduced in Example 6.3.3.4 satisfies the conditions:

h1θ(M) = 0 and h
1

θ(M) > 0.

Indeed as stated as assertion (i) in Example 6.3.3.4, the set M∨ ∩M∨Hilb
R of continuous linear

forms ξ onMR := (RN, ∥.∥) such that ξ(M) ⊆ Z is reduced to {0}. The vanishing of h1θ(M) therefore
follows from Corollary 8.4.3.

Moreover, according to the assertion (iii) in Example 6.3.3.4, for every non-zero finitely generated
submodule C of M , there exists n ∈ N such that the linear form ξn defines an non-zero morphism

in Vect
≤1

R :

ξn : C −→ OZ := (Z, |.|).
Consequently, the following inequality holds:

h1θ(C) ≥ h1θ(OZ) =: η.

This establishes the lower bound:

h
1

θ(M) ≥ η > 0.

8.4.2. The measure βF∨ attached to an object F in θ1Σ-qCohZ.

Proposition 8.4.5. Let F be an object in qCohZ.

(1) For every ξ in F∨, the following inequality holds:

(8.4.7) βF∨({ξ}) ≥ e−π∥ξ∥
2

F∨ e−h
1
θ(F ).

(2) If moreover F is θ1-summable, then:

(8.4.8) βF∨({ξ}) = e−π∥ξ∥
2

F∨ e−h
1
θ(F ).

Proof. Let (C•) := (Cn)n∈N be an exhaustive filtration of F by finitely generated submodules
such that the limit

h1θ(C•) := lim
n→+∞

h1θ(Cn)

exists in [0,+∞], and let ξ be an element of F∨. To establish the proposition, we have to establish
the lower bound:

(8.4.9) βF∨({ξ}) ≥ e−π∥ξ∥
2

F∨ e−h
1
θ(C•),

and to prove that (8.4.9) is actually an equality when the filtration C• satisfies the condition:

(8.4.10) Σh1
θ
(F ,C•) < +∞.

As in 8.3.2.1, let us denote by

qi : F
∨
R −→ C∨

i,R (resp. pij : C
∨
j,R −→ C∨

i,R)

the transpose of the inclusion map Ci,R ↪→ FR (resp. Ci,R ↪→ Cj,R). Let us also use the notation

βi := qi∗βF∨ , for i ∈ N,

introduced in Proposition 8.3.4.

If we define, for i ∈ N:
ξi := qi(ξ) ∈ C∨

i ,

then (q−1
i (ξi))i∈N is a decreasing sequence of closed subsets in F∨

R , and we have:⋂
i∈N

q−1
i (ξi) = {ξ}.
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This implies the equalities:

(8.4.11) βF∨({ξ}) = lim
i→+∞

βF∨(q−1
i (ξi)) = lim

i→+∞
βi({ξi}).

Moreover the sequence (∥ξi∥C∨
i
)i∈N of elements of [0,+∞] is increasing and satisfies:

(8.4.12) lim
i→+∞

∥ξi∥C∨
i
= ∥ξ∥F∨ .

According to Proposition 8.3.4, for every i ∈ N, we have:

(8.4.13) βi({ξi}) = lim
j→+∞

βC∨
j
(p−1
ij (ξi)).

Moreover (p−1
ij (ξi) contains ξj , and therefore:

(8.4.14) βC∨
j
(p−1
ij (ξi)) ≥ βC∨

j
({ξj}) = e−h

1
θ(Cj) e

−π∥ξj∥2

C∨
j .

Using (8.4.13), (8.4.14), and (8.4.12), we obtain:

βi({ξi}) ≥ lim
j→+∞

e−h
1
θ(Cj) e

−π∥ξj∥2

C∨
j = e−h

1
θ(C•) e−π∥ξ∥

2

F∨ .

Together with (8.4.11), this establishes the estimate (8.4.9).

From now on, let us assume that the filtration C• satisfies the condition (8.4.10) of θ1-summa-
bility.

For any pair (i, j) of integers such that 0 ≤ i ≤ j, we may apply Proposition 7.8.3 to the
admissible short exact sequence:

0 −→ Ci↪−→Cj −→ Cj/Ci −→ 0.

This establishes the following inequality between positive measure of finite total mass on C∨
i,R:

(8.4.15) pij∗βC∗
j
≤ eh

1
θ(Ci)+h

1
θ(Cj/Ci)−h1

θ(Cj) βC∨
i
.

When j goes to infinity, the left-hand side of (8.4.15) converges to βi by Proposition 8.3.4.
Moreover, since C• satisfies the condition (8.4.10), we have:

h
1

θ(F ) = lim
j→+∞

h1θ(Cj).

Moreover the filtration C•/Ci := (Cj/Ci)j∈N≥i
of F/Ci satisfies the condition

Σh1
θ
(F/Ci, C•/Ci) < +∞,

and therefore:

h
1

θ(F/Ci) = lim
j→+∞

h1θ(Cj/Ci) < +∞.

Together with (8.4.15), this establishes the inequality of measures on C∨
i,R:

(8.4.16) βi ≤ eh
1
θ(Ci)+h

1
θ(F/Ci)−h

1
θ(F ) βC∨

i
.

Consequently, for every i ∈ N, we have:

(8.4.17) βi({ξi}) ≤ eh
1
θ(Ci)+h

1
θ(F/Ci)−h

1
θ(F ) βC∨

i
({ξi}) = eh

1
θ(F/Ci)−h

1
θ(F ) e

−π∥ξi∥2

C∨
i .

Moreover evh
1

θ(F ) vanishes, and therefore:

lim
i→∞

h
1

θ(F/Ci) = 0.

Together with (8.4.11), (8.4.17), and (8.4.12), this establishes the estimate:

βF∨({ξ}) ≤ e−π∥ξ∥
2

F∨ e−h
1
θ(F ),
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and completes the proof of (8.4.8). □

The following scholium gathers various facts established so far about the measure βF∨ associated

to some θ1-summable object F in qCohZ.

Scholium 8.4.6. Let F be a θ1-summable object in qCohZ. The set F∨ ∩ F∨Hilb
R is countable.

The discrete part9 of the measure βF∨ coincides with the measure 1F∨Hilb
R

βF∨ defined by:

1F∨Hilb
R

βF∨(A) := βF∨(A ∩ F∨Hilb
R ),

for every Borel subset A of F∨
R , and satisfies:

(8.4.18) 1F∨Hilb
R

βF∨ = e−h
1
θ(F )

∑
ξ∈F∨∩F∨Hilb

R

e−π∥ξ∥
2

F∨ δξ.

Finally we have:

(8.4.19) βF∨(F∨Hilb
R ) = βF∨(F∨ ∩ F∨Hilb

R ) = eh
1
θ(F )−h1

θ(F ).

Proof. According to Theorem 8.2.1, the invariant h
1

θ(F) is finite. A fortiori h1θ(F) is finite,
and therefore F∨ ∩ F∨Hilb

R is countable by Corollary 8.4.2. Moreover Proposition 8.4.5, (2), shows
that , for every ξ ∈ F∨

R , the following equivalence holds:

βF∨({ξ}) > 0⇐⇒ ξ ∈ F∨ ∩ F∨Hilb
R .

This implies the first two assertions of the scholium.

Since the measure βF∨ is supported by F∨ and satisfies (8.4.18), we have:

βF∨(F∨Hilb
R ) = βF∨(F∨ ∩ F∨Hilb

R ) = e−h
1
θ(F )

∑
ξ∈F∨∩F∨Hilb

R

e−π∥ξ∥
2

F∨ .

Together with Proposition 8.4.1, this establishes the equality (8.4.19). □

8.4.3. The objects F in qCohZ with a well-defined and finite θ-invariant h1θ(F ). In
Proposition 5.6.7, we have shown that, if

φ : CohZ −→ R+

is a strongly monotonic invariant, then the objects F of qCohZ such that the invariants φ(F ) and

φ(F ) are finite and coincide are always φ-summable.

The following theorem, which constitutes the main result of this section, establishes a suitable
converse to this statement when φ is the theta invariant h1θ.

Theorem 8.4.7. For every object F of qCohZ, the following conditions are equivalent:

(i) h1θ(F ) = h
1

θ(F ) < +∞.
(ii) F is θ1-summable and the measure βF∨ is supported by F∨ ∩ F∨Hilb

R .

(iii) F is θ1-summable and the measure βF∨ is a discrete measure.

(iv) F is θ1-summable and the following condition is satisfied:

(8.4.20) lim
ε→0+

h
1

θ(F ⊗O(ε)) = h
1

θ(F ).

9The discrete part of a finite positive Borel measure µ on some Polish space X is the measure defined as the

countable sum:
∑

x∈X,µ({x})̸=0 µ({x})δx.
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Let us formulate a few observations concerning these conditions.

Concerning (ii), recall that the measure βF∨ is always supported by F∨. Consequently it is

supported by F∨ ∩F∨Hilb
R if and only if the equivalent conditions in Proposition 8.3.14 are satisfied,

notably if and only if BF is continuous with respect to the Sazonov topology on (FR, ∥.∥).
Concerning (iii), the definition of a discrete measure has been recalled in Subsection 8.3.3 above,

before Corollary 8.3.10.

Concerning (iv), observe that if F is θ1-summable, then F ⊗O(ε) also is θ1-summable for every

ε ∈ R+ and the θ-invariant h
1

θ(F ⊗O(ε)) defines a decreasing function of ε ∈ R+ with values in R+.
In particular the limit in the left-hand side of (8.4.20) exists and satisfies:

lim
ε→0+

h
1

θ(F ⊗O(ε)) ≤ h
1

θ(F ).

Condition (8.4.20) asserts that this inequality is indeed an equality.

Proof. When (i) holds, then F is θ1-summable by Proposition 5.6.7. Moreover the last equa-
tion (8.4.19) in Scholium 8.4.6 shows that βF∨ is supported by F∨ ∩ F∨Hilb

R , and therefore that (ii)
holds. It also establishes the converse implication (ii)⇒ (i).

The equivalence (ii)⇔ (iii) follows from the first assertion in Scholium 8.4.6.

Let us now assume that F is θ1-summable and let us choose an exhaustive filtration C• :=
(Cn)n∈N of F by finitely generated submodules such that the sum:

Σh1
θ

(
F ,C•

)
:=

+∞∑
i=0

h1θ(Ci/Ci−1)

is finite. Then for every ε ∈ R+, the sum:

Σh1
θ

(
F ⊗O(ε), C•

)
:=

+∞∑
i=0

h1θ(Ci/Ci−1 ⊗O(ε))

is also finite, and, according to Theorem 8.2.1, the following equality holds:

h
1

θ(F ⊗O(ε)) = lim
n→+∞

h1θ(Cn ⊗O(ε)).

If the equality (8.4.20) holds, then Corollary 8.3.16 shows that the measure βF∨ is supported

by F∨Hilb
R . This establishes the implication (iv)⇒ (ii).

Corollary 8.3.17 applied to F ⊗ O(ε) shows that, for every ε ∈ R∗
+, the measure βF∨⊗O(−ε)

is supported by F∨Hilb
R . Therefore, according to the implication (ii) ⇒ (i), the following equality

holds, for every ε ∈ R∗
+ :

(8.4.21) h1θ(F ⊗O(ε)) = h
1

θ(F ⊗O(ε)).

Moreover, according to Proposition 8.4.1, the following equality holds for every ε ∈ R:

h1θ(F ⊗O(ε)) = log
∑

ξ∈F∨∩F∨Hilb
R

e−πe
2ε∥ξ∥2

F∨ .

By “monotone convergence,” this implies:

(8.4.22) lim
ε→0+

h1θ(F ⊗O(ε)) = h1θ(F ).

The relations (8.4.21) and (8.4.22) show that, if h1θ(F ) and h
1

θ(F ) coincide then the equality
(8.4.20) is satisfied. This establishes the implication (i)⇒ (iv) and completes the proof. □
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Definition 8.4.8. If F is an object of qCohZ, we shall say that the θ-invariant h1θ(F ) is well-
defined and finite when the equivalent conditions in Theorem 8.4.7 are satisfied. Then we shall use
the following notation:

h1θ(F ) := h1θ(F ) = h
1

θ(F ).

The following scholium is a straighforward consequence of Theorem 8.4.7 and of Scholium 8.4.6.

Scholium 8.4.9. If F is an object of qCohZ such that h1θ(F ) is well-defined and finite, then
F∨ ∩ F∨Hilb

R is countable, and we have:

(8.4.23)
∑

ξ∈F∨∩F∨Hilb
R

e−π∥ξ∥
2

F∨ < +∞,

(8.4.24) h1θ(F ) := h1θ(F ) = h
1

θ(F ) = log
∑

ξ∈F∨∩F∨Hilb
R

e−π∥ξ∥
2

F∨ ,

(8.4.25) βF∨ = e−h
1
θ(F )

∑
ξ∈F∨∩F∨Hilb

R

e−π∥ξ∥
2

F∨ δξ,

and, for every x ∈ FR:

(8.4.26) BF (x) = e−h
1
θ(F )

∑
ξ∈F∨∩F∨Hilb

R

e−π∥ξ∥
2

F∨ cos(2π⟨ξ, x⟩).

In spite of its elementary formulation, which involves only the definitions of the lower and upper

extensions h1θ and h
1

θ, the proof of the following proposition relies on the full strength of the formalism
behind Theorem 8.4.7.

Proposition 8.4.10. Let f : E → F be a morphism in qCoh
≤1

Z . If fQ is surjective and if the

θ-invariant h1θ(E) is well-defined and finite, then the θ-invariant h1θ(F ) is well-defined and finite.

Proof. Let us assume that fQ is surjective. Then if E is θ1-summable, then F is θ1-summable

according to Theorem 8.2.3, (2). Moreover, if the measure βE∨ is discrete and if h
1

θ(E) is finite, then
the measure βF∨ is discrete according to Corollary 8.3.10. The proposition therefore follows from

the characterization of the objects of qCohZ with well-defined and finite invariant h1θ by condition
(iii) in Theorem 8.4.7. □

In practice one needs simple criteria to check that some object F in qCohZ satisfis the equivalent
conditions in Theorem 8.4.7. The second part of the following proposition provides such a criterion.

Proposition 8.4.11. Let F := (F, ∥.∥) be an object of qCohZ.

(i) If h1θ(F ) is well-defined and finite, then for every Euclidean seminorm ∥.∥′ over FR such that:

(8.4.27) ∥.∥′ ≤ ∥.∥,

the θ-invariant h1θ(F
′
) of F

′
:= (F, ∥.∥′) is well-defined and finite. In particular, for every ε ∈ R+,

the θ-invariant h1θ(F ⊗O(ε)) of F ⊗O(ε) := (F, e−ε∥.∥) is well-defined and finite.

(ii) Conversely, if there exists ε ∈ R∗
+ such that F ⊗O(−ε) := (F, eε∥.∥) is θ1-summable, then

h1θ(F ) is well-defined and finite.

Observe that, according to the monotonicity properties of h1θ and its lower and upper extensions,
under the assumption of (i) we also have:

h1θ(F
′
) ≤ h1θ(F ).
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Proof. Assertion (i) is a special case of Proposition 8.4.10.

Conversely observe that when, for some positive ε, F ⊗ O(−ε) is θ1-summable, then F also is
and the measure βF∨ is supported by F∨Hilb

R according to Corollary 8.3.17. Assertion (ii) follows

therefore from the characterization of the objects F in qCohZ such that h1θ(F ) is well-defined and
finite by condition (ii) in Theorem 8.4.7. □

8.4.4. The objects F in qCohX with a well-defined and finite θ-invariant h1θ(F). At

this stage, the characterization in Theorem 8.4.7 of objects in qCohZ with well-defined and finite
invariant h1θ easily extends to the situation where an arbitrary arithmetic curve X replaces SpecZ.

Theorem 8.4.12. Let F be an object of qCohZ, and let F := π∗F be its direct image in the
following conditions are equivalent:

(i) h1θ(F) = h
1

θ(F) < +∞.
(ii) F is θ1-summable and h1θ(F ) = h

1

θ(F ) < +∞.
(iii) F is θ1-summable and the measure βF∨ is supported by F∨ ∩ F∨Hilb

R .

(iv) F is θ1-summable and the measure βF∨ is a discrete measure.

(v) F is θ1-summable and the following condition is satisfied:

(8.4.28) lim
ε→0+

h
1

θ(F ⊗O(ε)) = h
1

θ(F).

Proof. When F is θ1-summable, then according to Proposition 8.2.6, the following equalities
hold:

h1θ(F ) = h1θ(F) and h
1

θ(F ) = h
1

θ(F).
Moreover, for every ε ∈ R+, F ⊗O(ε) also is θ1-summable, and therefore:

h
1

θ(F ⊗O(ε)) = h
1

θ(π∗(F ⊗O(ε)) = h
1

θ(F ⊗O(ε)).

Besides, when (i) holds, then F is θ1-summable as recalled in Subsection 8.2.3.

Together with Theorem 8.4.7, these observations imply the equivalence of conditions (i)–(v). □

We may generalize the definition 8.4.8 by declaring an object F of qCohX to have a θ-invariant
h1θ(F) well-defined and finite when the equivalent conditions in Theorem 8.4.12 are satisfied. This

holds precisely when F is θ1-summable and when the θ-invariant h1θ(π∗F) is well-defined and finite,
and then we let:

h1θ(F) := h1θ(F) = h
1

θ(F) = h1θ(π∗F).

Recall also that, for every object F in qCohX , the following equalities hold:

h1θ(F) = h1θ(F
∨∨

) and h
1

θ(F) = h
1

θ(F
∨∨

);

see Proposition 8.2.2 and 8.2.3. Therefore the θ-invariant h1θ(F) well-defined and finite if and only

if h1θ(F
∨∨

) is well-defined and finite.

Propositions 8.4.10 and 8.4.11 also immediately extends to objects of qCohX . For future refer-
ence, we spell out the following generalization of Proposition 8.4.11 (ii), which immediately follows
from its original version combined with the previous observations.

Proposition 8.4.13. Let F := (F , (∥.∥x)x∈X(C)) be an object of qCohX . If there exists ε ∈ R∗
+

such that

F ⊗O(−ε) := (F , (eε∥.∥x)x∈X(C))

is θ1-summable, then h1θ(F) is well-defined and finite.
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8.4.5. Two questions. One may wonder whether, in conditions (ii)-(iv) in Theorem 8.4.7, the
conditions on the measure βF∨ , or the condition (8.4.28), are actually necessary, or equivalently

whether there exists a θ1-summable Euclidean quasi-coherent sheaf F such that h1θ(F) < h
1

θ(F).
This seems quite likely, although we do not know any example yet.

Another question, suggested by Theorem 3.2.7 (3), is whether, for an object F of qCohZ, the
following implication holds:

h
1

θ(F) < +∞ ?
=⇒ ∀ε > 0, F ⊗O(ε) θ1-summable.

According to Proposition 8.4.11 (ii), this would imply:

h
1

θ(F) < +∞ ?
=⇒ ∀ε > 0, h1θ(F ⊗O(ε)) = h

1

θ(F ⊗O(ε)) < +∞.

8.5. θ1-finite Hermitian Quasi-coherent Sheaves

8.5.1. Defining θ1-finite Hermitian quasi-coherent sheaves. The following proposition

is a straightforward consequences of the results on the theta invariants h
1

θ and h1θ established so far.

Proposition 8.5.1. For every object F := (F , (∥.∥x)x∈X(C)) of qCohX , the following conditions
are equivalent:

(i) For every δ in R, F ⊗O(−δ) is θ1-summable.

(ii) For every δ in R, h1θ(F ⊗O(−δ)) = h
1

θ(F ⊗O(−δ)) < +∞.
(iii) There exists a family (δi)i∈I of real numbers such that supi∈I δi = +∞ and F ⊗O(−δi) is

θ1-summable for every i ∈ I.
(iv) There exists a family (δi)i∈I of real numbers such that supi∈I δi = +∞ and

h1θ(F ⊗O(−δi)) = h
1

θ(F ⊗O(−δi)) < +∞ for every i ∈ I.

(v) For every family (∥.∥′x)x∈X(C) invariant under complex conjugation of Hermitian semi-

norms on the C-vector spaces (Fx)x∈X(C) such that ∥.∥′x/∥.∥x is bounded10 for each x in

X(C), the Hermitian quasi-coherent sheaf F ′
:= (F , (∥.∥′x)x∈X(C)) is θ

1-summable.
(vi) For every family (∥.∥′x)x∈X(C) invariant under complex conjugation of Hermitian semi-

norms on the C-vector spaces (Fx)x∈X(C) such that ∥.∥′x/∥.∥x is bounded for each x in

X(C), the Hermitian quasi-coherent sheaf F ′
:= (F , (∥.∥′x)x∈X(C)) satisfies:

h1θ(F
′
) = h

1

θ(F
′
) < +∞.

(vii) For every δ in R, there exists an exhaustive filtration (Ci)i∈N of F by elements of coh(F)
such that the following condition holds:

(8.5.1)
∑
i∈N

h1θ(Ci+1/Ci ⊗O(−δ)) < +∞.

(viii) There exists an exhaustive filtration (Ci)i∈N of F by elements of coh(F) such that (8.5.1)
holds for every δ in R.

(ix) For every δ in R, evh1θ(F ⊗O(−δ)) = 0.

Proof. The equivalence of condition (i) to (vi) follows from the basic properties of θ1-summable
objects in qCohX stated in Subsections 8.2.2 and 8.2.3 and from Proposition 8.4.13.

Conditions (ii) and (vii) are equivalent by the definition of θ1-summability. The implication
(viii)⇒ (vii) is clear, and the converse implication (vii)⇒ (viii) and the equivalence (vii)⇔ (ix)
follow from Proposition 5.6.4 applied with φ = h1θ. □

10Recall that this means that there exists Cx in R+ such that ∥.∥′x ≤ Cx∥.∥x.
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Definition 8.5.2. An object F of qCohX is called θ1-finite when it satisfies the equivalent
conditions in Proposition 8.5.1.

The full subcategories of the categories qCohX and qCoh
≤1

defined by the θ1-finite objects

will be denoted by θ1f -qCohX and θ1f -qCoh
≤1

X .

These categories are the special instances of the categories φf -qCohX and φf -qCoh
≤1

X intro-
duced in Subsection 5.6.2 when φ = h1θ. Observe that the general formalism in loc. cit. covers the
equivalence of of conditions (i), (iii), (v), (vii), and (ix) in Proposition 8.5.1. The equivalence be-
tween these conditions and conditions (ii), (iv), and (vi) relies on the more delicate results concerning
Banaszczyk measures established in the previous sections.

The θ1-finite objects of qCohX are precisely those objects F such that, for every δ ∈ R, the
θ-invariant h1θ(F ⊗O(−δ)) is well-defined and finite. The terminology is parallel to the one in 8.1.4,
where we introduced the notion of θ0-finiteness. Let us emphasize that, while the definition of
θ0-finiteness is rather straighforward, the proof of the equivalence between the various conditions
defining θ1-finiteness uses virtually all the results established in Chapters 4, 5, and 7.

8.5.2. Permanence properties of θ1-finiteness. As a consequence of the permanence prop-
erties of θ1-summability stated in Section 8.2, θ1-finiteness satisfies various permanence properties.
It is notably preserved under general constructions of quotients and extensions.

Proposition 8.5.3. Let f : F → G be a morphism in qCohX . If fK : FK → GK is surjective
and if F is θ1-finite, then G is θ1-finite.

Proof. This follows from Theorem 8.2.3 (2). □

When F = G and f is the identity morphism, Proposition 8.5.3 becomes the following statement:

Corollary 8.5.4. Let F := (F , (∥.∥x)x∈X(C)) be an object of qCohX , and let (∥.∥′x)x∈X(C)
be a family, invariant under complex conjugation, of Hermitian seminorms of the C-vector spaces
(Fx)x∈X(C).

If F is θ1-finite and if, for every x ∈ X(C), ∥.∥′x is bounded with respect to ∥.∥x,11 then F ′
:=

(F , (∥.∥′x)x∈X(C)) is θ
1-finite.

In particular, the θ1-finiteness of an object F := (F , (∥.∥x)x∈X(C)) of qCohX depends only on
the topology defined by the seminorms (∥.∥x)x∈X(C) on the C-vector spaces (Fx)x∈X(C).

Proposition 8.5.5. Let F be an object of qCohX and let D be a subset of R such that supD =
+∞. If F• := (Fi)i∈N is an exhaustive filtration of F be quasi-coherent OX-submodules such that
the following conditions are satisfied:

(i) for every i ∈ N, the quotient12 Fi/Fi−1 is θ1-finite, and

(ii) for every δ ∈ D,
∑
i∈N h

1
θ(Fi/Fi−1 ⊗O(−δ)) < +∞,

then F is θ1-finite. Moreover, for every δ ∈ R,
h1θ(F ⊗O(−δ)) = lim

i→+∞
h1θ(F i ⊗O(−δ)).

Proof. Let us assume that the exhaustive filtration F• satisfies condition (i) and (ii). For
every δD, Theorem 8.2.3 applied to F ⊗ O(−δ) and to the filtration F• shows that F ⊗ O(−δ) is
θ1-summable and that the following relations hold:

h
1

θ(F ⊗O(−δ)) = lim
i→+∞

h1θ(F i ⊗O(−δ)) < +∞.

11Namely, if there exists Cx ∈ R+ such that ∥.∥′x ≤ Cx ∥.∥x.
12As usual, we let F−1 = 0.
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In particular F ⊗ O(−δ) satisfies condition (iii) in Proposition 8.5.1. This establishes that F is
θ1-finite and completes the proof. □

Remark 8.5.6. As a special case of Proposition 8.5.5, we see that the property of being θ1-finite
is preserved by admissible extensions. Namely, for every admissible short exact sequence in qCohX :

(8.5.2) 0 −→ F ′ −→ F −→ F ′′ −→ 0,

if F ′
and F ′′

are θ1-finite, then F also is θ1-finite.

In particular, if F := (F , (∥.∥x)x∈X(C) is an object of qCohX and if F ′ is a OX-submodule of

F such that, for every x ∈ X(C), F ′
x is dense in (Fx, ∥.∥x) and if F ′

:= (F ′, (∥.∥x|F ′
x
)x∈X(C)) is

θ1-finite, then F is θ1-finite.

Indeed F and F ′
fits into an admissible short exact sequence (8.5.2) in qCohX where the

Hermitian norms defining F ′′
are all zero, and therefore F ′′

is trivially θ1-finite.

Proposition 8.5.7. If F is a θ1-finite object of θ1f -qCohX and if C is an object of CohX , then

their tensor product F ⊗ C in qCohX is θ1-finite.

Proof. This follows from Proposition 8.2.5, (3), applied to F ⊗O(−δ) with δ ∈ R+ arbitrarily
large. □

8.5.3. Compatibility of θ1-finiteness with inverse and direct images.

8.5.3.1. In this paragraph, we consider a finite extension K ′ of the number field K. We denote
by X ′ := SpecOK′ the arithmetic curve defined by its ring of integers OK′ and by

f : X ′ −→ X

the finite and flat morphism of schemes defined by the inclusion morphism OK ↪→ OK′ .

A finite family (αi)1≤i≤N of generators of the OK-module OK′ defines a surjective morphism of
OX -modules:

p := (α1, . . . , αN ) : O⊕N
X −→ f∗OX′ .

If η ∈ R+ is large enough, then p defines a morphism

p : OX(−η)⊕N −→ f∗OX′

in Coh
≤1

X . From now one, we assume (αi)1≤i≤N and η to have been chosen so that these conditions
are satisfied. %jbgOn pourrait demander seulement la surjectivité au point générique. La suite
marcherait encore. Mais l’exposé devient ainsi un peu pédant... Une footnote ?

We do not expect any simple compatibility between the invariants h0θ and h1θ and the pull-back
functors:

f∗ : CohX −→ CohX′ and f∗ : CohX −→ CohX′ .

It is however possible to establish the following simple results.

Proposition 8.5.8. (1) For every F in CohX , the following relations hold:

(8.5.3) h1θ(f
∗F) = h1θ(F ⊗ f∗OX′) ≤ N h1θ(F ⊗OX(−η)).

(2) Let F be an object of qCohX . If F ⊗ O(−η) is θ1-summable, then f∗F is θ1-summable,
and the following relations hold:

(8.5.4) h
1

θ(f
∗F) = h

1

θ(F ⊗ f∗OX′) ≤ N h
1

θ(F ⊗O(−η)).

(3) If F is θ1-finite, then f∗F is θ1-finite.
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Proof. The definition of h1θ shows that:

h1θ(f
∗F) = h1θ(f∗f

∗F).

Moreover f∗f
∗F is canonically isomorphic to F ⊗ f∗OX′ . This proves the first equality in (8.5.3).

Like the map p, the tensor product

IdF ⊗ p : F ⊗O(−η)⊕N −→ F ⊗ f∗OX

is a morphism in Coh
≤1

X with surjective underlying morphism of OX -modules. The monotonicity
and the additivity of h1θ implies therefore:

h1θ(F ⊗ f∗OX) ≤ h1θ(F ⊗O(−η)⊕N ) = N h1θ(F ⊗O(−η)).
This completes the proof of (1).

To prove (2), let us assume that F ⊗ O(−η) is θ1-summable, and let us choose an exhaustive
filtration C• := (Ci)i∈N of F by OX -submodules in coh(F) such that the following summability
condition is satisfied:

Σh1
θ
(C•,F ⊗O(−η)) :=

+∞∑
i=0

h1θ(Ci/Ci−1 ⊗O(−η)) < +∞.

The estimates (8.5.3), applied to Ci and to Ci/Ci−1, imply the following inequalities, valid for
every i ∈ N:

(8.5.5) h1θ(f
∗Ci) ≤ N h1θ(Ci ⊗O(−η)),

and:

h1θ(f
∗Ci/Ci−1) ≤ N h1θ(Ci/Ci−1 ⊗O(−η)).

Therefore we have:

Σh1
θ
(f∗C•, f∗F) :=

+∞∑
i=0

h1θ(f
∗Ci/Ci−1) ≤ N

+∞∑
i+0

h1θ(Ci/Ci−1⊗O(−η)) = N Σh1
θ
(C•,F⊗O(−η)) < +∞.

Since f∗C• := (f∗Ci)i∈N is an exhaustive filtration of f∗F by elements of coh(f∗F). This shows that
f∗F , like F ⊗O(−η), is θ1-summable.

Moreover, according to Theorem 8.2.1, we have:

h
1

θ(f
∗F) = lim

i→+∞
h1θ(f

∗Ci)

and:

h
1

θ(F ⊗O(−η)) = lim
i→+∞

h1θ(Ci ⊗O(−η)).

The inequality (8.5.4) follows therefore from (8.5.5).

Finally (3) follows from (2) applied to F ⊗O(−δ) with δ ∈ R+ arbitrary large. □

8.5.3.2. Observe that the compatibility of θ1-summability and direct images stated in Proposi-
tion 8.2.6 shows that, for every object F of qCohX , the following implication holds:

(8.5.6) F θ1-finite =⇒ π∗F θ1-finite.

In this paragraph, we shall show that this implication is actually an equivalence.

As above, with now π instead of f, let us choose a positive integer N , η in R+, and a morphism

p : O(−η)⊕N −→ π∗OX

in Coh
≤1

X such the underlying morphism of OX -modules

p : O⊕N
SpecZ → π∗OX ,
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or equivalently the morphism of Z-modules:

p : Z⊕N −→ OK ,

is surjective. (The integer N := [K : Q] will do.)

Let moreover F := (F , (∥.∥x)x∈X(C)) be an object of qCohX .

The morphism of Z-modules:

(8.5.7) F(X)⊗Z OK −→ F(X)

defined by the structure of OK-modules of F(X) defines a morphism of OSpecZ-modules:

(8.5.8) ϖ : π∗F ⊗ π∗OX −→ π∗F .

Proposition 8.5.9. The morphism ϖ defines a surjective admissible morphism in qCoh
≤1

Z :

ϖ : π∗F ⊗ π∗OX −→ π∗F .

Proof. We have to show that the Hermitian norm of π∗FC is the quotient norm deduced from
the Hermitian norm on (π∗F ⊗ π∗OX)C by means of the C-linear map ϖC. This is a consequence
of the following description of these objects in terms of the set X(C) of field embeddings of K in C
and of the Hermitian (seminormed) complex vector spaces (Fx, ∥.∥x), x ∈ X(C).

In terms of the isomorphism of C-vector space:

ι = (ιx)x∈X(C) : (π∗OX)C := OK ⊗Z C ∼−→ CX(C), α⊗ λ 7−→ (ιx(α⊗ λ)x∈X(C) := (x(α)λ))x∈X(C),

the Hermitian norm ∥.∥π∗OX
admits the following expression:

∥a∥2
π∗OX

:=
∑

x∈X(C)

|ιx(a)|2.

The isomorphism ι determines an isomorphism of C-vector spaces:

ιF := IdF⊗ι : (π∗F)C := F(X)⊗ZC
∼−→ F(X)⊗OK

(OK⊗ZC)
∼−→

⊕
x∈X(C)

F(X)⊗xC =:
⊕

x∈X(C)

Fx.

It maps an element φ⊗Z λ of F(X)⊗Z C to

ιF (φ⊗ λ) = (ιF,x(φ⊗ λ))x∈X(C) := (φ⊗x λ)x∈X(C).

In terms of ιF , the Hermitian seminorm ∥.∥π∗F admits the following expression:

∥f∥2
πastF

=
∑

x∈X(C)

∥ιF,x(f)∥2x.

Using these isomorphisms, the Hermitian C-vector space (π∗F⊗π∗OX)C may be identified with
the direct sum: ⊕

x∈X(C)

FX(C)
x

equipped with the Hermitian norm ∥.∥ defined by:

∥(gx)x∈X(C)∥2 :=
∑

(x,x′)∈X(C)2
∥gx(x′)∥2x,

where (gx)x∈X(C) denotes a family of maps gx : X(C)→ Fx, and the map ϖC becomes the “codiag-
onal morphism”: ⊕

x∈X(C)

FX(C)
x −→

⊕
x∈X(C)

Fx, (gx)x∈X(C) 7−→ (gx(x))x∈X(C). □
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If C is a Z-submodule of F(X), the image of C⊗ZOK by the map (8.5.7) is the OK-submodule

C̃ of F(X) generated by C. If we denote by C (resp. C ′) the quasi-coherent OSpecZ-submodule
(resp. OX -submodule) of π∗F (resp. of F) defined by C (resp. C ′), then ϖ defines by restriction a
surjective morphism of OSpecZ-modules:

(8.5.9) ϖC : C ⊗ π∗OX −→ π∗C′.

Lemma 8.5.10. With the above notation, if C belongs to coh(π∗F), then C′ belongs to coh(F),
and the map ϖC defines a morphism in Coh

≤1

Z :

(8.5.10) ϖC : C ⊗ π∗OX −→ π∗C
′
,

with surjective underlying morphism of OSpecZ-modules. Moreover the following relations hold:

(8.5.11) h1θ(C
′
) = h1θ(π∗C

′
) ≤ h1θ(C ⊗ π∗OX) ≤ N h1θ(C ⊗ O(−η))

Proof. The first assertion is an immediate consequence of the above observation and from the
fact, established in Proposition 8.5.9, that ϖ has an operator norm at most 1. The first inequality
in (8.5.11) follows from the monotonicity of h1θ on CohZ, and the second one from Proposition 8.2.5

applied to (SpecZ, π∗OX , C) instead of (X, C,F). □

Proposition 8.5.11. For every object F of qCohX , the following estimates hold:

(8.5.12) h
1

θ(F) ≤ N h
1

θ(π∗F ⊗O(−η)),
and:

(8.5.13) evh
1

θ(F) ≤ N evh
1

θ(π∗F ⊗O(−η))

Proof. As observed in Proposition 4.3.3, we may choose an exhaustive filtration (Ci)i∈N of π∗F
by OSpecZ-submodules in coh(π∗F) such that:

(8.5.14) h
1

θ(π∗F ⊗O(−η)) = lim
i→+∞

h1θ(Ci ⊗O(−η)).

Lemma 8.5.10 shows that the invariant h1θ of the coherent OX -submodules C′i of F generated by
the Ci satisfy the following estimates:

(8.5.15) h1θ(C
′
i) ≤ N h1θ(Ci ⊗O(−η)).

Moreover (C′i) is clearly an exhaustive filtration of F by OX -submodules in coh(F), and conse-
quently:

(8.5.16) h
1

θ(F) ≤ lim inf
i→+∞

h1θ(C
′
i).

The inequality (8.5.12) follows from (8.5.14), (8.5.15), and (8.5.16).

Observe that the direct image define an increasing map

π∗ : coh(F) −→ coh(π∗F), C 7−→ π∗C,
the image of which is cofinal in the directed set (coh(π∗F),⊆). This establishes the following

expression for evh
1

θ(π∗F ⊗O(−η)):

(8.5.17) evh
1

θ(π∗F ⊗O(−η)) := inf
C′∈coh(π∗F)

h
1

θ(π∗F/C′ ⊗O(−η))

= inf
C∈coh(F)

h
1

θ(π∗F/π∗C ⊗ O(−η)) = inf
C∈coh(F)

h
1

θ(π∗F/C ⊗ O(−η)).

Moreover the estimate (8.5.12) shows that, for every C in coh(F), the following inequality holds:

(8.5.18) h1θ(F/C) ≤ N h
1

θ(π∗F/C ⊗ O(−η)).
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The inequality (8.5.13) follows from (8.5.17) and (8.5.18). □

Corollary 8.5.12. Let F be an object of qCohX .

(1) If π∗F ⊗O(−η) is θ1-summable, then F is θ1-summable.

(2) If π∗F is θ1-finite, then F is θ1-finite.

Proof. Assertion (1) follows from the inequality (8.5.13) and from the characterization of the
θ1-summability by the vanishing of evh1θ stated in Theorem 8.2.1. Assertion (2) follows from assertion

(1) applied to F ⊗O(−δ) with δ ∈ R+ arbitrarily large. □

8.5.3.3. The results of the last paragraphs may be extended to the situation where, instead of
the direct images by the morphism

π : X −→ SpecZ,
one considers direct images under an arbitrary morphism of arithmetic curves

f : X ′ −→ X

as in 8.5.3.1. We shall leave the details to the interested reader, and content ourselves with the
following simple consequence of our previous results.

Proposition 8.5.13. With the notation of 8.5.3.1, an object F of qCohX′ is θ1-finite if and
only if the object f∗F of qCohX is θ1-finite.

Proof. Recall that, together with the implication 8.5.6, Corollary 8.5.12 (2) show that an
object G of qCohX is θ1-finite if and only if π∗G is θ1-finite. Applied to the morphism:

π′ := π ◦ f : X ′ −→ SpecZ

instead of π, this shows that F is θ1-finite if and only if π′
∗F is θ1-finite.

Moreover there exists a canonical isomorphism:

π′
∗F

∼−→ π∗(f∗F).

This implies the successive equivalence of the following conditions:

(i) F is θ1-finite;
(ii) π′

∗F is θ1-finite;
(iii) π∗(f∗F) is θ1-finite;
(iv) f∗F is θ1-finite. □

8.6. Conjoint θ0- and θ1-Finiteness

In this final section, we discuss the possible existence of objects F of qCohX whose both theta
invariants h0θ(F) and h1θ(F) are finite, or such that F and F ⊗O(ε) satisfy these finiteness property
for some nonzero ε. We begin by some observations on the geometric analogue of these questions,
concerning quasi-coherent sheaves over a projective curve.

8.6.1. Preliminary: the geometric case. Let us return to the framework of Chapter 3.
Namely we consider a smooth, projective, geometrically connected curve C of genus g over some
base field k, and we study quasi-coherent OC-modules F over C, and their invariant h1(C,F) and
h
1
(C,F).
Beside these invariants defined in terms of the first cohomology groups, we may also consider

the dimension of the space of sections:

h0(C,F) := dimk Γ(C,F)).
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The function
h0(C, .) : coh(F) −→ N

is increasing on the directed set (coh(F),⊆) of coherent subsheaves of F , and clearly we have:

h0(C,F) = sup
C∈coh(F)

h0(C, C) = lim
C∈coh(F)

h0(C, C).

8.6.1.1. Quasi-coherent OC-modules F such that h0(C,F) < +∞. The following proposition
may be seen as an arithmetic counterpart of Proposition 8.1.1. Indeed it implies that, if a quasi-
coherent OC-module of countable type F satisfies the condition: h0(C,F) < +∞, then Ftor is
coherent and F/tor is locally free.

Proposition 8.6.1. Let F be a quasi-coherent sheaf over C.

(1) If the k(C)-vector space Fη is finite dimensional, then the following two conditions are
equivalent:

(i) h0(C,F) < +∞;
(ii) F is a coherent OC-module.

(2) If the k(C)-vector space Fη is has infinite countable dimension and if h0(C,F) is finite,
then the torsion subsheaf Ftor of F is coherent, and the quotient F/tor := F/Ftor admits admits an
exhaustive filtration (Ci)i∈N by coherent subsheaves such that each Ci is locally free, of rank i, and
saturated in F/tor.

Observe that when (2) holds, then for any open affine subscheme U in C, the OC(U)-module
F(U) is projective, and therefore free (see for instance [Bos20b, 4.1]).

We leave the proof of Proposition 8.6.1 as an exercise for the reader.

8.6.1.2. Quasi-coherent OC-modules F such that h0(C,F) < +∞ and h
1
(C,F) < +∞. Observe

that, under some suitable technical assumptions on the curve C, it is possible to construct quasi-
coherent OC-modules F of infinite rank13 such that both conditions:

h0(C,F) < +∞ and h1(C,F) < +∞,
or even the stronger conditions:

h0(C,F) < +∞ and h
1
(C,F) < +∞,

are satisfied.

This is demonstrated by the construction in Section 3.4, when g > 0. This also follows from the
following simple construction.

Example 8.6.2. Assume that there exists a line bundle L over C that satisfies the condition:

(8.6.1) h0(C,L) = h1(C,L) = 0.

A line bundle L satisfying (8.6.1) has degree g − 1, and there exists such a line bundle as soon as

both C and Picg−1
C/k \Θ — where Θ denotes the theta divisor14 in Picg−1

C/k — have a k-rational point.

These conditions are satisfied for instance when k is algebraically closed, or when the field k is finite
of cardinality larger than some function of g.

Then the quasi-coherent OC-module F := L(N), defined as the direct sum of an infinite countable
family of copies of L, is clearly locally free of infinite rank and satisfies:

h0(C,F) = h1(C,F) = h
1
(C,F).

13Observe that according to Proposition 8.6.1, if h0(C,F) is finite, F has infinite rank if and only if it is not

coherent.
14Recall that Θ(k) parametrizes the line bundles M of degree g − 1 over Ck such that h0(Ck,M) = h1(Ck,M)

is positive.
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8.6.1.3. In this paragraph, we want to prove that, if a quasi-coherent OC-module of countable
type satisfies F the conditions:

h0(C,F) < +∞ and h
1
(C,F) < +∞,

and if F twisted by a line bundle of sufficiently large degree still satisfies these, then F is necessarily
coherent.

Our proof will rely on the following observation.

Lemma 8.6.3. Let F be a quasi-coherent OC-module and let C• := (Ci) be an exhaustive filtration
of F by coherent OC-submodules. If the following two conditions are satisfied:

(8.6.2) h0(C,F) < +∞

and

(8.6.3) h1(C, Ci+1/Ci) = 0 for i large enough,

then we also have:

(8.6.4) h0(C, Ci+1/Ci) = 0 for i large enough.

Proof. For every i ∈ N, we may consider the short exact sequence of coherent OC-modules:

0 −→ Ci
ιi−→ Ci+1

pi−→ Ci+1/Ci −→ 0,

and associated long exact sequences of finite dimensional cohomology groups:

0 −→ H0(C, Ci)
ι0i−→ H0(C, Ci+1)

p0i−→ H0(C, Ci+1/Ci)
δi−→ H1(C, Ci)

ι1i−→ H1(C, Ci+1)
p1i−→ H1(C, Ci+1/Ci) −→ 0.

According to (8.6.3)), for i large enough the map p1i vanishes and therefore ι1i is surjective.
Consequently the sequence (h1(C, Ci))i∈N is eventually decreasing, and therefore eventually constant.
This shows that, for i large enough, ι1i is an isomorphism and consequently δi vanishes.

According to (8.6.2), the increasing sequence (h0(C, Ci))i∈N is eventually constant and equal to
h0(C,F). This shows that, for i large enough, ι0i is an isomorphism and consequently p0i vanishes.

This establishes that both p0i and δi, and therefore H0(C, Ci+1/Ci), vanish for i large enough. □

Proposition 8.6.4. Let L and L′ be two line bundles over C such that degC L > g−1 and such
that L′ is generated by its global sections and degC L

′ > 0.15 For every quasi-coherent OC-module F
of countable type, the following two conditions are equivalent:

(i) F is a coherent OC-module;

(ii) h0(C,F) < +∞ and h
1
(C,F ⊗ L∨ ⊗ L′∨) <∞.

Proof. According to Theorem 3.2.7 (3) and (2) applied to F ⊗L∨⊗L′∨ and to F ⊗L′∨, there
exists an exhaustive filtration (Ci)i∈N of F by coherent OC-submodules such that:

(8.6.5) h1(C, (Ci+1/Ci)⊗ L′∨) = 0 for i large enough.

Since L′ is generated by its global sections, this implies that the coherent OC-modules

Ci+1/Ci ≃ (Ci+1/Ci)⊗ L′∨)⊗ L′

also satisfy:

(8.6.6) h1(C, Ci+1/Ci) = 0 for i large enough.

15The line bundle L′ satisfies these conditions if degC L
′ ≥ max(1, 2g).
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Moreover, since the OC-module L′∨ injects into OC , the finiteness of h0(C,F) implies the one
of h0(C,F ⊗ L′∨).

We may therefore apply Lemma 8.6.3 both to F , equipped with the filtration (Ci)i∈N, and to
F ⊗ L′∨ equipped with the filtration (Ci ⊗ L′∨)i∈N. This implies that

(8.6.7) χ(C, Ci+1/Ci) := h0(C, Ci+1/Ci)− h1(C, Ci+1/Ci)

vanishes for i large enough, and χ(C, (Ci+1/Ci)⊗ L′∨) as well.

Moreover, according to the Riemann-Roch formula, the following equality holds:

χ(C, Ci+1/Ci)− χ(C, (Ci+1/Ci)⊗ L′∨) = rk Ci+1/Ci degC L.

This shows that, for i large enough, the rank of the coherent sheaf Ci+1/Ci vanishes, or equivalently
that Ci+1/Ci is a coherent sheaf with finite support.

Since Ftor is coherent and F/tor is locally free according to Proposition 8.6.1, this implies that
F is coherent. □

8.6.2. The objects F in θ1Σ-qCohX such that h0θ(F) < +∞. In this subsection, we establish
an arithmetic analogue of Proposition 8.6.4, namely Proposition 8.6.6 below. Its derivation will rely
on the following arithmetic counterpart of Lemma 8.6.3, that will also be of crucial when investigating
the analogue of Example 8.6.2 in the next subsection.

Proposition 8.6.5. Let F := (F , (∥.∥x)x∈X(C)) be an object in θ1Σ-qCohX and let C• := (Ci)i∈N
be an exhaustive filtration of F by objects in coh(F) that satisfies the following θ1-summability
condition:16

(8.6.8) Σh1
θ
(F , C•) :=

+∞∑
i=0

h1θ(Ci/Ci−1) < +∞.

If h0θ(F) < +∞, then, when i goes to +∞,

d̂eg π∗Ci = d̂eg Ci − (1/2) log |∆K |rkCi
admits in limit in R. Moreover:

(8.6.9)

+∞∑
i=0

h0θ(Ci/Ci−1) < +∞.

Recall that, according to Proposition 8.1.1, the finiteness of h0θ(F) implies that the Hermitian

seminorms ∥.∥x defining F are actually norms. Therefore the Ci are objects in CohX , and have

well-defined invariants h0θ(Ci) and h1θ(Ci) in R+, which satisfy the Poisson-Riemann-Roch formula:

(8.6.10) h0θ(Ci)− h1θ(Ci) = d̂eg π∗Ci.

Proof. By the very definition of h0θ(F), the increasing sequence
(
h0θ(Ci)

)
i∈N converges in R+

to h0θ(F). According to Theorem 8.2.1,
(
h1θ(Ci)

)
i∈N converges in R+ to h1θ(F). Using (8.6.10), this

implies that the sequence
(
d̂eg π∗Ci

)
i∈N converges in R to h0θ(F)− h

1

θ(F).
Using the Poisson-Riemann-Roch formula again and the additivity of the Arakelov degree, we

obtain, for every N ∈ N:
N∑
i=0

h0θ(Ci/Ci−1) =

N∑
i=0

h1θ(Ci/Ci−1) +

N∑
i=0

d̂eg π∗Ci/Ci−1 =

N∑
i=0

h1θ(Ci/Ci−1) + d̂eg π∗CN .

16As usual, we let: C−1 = 0.
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When N goes to infinity, this admits a limit in R, namely:

Σh1
θ
(F , C•) + h0θ(F)− h

1

θ(F). □

Proposition 8.6.6. For every object F in qCohX and every ε ∈ R∗
+, the following conditions

are equivalent:

(i) F is an object of CohX ;

(ii) h0θ(F) < +∞ and F ⊗O(−ε) is θ1-summable.

Proof. The implication (i)⇒ (ii) is clear.

Conversely when (ii) is satisfied, since F ⊗ O(−ε) is θ1-summable, there exists an exhaustive
filtration C• := (Ci)i∈N of F by objects in coh(F) such that:

Σh1
θ
(F ⊗O(−ε), C•) :=

+∞∑
i=0

h1θ(Ci/Ci−1 ⊗O(−ε)) < +∞.

According to the monotonicity of h1θ, it also satisfies:

Σh1
θ
(F , C•) :=

+∞∑
i=0

h1θ(Ci/Ci−1) < +∞.

Moreover the montonicity of h0θ and the finiteness of h0θ(F) implies the finiteness of h0θ(F ⊗
O(−ε)).

Consequently we may apply Proposition 8.6.5 both to F and to F ⊗O(−ε), equipped with the

filtration C•. This establishes that, when i goes to infinity, both d̂eg π∗Ci and

d̂eg π∗(Ci ⊗O(−ε)) = d̂eg π∗Ci − ε[K : Q]rkKCi,K
admit a limit in R.

This implies that rkKCi,K vanishes when i is large enough. Since, according to Proposition 8.1.1,

the finiteness of h0θ(F) implies that Ftor is finite and F/tor := F/Ftor is projective, this implies that

F is coherent. Proposition 8.1.1 also shows that the Hermitian seminorms defining F are actually
norms, and this completes the proof of (i). □

Proposition 8.6.6 admits the following straightforward consequence:

Corollary 8.6.7. For every objects F in qCohX , the following conditions are equivalent:

(i) F is an object of CohX ;

(ii) F is θ0-finite and θ1-finite.

8.6.3. An intriguing question.

8.6.3.1. For N a positive integer and δ ∈ R, we may consider the non-negative real number:

h0θ,min(N, δ) := inf
{
h0θ(E);E ∈ VectZ, rkE = N, and d̂egE = δ

}
.

Recall that the theta-invariant h0θ defines a continuous function on the orbifold L(N, δ) of iso-
morphism classes of Euclidean lattices of rank N and Arakelov degree δ. This function is actually
an exhaustion function;17 this follows from Mahler’s compactness criterion — which asserts that the
inverse λ1(E)−1 of the first of the successive minima defines an exhaustion function on L(N, δ) —
combined with the lower-bound:

h0θ(E) ≥ h0θ(λ1(E)Z, |.|) ≥ d̂eg (λ1(E)Z, |.|) = log λ1(E)−1.

17In other words the map h0θ : L(N, δ) −→ R+ is proper.
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Consequently the infimum defining h0θ,min(N, δ) is attained at some point of L(N, δ). In partic-
ular, we have:

h0θ,min(N, δ) > 0.

Moreover the Poisson-Riemann-Roch formula implies:

(8.6.11) h0θ,min(N, δ) > δ,

and finally we obtain the following lower bound:

(8.6.12) h0θ,min(N, δ) > δ+ := max(0, δ)

Moreover an application of Siegel’s Mean Value Theorem allows one to establish the following
upper bound:

(8.6.13) h0θ,min(N, δ) < log(1 + eδ).

We refer to [Bos20b, 3.5] for more details on the proof of (8.6.13), and simply emphasize that it
is an illustration of the so-called “probabilistic method” applied to spaces of isomorphism classes
of Euclidean lattices — which goes back to Minkowski, Hlawka, and Siegel — and accordingly is
non-constructive.

Similarly we define:

h1θ,min(N, δ) := inf
{
h1θ(E);E ∈ VectZ, rkE = N, and d̂egE = δ

}
.

and

h0+1
θ,min(N, δ) := inf

{
h0θ(E) + h1θ(E);E ∈ VectZ, rkE = N, and d̂egE = δ

}
.

Here again these number are the infima of positive continuous exhaustion functions, and are
therefore attained and positive.

Recall that the Arakelov degree and the theta invariants associated to some Euclidean lattice E

and of its dual E
∨
satisfy the relations:

d̂egE
∨
= −d̂egE, d̂egE

⊕2
= 2 d̂egE, and d̂eg (E ⊕ E∨

) = 0,

and:
h1θ(E) = h0θ(E

∨
), h0θ(E

⊕2
) = 2h0θ(E), and h0θ(E ⊕ E

∨
) = h0θ(E) + h1θ(E),

and the Poisson-Riemann-Roch formula:

h0θ(E)− h1θ(E) = d̂egE.

This immediately implies the following proposition:

Proposition 8.6.8. For every positive integer N and every δ ∈ R, the following relations hold:

h0+1
θ,min(N, 0) = 2h0θ,min(N, 0),

h1θ,min(N, δ) = h0θ,min(N,−δ),
2h0θ,min(N, δ) ≥ h0θ,min(2N, 2δ),

and:
h0+1
θ,min(N, δ) ≥ h

0
θ,min(2N, 0).

In turn, Proposition 8.6.8 admits the following straightforward consequence:

Corollary 8.6.9. For every positive integer N , the following estimates hold:

2h0θ,min(N, 0) ≥ inf
δ∈R

h0+1
θ,min(N, δ) ≥ h

0
θ,min(2N, 0).

Consequently, we have:

(8.6.14) 2 inf
N>0

h0θ,min(N, 0) ≥ inf
N>0,δ∈R

h0+1
θ,min(N, δ) ≥ inf

N>0
h0θ,min(2N, 0) ≥ inf

N>0
h0θ,min(N, 0).
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8.6.3.2. The following proposition relates the vanishing of the infima occurring in the estimates
(8.6.14) with the existence of some arithmetic counterpart to the constructions of quasi-coherent
OC-modules discussed in paragraph 8.6.1.2 and Example 8.6.2.

Proposition 8.6.10. The following three conditions are equivalent:

(i) there exists F := (F, ∥.∥) in qCohZ that is θ1-summable, satisfies h0θ(F ) < +∞, and such
that F has infinite rank.

(ii) inf
{
h0θ(E) + h1θ(E);E ∈ VectZ, E ̸= {0}

}
= 0;

(iii) inf
{
h0θ(E);E ∈ VectZ, E ̸= {0} and d̂egE = 0

}
= 0.

Concerning condition (i), recall that, according to Proposition 8.1.1, the finiteness of h0θ(F )
implies the finiteness of Ftor and the freeness of F/tor := F/Ftor, and that the Euclidean seminorm
∥.∥ is a norm. In particular, the rank of F is the rank of the free Z-module F/tor, and is infinite if
and only if F is not finitely generated.

Proof. Let F be an object of qCohZ satisfying the conditions in (i). Since F is θ1-summable,
we may find an exhaustive filtration C• := (Ci)i∈N of F that satisfies the θ1-summability condition:

(8.6.15)

+∞∑
i=0

h1θ(Ci/Ci−1) < +∞.

Proposition 8.6.5, applied with X = SpecZ, establishes the following θ0-summability:

(8.6.16)

+∞∑
i=0

h0θ(Ci/Ci−1) < +∞.

From ((8.6.15)) and ((8.6.16)), we get:

lim
i→+∞

(h0θ(Ci+1/Ci) + h0θ(Ci+1/Ci)) = 0,

and therefore:

(8.6.17) lim
i→+∞

(h0θ((Ci+1/Ci)/tor) + h0θ((Ci+1/Ci)/tor)) = 0.

Since F has infinite rank, there exists and infinite subset I of N such that, for every i ∈ I, the
Euclidean lattice (Ci+1/Ci)/tor has positive rank. Since ((8.6.17)) implies:

inf
i∈I

(h0θ((Ci+1/Ci)/tor) + h0θ((Ci+1/Ci)/tor)) = 0,

this completes the proof of (ii).

Conversely if condition (ii) holds, we may find a sequence (Ei)i∈N of Euclidean lattices of positive
rank such that, for every i ∈ N:

h0θ(Ei) + h1θ(Ei) ≤ 2−i.

Then the Euclidean quasi-coherent sheaf of infinite rank F :=
⊕

i∈NEi satisfies:

h0θ(F ) =
∑
i∈N

h0θ(Ei) < +∞.

Moreover F is clearly θ1-summable, and according to Proposition 8.2.4, it satisfies:

h1θ(F ) = h
1

θ(F ) =
∑
i∈N

h1θ(Ei) < +∞.

This completes the proof of (i).

The infimum in condition (ii) (resp. in condition (iii)) is precisely:

inf
N>0,δ∈R

h0+1
θ,min(N, δ) (resp. inf

N>0
h0θ,min(N, 0)).
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According to (8.6.14), these two numbers vanish simultaneously. This establishes the equivalence of
(ii) and (iii). □

According to Proposition 8.6.10, we face the following alternative: either (a) there exists some
F of infinite rank as in (i); or (b) the following holds:

(8.6.18) inf
N>0

h0θ,min(N, 0) > 0,

or equivalently: there exists a universal positive lower bound on the invariant h0θ(E) attached to a

Euclidean lattice E of positive rank and covolume 1.

Observe that for every positive integer N , the estimates (8.6.12) and (8.6.13) take the following
form when δ = 0:

(8.6.19) 0 < h0θ,min(N, 0) < log 2.

At this stage, this appears to be the strongest information available concerning the behavior of
h0θ,min(N, 0) for large N . As recalled above, the upper bound in (8.6.19) is established by some
“probabilistic arguments” à la Minkowski-Hlawka-Siegel.

The validity of (8.6.18) would be rather surprising. At the same time, contradicting (8.6.18)
would constitute a significant improvement on these probabilistic arguments, and seems to require
some original idea.18

18Recall that, concerning the similar question of constructing Euclidean lattices of rank N of “large density”, or
equivalently with “large first minimum,” the original non-constructive lower bounds of Minkowski have never been

improved for large N ; see for instance [CS99, Chapter 1, 1.5].





CHAPTER 9

Theta Invariants and Infinite-Dimensional Geometry of
Numbers

This final chapter is devoted to the relations between the theta invariants attached to some

Euclidean quasi-coherent sheaf M , notably h
1

θ(M), and the more naive invariants introduced in
Chapter 6, especially its covering radius ρ(M).

In the application of theta invariants to Diophantine geometry in the sequel of this monograph,
the formalism developed in the previous chapters will be used to transpose in Diophantine geometry
various cohomological techniques familiar in classical algebraic geometry. It will lead to results

concerning the smallness or the vanishing of the invariants h
1

θ(N) associated to Euclidean quasi-
coherent sheaves N naturally associated to the Diophantine problem under study.

To derive “concrete” consequences — for instance density results — from these results about

the theta invariants h
1

θ(N), it will be crucial to know that they imply similar smallness properties of
the covering radii ρ(N) of these Euclidean quasi-coherent sheaves. The main result of this chapter,
Theorem 9.3.3 and its Corollary 9.3.4, will provide the needed control of covering radii in terms of
theta invariants.

This chapter also discusses further results comparing theta invariants and “naive invariants”
of Euclidean lattices and quasi-coherent sheaves that put into perspective this main result, or are
established by similar techniques.

9.0.1. Before investigating upper bounds on covering radii in terms of theta invariants, in Section 9.1
we establish estimates in the reverse direction. In their simplest form, concerning a Euclidean lattice
E, these estimates read as follows:

(9.0.1) h1θ(E) ≤ πρ(E)2.

At this stage, the inequality (9.0.1) is a straightforward consequences of the basic properties of
Banaszczyk functions established in Chapter 7; see equation (7.1.23) and Corollary 7.4.4. Actually
the derivation of (9.0.1) highlights the significance of a noteworthy invariant of Euclidean lattices,
which may be defined as follows in terms of integrals of Gaussian functions over their Voronoi
domains.

Recall that the Voronoi cell V(E) of a Euclidean lattice E := (E, ∥.∥) is the symmetric polytope
in ER defined as:

V(E) : =
{
x ∈ ER | ∀m ∈ E, ∥x∥ ≤ ∥x−m∥

}
(9.0.2)

=
⋂

m∈E\{0}

{
x ∈ ER | 2⟨m,x⟩ ≤ ⟨m,m⟩

}
;

349
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see Section 6.2. The average value of the Gaussian function e−π∥x∥
2

of x ∈ ER over V(E), namely1:

(9.0.3) covol (E)−1

∫
V(E)

e−π∥x∥
2

dλER
(x),

belongs to the interval (0, 1], and we may define2:

(9.0.4) gv(E) := − log
(
covol (E)−1

∫
V(E)

e−π∥x∥
2

dλER
(x)
)
∈ R+.

The average value (9.0.3) of the Gaussian function over the Voronoi cell of some Euclidean lattice
has been considered for decades in the literature devoted to the design of signals for data transmission
based on Euclidean lattices — it represents the probability that a “quantizer” designed from some
Euclidean lattice provides a correct answer when disrupted by some Gaussian noise; see for instance
[CS99, Section 3.1]. The recent investigations of Euclidean lattices by computer scientists working
on lattice based cryptography, focusing on involving theta invariants and on Banaszczyk functions
and measures — notably in [CDLP13] and [RSD17b] — have demonstrated the significance of
the average value (9.0.3) for the understanding of Euclidean lattices and of their invariants, from a
purely mathematical perspective.

The estimate (9.0.1) is indeed a consequence of the successive estimates:

(9.0.5) h1θ(E) ≤ gv(E) ≤ πρ(E)2.

The first inequality in (9.0.5) appears in substance in the work [CDLP13] by Chung, Dadush, Liu,
and Peikert. The second inequality is a straightforward consequence of the definitions.

From the perspective of this monograph — where we study invariants attached not only to
objects of categories of Euclidean lattices and of their possibly infinite dimensional generalizations,
but also to morphisms in these categories — it is remarkable that the estimates (9.0.5) admit a more

general version concerning morphisms in
....

CohZ; see Theorem 9.1.3. It involves the theta rank rk1θ,
the relative covering radius, and a suitable general generalization of gv(E), instead of h1θ(E), ρ(E),

and gv(E).

In Subsection 9.1.3, we indicate a few additional properties of the invariant gv(E) defined by
(9.0.4), besides the estimates (9.0.5) and their generalizations to morphisms. It turns out, that after
the squared covering radius ρ2 and the theta invariant h1θ, the invariant gv provides another instance

of a positive invariant on CohZ to which may be applied the formalism of Chapter 4 concerning
monotonic and subadditive invariants and their infinite dimensional extensions. But we do not
pursue here this line of investigation, how interesting it promises to be.

9.0.2. Concerning upper bounds on covering radii in terms of theta invariants and a possible converse
to the estimates (9.0.5), it should be emphasized that the covering radius ρ(E) of a Euclidean lattice
— although it can be bounded in terms of h1θ(E) and of the rank of E — cannot be bounded in

terms of h1θ(E) alone.

Indeed one easily checks that the sequence of real numbers (λn)n≥1 defined by the conditions:

h1θ(O(λn)⊕n) = 1/2

satisfies:
λn = log log n+O(1) when n→ +∞,

and accordingly:
lim

n→+∞
ρ(O(λn)⊕n) = lim

n→+∞
e−λn

√
n/2 = +∞;

1Recall that λER
denotes the Lebesgue measure on the finite dimensional Euclidean vector space ER := (ER, ∥.∥).

The measure λER
(V(E)) of the Voronoi cell of the Euclidean lattice E coincides with its covolume covol (E).

2The notation gv stands for Gauss and Voronoi. The use of lower-case letters is intended to reflect the logarithmic

character of the invariant gv.
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see Example 9.4.4 below.

When looking for bounds on the covering radius ρ(E) of a Euclidean lattice E in terms of
h1θ(E) that will still make sense in the infinite dimensional setting, one is therefore led to consider,

not simply a Euclidean lattice E := (E, ∥.∥), but a Euclidean lattice E := (E, ∥.∥) together with a

second Euclidean norm ∥.∥′ on ER, and to look for some control of the covering radius ρ(E
′
) of the

Euclidean lattice E
′
:= (E, ∥.∥′) in terms of h1θ(E) and of some relative trace attached to the norms

∥.∥′ and ∥.∥.
We actually followed a such an approach in Chapter 6, when establishing upper bounds on the

invariants ρ(E
′
) and γ(E

′
) in terms of λ[0](E), where E := (E, ∥.∥) is an arbitrary Euclidean quasi-

coherent sheaf, and where E
′
:= (E, ∥.∥′) is defined by some Euclidean seminorm ∥.∥′ satisfying a

trace class condition with respect to ∥.∥, expressed by the finiteness of the relative trace Tr(∥.∥′/∥.∥)
or Tr(∥.∥′2/∥.∥2); see Proposition 6.4.13 and Corollary 6.4.15.

When E is a Z-module of finite rank, we could apply these upper bounds with ∥.∥ a Euclidean
norm and with ∥.∥′ = ∥.∥. In this case, the relative traces Tr(∥.∥′/∥.∥) and Tr(∥.∥′2/∥.∥2) are equal
to the rank n of E, and our upper bounds specialized to “classical” estimates relating invariants of
a Euclidean lattice and involving its rank. In the infinite rank case, the finiteness of these relative
traces means heuristically that the seminorm ∥.∥′ is much smaller than ∥.∥ when restricted to suitable
subspaces of ER of large codimension.

Our main result, established in Sections 9.2 and 9.3, is an upper bound of this kind. Namely,
we show that, with the above notation, when ∥.∥′ ≤ ∥.∥, the following implication holds for suitable
universal positive constant ε, a, and b:

(9.0.6) h1θ(E) < ε =⇒ ρ(E
′
)2 ≤ a h1θ(E) + bTr(∥.∥′2/∥.∥2).

Actually (9.0.6) holds with ε = 1/2, a = 2, and b = 1/4.

At this stage, a formal argument allows one to extend (9.0.6) to the infinite dimensional setting
and to prove that, for every object N := (N, ∥.∥) of qCohZ and every Euclidean seminorm ∥.∥ ≤ ∥.∥′
on NR, the following implication holds:

(9.0.7) h
1

θ(N) < ε =⇒ ρ(N
′
)2 ≤ a h1θ(N) + bTr(∥.∥′2/∥.∥2),

where N
′
:= (N, ∥.∥′).

Here again, we are actually able to establish a version of the estimates in (9.0.6) and (9.0.7) that

covers “relative invariants” associated to a morphism f : M → N in q
....

CohZ. Namely we establish
an estimate of the form:

(9.0.8) rk
1

θ(f :M → N) < ε =⇒ ρ(f :M → N
′
)2 ≤ a rk1θ(f :M → N) + bTr(∥.∥′2/∥.∥2).

Having at our disposal such relative versions of the upper bounds on covering radii will be crucial
in the Diophantine applications of our formalism.

Our derivation of the estimate (9.0.6) and of its generalizations (9.0.7) and (9.0.8) in Section 9.3
will rely on our previous results on Banaszczyk functions in Chapter 8, combined with the following
estimates. Consider a free Z-module N of finite rank n, and let ∥.∥ (resp. ∥.∥′) be a Euclidean norm
(resp. a Euclidean seminorm) on NR such that ∥.∥′ ≤ ∥.∥. For every η ∈ [0, 1), if we denote by ∥.∥η
the Euclidean norm on NR defined by the equality:

∥x∥2η := ∥x∥2 − η∥x∥′2,

then the following inequality holds:

(9.0.9) 0 ≤ h0θ(N, ∥.∥η)− h0θ(N, ∥.∥) ≤
1

2
log(1− η)−1 Tr(∥.∥′2/∥.∥2).
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The possibility of establishing upper bounds on covering radii in terms of theta invariants of
the form (9.0.6) — where the “error term” is a relative trace Tr(∥.∥′2/∥.∥2) — crucially relies on the
inequality (9.0.9), which we shall establish at the beginning of Section 9.2.

Besides the derivation of (9.0.6) and its generalizations, the inequality (9.0.9) actually ad-
mits other significant applications, concerning bounds on small vectors in Euclidean quasi-coherent
sheaves in terms of their invariants h0θ. These bounds are presented in Subsections 9.2.2 and 9.2.3,
and constitutes infinite dimensional extensions of results on Euclidean lattices established by means
of Banaszczyk method in [Bos20b].

For instance, we show that if E := (E, ∥.∥) is a Euclidean quasi-coherent sheaf, and if ∥.∥′ is a
Euclidean seminorm on ER that satisfies the conditions:

∥.∥′ ≤ ∥.∥ and T := Tr(∥.∥′2/∥.∥2) < +∞,
then the first minimum of the quasi-coherent sheaf (E, ∥.∥′), previously introduced in Definition 6.6.1:

λ1(E, ∥.∥′) := inf
v∈E
∥v∥′

satisfies the following upper bound:

(9.0.10) h0θ(E, T
1/2∥.∥) ≥ log 2 =⇒ λ1(E, ∥.∥′) ≤ 1;

see Theorem 9.2.4 and Corollary 9.2.5 applied with e2δ = T . This constitutes an infinite dimensional
version of Minkowski’s first theorem, which one recovers when E is a Euclidean lattice and ∥.∥′ = ∥.∥.3

In Subsection 9.2.3, we actually show how a variation on the arguments leading to the estimate
(9.0.8) allows one to establish similar upper bounds on the first minimum of the transpose mor-
phism f∨. In Section 9.5, these will be used to establish generalizations of the famous transference
estimates proved by Banaszczyk in his seminal paper [Ban93].

Section 9.4 is devoted to diverse consequences of the comparison estimates established in Sections
9.1 and 9.3. Firstly, in Subsection 9.4.1, we discuss their consequences concerning (finite rank)
Euclidean lattices. Then, in Subsection 9.4.2, we apply them to relate the properties of θ1-finiteness
and ρ2-summability of Euclidean quasi-coherent sheaves. Finally, in Subsection 9.4.3, we establish
the density theorems suited to Diophantine applications that have been alluded to at the beginning
of this introduction.

The estimate (9.0.8) established in Section 9.3 and its consequences in Section 9.4 constitute
the main results of this chapter. Its final sections are devoted to additional results concerning naive
and theta invariants of Euclidean quasi-coherent sheaves, which put into perspective the estimate
(9.0.8) and its proof.

9.0.3. Statements relating the invariants attached to some Euclidean lattice E to those of its dual E
∨

are classically known as transference theorems,4 and a major breakthrough in geometry of numbers
had been achieved by Banaszczyk when — in his seminal paper [Ban93] which inaugurates the use
of theta series and harmonic analysis in the study of general Euclidean lattices5 — he established
transference inequalities in which the constants, depending on the rank n of the Euclidean lattice E
under study, are basically optimal.

3Indeed, when this holds, then T is the rank n of E, and the lower bound h0θ(E,n1/2∥.∥) ≥ d̂eg (E,n1/2∥.∥) :=

− log(nn/2covolE) together with (9.0.10) establish the implication: (covolE)1/n ≤ 2−1/n n−1/2 =⇒ λ1(E) ≤ 1. By

a straightforward scaling argument, this may be reformulated as the estimate: λ1(E) ≤ 21/n n1/2(covolE)1/n.
4Originally, Übertragungssätze; see for instance [Cas71, Chapter XI].
5Since Jacobi’s Fundamenta Nova [Jac29], the theta series θE associated to integral Euclidean lattices — namely

Euclidean lattices E defined by a Euclidean scalar product that is Z valued on E×E — are known to define modular

forms, and through this construction the theory of modular forms classically plays a central role in the study and in the

classification of integral lattices; see for instance [Ebe13] for a modern introduction and references. The techniques
introduced in [Ban93] demonstrated the significance of theta series when investigating the fine properties of general

Euclidean lattices.
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Banaszczyk notably established in [Ban93] the following inequality relating the covering radius
ρ(E) of some Euclidean lattice E := (E, ∥.∥) of positive rank n and the first of the successive minima

λ1(E
∨
) of its dual E

∨
:= (E∨, ∥.∥∨):

(9.0.11) ρ(E)λ1(E
∨
) ≤ n/2.

Recall that, in the left-hand side of (9.0.11), ρ(E) is defined by the equality (6.0.1), which in the
special case of Euclidean lattice takes the classical form:

ρ(E) := max
x∈ER

min
e∈E
∥x− e∥,

and that λ1(E
∨
) is defined as the length of the smallest non-zero vector in E∨:

λ1(E
∨
) := min

ξ∈E∨
∥ξ∥∨.

Moreover, as observed by Banaszczyk, the transference inequalities (9.0.11) are optimal, up to
some multiplicative error term, uniformly bounded when n varies.6

Section 9.5 is devoted to the proof of transference inequalities which extend Banaszczyk’s trans-
ference inequality (9.0.11) and its variants, concerning Euclidean lattices, to the framework of this
monograph, where relative versions of classical invariants are considered, and where one deals with
general Euclidean quasi-coherent sheaves.

Here again, in our possibly infinite dimensional framework, one deals with a countably generated
Z-module M whose underlying the R-vector space MR is equipped with two Euclidean seminorms
∥.∥ and ∥.∥′, and our general transference estimate involve the relative trace Tr (∥.∥′/∥.∥) of these
seminorms.

Recall, that to a morphism in q
....

CohZ:

(9.0.12) f :M −→ N := (N, ∥.∥),
defined by a morphism of countably generated Z-modules:

f :M −→ N

and a Euclidean seminorm ∥.∥ on the real vector space NR, we have attached its relative covering
radius:

ρ(f :M → N) := sup
x∈MR

inf
n∈N/tor

∥fR(x)− n∥ ∈ [0,+∞]

and its lower variant:

ρ(f :M → N) := sup
N ′∈coft(N)

ρ(fN ′ :M → N/N ′) ∈ [0,+∞],

where fN ′ denotes the composition of f with the quotient morphism N → N/N ′; see Definition 6.7.1
and Subsection 6.7.3.

If moreover Ê := (Ê, ∥.∥) is a generalized pro-Euclidean vector bundle, namely an object of

proVect
[∞]

Z , defined by an object Ê of proVectZ and a lower continuous definite Euclidean quasi-

norm on ÊR, we may consider its “first minimum”:

(9.0.13) λ1(Ê) := inf
ξ∈Ê\{0}

∥ξ∥.

More generally, if we are also given a morphism

ψ : Ê −→ F̂

6This follows from the existence, established by Conway and Thompson, of a sequence of Euclidean lattices CTn

such that rkCTn = n, CT
∨
n ≃ CTn, and λ1(CTn) ≥

√
n/2πe(1 + o(n)) when n → +∞. The Euclidean lattices CTn

are actually integral unimodular lattices, and their existence follows from the mass formula of Smith-Minkowski-Siegel;

see [MH73, Chapter II, Theorem 9.5].



354 9. THETA INVARIANTS AND INFINITE-DIMENSIONAL GEOMETRY OF NUMBERS

in CTCZ of domain the topological module Ê underlying Ê, we may consider the following relative
version of the first minimum (9.0.13):

(9.0.14) λ1(ψ : Ê → F̂ ) := inf
ξ∈Ê\kerψ

∥ξ∥.

When F̂ is Ê and ψ is IdÊ , this coincides with λ1(Ê).

To the data of the morphism (9.0.12) in q
....

CohZ is attached by duality an object N
∨

:=

(N∨, ∥.∥∨) of proVect
[∞]

Z , and a morphism in CTCZ:

f∨ := · ◦ f : N∨ := HomZ(N,Z) −→M∨ := HomZ(M,Z);

see Subsection 2.5.2. Consequently it makes sense to consider the associated relative first minimum,
which by its very definition satisfies:

λ1(f
∨ : N

∨ →M∨) := inf {∥ξ∥∨, ξ ∈ N∨ and ξ ◦ f ̸= 0} ,

where:

∥ξ∥∨ := sup {|ξ(x)|, x ∈ NR and ∥x∥ ≤ 1} .

With this notation, our generalization of Banaszczyk transference estimate (9.0.11) to the rel-
ative and infinite dimensional setting asserts that, for every Euclidean seminorm ∥.∥′ on NR, if we

let N
′
:= (N, ∥.∥′), then the following inequality holds:

(9.0.15) ρ(f :M → N
′
)λ1(f

∨ : N
∨ →M∨) ≤ Tr(∥.∥′/∥.∥);

see Theorem 9.5.1.

Even if one restricts to the situation where the Z-module M has finite rank, the extra flexibility
added by this relative version involving pair of seminorms allows one to recover from (9.0.15) the
original transference estimates in Banasczyk [Ban93] concerning successive minima of higher order,
and also their refinements involving successive covering radii, as in [Cai03], and concerning Euclidean
lattices with “gaps” in the sequence of their successive minima.

As already mentioned, the proof of the transference estimate (9.0.15) crucially relies on the
preliminary inequalities established in Subsections 9.2.2 and 9.2.3, by a variation on the arguments
leading to the estimates (9.0.9)

9.0.4. In Section 9.6, we complete our investigation of the relations between the θ1-finiteness of
Euclidean quasi-coherent sheaves and the finiteness of their naive invariants ρ, γ, and λ[0] introduced
in Chapter 6. Namely we show that, if a Euclidean quasi-coherent sheaf M = (M, ∥.∥) satisfies the
condition: λ[0](M) < +∞, then, after replacing the Euclidean seminorm ∥.∥ by a seminorm ∥.∥′
that satisfies a very weak quantitative strengthening of the compactness of ∥.∥′ with respect to ∥.∥,
we obtain a Euclidean quasi-coherent sheave M

′
:= (M, ∥.∥′) that is θ1-finite.

This result result will be a consequence of the criteria for θ1-finiteness established in Section
8.5 and of the Peierls-Bogoliubov inequality, concerning the trace of convex functions of compact
positive operators in Hilbert-spaces, which is recalled in Appendix A .

Finally, in Section 9.7, we summarize the diverse relations between the finiteness properties of
the theta invariants and of the elementary invariants ρ, γ, and λ[0] established so far. We finallly
discuss how these implications apply to families (M, ∥.∥α)α∈A of Euclidean quasi-coherent sheaves
defined by a fixed Z-module M equipped with a family (∥.∥α)α∈A of Euclidean seminorms satisfying
a suitable nuclearity property, and how such families naturally arise in Diophantine geometry.

Although they are devoted to a common theme, the contents of the successive sections of this
chapter are to a large extent independent.
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Sections 9.1 and 9.7 require only a basic knowledge of diverse invariants of Euclidean lattices and
Euclidean quasi-coherent sheaves, and their results are not used elsewhere in this chapter, besides
the final observations in Section 9.7.

A reader interested in upper bounds on covering radii in terms of theta invariants (resp. in
transference inequalities) only might focus on Subsection 9.2.1 and Sections 9.3 and 9.4 (resp. on
Subsections 9.2.1 and 9.2.3 and Section 9.5) and skip the remainder of this chapter.

9.1. The Estimates h1θ(E) ≤ πρ(E)2 and rk1θ(f) ≤ πρ(f)2 and the Invariants gv(E)
and gv(f)

9.1.1. Bounding theta invariants in terms of covering radii: statement of results. In
this section, we shall prove the following upper on covering radii in terms of theta invariants.

Theorem 9.1.1. For every object N := (N, ∥.∥) of qCohZ, the following estimates hold:

(9.1.1) h1θ(N) ≤ πρ(N)2 and h
1

θ(N) ≤ πρ(N)2.

More generally, for every countably generated Z-module M and every morphism of Z-modules
f :M → N, the following estimates hold:

(9.1.2) rk1θ(f :M → N) ≤ πρ(f :M → N)2 and rk
1

θ(f :M → N) ≤ πρ(f :M → N)2.

When N is an object E of CohZ, the estimates (9.1.1) reduce to a single estimate:

(9.1.3) h1θ(E) ≤ πρ(N)2.

More generally, if f : F → E is a morphism of finitely generated Z-modules, the estimates (9.1.2)
reduce to:

(9.1.4) rk1θ(f : F → E) ≤ πρ(f : F → E)2.

Conversely, from the validity of (9.1.3) (resp. of (9.1.4)) for an arbitrary object E of CohZ
(resp. for an arbitrary morphism f : F → E in

....
CohZ), one derives the validity of (9.1.1) (resp. of

(9.1.2)) simply by spelling out the definitions of the lower and upper theta invariants and covering
radii (resp. of the lower and upper theta ranks and relative covering radii).

Observe also that, since h1θ, rk
1
θ, and ρ are downward continuous and “do not see torsion,” to

prove (9.1.3) or (9.1.4), one may assume that E is actually a Euclidean lattice.

We shall establish (9.1.3) or (9.1.4) in a more precise form, that will involve the invariants

attached to objects of CohZ and to morphisms in
....

CohZ defined as follows:

Definition 9.1.2. For every object E := (E, ∥.∥) in CohZ, we let:

(9.1.5) gv(E) := − log

∫
ER/E/tor

e
−πdER

(x,E)2
dµER/Z([x]).

If moreover F is a finitely generated Z-modules and f : F → E a morphism of Z-modules, we
let:

(9.1.6) gv(f : F → E) := − log

∫
FR/F/tor

e
−πdER

(fR(y),E)2
dµFR/Z([y]).

In the right-hand side of (9.1.5), we denote by dER
(x,E) the “distance” of x ∈ ER to (the image

E/tor in ER) of E in the seminormed vector space ER := (ER, ∥.∥):

dER
(x,E) := inf

v∈E/tor

∥x− v∥.
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It depends only on the class [x] of x in the compact torus ER/E/tor. Moreover µER/Z denotes the

Haar probability measure on this torus.7 A similar notation, with E replaced by F , is used in the
right-hand side of (9.1.6).

Observe that the invariant (9.1.6) of the identity morphism boils down to the invariant (9.1.5):

gv(IdE : E → E) = gv(E).

Moreover one easily checks that the invariant gv(f : F → E) attached to the morphism f : F →
E in

....
CohZ depends only on E and on the image fR(FR) of fR in ER.

We may now state the more precise version of the estimates (9.1.3) and (9.1.4) alluded to above:

Theorem 9.1.3. For every Euclidean lattice E, the following inequalities hold:

(9.1.7) h1θ(E) ≤ gv(E) ≤ πρ(E)2.

If moreover F is a finitely generated Z-modules and f : F → E a morphism of Z-modules, we have:

(9.1.8) rk1θ(f : F → E) ≤ gv(f : F → E) ≤ πρ(f : F → E)2.

9.1.2. Proof of Theorem 9.1.3.

9.1.2.1. The second inequality in (9.1.7) (resp. in (9.1.8)) is a straightforward consequence of
the definition (9.1.5) of gv(E) (resp. of the definition (9.1.6) of gv(f : F → E)) and of the definition
of ρ(E) (resp. of ρ(f : F → E)):

(9.1.9) ρ(E) := max
x∈ER

dER
(x,E) ( resp. ρ(f : F → E) := max

y∈FR
dER

(fR(y), E) ).

.

9.1.2.2. The first inequality in (9.1.7) already appears in [CDLP13] and follows from the ex-
pression (7.7.6) for h1θ(E) as an integral:

h1θ(E) = − log

∫
ER/E/tor

e−πbE(x) dλER/Z(x),

and of the estimate:
bE(x) ≤ dE(x,E)2,

which follows from (7.7.5) and from the invariance of bE under translation by E/tor, as in Corol-
lary 7.4.4.

9.1.2.3. Let us finally prove the inequality8:

(9.1.10) rk1θ(f : F → E) ≤ gv(f : F → E).

As observed above, to achieve this, we may assume that E := (E, ∥.∥) is a Euclidean lattice. By
replacing F by the saturation of f(F ) in E, we may also assume that F is a saturated Z-submodule
of E and that f is the inclusion morphism. Then we have:

rk1θ(f : F → E) = h1θ(E)− h1θ(E/F ).

Consider the closed subgroup FR+E of ER. Its connected component is FR, and we shall denote
by ν the Haar measure on FR+E the restriction of which to FR coincides with the Lebesgue measure
λFR

on the Euclidean vector space FR := (FR, ∥.∥|FR).

Since F is saturated in E, the image of FR + E in ER/E may be identified with FR/F , and we
shall denote by:

p : FR + E −→ (FR + E)/E ≃ FR/F

the quotient map.

7The notation µER/Z is motivated by the identification of Z-modules: E ⊗Z (R/Z) ≃ ER/E/tor.
8The proof below, applied to f = IdE , provides a proof of the first inequality in (9.1.7) logically independent of

the one in 9.1.2.2, but that is in substance the same proof.
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To a Borel function on FR + E:

φ : FR + E −→ [0,+∞],

we may attach the Borel function on FR/F :

p∗φ : FR/F −→ [0,+∞]

defined by the following equality, for every y ∈ FR, of class [y] in FR/F :

π∗φ([y]) :=
∑
v∈E

φ(y + v).

Then the following equality holds in [0,+∞]:

(9.1.11)

∫
FR+E

φ(y) dν(y) = covol (F )

∫
FR/F

p∗φ([y]) dµFR/Z([y]).

Lemma 9.1.4. Let φ be the Gaussian function on FR +E, defined by the following equality, for
every y ∈ FR + E:

φ(y) := e−π∥y∥
2

.

(1) The following equality holds:

(9.1.12)

∫
FR+E

e−π∥y∥
2

dν(y) =
∑

w∈E/F

e
−π∥w∥2

E/F .

(2) For every y ∈ FR + E, we have:

(9.1.13) p∗φ([y]) ≥ e−πdER
(y,E)2

∑
v∈E

e−π∥v∥
2

.

Proof. (1) For every w ∈ E/F , let us denote by w⊥ the unique element of the orthogonal F⊥
R

of FR in the Euclidean vector space ER whose image in ER/FR ≃ (E/F )R is w. The map:

E/F ⊕ FR −→ E + FR, (w, t) 7−→ w⊥ + t

is an isomorphism, satisfies:
∥w∥2

E/F
+ ∥t∥2 = ∥w⊥ + t∥2,

and maps the product of the counting measure on E/F and of the Lebesgue measure λFR
on FR to

the measure ν on FR + E.

Consequently we have:∫
FR+E

e−π∥y∥
2

dν(y) =
∑

w∈E/F

∫
FR

e−π∥w
⊥+t∥2

dλFR
(t)

=
∑

w∈E/F

e
−π∥w∥2

E/F

∫
FR

e−π∥t∥
2

dλFR
(t)

=
∑

w∈E/F

e
−π∥w∥2

E/F .

(2) For every y ∈ FR + E, we have:

p∗φ([y]) =
∑
v∈E

e−π∥y+v∥
2

=
∑
v∈E

e−π∥y−v∥
2

=
∑
v∈E

(
e−π∥y+v∥

2

+ e−π∥y−v∥
2

)/2

≥ e−π∥y∥
2 ∑
v∈E

e−π∥v∥
2

.
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Therefore, for every w ∈ E:

p∗φ([y]) ≥ e−π∥y−w∥2 ∑
v∈E

e−π∥v∥
2

.

By taking the supremum over w ∈ E, (9.1.13) follows. □

From (9.1.11), (9.1.12), and (9.1.13), we deduce:∑
w∈E/F

e
−π∥w∥2

E/F ≥ covol (F )
∑
v∈E

e−π∥v∥
2

∫
FR/F

e
−πdER

(y,E)2
dµFR/Z([y]),

and therefore, by taking logarithms:

gv(f : F → E) := − log

∫
FR/F

e
−πdER

(y,E)2
dµFR/Z([y]) ≥ −h

0
θ(E/F ) + h0θ(E)− d̂egF .

Moreover, according to the Poisson-Riemann-Roch formula applied to E/F and E and to the
additivity of the Arakelov degree, we have:

− h0θ(E/F ) + h0θ(E)− d̂egF = −h1θ(E/F )− d̂egE/F + h1θ(E) + d̂egE − d̂egF

= −h1θ(E/F ) + h1θ(E) = rk1θ(f : F → E).

This completes the proof of (9.1.10).

9.1.3. The invariant gv : CohZ → R+.

9.1.3.1. If E := (E, ∥.∥) is a Euclidean lattice, its Voronoi cell V(E), defined by (9.0.2), con-
stitutes — up to some Lebesgue negligeable subset — a fundamental domain for the action by
translation of E on ER, and for every x ∈ V(E), we have:

dER
(x,E) = ∥x∥.

Consequently the average of the function e
−πdER

(.,E)2
over EE/E which occurs in the definition

(9.1.5) of gv(E) coincide with the average of the Gaussian function e−π∥x∥
2

of x ∈ ER over V(E):

(9.1.14)

∫
ER/E/tor

e
−πdER

(x,E)2
dµER/Z([x]) = covol (E)−1

∫
V(E)

e−π∥x∥
2

dλER
(x),

and therefore the invariant gv(E) admits the following expression:

(9.1.15) gv(E) := − log
(
covol (E)−1

∫
V(E)

e−π∥x∥
2

dλER
(x)
)
.

As mentioned in the introduction to this chapter, the average value (9.1.14) of the Gaussian
function over the Voronoi cell of some Euclidean lattice has been considered in the literature devoted
to the design of signals for data transmission based on Euclidean lattice, since the beginning of the
1970’s. The problem of finding Euclidean lattices of a given rank and covolume for which (9.1.14)
is maximal is known as the lattice version of the Gaussian channel coding problem. We refer the
reader to [CS99, Section 3.1] for a discussion and references on this circle of questions.

It turns out that the quantity (9.1.14), and the Euclidean lattices for which it achieves a maxi-
mum, play a key role in the work in the proof [RSD17b] by Regev and Stephens-Davidowitz of a
conjecture of Dadush, which in turns implies the ℓ2 case of the Kannan-Lovász conjecture [KL88];
see [DR16] and [RSD17b].9

9See also Theorem 9.4.1 and ... below for a statement of the main results in [DR16] and [RSD17b], and

[Bos20a] for a survey of their proofs.
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Actually the proof of Regev and Stephens-Davidowitz rely crucially on diverse properties of the
quantity (9.1.14), which may be expressed as the inequality:

h1θ(E) ≤ gv(E),

established in substance in [CDLP13], and as the fact that gv(E) is a subadditive invariant of the
Euclidean lattice E.

9.1.3.2. Actually the invariant gv(E), defined by (9.1.5) for every object E of CohZ, turns out
to provide interesting instances of the properties of invariants investigated in Chapter 4.

Proposition 9.1.5. The invariant gv : CohZ → R+ defined by (9.1.5) satisfies the monotonic-
ity and the subadditivity conditions Mon1

Q and SubAdd, and the downward continuity condition

Cont+.

It also satisfies the additivity condition Add⊕, and is small on Euclidean coherent sheaves
generated by small sections, and compatible with vectorization.10

We leave the proof of this proposition as an exercise for the interested reader.11

We ignore whether the invariant gv : CohZ → R+ satisfies the strong monotonicity condition
introduced in Chapter 5.

9.2. Relative Traces, Theta Invariants, and First Minima

9.2.1. A key computation: variation of arithmetic degrees in terms of singular val-
ues. As mentioned in 9.0.2 above, the following lemma will play a crucial role for establishing
estimates relating invariants attached to pairs of Euclidean quasi-coherent sheaves N := (N, ∥.∥)
and N

′
:= (N, ∥.∥′) with the same underlying Z-module N, when the relative trace Tr(∥.∥′2/∥.∥2) is

finite.

Lemma 9.2.1. Let N be a free Z-module of finite rank n, and let ∥.∥ (resp. ∥.∥′) be a Euclidean
norm (resp. a Euclidean seminorm) on NR such that:

∥.∥′ ≤ ∥.∥.

Let us consider the singular values12:

0 ≤ λn ≤ · · · ≤ λ1 ≤ 1

of ∥.∥′ with respect to ∥.∥, and, for η ∈ [0, 1), let us denote by ∥.∥η the Euclidean norm on NR defined
by the equality:

(9.2.1) ∥x∥2η := ∥x∥2 − η∥x∥′2,

for every x ∈ NR.

Then, for every η ∈ [0, 1), the following relations hold:

(9.2.2) d̂eg (N, ∥.∥η)− d̂eg (N, ∥.∥) = −1

2

∑
1≤1≤n

log(1− ηλ2i )1/2,

and:

(9.2.3) 0 ≤ h0θ(N, ∥.∥η)− h0θ(N, ∥.∥) ≤ d̂eg (N, ∥.∥η)− d̂eg (N, ∥.∥) ≤ 1

2
log(1− η)−1 Tr(∥.∥′2/∥.∥2).

10Namely, for every object E of CohZ, gv(E) = gv(E
vect

.
11All its assertions are rather straightforward consequences of the definitions, with the possible exception of the

subadditivity, the proof of which appears in [RSD17b, Proof of Proposition 4.14] and in [Bos20a, Proposition 6.3].
12See Appendix A.
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In particular the following estimates are satisfied:

(9.2.4) 0 ≤ h0θ(N, ∥.∥η)− h0θ(N, ∥.∥) ≤
1

2
log(1− η)−1 Tr(∥.∥′2/∥.∥2).

A key feature of the estimates (9.2.4) is that they do not explicitly involve the rank n of the Z-module
N , but only the relative trace Tr(∥.∥′2/∥.∥2). This will be crucial when extending consequences of
these estimates to general quasi-coherent Euclidean sheaves.

In the same vein, observe that, when written in the equivalent form:

(9.2.5) h0θ(N, ∥.∥) ≤ h0θ(N, ∥.∥η) ≤ h0θ(N, ∥.∥) +
1

2
log(1− η)−1 Tr(∥.∥′2/∥.∥2),

the estimates (9.2.4) extends to quasi-coherent Euclidean13 sheaves by an easy approximation argu-
ment. We leave this to the interested reader, as well as extensions of (9.2.5) to pro-Hermitian vector
bundles.

Proof. By introducing a basis of NR that is orthogonal both for the Euclidean (semi)norms ∥.∥
and ∥.∥′, one sees that the ratio of the Lebesgue measures attached to the Euclidean vector spaces
(NR, ∥.∥η) and (NR, ∥.∥) is: ∏

1≤i≤n

(1− ηλ2i )1/2.

This implies the equality:
covol(N, ∥.∥η)
covol(N, ∥.∥)

=
∏

1≤i≤n

(1− ηλ2i )1/2,

and (9.2.2) follows.

The estimates (9.2.3) follow from Corollary 7.2.5 applied to the morphism IdN from (N, ∥.∥) to
(N, ∥.∥η), and from (9.2.2). Indeed we have:

−1

2

∑
1≤1≤n

log(1− ηλ2i )1/2 ≤
1

2
log(1− η)−1

∑
1≤i≤n

λ2i ≤
1

2
log(1− η)−1 Tr(∥.∥′2/∥.∥2),

since −x−1 log(1− x) =
∑∞
k=0 x

k/(k + 1) is an increasing function of x ∈ [0, 1), and therefore:

− log(1− ηλ2i ) ≤ − log(1− η)λ2i
for every i ∈ {1, · · · , n}. □

9.2.2. Rank-free comparisons between h0θ and h0Ar. This subsection parallels the discus-
sion of [Bos20b, 3.1]. We show how Lemma 9.2.1 above allows to remove the dependance in the
ranks of the Euclidean lattice considered, and as a consequence to obtain statements for arbitrary
quasi-coherent Euclidean sheaves.

We will be concerned with the following invariants of a Euclidean quasi-coherent sheaf N =
(N, ∥.∥), see [Bos20b, 3.1.1] for the Euclidean case. We define:

h0Ar(N) = log
∣∣{v ∈ N | ∥v∥ ≤ 1}

∣∣;
h0Ar−(N) = log

∣∣{v ∈ N | ∥v∥ < 1}
∣∣;

h0Bl(N) = log max
x∈NR

∣∣{v ∈ N | ∥v − x∥ ≤ 1}
∣∣.

Clearly, we have:

h0Ar−(N) ≤ h0Ar(N) ≤ h0Bl(N).

13Namely to the situation where N = (N, ∥.∥) is an arbitrary object of qCohZ, where ∥.∥′ is an arbitrary

Euclidean seminorm over NR satisfying ∥.∥′ ≤ ∥.∥, and where ∥.∥η is defined by (9.2.1).
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9.2.2.1. One of the general guiding principles of this chapter is the idea that results in the
geometry of numbers for Euclidean lattices should generalize to arbitrary Euclidean quasi-coherent
sheaves as long as they don’t refer to the ranks of the lattices involved. As a first illustration, we
obtain the following generalization of [Bos20b, Proposition 3.1.3]:

Proposition 9.2.2. Let N be a Euclidean quasi-coherent sheaf. We have:

(9.2.6) h0Bl(N) ≤ h0θ(N) + π.

Proof. We could adapt the proof of [Bos20b, Proposition 3.1.3] and give a direct proof of
(9.2.6). However, we illustrate our general method of extending estimates on Euclidean lattices to
estimates on quasi-coherent Euclidean shaves.

If N is a Euclidean lattice, then the statement is [Bos20b, Proposition 3.1.3]. Let us assume
that N is an object of CohZ. We have:

h0Bl(N) = h0Bl(N/tor, ∥.∥) + log
∣∣Ntor

∣∣
and

h0θ(N) = h0θ(N/tor, ∥.∥) + log
∣∣Ntor

∣∣.
As a consequence, after replacing N with N/tor, we may assume that N is torsion free. We may
choose a decreasing sequence (∥.∥n)n≥0 of Euclidean norms on NR that converges to ∥.∥. By the
previous paragraph, the estimate (9.2.6) is valid when ∥.∥ is replaced with ∥.∥n. Letting n tend to
infinity finishes proves that (9.2.6) holds for N .

Finally, assume that N is an object of qCohZ. First assume that h0Bl(N) is finite and equals en

for some positive integer n. Then there exists x ∈ NR and elements v1, . . . , vn of N such that, for
every integer i between 1 and n, ∥vi − x∥ ≤ 1.

Let C be the Z-submodule of N generated by v1, . . . , vn. After replacing x by its projection
onto CR, we may assume that x belongs to CR and we get the equality:

h0Bl(C, ∥.∥) = h0Bl(N).

Using the coherent case treated above, we may write:

h0Bl(N) = h0Bl(C, ∥.∥) ≤ h0θ(C, ∥.∥) ≤ h0θ(N).

We leave it to the interested reader to adapt the argument above to the case where h0Bl(N) is
infinite. □

9.2.2.2. The following statement is proved exactly as [Bos20b, Lemma 3.1.5], once Lemma 9.2.1
is taken into account. We use its notation: N is a free Z-module of finite rank n, ∥.∥ (resp. ∥.∥′) is
a Euclidean norm (resp. a Euclidean seminorm) on NR such that:

∥.∥′ ≤ ∥.∥.

We let λn ≤ . . . ≤ λ1 be the singular values of ∥.∥′ with respect to ∥.∥ and, for η ∈ [0, 1), we
consider the Euclidean norm ∥.∥η as above.

Lemma 9.2.3. (1) The expression

h0θ(N, ∥.∥η) +
1

2

∑
1≤1≤n

log(1− ηλ2i )

defines a decreasing function of η ∈ [0, 1).
(2) For any η ∈ [0, 1), we have:

(9.2.7)
∑
v∈N
∥v∥′2e−π∥v∥

2
η ≤ 1

2

( n∑
i=1

λ2i
1− ηλ2i

)(∑
v∈N

e−π∥v∥
2
η

)
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(3) For any r ∈ R∗
+ and any η ∈ [0, 1), we have:

(9.2.8)
∑

v∈N,∥v∥′<r

e−π∥v∥
2
η ≥

(
1− 1

2r2

n∑
i=1

λ2i
1− ηλ2i

)∑
v∈N

e−π∥v∥
2
η .

Proof. Lemma 9.2.1 shows that the expression h0θ(N, ∥.∥η) + 1
2

∑
1≤1≤n log(1 − ηλ2i ) is equal

to h1θ(N, ∥.∥η)− d̂eg(N, ∥.∥), which is indeed a decreasing function of η. This proves (1).

To prove (2), we simply take the derivative of h0θ(N, ∥.∥η)+ 1
2

∑
1≤1≤n log(1−ηλ2i ) as a function

of η.

Finally, to prove (3), we combine (9.2.7) with the straightforward estimate:∑
v∈N,∥v∥′≥r

e−π∥v∥
2
η ≤ 1

r2

∑
v∈N
∥v∥′2e−π∥v∥

2
η .

This yields: ∑
v∈N,∥v∥′≥r

e−π∥v∥
2
η ≤ 1

2r2

( n∑
i=1

λ2i
1− ηλ2i

)(∑
v∈N

e−π∥v∥
2
η

)
or, equivalently: ∑

v∈N,∥v∥′<r

e−π∥v∥
2
η ≥

(
1− 1

2r2

n∑
i=1

λ2i
1− ηλ2i

)∑
v∈N

e−π∥v∥
2
η .

□

9.2.2.3. Theorem 9.2.4 below is a first instance concerning theta invariants of the general prin-
ciple, which plays a key role in this monograph and its applications, that estimates of geometry of
numbers which involve the rank of Euclidean lattices still hold in the infinite setting, provided ranks
are suitably replaced by relative traces.

Theorem 9.2.4. Let N = (N, ∥.∥) be an object of qCohZ and let ∥.∥′ be a Euclidean seminorm
on NR such that ∥.∥′ ≤ ∥.∥. Let δ be a real number such that:

Tr(∥.∥′2/∥.∥2) < 2e2δ.

Then the following inequalities holds:

(9.2.9) h0Ar−(N, e
−δ∥.∥′) ≥ h0θ(N) + log

(
1− 1

2
e−2δTr(∥.∥′2/∥.∥2)

)
and:

(9.2.10) h0Ar−(N, ∥.∥′) ≥ h0θ(N, eδ∥.∥) + log
(
1− 1

2
e−2δTr(∥.∥′2/∥.∥2)

)
Proof. We first note that (9.2.10) follows from (9.2.9) applied after replacing ∥.∥ with e−δ∥.∥

and ∥.∥′ with e−δ∥.∥′. We will prove the estimate (9.2.9).

First consider the case where N is a free Z-module of rank n and ∥.∥ is a Euclidean norm.
Applying (9.2.8) with η = 0 and r = eδ, we get:∑

v∈N,∥v∥′<eδ

e−π∥v∥
2

≥
(
1− 1

2
e−2δTr(∥.∥′2/∥.∥2)

)∑
v∈N

e−π∥v∥
2

.

The left-hand side of this inequality is bounded above by exp(h0Ar−(N, e
−δ∥.∥′). Taking loga-

rithms, we obtain (9.2.9).

Once the estimate (9.2.9) has been shown to hold for Euclidean lattices, its derivation in the
general case follows the exact same steps as in Proposition 9.2.2. □
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As a direct consequence of Theorem 9.2.4, we obtain the following analogue of [Bos20b, Corol-
lary 3.1.2], which may be considered as a variant of Minkowski’s first theorem in infinite rank:

Corollary 9.2.5. With the notation of Theorem 9.2.4, we have:

λ1(N, ∥.∥′) ≥ eδ =⇒ h0θ(N) ≤ log
(
1− 1

2
e−2δTr(∥.∥′2/∥.∥2)

)−1

and:

λ1(N, ∥.∥′) ≥ 1 =⇒ h0θ(N, e
δ∥.∥) ≤ log

(
1− 1

2
e−2δTr(∥.∥′2/∥.∥2)

)−1

.

We leave it to the reader to state and prove an analogue of Corollary 9.2.5 for the relative version
of first minima.

9.2.3. Bounding first minima in terms of theta invariants. We now turn our attention
to the first minimum and its relative version, and will derive below estimates that are analogue to
[Bos20b, 3.2.2]. Aside from their own intrinsic interest, and from the illustration they provide of
our general method of replacing ranks by relative traces to prove estimates in infinite rank, those
estimates will be essential to our proof of general transference inequalities in Section 9.5.

9.2.3.1. Let N be a free Z-module of finite rank, and let ∥.∥ (resp. ∥.∥′) be a Euclidean norm
(resp. a Euclidean seminorm) on NR such that:

∥.∥′ ≤ ∥.∥.
For η ∈ [0, 1), let us denote by ∥.∥η the Euclidean norm on NR defined by the equality:

(9.2.11) ∥x∥2η := ∥x∥2 − η∥x∥′2,
for every x ∈ NR.

If K is a sub-Z-module of N , let λ1(N,K, ∥.∥′) denote the quantity

λ1(N,K, ∥.∥′) := min
v∈N\K

∥v∥′.

If K = 0, this is simply the first minimum of (N, ∥.∥′). Write N = (N, ∥.∥) and K = (K, ∥.∥).

Proposition 9.2.6. For any η ∈ [0, 1), the following inequality holds:

(9.2.12) eh
0
θ(K)−h0

θ(N) + e−πηλ1(N,K,∥.∥′)2+1/2 log(1−η)−1 Tr(∥.∥′2/∥.∥2) ≥ 1.

Proof. We have:

eh
0
θ(N) =

∑
c∈N/K

∑
v∈c+K

e−π∥v∥
2

=
∑
v∈K

e−π∥v∥
2

+
∑

c∈(N/K)\{0}

∑
v∈c+K

e−π∥v∥
2

= eh
0
θ(K) +

∑
c∈(N/K)\{0}

∑
v∈c+K

e−π∥v∥
2
η−πη∥v∥

′2

≤ eh
0
θ(K) + e−πλ1(N,K,∥.∥′)2

∑
c∈(N/K)\{0}

∑
v∈c+K

e−π∥v∥
2
η

≤ eh
0
θ(K) + e−πλ1(N,K,∥.∥′)2+h0

θ(N,∥.∥η).

(9.2.13)

Applying (9.2.4), this proves (9.2.13). □

Corollary 9.2.7. Write T = Tr(∥.∥′2/∥.∥2). Assume that we have:

λ1(N,K, ∥.∥′) >
√

T

2π
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and define:

λ̃ :=

√
2π

T
λ1 (N,K, ∥.∥′) ∈ (1,+∞).

Then:

(9.2.14) e−(h0
θ(N)−h0

θ(K)) + eT/2(1−λ̃
2+2 log λ̃) ≥ 1.

Equivalently:

(9.2.15) h0θ(N)− h0θ(K) ≤ log
(
1−

(
λ̃e−1/2(λ̃2−1)

)T)−1

.

Proof. We apply the estimate (9.2.12) with η = 1− λ̃2; the reader might check that this is the
value of η that gives the optimal inequality. Then

−πη λ1(N,K, ∥.∥′)2 + (1/2) log(1− η)−1 T =
T

2

(
1− λ̃2 + 2 log λ̃

)
and (9.2.12) is equivalent to (9.2.14). □

Note that when K = 0 and ∥.∥ = ∥.∥′, then h0θ(K) = 0, T is the rank of N and Corollary 9.2.7
is equivalent to [Bos20b, Corollary 3.2.3].

9.2.3.2. We will use the general invariant λ1(N,K, ∥.∥′) below when proving general transference
inequalities. Here we simply focus on the case where K = 0, so that we are simply considering the
first minimum. We obtain the following general statement:

Theorem 9.2.8. Let N = (N, ∥.∥) be an object of qCohZ and let ∥.∥′ be a Euclidean seminorm
on NR such that ∥.∥′ ≤ ∥.∥. Assume that the relative trace

T := Tr(∥.∥′2/∥.∥2)

is finite, and that we have:

λ1(N, ∥.∥′) >
√

T

2π
.

Define:

λ̃ :=

√
2π

T
λ1(N, ∥.∥′) ∈ (1,+∞).

Then:

(9.2.16) h0θ(N) ≤ log
(
1−

(
λ̃e−1/2(λ̃2−1)

)T)−1

.

Proof. When N is a Euclidean lattice, (9.2.16) is simply (9.2.14) in Corollary 9.2.7. The
derivation of (9.2.16) in the general case from the cases of Euclidean lattices follows the exact same
steps as in Proposition 9.2.2, once taken into account the fact that

λ̃ 7→ log
(
1−

(
λ̃e−1/2(λ̃2−1)

)T)−1

is an decreasing function of λ̃ ∈ (1,+∞). □

We leave it to the reader to state and prove analogues in infinite rank of Corollary 9.2.7.

9.3. Bounding Covering Radii in Terms of Theta Invariants

9.3.1. Estimates on Banaszczyk functions.



9.3. BOUNDING COVERING RADII IN TERMS OF THETA INVARIANTS 365

9.3.1.1. The bounds on covering radii in terms of theta invariants that we shall establish in
this section will be consequences of Lemma 9.2.1, the upper bounds on the Banaszczyk function bN
attached to an object N of qCohZ in terms of h

1

θ(N) established in Subsection 8.3.3, combined with
the next lemma.

Lemma 9.3.1. Let N be a finitely generated free Z-module, and ∥.∥′ (resp. ∥.∥′′) a Euclidean
seminorm (resp. a Euclidean norm) on the R-vector space NR.

We define a Euclidean norm ∥.∥ on NR by the equality:

∥.∥2 = ∥.∥′2 + ∥.∥′′2.

and we denote by N (resp. by N
′′
) the Euclidean lattice (N, ∥.∥) (resp. (N, ∥.∥′′)). Moreover for

every x ∈ NR, we let:
d′(x,N) := d∥.∥′(x,N) = inf

n∈N
∥x− n∥′.

Then the following inequality holds for every x ∈ NR:

(9.3.1) bN ′′(x) + d′(x,N)2 ≤ bN (x) + π−1
(
h0θ(N

′′
)− h0θ(N)

)
.

In (9.3.1), bN ′′ and bN denote the Banaszczyk functions on NR attached to the Euclidean lattices

N
′′
and N , as defined in 7.1.2.1 above.

Proof. Let x be an element of NR. For any v ∈ N , we have:

∥v − x∥′2 ≥ d′(x,N)2.

Moreover, according to the definition of the Banaszczyk function BN and of the Euclidean lattice

N, we have:

BN (x) = e−h
0
θ(N)

∑
v∈N

e−π∥v−x∥
2

= e−h
0
θ(N)

∑
v∈N

e−π∥v−x∥
′2−π∥v−x∥′′2

.

Consequently the following inequality holds:

BN (x) ≤ e−h
0
θ(N)−πd′(x,N)2

∑
v∈N

e−π∥v−x∥
′′2

= e−h
0
θ(N)−πd′(x,N)2+h0

θ(N
′′
)BN ′′(x),

and (9.3.1) follows by taking logarithms. □

9.3.1.2. The following proposition is technically the central result of this section. At this stage,
it is a rather formal consequence of Lemmas 9.2.1 and 9.3.1 established in the previous subsection.

Proposition 9.3.2. Let N = (N, ∥.∥) be an object of qCohZ, let ∥.∥′ be a Euclidean seminorm
on NR such that

∥.∥′ ≤ ∥.∥
on NR, and let η be an element of the interval [0, 1).

We define a Euclidean seminorm ∥.∥η on MR by the equality:

(9.3.2) ∥x∥2η := ∥x∥2 − η∥x∥′2,

for every x ∈ NR, and we denote by Nη the object (N, ∥.∥η) of CohZ. Moreover, for every x ∈ NR,
we let:

d′(x,N) := d∥.∥′(x,N/tor) = inf
n∈N/tor

∥x− n∥′.

Then the following inequality holds, for every x ∈ NR:

(9.3.3) bNη
(x) + η d′(x,N)2 ≤ bN (x) + (2π)−1 log(1− η)−1 Tr(∥.∥′2/∥.∥2).

In particular, we have:

(9.3.4) η d′(x,N)2 ≤ bN (x) + (2π)−1 log(1− η)−1 Tr(∥.∥′2/∥.∥2).
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Proof. We shall divide the proof of the estimate (9.3.3) in three successive steps: firstly when
N is a Euclidean lattice; secondly when N is an object of CohZ; finally when N is an arbitrary object
of qCohZ. The estimate (9.3.4) will follow from (9.3.3) and the non-negativity of the function bNη

.

(1) When N is a Euclidean lattice, the inequality (9.3.3) is a straightforward consequence of
Lemma 9.3.1 applied with ∥.∥′ replaced by η1/2∥.∥′ and ∥′′ by ∥.∥η, and of Lemma 9.2.1. Indeed we
have, for every x ∈ NR:

η dη1/2∥.∥′(x,N)2 = inf
n∈N

η∥x− n∥′2 = η d′(x,N)2.

(2) Let us assume that N is an object of CohZ.

The various terms of (9.3.3) are unchanged when N = (N, ∥.∥) is replaced by:

N/tor := (N/tor, ∥.∥).

Consequently, to establish (9.3.3), we may also assume that N is torsion free.

Then we may choose a decreasing sequence (∥.∥n)n∈N of Euclidean norms on NR that converges
to ∥.∥. According to part (1) of this proof, for every n ∈ N, the estimate (9.3.3) is valid when ∥.∥ is
replaced by ∥.∥n and ∥.∥η is replaced by the Euclidean norm ∥.∥n,η defined by the equality:

∥x∥2n,η := ∥x∥2n − η∥x∥′2.

The decreasing sequence of Euclidean norms (∥.∥n,η)n∈N converges to ∥.∥η, and the validity of (9.3.3)
follows by taking the limit when n goes to infinity, according to the downward continuity of Ba-
naszczyk functions as functions of the seminorms observed in 7.7.1.1 above; see notably (7.7.4).

(3) Let us finally consider an arbitrary object N of qCohZ. According to part (2) of this proof,
for every C ∈ coh(N) — that is for every finitely generated Z-submodule C of N — and every x in
CR, the following inequality holds:

(9.3.5) b(C,∥.∥η|CR )
(x) + η d′(x,C)2 ≤ b(C,∥.∥|CR )

(x) + (2π)−1 log(1− η)−1 Tr(∥.∥′2|CR
/∥.∥2|CR

).

Observe that, for every C ∈ coh(N), the following inequality holds:

Tr(∥.∥′2|CR
/∥.∥2|CR

) ≤ Tr(∥.∥′2/∥.∥2).

This follows from the very definition of the relative trace of the square of two Euclidean semi norms;
see Appendix B. Consequently, from (9.3.5), we derive the estimate:

(9.3.6) b(C,∥.∥η|CR )
(x) + η d′(x,C)2 ≤ b(C,∥.∥|CR )

(x) + (2π)−1 log(1− η)−1 Tr(∥.∥′2/∥.∥2).

By the very construction of Banaszcyk functions attached to objects of qCohZ in 8.3.1.1 above,
the Banaszczyk functions b(C,∥.∥η|CR )

(x) and b(C,∥.∥|CR )
(x), as functions on the directed set

(9.3.7)
(
{C ∈ coh(N) | x ∈ CR},⊆

)
are decreasing, and satisfy:

(9.3.8) lim
C∈coh(N)

b(C,∥.∥η|CR )
(x) = inf

C∈coh(N)

x∈CR

b(C,∥.∥η|CR )
(x) = bNη

(x)

and

(9.3.9) lim
C∈coh(N)

b(C,∥.∥|CR )
(x) = inf

C∈coh(N)

x∈CR

b(C,∥.∥|CR )
(x) = bN (x).

The “distance to x” d′(x,C) also is a decreasing function of C in the directed set (9.3.7), and it
is straightforward that we have:

(9.3.10) lim
C∈coh(N)

d′(x,C) = inf
C∈coh(N)

x∈CR

d′(x,C) = d′(x,N).
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Using (9.3.8), (9.3.9), and (9.3.10), the estimate (9.3.3) follows from (9.3.6) by taking the infi-
mum, or indeed the limit, over C in the directed set (9.3.7). □

9.3.2. The main inequality on covering radii.

9.3.2.1. Recall that in Section 7.8.2, we have introduced the function:

κ : R+ −→ [0,+∞]

defined by:

κ(x) :=

{
π−1 log(2e−x − 1)−1 if 0 ≤ x < log 2,

+∞ if x ≥ log 2.

In Subsection 8.3.3, we have shown that, for every object N of qCohZ and every x ∈ NR, the
following inequality holds:

(9.3.11) bN (x) ≤ κ(h1θ(N));

see Corollary 8.3.11 and (8.3.31).

More generally, ifM is a countably generated Z-module, N an object of qCohZ, and f :M → N
a morphism of Z-modules, and f : M → N a morphism of Z-modules, then for every x ∈ MR, the
following inequality holds:

(9.3.12) bN (fR(x)) ≤ κ
(
rk

1

θ(f :M → N)
)
;

see Proposition 8.3.8 and (8.3.18).

By combining the upper-bounds (9.3.11) and (9.3.12) on the Banaszczyk function bN with the
last inequality (9.3.4) in Proposition 9.3.2, we may finally establish the following theorem.

Theorem 9.3.3. Let N := (N, ∥.∥) be an object of qCohZ and ∥.∥′ a Euclidean seminorm on

NR such that ∥.∥′ ≤ ∥.∥. Then, if we let N
′
:= (N, ∥.∥′), the following inequality holds for every

η ∈ [0, 1):

(9.3.13) η ρ(N
′
)2 ≤ κ

(
h
1

θ(N)
)
+ (2π)−1 log(1− η)−1 Tr(∥.∥′2/∥.∥2).

More generally, for every countably generated Z-module M and every morphism of Z-modules
f :M → N, the following equality holds:

(9.3.14) η ρ(f :M → N
′
)2 ≤ κ

(
rk

1

θ(f :M → N)
)
+ (2π)−1 log(1− η)−1 Tr(∥.∥′2/∥.∥2).

Due to its importance in the applications of the formalism developed in this monograph, we
will refer to the estimate (9.3.13) or to its more general version (9.3.14) as the main inequality on
covering radii.

Proof. The estimate (9.3.13) (resp. (9.3.14)) follows from the estimate (9.3.4) by taking the
supremum over x in NR (resp. in fR(MR)) and by using (9.3.11) (resp. (9.3.12)). Indeed by the

very definition of the (relative) covering radius ρ(N
′
) (resp. ρ(f :M → N

′
)), we have:

ρ(N
′
)2 = sup

x∈NR

d′(x,N)2 (resp. ρ(f :M → N
′
)2 = supx∈MR

d′(fR(x), N)2). □

9.3.2.2. Observe that, since κ(δ) = +∞ if δ ≥ log 2, the estimate (9.3.13) (resp. (9.3.14)) has a

non-trivial content only when h
1

θ(N) (resp. rk
1

θ(f :M → N)) is smaller than log 2.

In the sequel, rather than using the full strength of these estimates, we will only use the following

straightforward consequence: ρ(N
′
)2 (resp. ρ(f : M → N

′
)2)) is bounded from above by some

positive multiple of

h
1

θ(N) + +Tr(∥.∥′2/∥.∥2) (resp. of rk
1

θ(f :M → N) + +Tr(∥.∥′2/∥.∥2))
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provided h
1

θ(N) (resp. rk
1

θ(f : M → N)) is small enough. This indeed follows from (9.3.13) (resp.
(9.3.14)) for some fixed value of η in (0, 1), and from the observation that:

κ(δ) = O(δ) when δ → 0.

To derive an explicit version of such a bound, we may choose η = 1/2. Then:

(9.3.15)
1

2πη
log(1− η)−1 =

log 2

π
= 0.22 . . . <

1

4
.

It was shown in (7.8.5) that, for every δ in [0, 1/2], we have:

(9.3.16) κ(δ) ≤ δ.

Combined with (9.3.15) and (9.3.16), the special case η = 1/2 of Theorem 9.3.3 implies:

Corollary 9.3.4. Let N := (N, ∥.∥) be an object of qCohZ and ∥.∥′ a Euclidean seminorm

on NR such that ∥.∥′ ≤ ∥.∥. Then, if we let N
′
:= (N, ∥.∥′), the following inequality holds when

h
1

θ(N) ≤ 1/2:

(9.3.17) ρ(N
′
)2 ≤ 2h

1

θ(N) +
1

4
Tr(∥.∥′2/∥.∥2).

More generally, for every countably generated Z-module M and every morphism of Z-modules

f :M → N, the following equality holds when rk
1

θ(f :M → N) ≤ 1/2 :

(9.3.18) ρ(f :M → N
′
)2 ≤ 2 rk

1

θ(f :M → N) +
1

4
Tr(∥.∥′2/∥.∥2).

As in Corollary 9.2.7, we may optimize our main estimate with regards to η as long as ρ is large
enough.

Corollary 9.3.5. Write T = Tr(∥.∥′2/∥.∥2). Assume that we have:

ρ(f :M → N
′
) >

√
T

2π

and define:

ρ̃ :=

√
2π

T
ρ(f :M → N

′
) ∈ (1,+∞).

Then:

(9.3.19) κ
(
rk

1

θ(f :M → N)
)
≥ − T

2π

(
1− ρ̃2 + 2 log ρ̃

)
.

Equivalently:

(9.3.20) 2e−rk
1
θ(f :M→N) ≤ 1 + e

T
2

(
1−ρ̃2+2 log ρ̃

)
.

Proof. We apply the estimate (9.3.14) with η = 1− ρ̃2; here again, this is the value of η that
gives the optimal inequality. Then

−ηρ(f :M → N
′
)2 + (2π)−1 log(1− η)−1T =

T

2π

(
1− ρ̃2 + 2 log ρ̃

)
and (9.3.14) is equivalent to (9.3.19).

Clearly, (9.3.19) is equivalent to (9.3.20) when rk
1

θ(f : M → N) < log 2. When rk
1

θ(f : M →
N) > log 2, then the left-hand side of (9.3.20) is bounded above by 1, so that (9.3.20) holds. □
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9.3.2.3. The upper bounds on covering radii established in Theorem 9.3.3 and Corollary 9.3.4 ad-
mit variants concerning the upper and lower covering radii introduced in Subsections 6.3.3 and 6.7.3.

Consider for instance the inequality (9.3.18) in Corollary 9.3.4. For every submodule Ñ of N in
coft(N), we may consider the morphism:

fÑ : f(M) −→ N/Ñ,

defined as the composition of the inclusion f(M) ↪→ N with the quotient morphism N → N/Ñ ,

and the quotient Euclidean coherent sheaves N/Ñ and N/Ñ
′
. These are defined by the Euclidean

seminorms ∥.∥
N/Ñ

and ∥.∥′
N/Ñ

on (N/Ñ)R quotients of the seminorms ∥.∥ and ∥.∥′ on NR.

Clearly, we have:

∥.∥
N/Ñ

′ ≤ ∥.∥
N/Ñ

,

and applied to the morphisms fÑ : f(M) → N/Ñ and fÑ : f(M) → N/Ñ
′
in

....
CohZ, the estimate

(9.3.18) shows that:

(9.3.21) ρ
(
fÑ : f(M)→ N/Ñ

′)2
≤ 2 rk1θ

(
fÑ : f(M)→ N/Ñ

)
+

1

4
Tr
(
∥.∥2

N/Ñ
′/∥.∥2

N/Ñ

)
,

provided rk1θ
(
fÑ : f(M)→ N/Ñ

)
≤ 1/2.

Moreover, the following inequality holds:

Tr
(
∥.∥2

N/Ñ
′/∥.∥2

N/Ñ

)
≤ Tr

(
∥.∥′2/∥.∥2

)
.

Therefore, by taking the limit over Ñ in the directed set (coft(N),⊇) and using the definitions

(6.7.17) and (5.4.2) of ρ(f : M → N
′
) and rk1θ(f : M → N), we obtain that, when rk1θ(f : M →

N) ≤ 1/2, the following “lower variant” of the inequality (9.3.26) holds:

(9.3.22) ρ(f :M → N
′
)2 ≤ 2 rk1θ(f :M → N) +

1

4
Tr(∥.∥′2/∥.∥2).

In turn, specialized to M := N and f := IdN , (9.3.22) shows that, when h1θ(N) ≤ 1/2, the
following variant of (9.3.17) holds:

(9.3.23) ρ(N
′
)2 ≤ 2h1θ(N) +

1

4
Tr(∥.∥′2/∥.∥2).

The same argument, starting this time from the estimate (9.3.20) in Corollary 9.3.5, proves that,

writing T for the relative trace Tr(∥.∥′2/∥.∥2), when ρ(f : M → N
′
) >

√
T
2π , the following “lower

variant” of the inequality (9.3.19) holds:

(9.3.24) 2e−rk1θ(f :M→N) ≤ 1 + e
T
2

(
1−ρ̃2+2 log ρ̃

)
.

Here we wrote ρ̃ =
√
T/2π ρ(f :M → N

′
).

9.3.2.4. Similarly, for every submodule C of N in coh(N), we may apply (9.3.18) to the inclusion

morphism fC : C ∩ im f → C and to the Euclidean coherent sheaves C := (C, ∥.∥|CR) and C
′
:=

(C, ∥.∥|CR), and we obtain:

(9.3.25) ρ
(
fC : C ∩ im f → C

′)2 ≤ 2 rk1θ
(
fC : C ∩ im f → C

)
+

1

4
Tr
(
∥.∥′2|CR

/∥.∥2|CR

)
.

Indeed we have: ∥.∥′|CR
≤ ∥.∥|CR .

By using the inequality:

Tr
(
∥.∥′2|CR

/∥.∥2|CR

)
≤ Tr

(
∥.∥′2/∥.∥2

)
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and by taking the lower limit over C in the directed set (coh(N),⊆) and using the definitions

(6.7.18) and (5.5.1) of ρ(f : M → N
′
) and rk

1

θ(f : M → N), we deduce from (9.3.25) that, when

rk
1

θ(f :M → N) < 1/2, the following inequality holds:

(9.3.26) ρ(f :M → N
′
)2 ≤ 2 rk

1

θ(f :M → N) +
1

4
Tr(∥.∥′2/∥.∥2).

In turn, this implies that, when h1θ(N) < 1/2, the following inequality holds:

(9.3.27) ρ(N
′
)2 ≤ 2h

1

θ(N) +
1

4
Tr(∥.∥′2/∥.∥2).

We leave it to the reader to establish by similar arguments the validity of lower and upper
variants of the estimates (9.3.13) and (9.3.14) in Theorem 9.3.3, and to deduce the validity of

(9.3.26) (resp. (9.3.27)) when rk
1

θ(f :M → N) ≤ 1/2 (resp. when h1θ(N) ≤ 1/2).

Recall finally that, according to Proposition 6.7.16 (resp. to Proposition 6.3.10), we have:

ρ(f :M → N
′
) ≤ ρ(f :M → N

′
) (resp. ρ(N

′
) ≤ ρ(N ′

)).

Consequently the estimate (9.3.26) (resp. (9.3.27)) is a strengthening of (9.3.18) (resp. of (9.3.17))

9.4. Applications of the Main Inequality on Covering Radii

In this section, we spell out various consequences of the estimates relating covering radii and
theta invariants established in the previous two sections, with a special emphasis on the consequences
of the main inequality on covering radii established in Theorem 9.3.3.

9.4.1. Application to Euclidean lattices: comparing log ρ(E) and s1θ,ε(E). Let E :=

(E, ∥.∥) be a Euclidean lattice of rank n.

According to Proposition 9.1.3, we have:

(9.4.1) h1θ(E) ≤ πρ(E)2.

Moreover Corollary 9.3.4 applied to N = E and to ∥.∥′ = ∥.∥ implies:

(9.4.2) h1θ(E) ≤ 1/2 =⇒ ρ(E)2 ≤ 1 + n/4.

In this subsection, we show that, by combining the estimates (9.4.1) and (9.4.2) and the 1-
homogeneity of the covering radius ρ(E) as a function of the Euclidean norm ∥.∥ that defines E, we
may establish comparison estimates relating the covering radius ρ(E) and the smoothing parameter
ηε(E) of E, as defined by Micciancio and Regev [MR07].

From the perspective of the analogy between number fields and function fields, it is actually
more natural to consider the logarithm of the covering radius — in terms of which the 1-homogeneity
of the covering radius may be expressed as the equality:

(9.4.3) log ρ(E ⊗O(δ)) = log ρ(E)− δ,

valid for every δ ∈ R — and the logarithmic variant s1θ,ε(E) of the smoothing parameter ηε(E)

considered in [Bos20a].

9.4.1.1. The invariants ηε(E) and s1
θ,E

(E). In this paragraph, we briefly recall the definitions

and the basic properties of the invariants ηε(E) and s1
θ,E

(E). We refer the reader to [Bos20a]

for more details and references, and notably for a discussion of the interpretation of s1
θ,E

(E) as a

“threshold for the vanishing of cohomology.”
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For every ε ∈ R∗
+, following Micciancio and Regev [MR07], we attach to a Euclidean lattice

E of positive rank its smoothing parameter ηε(E). This is the positive real number defined by the
equality:

(9.4.4) θE∨(ηε(E)2) = 1 + ε,

where θE∨ denotes14 the theta function attached to the dual Euclidean lattice E
∨
, namely the

function defined by:

θE∨(t) :=
∑
ξ∈E∨

e−πt∥ξ∥
2

E∨

for every t ∈ R∗
+, which establishes a decreasing real analytic diffeomorphism:

θE∨ : R∗
+

∼−→ R∗
+.

As discussed in [Bos20a], when one is concerned by the analogy between number fields and
function fields, it is arguably more natural to consider the logarithm of the smoothing parameter:

(9.4.5) s1θ,ε(E) := log ηε(E).

This is a real number, characterized by the following equivalence, valid for every δ ∈ R:

(9.4.6) δ ≥ s1θ,ε(E)⇐⇒ h1θ(E ⊗O(δ)) ≤ log(1 + ε).

By construction, s1θ,ε(E) has the same behavior under scaling as log ρ(E), as formulated in

(9.4.3) above. Namely, for every δ ∈ R, we have:

(9.4.7) s1θ,ε(E ⊗O(δ)) = s1θ,ερ(E)− δ.

The definitions of ηε(E) and s1θ,ε depend on the choice of the “threshold” ε. However up to
some universal multiplicative or additive constant, this choice is irrelevant. Indeed, as pointed out
in [CDLP13, Section 2], if 0 < ε′ ≤ ε < 1, we have:

(9.4.8) 0 ≤ s1θ,ε′(E)− s1θ,ε(E) ≤ (1/2) log log ε′−1 − (1/2) log log ε−1.

Indeed the fact that the function θE∨ is decreasing implies the first inequality in (9.4.8). The

second inequality asserts that s1θ,ε(E)− (1/2) log log ε−1 is an increasing function of ε ∈ (0, 1), and

follows from the following estimate, valid for x ∈ R∗
+ and t ∈ [1,+∞):

θE∨(tx)− 1 ≤ (θE∨(x)− 1)t.

The estimates (9.4.8) show that comparison estimates involving s1θ,ε are basically independent of

the choice of ε ∈ (0, 1). As in various classical papers concerning the smoothing parameter, notably
[RSD17b], we will choose ε = 1/2.

Let us finally indicate that Regev and Stephens-Davidowitz have proved that the invariant
s1θ,1/2(E) coincides with the opposite of the minimal slope −µ̂min(E) up to some additive error term

which grows very slowly with the rank n of E, namely which is O(log log n):

Theorem 9.4.1. For every Euclidean lattice E of positive rank n, the following estimates are
satisfied:

(9.4.9) −µ̂min(E)− log(3/2) ≤ s1θ,1/2(E) ≤ −µ̂min(E) + t(n),

where t(n) := log[10(log n+ 2)].

14This notation is not compatible with the one used in Chapter 7, where θ
E

∨ denoted a function on E∨
R , but

coincides with the one used in [Bos20a].
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The first inequality in (9.4.9) is actually a direct consequence of the Poisson-Riemann-Roch
formula, which indeed implies the inequality:

−µ̂min(E)− log(1 + ε) ≤ s1θ,ε(E),

for every ε ∈ R∗
+.

The second inequality, initially conjectured by Dadush, is an outstanding result, established in
[RSD17b]. Its proof involves in substance the invariant gv(E) considered in Section 9.1, and diverse
deep results concerning Gaussian measures and related isoperimetric inequalities.15

9.4.1.2. From the estimate (9.4.1), we immediately derive the implication:

ρ(E) ≤
(
π−1 log(1 + ε)

)1/2
=⇒ h1θ(E) ≤ log(1 + ε),

which may also be expressed as follows:

(9.4.10) log ρ(E) ≤ (1/2) log
(
π−1 log(1 + ε)

)
=⇒ s1θ,ε(E) ≤ 0.

According to (9.4.3) and (9.4.7), the invariants log ρ(E) and s1θ,ε(E) have the same behavior

under scaling. Therefore, by applying (9.4.10) to E ⊗O(δ) with

δ := log ρ(E)− (1/2) log
(
π−1 log(1 + ε)

)
,

we obtain:

Proposition 9.4.2. For every Euclidean lattice E of positive rank and every ε ∈ R∗
+, the

following inequality holds:

(9.4.11) s1θ,ε(E) ≤ log ρ(E)− (1/2) log
(
π−1 log(1 + ε)

)
.

We may specialize the estimate (9.4.11) to the case ε = 1/2. Since we have:

−(1/2) log
(
π−1 log(3/2)

)
= 1.02372...

we obtain the inequality:

(9.4.12) s1θ,1/2(E) ≤ log ρ(E) + 1.1 .

Similarly, starting from (9.4.2), we may derive an estimate in the opposite direction:

Proposition 9.4.3. For every Euclidean lattice E of positive rank n, the following inequality
holds:

(9.4.13) log ρ(E) ≤ s1θ,1/2(E) + (1/2) log(1 + n/4).

Proof. Observe that, by using (9.4.6) with δ = 0 and (9.4.2), we get:

s1θ,1/2(E) ≤ 0 ⇐⇒ h1θ(E) ≤ log(1 + 1/2)

=⇒ h1θ(E) ≤ 1/2
=⇒ ρ(E)2 ≤ 1 + n/4
=⇒ log ρ(E) ≤ (1/2) log(1 + n/4).

In turn, applied to E ⊗ O(δ) with δ := s1θ,ε(E), this implication yields (9.4.13), thanks to the

relations (9.4.3) and (9.4.7). □

15See [Bos20a] for a survey of this proof and related results, written for an audience of arithmetic geometers.
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9.4.1.3. Propositions 9.4.2 and 9.4.3 show that, for some suitable constants a(n) and b(n), de-
pending only on the rank n of E, the following comparison estimates hold:

(9.4.14) log ρ(E)− a(n) ≤ s1θ,1/2(E) ≤ log ρ(E) + b(n).

One may wonder about the best possible constant a(n) and b(n) in (9.4.14), namely about the
functions of the positive integer n defined by:

(9.4.15) a(n) := sup
∥.∥

(
log ρ(Zn, ∥.∥)− s1θ,1/2(Z

n, ∥.∥)
)

and:

(9.4.16) b(n) := sup
∥.∥

(
s1θ,1/2(Z

n, ∥.∥)− log ρ(Zn, ∥.∥)
)
,

where the supremum in the right-hand side of (9.4.15) and (9.4.16) is taken over ∥.∥ in the cone
◦
Q(Rn) of Euclidean norms on Rn.

According to (9.4.13) and (9.4.12), we have:

(9.4.17) a(n) ≤ (1/2) log(1 + n/4) = (1/2) log n+O(1).

and

(9.4.18) b(n) ≤ 1.1 .

Together with these upper bounds, the following examples show that, when n goes to infinity:

a(n) ∼ (1/2) log n,

and that b(n) is a bounded function of n. This demonstrates that the upper bounds (9.4.17) and
(9.4.18) on a(n) and b(n) are basically optimal.

Example 9.4.4. For every positive integer n, consider the direct sum O⊕n
of n copies of the

trivial Euclidean lattice of rank one O := (Z, | · |).
Then we have:

ρ(O⊕n
) = (1/2)n1/2

and therefore:

log ρ(O⊕n
) = (1/2) log n− log 2.

Moreover, for every ε ∈ R∗
+, we have:

θO(ηε(O
⊕n

)2)n = θO⊕n(ηε(O)2) = 1 + ε,

and therefore:

log θO(ηε(O
⊕n

)2) = n−1 log(1 + ε).

This implies that, when n goes to infinity, the following relations hold:

2e−πηε(O
⊕n

)2) ∼ n−1 log(1 + ε),

πηε(O
⊕n

)2 = log n+O(1),

and finally:

s1θ,ε(O
⊕n

) = (1/2) log log n+O(1).

Consequently,

a(n) ≥ log ρ(O⊕n
)− s1θ,ε(O

⊕n
) = (1/2) log n− (1/2) log log n−O(1).
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Example 9.4.5. For every positive integer n and every λ ∈ R, consider the Euclidean lattice:

En,λ := O⊕n−1 ⊕O(−λ).

Then we have:
ρ(En,λ)

2 = (n− 1 + e2λ)/4,

and therefore:

λ ≥ (1/2) log n =⇒ log ρ(En,λ) = λ+ (1/2) log[(1/4)(1 + (n− 1)e−2λ)] ≤ λ.

Moreover:
s1θ,ε(En,λ) ≥ s1θ,ε(O(−λ)) = λ+ s1θ,ε(O).

Consequently, choosing λ in [(1/2) log n,+∞), we obtain:

b(n) ≥ s1θ,ε(En,λ)− log ρ(En,λ) ≥ s1θ,ε(O).

9.4.2. ρ2-summability and θ1-finiteness. Let M := (M, ∥.∥) be a Euclidean quasi-coherent
sheaf. A straightforward consequence of Theorem 9.1.1 is the following implication:

ρ(M) < +∞ =⇒ h
1

θ(M) < +∞.

Moreover, if ∥.∥′ denotes a Euclidean semi-norm onMR such that ∥.∥′ ≤ ∥.∥ and Tr(∥.∥′2/∥.∥2) <
+∞, and if M

′
denotes the Euclidean quasi-coherent sheaf (M, ∥.∥′), the variant concerning upper

covering radii discussed in 9.3.2.4 of the main inequality on covering radii (9.3.13) establishes the
following implication:

h
1

θ(M) < log 2 =⇒ ρ(M
′
) < +∞.

It is possible to establish similar implications concerning the θ1-finiteness of M and the ρ2-

summability16 of M and M
′
.

Proposition 9.4.6. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf.

If M is ρ2-summable, then M is θ1-finite, and for every δ ∈ R, the following inequality holds:

(9.4.19) h1θ
(
M ⊗O(−δ)

)
≤ πe2δ ρ(E)2.

Let moreover ∥.∥′ be a Euclidean seminorm onMR, and letM
′
:= (M, ∥.∥′). IfM is θ1-summable

and if ∥.∥′ is Hilbert-Schmidt17 with respect to ∥.∥, then M ′
is ρ2-summable.

In the second part of Proposition 9.4.6, instead of askingM to be θ1-summable, one might more
generally ask for the existence of δ ∈ R such that M ⊗ O(δ) is θ1-summable, and the conclusion
would still hold. This follows from Proposition 9.4.6 as stated above applied to the seminorms e−δ∥.∥
and e−δ∥.∥′ in place of ∥.∥ and ∥.∥′.

Recall also that the ρ2-summability of M
′
implies the vanishing of evρ(M

′
), and a fortiori of

evρ(M
′
). In other words, we have:

Corollary 9.4.7. If M is θ1-summable and if ∥.∥′ is Hilbert-Schmidt with respect to ∥.∥, then
M

′
has eventually vanishing covering radius.

Proof of Proposition 9.4.6. Let us assume that M is ρ2-summable, and consider an ex-
haustive filtration (Ci)i∈N of M by submodules in coh(M) such that the following summability
condition holds: ∑

i∈N
ρ(Ci/Ci−1)

2 < +∞.

16defined in Subsection 6.3.3.
17that is, if Tr(∥.∥′2/∥.∥2) < +∞.
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Then, for every δ ∈ R,∑
i∈N

ρ
(
Ci/Ci−1 ⊗O(−δ)

)2
=
∑
i∈N

e2δρ
(
Ci/Ci−1

)2
< +∞,

where, as usual, we let C−1 := 0. Since, according to the estimate (9.1.3), the following inequality
holds for every i ∈ N:

h1θ
(
Ci/Ci−1 ⊗O(−δ)

)2 ≤ πρ(Ci/Ci−1 ⊗O(−δ)
)2
,

this shows that, for every δ ∈ R,∑
i∈N

h1θ
(
Ci/Ci−1 ⊗O(−δ)

)2
< +∞,

and establishes the θ1-finiteness of M .

Moreover, as a consequence of the general formalism of φ-summability developed in Section 4.5,
we have:

ρ(E) = lim
i→+∞

ρ(Ci)
2

and

h
1

θ

(
E ⊗O(−δ)

)
= lim
i→+∞

h1θ
(
Ci ⊗O(−δ)

)
;

see (4.5.3), and also (6.3.18) and (8.2.1). Moreover, applied to Ci ⊗ O(−δ), the estimate (9.1.3)
implies the inequality:

h
1

θ

(
E ⊗O(−δ)

)
≤ πρ

(
(E ⊗O(−δ)

)2
= πe2δ ρ(E)2,

and (9.4.19) follows by letting i go to infinity.

Conversely let us assume that M is θ1-summable and that:

(9.4.20) Tr(∥.∥′2/∥.∥2) < +∞,

and let us choose an exhaustive filtration (Ci)i∈N of M by submodules in coh(M) such that the
following summability condition holds:

(9.4.21)
∑
i∈N

h1θ(Ci/Ci−1) < +∞.

Then the sequence (h1θ(Ci/Ci−1))i∈N converges to 0, and the seminorm ∥.∥′ is compact with
respect to ∥.∥. Consequently, we may choose i0 ∈ N such that, for every integer i > i0:

h1θ(Ci/Ci−1) ≤ 1/2,

and:

∥.∥′M/Ci−1
≤ ∥.∥M/Ci−1

,

where ∥.∥M/Ci−1
(resp. ∥.∥′M/Ci−1

) denotes the Euclidean seminorm on the quotient (M/Ci−1)R
deduced from the seminorm ∥.∥ (resp. ∥.∥′) on MR.

Then, for every i > i0, we also have:

∥.∥′Ci/Ci−1
≤ ∥.∥Ci/Ci−1

,

where ∥.∥Ci/Ci−1
(resp. ∥.∥′Ci/Ci−1

) denotes the Euclidean seminorm on the subquotient (Ci/Ci−1)R
deduced from the seminorm ∥.∥ (resp. ∥.∥′) on MR, and according to Corollary 9.3.4, the following
inequality holds:

ρ
(
Ci/Ci−1

′)2 ≤ 2h1θ(Ci/Ci−1) +
1

4
Tr
(
∥.∥′2Ci/Ci−1

/∥.∥2Ci/Ci−1

)
,

where Ci/Ci−1
′
denotes the object (Ci/Ci−1, ∥.∥′Ci/Ci−1

) of CohZ.
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This implies the inequality:

(9.4.22)
∑
i>i0

ρ
(
Ci/Ci−1

′)2 ≤ 2
∑
i>i0

h1θ(Ci/Ci−1) +
1

4

∑
i>i0

Tr
(
∥.∥′2Ci/Ci−1

/∥.∥2Ci/Ci−1

)
Moreover, we have:

(9.4.23)
∑
i>i0

Tr
(
∥.∥′2Ci/Ci−1

/∥.∥2Ci/Ci−1

)
≤ Tr

(
∥.∥′2M/Ci0

/∥.∥2M/Ci0

)
≤ Tr(∥.∥′2/∥.∥2),

where ∥.∥M/Ci0
(resp. ∥.∥′M/Ci0

) denotes the Euclidean seminorm on the quotient (M/Ci0)R deduced

from the seminorm ∥.∥ (resp. ∥.∥′) on MR.

Together with (9.4.20), (9.4.21), and (9.4.23), the inequality (9.4.22) implies:∑
i>i0

ρ
(
Ci/Ci−1

′)2
< +∞.

This show that the summability condition:∑
i∈N

ρ
(
Ci/Ci−1

′)2
< +∞

is satisfied, and therefore that M
′
is ρ2-summable. □

9.4.3. Density theorems. In the sequel, the main inequality on covering radii in Theorem
9.3.3 will play a crucial role in the derivation of density results concerning sections of coherent sheaves
on arithmetic schemes. Indeed, the main inequality may be used to derive density properties from
vanishing properties of suitable theta invariants.

9.4.3.1. Let us start by a simple instance of such density results, which directly follows from
Theorem 9.3.3.

Proposition 9.4.8. Let M = (M, ∥.∥) be a Euclidean quasi-coherent sheaf such that, for every
δ ∈ R,

(9.4.24) h
1

θ(M ⊗O(−δ)) = 0.

If ∥.∥′ is a Euclidean seminorm on MR that is Hilbert-Schmidt with respect to ∥.∥, then the

Euclidean quasi-coherent sheaf M
′
:= (M, ∥.∥′) satisfies:

(9.4.25) ρ(M
′
) = 0,

and the image M/tor of M in MR is dense in the seminormed space (MR, ∥.∥′).

Concerning condition (9.4.24), observe that a Euclidean quasi-coherent sheaf M satisfies the
condition

h
1

θ(M) = 0

if and only M is θ1-summable and the Banaszczyk measure βM∨ is the Dirac measure δ0; this last
condition is equivalent to the vanishing of the Banaszczyk function bM . Indeed, this follows from
the results in Section 8.4; see notably Theorem 8.4.7 and Proposition 8.4.5.

Proof. For every large enough positive real number δ, we may apply the inequality (9.3.27) to
the Euclidean quasi-coherent sheaf

N :=M ⊗O(−δ) = (M, eδ∥.∥).
Indeed, the seminorm ∥.∥′ is continuous with respect to ∥.∥, and therefore satisfies ∥.∥′ ≤ eδ∥.∥ for
δ large enough. This leads to the upper bound:

ρ(M, ∥.∥′)2 ≤ e−2δ

4
Tr(∥.∥′2/∥.∥2),
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and the vanishing of ρ(M, ∥.∥′) follows by letting δ go to infinity.

The density ofM/tor in (MR, ∥.∥′) is equivalent to the vanishing of the covering radius ρ(M, ∥.∥′),
and follows from the vanishing of ρ(M

′
). □

9.4.3.2. A density theorem for maps from Euclidean quasi-coherent sheaves to projective sys-
tems of Euclidean lattices. We shall now formulate and establish a density theorem suited for the
Diophantine applications alluded to above.

The data for this theorem are a Euclidean quasi-coherent sheaf M := (M, ∥.∥) and a decreasing
sequence (Mi)i∈N of Z-submodules of M .

For any nonnegative integer i, we will denote by :

fi :Mi −→M

the inclusion map, by Ni :=M/Mi the quotient Z-module, and by:

pi :M −→ Ni

the quotient map.

Since the Mi are decreasing, the Ni fit into a projective system of surjective morphisms of
Z-modules:

N0 :=M/M0 ←− N1 :=M/M1 ←− · · · ←− Ni :=M/Mi ←− Ni+1 :=M/Mi+1 ←− · · · ,
We may introduce its limit:

N̂ := lim
i
Ni,

and denote by:

p :M −→ N̂

be the morphism of Z-modules induced by the maps pi.

The R-linear map

pR :MR −→ N̂R := N̂ ⊗̂Z R ≃ lim
i
Ni,R,

defined by the compatible system of R-linear maps (pi,R :MR → Ni,R)i∈N, sends the image M/tor of
M in MR to the Z-submodule

N̂/tor := lim
i
Ni/tor

of N̂R, image of N̂ in N̂R. In other words, the Z-submodule M/tor of MR is contained in p−1
R (N̂/tor).

Lemma 9.4.9. If the relative covering radii ρ(fi :Mi →M) satisfy the condition:

(9.4.26) lim
i→+∞

ρ(fi :Mi →M) = 0,

then M/tor is dense in p−1
R (N̂/tor) equipped with the distance defined by the seminorm ∥.∥.

Proof. According to (9.4.26), there exists a sequence (εi)i∈N of positive real numbers such that

lim
i→+∞

εi = 0

and

ρ(fi :Mi →M) < εi

for every i ∈ N.
Then the following inclusion holds, for every i ∈ N:

(9.4.27) p−1
i,R(Ni/tor) = fi,R(Mi,R) ⊆M/tor +B(MR; εi),

where:

B(MR; εi) :=
{
v ∈MR | ∥v∥ < εi

}
.
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Let m be an element in p−1
R (N̂/tor), that is, an element of MR such that, for every i ∈ N, pi(m)

lies in Ni/tor. According to (9.4.27), we may find a sequence (mi) of elements of M/tor such that

∥m−mi∥ ≤ εi.
This shows that m belongs to the closure of M/tor in MR equipped with the distance defined by the
seminorm ∥.∥. □

Theorem 9.4.10. With the above notation, assume that, for any δ ∈ R+, the theta ranks

rk
1

θ(fi :Mi →M ⊗O(−δ)) satisfy the following condition:

(9.4.28) lim
i→+∞

rk
1

θ(fi :Mi →M ⊗O(−δ)) = 0.

Then, for every Euclidean seminorm ∥.∥′ on MR that is Hilbert-Schmidt relatively to ∥.∥, we
have:

(9.4.29) lim
i→+∞

ρ(fi :Mi →M
′
) = 0,

where M
′
:= (M, ∥.∥′).

Consequently the Z-submodule M/tor of MR is dense in p−1
R (N̂/tor) equipped with the distance

defined by the seminorm ∥.∥′.

The strong monotonicity18 of h1θ shows that condition (9.4.28) is satisfied for every δ ∈ R
provided it holds for δ in some unbounded subset of R+. The proof of Theorem 9.4.10 will actually
establish its validity under this formally weaker assumption.

Observe also that, when we specialize Theorem 9.4.10 to the situation where all the Mi are
equal to M , we recover Proposition 9.4.8 above.19 Actually, with Lemma 9.4.9 at hand, the proof of
Theorem 9.4.10 appears as a variation on the proof of Proposition 9.4.8, where now the full strength
of the main equality on covering radii, concerning relative covering radii, plays a crucial role.

Proof. Let ∥.∥′ be a Euclidean seminorm on MR that is Hilbert-Schmidt relatively to ∥.∥, and
choose δ0 ∈ R such that:

∥.∥′ ≤ eδ0 ∥.∥.

For every δ ∈ R+, the validity of (9.4.28) implies the existence of n(δ) ∈ N such that, for every
integer n ≥ n(δ),

rk
1

θ(fi :Mi →M ⊗O(−δ)) ≤ 1/2.

Therefore, for every δ ∈ [δ0,+∞) and very i ≥ n(δ), we may apply the inequality (9.3.26) to
fi :Mi →M ⊗O(−δ) and to the Euclidean seminorm ∥.∥′ on MR. It reads as follows:

ρ(fi :Mi →M
′
)2 ≤ 2 rk

1

θ(fi :Mi →M ⊗O(−δ)) + e−2δ

4
Tr(∥.∥′2/∥.∥2).

Together with (9.4.28), this implies:

lim sup
i→+∞

ρ(fi :Mi →M
′
)2 ≤ e−2δ

4
Tr(∥.∥′2/∥.∥2),

and therefore, since δ may be chosen arbitrary large, proves (9.4.29).

The final assertion follows from the estimates:

ρ(fi :Mi →M
′
) ≤ ρ(fi :Mi →M

′
)

and from Lemma 9.4.9 applied with ∥.∥ replaced by ∥.∥′. □

18More specifically, the fact that h1θ satisfies the metric monotonicity condition StMon1
4.

19However, in Diophantine applications, we will be mainly interested in situations where the map p from M to

its “completion” N̂ is injective, or equivalently where
⋂

i∈NMi = {0}.
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9.5. A Relative Infinite Dimensional Transference Inequality

In the first part of this section, we formulate and we establish a generalization of Banaszczyk’s
classical transference inequalities (9.0.11) to the framework of this monograph, where one deals not
only with Euclidean lattices, but with general Euclidean quasi-coherent sheaves and with relative
versions of classical invariants.

Then in Subsections 9.5.4 and 9.5.5, we show that, even when one considers only the finite rank
situation, the extra flexibility added to the basic transference inequalities (9.0.11) by working with
relative invariants and pairs of seminorms allows one to recover easily the more refined transfer-
ence estimates relating successive minima of higher order and successive covering radii attached to
Euclidean lattices and their duals, and also their strengthenings concerning Euclidean lattices with
“gaps” in the sequence of their successive minima — a class of Euclidean lattices which naturally
arise in lattice-based cryptography.

9.5.1. Statement of the generalized transference inequality.

9.5.1.1. To formulate our generalized transference inequality, we need to introduce a generalized
version of the first minima of a Euclidean lattice that make sense in the context of arbitrary Z-
modules whose associated R-vector space is equipped with a quasinorm,20 which possibly is not a
seminorm. generalized pro-Euclidean Z-modules.

Let M be a Z-module, let ∥.∥ be a quasinorm on the real vector space MR, and let K be a
Z-submodule of M . We define the first minimum of (M, ∥.∥) relative to K by the equality:

λ1(M,K, ∥.∥) := inf
{
∥m∥ ; m ∈M \K

}
(∈ [0,+∞]).

If N := (N, ∥.∥) is a Euclidean quasi-coherent sheaf, we may consider its dual N
∨
:= (N∨, ∥.∥∨)

in proVect
[∞]

Z as defined in Subsection 2.5.2.1. Recall that the dual quasinorm ∥.∥∨ is defined on
N∨ := HomZ(N,Z), identified to a Z-submodule of N∨

R := HomR(NR,R), by the following equality
for every ξ ∈ N∨:

∥ξ∥∨ := sup
{
∥ξ(v)∥ | v ∈ NR and ∥v∥ ≤ 1

}
(∈ [0,+∞]).

The version of the first minimum which shall enters in our generalized transference inequality is
defined as follows.

Consider a morphism:

f :M −→ N

of countably generated Z-modules, and ∥.∥ a Euclidean seminorm on NR.

To these data are associated the transpose of f :

f∨ : N∨ −→M∨, ξ 7−→ ξ ◦ f,

which is a morphism in CTCZ, the Euclidean quasi-coherent sheaf N := (N, ∥.∥), and its dual

N
∨
:= (N∨, ∥.∥∨) in proVect

[∞]

Z . Observe that we have:

ker f∨ =
{
ξ ∈ N∨ | ξ|f(M) = 0

}
=: f(M)⊥.

Then we define the relative first minimum associated to the data above as:

λ1(f
∨ : N

∨ →M∨) := λ1(N
∨, f(M)⊥, ∥.∥∨) = inf

{
∥ξ∥∨ | ξ ∈ N∨, ξ ◦ f ̸= 0

}
.

20See Definition 2.4.1.
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When M and N coincide and f is the identity morphism IdN , the relative first minimum

specializes to the first minimum of N
∨
, defined as:

λ1(N
∨
) := λ1(IdN∨ : N

∨ → N∨)

= λ1(N
∨, {0}, ∥.∥∨)

= inf
{
∥ξ∥∨; ξ ∈ N∨ \ {0}

}
(∈ [0,+∞]).

9.5.1.2. The main result of this section is the following transference theorem:

Theorem 9.5.1. Consider a morphism of countably generated Z-modules:

f :M −→ N,

and ∥.∥1 and ∥.∥2 two Euclidean seminorms on NR.

If N1 := (N, ∥.∥1) and N2 := (N, ∥.∥2) denote the associated Euclidean quasi-coherent sheaves,
then the following inequality is satisfied:

(9.5.1) ρ(f :M → N1) λ1(f
∨ : N

∨
2 →M∨) ≤ Tr(∥.∥1/∥.∥2).

If moreover the following conditions hold:

(9.5.2) ∥.∥1 ≤ ∥.∥2 and Tr(∥.∥1/∥.∥2) ≥ 1,

then we have:

(9.5.3) ρ(f :M → N1) λ1(f
∨ : N

∨
2 →M∨) ≤ 1

2π
Tr(∥.∥1/∥.∥2) +

2

π

√
Tr(∥.∥1/∥.∥2).

The diverse terms in (9.5.1) and (9.5.3) belong to [0,+∞], and we adopt the usual convention:

0.(+∞) = 0.

Applied to M = N and f = IdN , the estimates (9.5.1) and (9.5.3) become:

(9.5.4) ρ(N1) λ1(N
∨
2 ) ≤ Tr(∥.∥1/∥.∥2).

and:

(9.5.5) ρ(N1) λ1(N
∨
2 ) ≤

1

2π
Tr(∥.∥1/∥.∥2) +

2

π

√
Tr(∥.∥1/∥.∥2).

We have not tried to optimize the constants occuring in the right-hand side of (9.5.1) and (9.5.3).
Actually the proof below will establish a slightly stronger version of (9.5.1) and (9.5.4), namely:

(9.5.6) ρ(f :M → N1) λ1(f
∨ : N

∨
2 →M∨) ≤ 5

2π
Tr(∥.∥1/∥.∥2),

and

(9.5.7) ρ(N1) λ1(N
∨
2 ) ≤

5

2π
Tr(∥.∥1/∥.∥2).

The proof will also make clear that the factor 2/π in the right-hand side of (9.5.3) and (9.5.5) may
equally be slightly improved.

We do not know whether the inequalities (9.5.3)-(9.5.7) still hold when the lower covering radii
ρ(f :M → N1) and ρ(N1) are replaced by the “naive” covering radii ρ(f :M → N1) and ρ(N1).

21

9.5.2. Preliminary estimates. In this subsection, we gather various technical statements on
which we will rely in the proof of Theorem 9.5.1.

21Note that the construction in paragraph 6.3.3.4 establishes the existence of some Euclidean quasi-coherent
sheaf M such that ρ(M) = 0 and ρ(M) > 0. Since the vanishing of ρ(M) implies that there does not exist any nonzero

continuous linear form M → Z, it also satisfies: λ1(M
∨

) = +∞, and consequently: ρ(M)λ1(M
∨

) = +∞.
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9.5.2.1. Our first preliminary result deals with traces.

Proposition 9.5.2. Let V be a real vector space. Let ∥.∥ and ∥.∥′ be two Euclidean seminorms
on V such that:

∥.∥′ ≤ ∥.∥.

For every Euclidean seminorm ∥.∥′′ on V that satisfies:

(9.5.8) ∥.∥′ ≤ ∥.∥′′ ≤ ∥.∥,
the following inequality holds:

(9.5.9) Tr(∥.∥′/∥.∥)2 ≤ Tr(∥.∥′2/∥.∥′′2) Tr(∥.∥′′2/∥.∥2).

Moreover there exists a Euclidean seminorm ∥.∥′′ on V such that (9.5.8) and following equalities
hold:

Tr(∥.∥′2/∥.∥′′2) = Tr(∥.∥′′2/∥.∥2) = Tr(∥.∥′/∥.∥).

Proof. To prove (9.5.9), we may assume that V is finite-dimensional after replacing V by an
arbitrarily large subspace. Modding out by the kernel of ∥.∥, we assume that ∥.∥ is definite positive.
Write (., .) (resp. (., .)′, resp. (., .)′′) for the bilinear form defined by ∥.∥ (resp. ∥.∥′, resp. ∥.∥′′).

Let f be the endomorphism of V such that, for all v, w in V :

(v, w)′ = (f(v), w).

The inequality:
∥.∥′ ≤ ∥.∥′′

implies that we may find an endomorphism g of V such that, for all v, w in V :

(v, w)′′ = (g(v), w)′.

In particular:
(v, w)′′ = ((g ◦ f)(v), w)

and the inequality (9.5.9) becomes

(9.5.10) Tr(g ◦ f)2 ≤ Tr(f)2Tr(g)2.

The inequality (9.5.10) is the Cauchy-Schwartz inequality for the positive semi-definite bilinear form

(g, f) 7→ Tr(g ◦ f)
on the space of those endomorphisms of V that that vanish on the kernel of ∥.∥ and are symmetric
and positive semi-definite with respect to ∥.∥.

To prove the second statement, let φ : V → H be the natural linear map from V to the Hilbert
space H obtained as the separated completion of V with respect to ∥.∥. Let A : H → H be the
positive linear map such that, for all v ∈ V ,

∥v∥′ = ∥A(φ(v))∥.
Let (ei)i∈I be a Hilbert space basis of H consisting of eigenvectors of A, and let λi be the eighenvalue
corresponding to ei for any i ∈ I. The inequality

∥.∥′ ≤ ∥.∥
guarantees that, for all i ∈ I, we have 0 ≤ λi ≤ 1.

Let B be the continuous endomorphism of H such that, for any i ∈ I,

B(ei) =
√
λi,

and let ∥.∥′′ be the Euclidean seminorm on V such that, for all v ∈ V ,

∥v∥′′ = ∥B(φ(v))∥.
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Since, for all i ∈ I, we have: √
λi ≤ λi ≤ 1,

we also have:
∥.∥′ ≤ ∥.∥′′ ≤ ∥.∥,

and the following equalities are readily checked:

Tr(∥.∥′2/∥.∥′′2) =
∑
i∈I

λ2i = Tr(∥.∥′′2/∥.∥2) = Tr(∥.∥′/∥.∥). □

9.5.2.2. We record an elementary calculus computation.

Proposition 9.5.3. For any T ≥ 1, we have:

4√
T
− log

(
1 +

4√
T

)
≥ 2

T
log 3.

Proof. After multiplication by T , the inequality we need to prove is equivalent to:

(9.5.11) 4
√
T − T log

(
1 +

4√
T

)
≥ 2 log 3.

The function
f : R∗

+ −→ R, x 7−→ 4x− x2 log(1 + 4/x)

is increasing. Indeed, for every x ∈ R∗
+, we have:

f ′(x) = 4− 2x log(1 + 4/x) +
4

1 + 4/x

= x[(1 + 4/x)− (1 + 4/x)−1 − 2 log(1 + 4/x)]

= x

∫ 1+4/x

1

t−2(t− 1)2 dt > 0.

In particular, for any T ≥ 1, we have f(
√
T ) ≥ f(1), and proving (9.5.11) amounts to proving

the estimate:
4− log 5 ≥ 2 log 3.

It holds, since e2 ≥ 7 and therefore e4 ≥ 45. □

9.5.2.3. Finally, we record the following consequence of Corollary 9.2.7. Our notation is in line
with its application to the proof Theorem 9.5.1 in the next subsection.

Proposition 9.5.4. Let f : M → N be a morphism of countably generated Z-modules, and
let ∥.∥2 and ∥.∥ be two Euclidean seminorms on NR, and N := (N, ∥.∥) and N2 := (N, ∥.∥2) the
Euclidean quasi-coherent sheaves they define.

Assume that these Euclidean seminorms satisfy:

∥.∥ ≤ ∥.∥2 and T := Tr
(
∥.∥2/∥.∥22

)
< +∞,

and that the following inequality holds:

λ1(f
∨ : N

∨
2 →M∨) >

√
T

2π
.

Then, if we define:

λ̃ :=

√
2π

T
λ1(f

∨ : N
∨
2 →M∨) (∈ (1,+∞]),

we have:

(9.5.12) e−rk1
θ(f :M→N) + eT (1−λ̃2+2 log λ̃)/2 ≥ 1.
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In the left-hand side of (9.5.12), as usual we extend the exponential map to [−∞,+∞) by letting

e−∞ := 0. Moreover we define 1− λ̃2 + 2 log λ̃ to be −∞ when λ̃ = +∞.

Proof. (1) First assume that M and N the Z-modules are free of finite rank, and that ∥.∥ and
∥.∥2 are both Euclidean norms on NR. Then, with the notation of 9.2.3.1:

λ1(f
∨ : N

∨
2 →M∨) = λ1(N

∨, f(M)⊥, ∥.∥∨2 ).

Furthermore, an immediate computation shows that the dual Euclidean norms ∥.∥∨ and ∥.∥∨2 on N∨
R

satisfy the equality:

T = Tr
(
∥.∥∨ 2

2 /∥.∥∨ 2
)
.

As a consequence, Corollary 9.2.7 establishes the estimate:

(9.5.13) h0θ(N
∨, ∥.∥∨)− h0θ(f(M)⊥, ∥.∥∨) ≤ log

(
1−

(
λ̃e−1/2(λ̃2−1)

)T)−1

.

By the very definition of theta-invariants, we have:

h0θ(N
∨, ∥.∥∨) = h1θ(N).

Moreover we may identify the Z-module f(M)⊥ ⊂ N∨ with the dual of N/f(M) in such a way that
the restriction of ∥.∥∨ to f(M)⊥ is identified with the dual of the quotient norm ∥.∥ on N/f(M).
As a consequence, we have:

h0θ(f(M)⊥, ∥.∥∨) = h1θ(N/f(M), ∥.∥)

and:

h0θ(N
∨, ∥.∥∨)− h0θ(f(M)⊥, ∥.∥∨) = rk1θ(f :M → N),

so that (9.5.12) is equivalent to (9.5.13).

(2) Now assume that M and N are arbitrary Z-modules of finite type, and that ∥.∥ and ∥.∥2 are
arbitrary Euclidean seminorms on NR. Both the left-hand side and the right-hand side of (9.5.12)
are left unchanged when N is replaced by its maximal torsion-free quotient N/tor := N/Ntor. As a
consequence, we may assume that N is free.

We may choose decreasing sequences (∥.∥n)n≥0 and (∥.∥2,n)n≥0 of Euclidean norms on NR that
converge to ∥.∥ and ∥.∥2 respectively, such that, for any n ≥ 0, ∥.∥ ≤ ∥.∥n. By Part (1) of this
proof, the estimate (9.5.12) is valid when ∥.∥ and ∥.∥2 are replaced with ∥.∥n and ∥.∥2,n respectively.
Letting n go to infinity and using the downward continuity of θ-ranks as functions of the seminorms
— ultimately a consequence of the similar downward continuity of Banaszczyk functions, see (7.7.4)
—finishes the proof of (9.5.12) in this case.

(3) To prove the estimate (9.5.12) in the general case, we proceed by using finite dimensional
approximations, as in Part (3) of the proof of Proposition 9.3.2.

By definition, the invariant rk1θ(f, ∥.∥) is the limit of the expressions

rk1θ
(
fN ′ :M/f−1(N ′) −→ (N/N ′, ∥.∥)

)
as N ′ ranges through the directed set (coft(N),⊇).

Moreover we have:

λ1
(
f∨N ′ : (N/N ′, ∥.∥2)∨ → (M/f−1(N ′)∨

)
= inf

{
∥ξ∥∨2 | ξ ∈ N∨, ξ ◦ f ̸= 0, ξ|N ′ = 0

}
,

and consequently:

λ1
(
f∨N ′ : (N/N ′, ∥.∥2)∨ → (M/f−1(N ′)∨

)
≥ λ1(f∨ : N

∨
2 →M∨).

Consequently, going to the limit over N ′ in the estimate (9.5.12) applied to fN ′ finishes the
proof. □
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9.5.3. Proof of Theorem 9.5.1. When the seminorm ∥.∥1 vanishes, or when the relative
trace Tr(∥.∥1/∥.∥2) is infinite, the estimates (9.5.1) and (9.5.3) are obviously satisfied. We may
therefore assume that ∥.∥1 is not identically zero and that the relative trace Tr(∥.∥1/∥.∥2) is finite,
and therefore that the seminorm ∥.∥1 is compact with respect to ∥.∥2.

Observe that, for every λ ∈ R∗
+, when replacing ∥.∥1 by λ∥.∥1 both the left- and right-hand term

in (9.5.1) are multiplied by λ. Consequently, to prove (9.5.1), we may also assume that the first
characteristic value of ∥.∥1 with respect to ∥.∥2 is 1, and therefore that the following conditions are
satisfied:

(9.5.14) ∥.∥1 ≤ ∥.∥2 and T := Tr(∥.∥1/∥.∥2) ≥ 1.

When this last condition holds, the right-hand side of (9.5.3) is bounded from above by:

(5/2π)Tr(∥.∥1/∥.∥2),

and therefore the validity of (9.5.3) implies the one (9.5.6), and consequently of (9.5.1).

To prove Theorem 9.5.1, we are therefore left to establish (9.5.3) when conditions (9.5.2), or
equivalently (9.5.14), are satisfied. From now on we shall assume that is the case. In order to prove
(9.5.3), we may also assume:

ρ(f :M → N1) λ1(f
∨ : N

∨
2 →M∨) >

T

2π
.

According to Proposition 9.5.2, we may find a Euclidean seminorm ∥.∥ on NR which satisfies
the following conditions:

∥.∥1 ≤ ∥.∥ ≤ ∥.∥2 and Tr(∥.∥21/∥.∥2) = Tr(∥.∥2/∥.∥22) = T.

For any real number δ, replacing the seminorms ∥.∥1, ∥.∥ and ∥.∥2 by e−δ∥.∥1, e−δ∥.∥ and
e−δ∥.∥1 does not change the relative traces. It replaces ρ(f : M → N1)) with e−δρ(f : M → N1)

and λ1(f
∨ : N

∨
2 → M∨) with eδλ1(f

∨ : N
∨
2 → M∨). In particular, after choosing δ suitably, we

may assume that the following inequalities hold:

ρ(f :M → N1) >

√
T

2π
and λ1(f

∨ : N
∨
2 →M∨) >

√
T

2π
.

We may write:

ρ̃ :=
√
2π/T ρ(f :M → N1) and λ̃ :=

√
2π/T λ1(f

∨ : N
∨
2 →M∨),

so that we have:

ρ̃ > 1 and λ̃ > 1.

Corollary 9.3.5, in its variant (9.3.24) for the lower covering radius, shows:

(9.5.15) 2e−rk1θ(f :M→N) ≤ 1 + e
T
2

(
1−ρ̃2+2 log ρ̃

)
.

Proposition 9.5.4 shows:

(9.5.16) e−rk1
θ(f,∥.∥) + eT/2(1−λ̃

2+2 log λ̃) ≥ 1.

As a consequence of (9.5.15) and (9.5.16), we obtain:

(9.5.17) e
T
2

(
1−ρ̃2+2 log ρ̃

)
+ 2eT/2(1−λ̃

2+2 log λ̃) ≥ 1.

If ρ̃ = +∞, then (9.5.17) becomes:

(9.5.18) eT/2(1−λ̃
2+2 log λ̃) ≥ 1.
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If λ̃ ̸= 0, after again replacing the seminorms ∥.∥1, ∥.∥ and ∥.∥2 by e−δ∥.∥1, e−δ∥.∥ and e−δ∥.∥1, we
may assume that λ̃ is arbitrarily large, which is a contradiction, so that λ̃ = 0. Similarly, if λ̃ = +∞,
then ρ̃ = 0.

Assume that both λ̃ and ρ̃ are finite. Again, after replacing the seminorms ∥.∥1, ∥.∥ and ∥.∥2
by e−δ∥.∥1, e−δ∥.∥ and e−δ∥.∥1 for a suitable δ, we may assume the equality:

λ̃ = ρ̃.

Our goal, i.e., proving (9.5.3), becomes the estimate:

(9.5.19) λ̃2 ≤ 1 +
4√
T
,

and (9.5.17) becomes:

(9.5.20) 3eT/2(log(λ̃
2)−λ̃2+1) ≥ 1.

If we write λ̃2 = 1 + x, the inequality (9.5.19) we need to prove becomes:

(9.5.21) x ≤ 4√
T
,

Then from (9.5.20), we find:

x− log(1 + x) ≤ 2

T
log 3.

The function (x 7→ x − log(1 + x)) is increasing for x ≥ 1. As a consequence, to prove (9.5.21), it
suffices to prove the inequality:

(9.5.22)
4√
T
− log

(
1 +

4√
T

)
≥ 2

T
log 3

for any T ≥ 1. This is the content of Proposition 9.5.3, which completes the proof of Theorem 9.5.1.

9.5.4. Application to successive minima and covering radii. As alluded above, Theorem
9.5.1 may be used to recover transference inequalities on successive minima.22

Theorem 9.5.5. Let M be a countably generated Z-module abelian group and let ∥.∥1 and ∥.∥2
be two Euclidean seminorms on MR.

If M1 := (M, ∥.∥1) and M2 := (M, ∥.∥2) denote the associated Euclidean quasi-coherent sheaves,
then, for any integer i such that:

0 ≤ i < dimRMR,

the following inequality is satisfied:

(9.5.23) ρ[i](M1)λi+1(M
∨
2 ) ≤ Tr(∥.∥1/∥.∥2).

When moreover the following conditions hold:

∥.∥1 ≤ ∥.∥2 and Tr(∥.∥1/∥.∥2) ≥ 1,

then the inequality (9.5.23) admits the following stronger variant:

(9.5.24) ρ[i](M1)λi+1(M
∨
2 ) ≤

1

2π
Tr(∥.∥1/∥.∥2) +

2

π

√
Tr(∥.∥1/∥.∥2).

22The successive lower covering radii ρ[i](N) attached to an object N of qCohZ have been defined in Subsection

6.7.3.
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Proof. Let V be the vector subspace of M∨
R generated by those φ ∈M∨ with

∥φ∥∨2 < λi+1(M
∨
2 ).

Then V has dimension at most i. Let j be the dimension of V , and consider φ1, . . . , φj ∈M∨ such
that the φk are linearly independent in M∨

R and, for all k between 1 and j,

∥φk∥∨2 ≤ λi+1(M
∨
2 ).

Let N be the intersection of the j subspaces Kerφ1, . . . ,Kerφj of M , and let f : N → M be
the inclusion. Then NR has codimension j ≤ i in MR. In particular, we have:

(9.5.25) ρ(f : N →M1) ≥ ρ[j](M1) ≥ ρ[i](M1).

The morphism f∨ : M∨ → N∨ sends an element φ ∈ M∨ to its restriction to N . Let φ be an
element of M∨ such that f∨(φ) does not vanish. Then φ does not not belong to the subspace V of
M∨

R generated by φ1, . . . , φj , so that:

∥φ∥∨2 ≥ λi+1(M
∨
2 ).

In particular, we obtain:

(9.5.26) λ1(f
∨ :M

∨
2 → N∨) ≥ λi+1(M

∨
2 ).

The second inequality in Theorem 9.5.1 proves the inequality:

ρ(f : N →M1)λ1(f
∨ :M

∨
2 → N∨) ≤ Tr(∥.∥1/∥.∥2).

Together with (9.5.25) and (9.5.26), this implies:

ρ[i](M1)λi+1(M
∨
2 ) ≤ Tr(∥.∥1/∥.∥2).

This proves (9.5.23).

Similarly the estimate (9.5.24) follows from the second estimate (9.5.3) in Theorem 9.5.1. □

We may replace covering radii with successive minima and the invariants γi introduced in 6.6.2.
Recall that γi(M, ∥.∥) is the infimum of those positive real numbers R such that there exists a
subroup N of M/tor generated by elements v with ∥v∥ ≤ R such that Mtor/N is free of rank i.

As the invariants γ[i] and λ[i] are monotonous, we may consider their lower extensions γ[i] and

λ[i] as defined in Section 4.3. As γ[i] and λ[i] are bounded above by ρ[i], γ[i] and λ[i] are bounded

above by ρ[i] and we obtain the following consequence of Theorem 9.5.5.

Corollary 9.5.6. Let M be a countably generated Z-module and let ∥.∥1 and ∥.∥2 be two
Euclidean seminorms on MR.

If M1 := (M, ∥.∥1) and M2 := (M, ∥.∥2) denote the associated Euclidean quasi-coherent sheaves,
then, for any integer i such that:

0 ≤ i < dimRMR,

the following inequality is satisfied:

(9.5.27) γ[i](M1) λi+1(M
∨
2 ) ≤ 2Tr(∥.∥1/∥.∥2).

In particular:

(9.5.28) λ[i](M1) λi+1(M
∨
2 ) ≤ 2Tr(∥.∥1/∥.∥2).

When moreover the following conditions hold:

∥.∥1 ≤ ∥.∥2 and Tr(∥.∥1/∥.∥2) ≥ 1,
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then inequality (9.5.23) may be strengthened in:

λ[i](M1) λi+1(M
∨
2 ) ≤

1

π
Tr(∥.∥1/∥.∥2) +

4

π

√
Tr(∥.∥1/∥.∥2).

Proof. This is a straightforward consequence of Theorem 9.5.5 and Proposition 6.6.10. □

9.5.5. The case of a single seminorm. Application to lattices with gaps. The transfer-
ence estimates established in Theorem 9.5.5 and Corollary 9.5.6 may be applied to some Euclidean
quasi-coherent sheaves M = (M, ∥.∥) without explicitely referring to a second seminorm on MR
when this R-vector space is finite dimensional.

In this section, we assume that M = (M, ∥.∥) is a Euclidean quasi-coherent sheaf such that MR
is finite dimensional — this is for instance the case if M is a Euclidean lattice — and we let:

n := dimRMR.

First, we recover generalizations of the classical transference inequalities of [Ban93] as follows.

Theorem 9.5.7. For any integer i such that 0 ≤ i < n, the following estimates hold:

(9.5.29) ρi(M)λi+1(M
∨
) ≤ n

2π
+

2
√
n

π
and:

(9.5.30) γn−i(M)λi+1(M
∨
) ≤ n

π
+

4
√
n

π
.

In particular, we have:

(9.5.31) λn−i(M)λi+1(M
∨
) ≤ n

π
+

4
√
n

π
.

Proof. This is a consequence of Theorem 9.5.1, Theorem 9.5.5 and Corollary 9.5.6 in the case
∥.∥1 = ∥.∥2 = ∥.∥. □

Remark 9.5.8. The numerical constants in Theorem 9.5.7 are slightly better than those ap-
pearing for instance in [MSD19, (1.9)]. The inequality (9.5.30) is a more precise version of [Cai03,
Theorem 4.1]. One may similarly improve on the transference inequalities of [WL16].

We may improve the inequalities of Theorem 9.5.7 by choosing carefully the two seminorms
appearing in Theorem 9.5.1. The next proposition contains the relevant construction.

For any integer i ∈ {1, . . . , n}, we let:

λi := λi(M).

Proposition 9.5.9. For every integer i ∈ {1, . . . , n}, there exists a Euclidean seminorm ∥.∥i on
M that satisfies the following properties:

(i) ∥.∥i ≤ ∥.∥;
(ii) λi(M, ∥.∥i) = λi;
(iii) Tr(∥.∥i/∥.∥) ≤ i+

∑n
j=i+1

λi

λj
.

In (iii) above, we use the convention λi/λj = 0 if λi = λj = 0. The proof will show that, when
λi ̸= 0, we may require the inequality in (iii) to be an equality.

Proof. For any nonnegative real number R, let VR denote the vector subspace ofMR generated
by those v inM/tor with ∥v∥ ≤ R. The vector spaces VR form an increasing family of vector subspaces
of MR, and their reunion is MR itself. In particular, there are only a finite numbers of subspaces of
MR that are of the form VR for some real number R and, for any integer j between 1 and n, the
space Vλj+ε does not depend on ε > 0 if ε is chosen to be small enough.
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Denote by Vj the vector space Vλj+ε for small enough ε, and set V0 = 0. By definition of
successive minima, if v is an element of M/tor, then:

(9.5.32) v /∈ Vj =⇒ ∥v∥ ≥ λj+1

and, for any ε > 0, Vj+1 is generated by those elements of Vj ∩M/tor of norm at most λj+1 + ε.

For any j between 2 and n, let Hj be an orhogonal complement of Vj−1 in Vj . We set H1 = V1, so
that MR is the orthogonal direct sum of the Hj and, for any j between 1 and n, Vj is the orthogonal
direct sum of the Hk, k ≤ j.

We define a seminorm ∥.∥i of MR by requiring the decomposition

MR = Vi ⊕Hi+1 ⊕ . . .⊕Hn

to be orthogonal, and by requiring following equalities:

(i) (∥.∥i)|Vi
= ∥.∥|Vi

;

(ii) for any j ≥ i+ 1, (∥.∥i)|Hj
= λi

λj
∥.∥|Hj

.

By construction, we have ∥.∥i ≤ ∥.∥. If λi = 0, then ∥.∥i = 0 and conditions (i), (ii), (iii) of the
Proposition are satisfied. Assume that λi is nonzero. By construction, we have ∥.∥i ≤ ∥.∥, namely,
condition (ii) holds.

We prove condition (ii), namely, the equality:

λi(M, ∥.∥i) = λi.

Since ∥.∥i is bounded above by ∥.∥, we know:

λi(M, ∥.∥i) ≤ λi.
Given ε > 0, let Wε be the vector subspace of MR generated by those elements v of M/tor with
∥v∥i ≤ λi − ε. It remains to prove that Wε has dimension at most i− 1.

Let j be an integer between i+ 1 and n. By construction, for any v ∈ Vj , we have:

(9.5.33) ∥v∥i ≥
λi
λj
∥v∥.

Together with (9.5.32), (9.5.33) implies, for any nonzero v in M/tor and any j between i and n− 1:

v ∈ Vj+1 \ Vj =⇒ ∥v∥i ≥
λi
λj+1

λj+1 = λi.

As a consequence, for any nonzero v in M/tor:

v /∈ Vi =⇒ ∥v∥i ≥ λi.
In other words, Wε is contained in Vi. As a consequence, to prove that the dimension of Wε is at
most i− 1, we may replace M with (M/tor ∩ Vi, ∥.∥). By definition, ∥.∥i coincides with ∥.∥ on Vi, so
that

λ(M/tor ∩ Vi, ∥.∥i) = λi,

which finishes the proof of condition (ii).

We now prove that condition (iii) in the proposition holds, i.e., we compute Tr(∥.∥i/∥.∥). Con-
sider the function

f : {1, . . . , n} −→ {1, . . . , n}
defined by letting f(j) be the largest integer between 1 and n such that λj = λf(j). By definition,
for any R < λf(j)+1, the space VR has dimension at most f(j) and, for any R > λj = λf(j), the
space VR has dimension at least f(j). As a consequence, we obtain, for any j between 1 and n:

(9.5.34) dimVj = f(j).

As a consequence, we have:
dimHj = f(j)− f(j − 1)
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for any j ≥ i+ 1.

By definition of the function f , we have f(j) = f(j − 1) if and only if λj−1 = λj . If λj > λj−1,
then f(j − 1) = j − 1 and f(j)− f(j − 1) is the number of integers k with λk = λj . In other words:

(9.5.35) dimHj = δ
λj

λj−1
|{k ∈ {i+ 1, . . . , n}, λk = λj}|,

where δab is 0 when a ̸= b and 1 when a = b, and |X| denotes the cardinality of the finite set X.

Finally, we have:

(9.5.36) Tr(∥.∥i/∥.∥) = dimVi +

n∑
j=i+1

dimHj
λi
λj
.

By (9.5.34), we may write:

(9.5.37) dimVi = f(i) = i+

f(i)∑
j=i+1

1 = f(i) = i+

f(i)∑
j=i+1

λi
λj
.

Similarly, by (9.5.35), for any j ≥ i+ 1, we may write:

(9.5.38)
∑

k∈{i+1,...,n},λk=λj

dimHk
λi
λk

= |{k ∈ {i+ 1, . . . , n}, λk = λj}|
λi
λj

=
∑

k∈{i+1,...,n},λk=λj

λi
λk
.

Plugging (9.5.37) and (9.5.38) in (9.5.36) finishes the proof. □

As a consequence of the construction of Proposition 9.5.9, we obtain the following improvement
on Banaszczyk’s transference inequalities.

Theorem 9.5.10. Let M = (M, ∥.∥) be a Euclidean lattice of rank n with successive minima:

λ1 ≤ . . . ≤ λn.
For any integer i ∈ {1, . . . , n}, we let:

Ti := i+

n∑
j=i+1

λi
λj
.

Then we have:

(9.5.39) λi ρ
[i−1](M

∨
) ≤ Ti

2π
+

2
√
Ti
π

and

(9.5.40) λi γn−i+1(M
∨
) ≤ Ti

π
+

4
√
Ti
π

.

In particular:

(9.5.41) λi λn−i+1(M
∨
) ≤ Ti

π
+

4
√
Ti
π

.

Proof. The inequalities (9.5.40) and (9.5.41) are consequences of (9.5.39) and Proposition

6.6.10. To prove (9.5.39), apply Theorem 9.5.5 to M
∨
equipped with the norm ∥.∥∨ and the norm

∥.∥∨i dual to that constructed in Proposition 9.5.9. After noting:

Tr(∥.∥∨/∥.∥∨i ) = Tr(∥.∥i/∥.∥) = Ti ≥ 1,

we find:

λi(M, ∥.∥i) ρ[i−1](M
∨
) ≤ Ti

2π
+

2
√
Ti
π

.

Since λi(M, ∥.∥i) = λi, this proves (9.5.39). □
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Remark 9.5.11. It would be possible to improve (9.5.41) in Theorem 9.5.10 mildly by applying
Proposition 9.5.9 to λn−i+1(M) as well.

Note that we have obvious inequalities:

Ti ≤ i+ (n− i) λi
λi+1

≤ n.

In particular, we have:

T1 ≤ 1 + (n− 1)
λ1
λ2
,

so that (9.5.41) provides an upper bound for the quantity λ1(M)λn(M
∨
) in terms of the gap λ1/λ2

between the first two minima of M .

Theorem 9.5.10 shows that transference inequalities may be improved when applied to Euclidean
lattices M for which the sequence λ1 ≤ λ2 ≤ . . . of successive minima contains large gaps.

It turns out that the main cryptosystems that appear in lattice-based cryptography do indeed
use lattices with gaps, starting with the classical cryptosystem of Ajtai-Dwork [AD99]. There is a
gap between λ1 and λ2 for cryptosystems based on the LWE problem of [Reg05], and it is noticed
in [HPS98] that the lattices of rank 2n appearing in the widely used NTRU cryptosystem admit a
gap between λn and λn+1.

Motivated by the special role of lattices with gaps, transference inequalities for these lattices
have been investigated in the computer science literature; see for instance [WTW14, WLW15]
whose results may be considered as special cases of our Theorem 9.5.10.

9.6. Finiteness of λ[0] and θ1-Finiteness

At this stage, by combining results proved so far, one sees that, if M := (M, ∥.∥) is a Euclidean
quasi-coherent sheaf that satisfies:

λ[0](M) < +∞,
and if ∥.∥′ is a Euclidean seminorm on MR that is Hilbert-Schmidt with respect to ∥.∥, then the

Euclidean quasi-coherent sheaf M
′
:= (M, ∥.∥′) is θ1-finite.

Indeed, according to Remark 6.4.14, there exists a Z-submodule N of M such that NR is dense

in (MR, ∥.∥) (and a fortiori in (MR, ∥.∥′)) and the Euclidean quasi-coherent sheaf N
′
:= (N, ∥.∥′|NR

)

is ρ2-summable. According to Proposition 9.4.6, N
′
is θ1-finite, and therefore, by Remark 8.5.6, M

′

also is θ1-finite.

In this section, we shall show that the above implication still holds with the assumption on ∥.∥′
to be Hilbert-Schmidt with respect to ∥.∥ replaced by a much weaker assumption. The proof will
not use previous results in this chapter, but will be an application of the criteria of θ1-finiteness
established in Section 8.5, combined with the consequence of the Peierls-Bogoliubov inequality stated
in Corollary A.3.2.

9.6.1. The condition SE on pairs of Euclidean seminorms. Let ∥.∥ and ∥.∥′ be two
Euclidean seminorms on some R-vector space V .

Let us assume that ∥.∥′ is compact with respect to ∥.∥, and let

λ1 ≥ λ2 ≥ · · · ≥ 0

be the sequence of singular values of ∥.∥′ with respect to ∥.∥. For every T ∈ R∗
+, let us define:

N(T ) := |{i ∈ N≥1 | λ−1
i ≤ T}|.

The following two conditions are equivalent:
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SE1: for every ε ∈ R∗
+,

(9.6.1) N(T ) = O(eεT ) when T → +∞;

and:

SE2: for every η ∈ R∗
+,

(9.6.2)

+∞∑
i=1

e−η/λi < +∞.

Indeed, if (9.6.1) holds, the (9.6.2) holds for any η in (ε,+∞); conversely, if (9.6.2) holds, then
(9.6.1) holds with ε = η.

When SE1 and SE2 hold, we shall say that ∥.∥′/∥.∥ satisfies SE, or that ∥.∥′ satisfies SE with
respect to ∥.∥.

Observe that condition SE is a very weak quantitative strengthening of the compactness of ∥.∥′
with respect to ∥.∥. It is notably satisfied when N(T ) grows at most polynomially as a function of
T , or equivalently, when there exists p ∈ R∗

+ such that

(9.6.3) Tr(∥.∥′p/∥.∥p) :=
∞∑
i=1

λp < +∞.

9.6.2. The implication: λ[0](M) < +∞ and ∥.∥′/∥.∥ satisfies SE =⇒ M
′
θ1-finite. Hav-

ing introduced the condition SE on pairs of Euclidean seminorms on some R-vector space, we may
establish the following criterion for θ1-finiteness:

Proposition 9.6.1. Let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf. If λ[0](M) < +∞,
thenM

′
:= (M, ∥.∥′) is θ1-finite for every Euclidean seminorm ∥.∥′ onMR such that ∥.∥′/∥.∥ satisfies

condition SE.

Proof. Assume that λ[0](M) < +∞. Let N be the subspace of M generated by those m ∈M
with ∥m∥ ≤ 1+λ[0](M). Then the image of N inMR is dense in (MR, ∥.∥). In particular, N is dense
in (MR, ∥.∥′). As a consequence, Remark 8.5.6 shows that, if (N, ∥.∥′) is θ1-finite, then (M, ∥.∥′) is
θ1-finite. Additionnally, the construction of N shows that γ(N, ∥.∥|NR) is finite. Therefore, after

replacing M with N , we may assume that γ(M) is finite, or equivalently that M is generated by
bounded sections.

By definition, the invariant h1θ of an object (Zm, ∥.∥) of CohZ with a cyclic underlying Z-module
satisfies:

h1θ(Zm, ∥.∥) = log θ(∥m∥−2) if ∥m∥ ≠ 0,

= 0 if ∥m∥ = 0.

where:

log θ(x) := log
∑
k∈Z

e−πk
2x

= 2e−πx +O(e−4πx) when x ∈ R∗
+ goes to +∞.

In particular, for every A in R+, there exist c2(A) > c1(A) > 0 such that:

(9.6.4) c1(A) e
−π∥m∥−2

≤ h1θ(Zm, ∥.∥) ≤ c2(A) e−π∥m∥−2

if ∥m∥ ≤ A,

where we define e−πx
−2

to be 0 when x = 0.

When γ(M) is finite, we may choose a family (mk)k∈N of generators of the Z-module M such
that

B := sup
k∈N
∥mk∥ < +∞,
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and we may consider the exhausting filtration C• := (Ci)i∈N ofM by submodules in coh(M) defined
by

Ci :=
∑

0≤k≤i

Zmi.

Let ∥.∥′ be a Euclidean seminorm on MR. According to Proposition 8.5.1 and Definition 8.5.2,

to show that M
′
:= (M, ∥.∥′) is θ1-finite, it is enough to prove that the condition

Sum(C• ⊗O(−δ)) :
∞∑
i=0

h1θ(Ci/Ci−1
′
⊗O(−δ)) < +∞

holds for every δ ∈ R.
For every i ∈ N, the quotient module Ci/Ci−1

′
is cyclic, generated by the class mi of mi, and

if ∥.∥′ denotes the Euclidean seminorm on the subquotient Ci,R/Ci−1,R deduced from ∥.∥′, then
according to (9.6.4), the θ-invariant

h1θ(Ci/Ci−1
′
⊗O(−δ)) = h1θ(Zmi, e

δ ∥.∥′i)

satisfies the estimates:

c1(e
δB) exp(−πe2δ∥mi∥′i

−2
) ≤ h1θ(Ci/Ci−1

′
⊗O(−δ)) ≤ c2(eδB) exp(−πe2δ∥mi∥′i

−2
).

Therefore, for every δ ∈ R, the condition Sum(C• ⊗O(−δ)) holds if and only if

(9.6.5)
∑
i∈N

exp(−πe2δ∥mi∥′i
−2

) < +∞.

Let us define an increasing function φδ : R+ → R+ by:

φδ(x) := exp(−πe2δ/x) if x > 0,

:= 0 if x = 0.

It is convex on some neighborhood of 0 in R+; indeed, the second derivative of (x 7→ e−1/x) is
(x 7→ (−2x−3 + x−4)e−1/x), and is positive on (0, 1/2). Moreover, when ∥.∥′/∥.∥ satisfies SE, the
validity of SE2 with η = πe2δ shows that, with the notation of Appendix A:

Trφδ(∥.∥′2/∥.∥2) < +∞.

Therefore, according to Corollary A.3.3 applied with V the R-vector space MR, with vi the image
of mi in MR, and with φ̃ the function φδ, we have:∑

i∈N
φδ(∥mi∥

′2
i ) < +∞,

and consequently the summability condition (9.6.5) holds. □

9.7. Coronidis loco: Finiteness and Eventual Vanishing Properties of Euclidean
Quasi-coherent Sheaves

In this final section, we sum up the implications established in this monograph between the
finiteness and eventual vanishing properties of the elementary invariants ρ(M), γ(M) and λ[0](M) at-

tached to a Euclidean quasi-coherent sheafM := (M, ∥.∥), and of its theta invariants, notably h
1

θ(M).

We also summarize the implications between these properties and the ones of the Euclidean

quasi-coherent sheaf M
′
:= (M, ∥.∥′) deduced from M by replacing the Euclidean semi-norm ∥.∥

by a Euclidean semi-norm ∥.∥′ on MR that satisfies a suitable compactness or trace condition with
respect to ∥.∥.



9.7. FINITENESS AND EVENTUAL VANISHING PROPERTIES OF EUCLIDEAN Q.-C. SHEAVES 393

We finally present a consequence of these implications concerning families (M, ∥.∥α)α∈A of Eu-
clidean quasi-coherent sheaves defined by a fixed Z-module M equipped with a family (∥.∥α)α∈A of
Euclidean seminorms satisfying a suitable nuclearity property.

To provide some hint of the Diophantine applications of our results, we also discuss how such
families naturally arise in Diophantine geometry, when considering sections of vector bundles over
schemes of finite type over Z.

9.7.1. Let M be a Euclidean quasi-coherent sheaf.

Recall that, for each of the invariants φ = λ[0], γ, ρ, ρ, or h
1

θ, the invariant evφ is defined as
follows:

evφ(M) := lim
C∈coh(M)

φ(M/C) = inf
C∈coh(M)

φ(M/C),

where C runs over the directed set (coh(M),⊆) of finitely generated Z-submodules of M , and
satisfies:

evφ(M) ≤ φ(M) and evφ(M) < +∞⇐⇒ φ(M) < +∞.

Moreover, we have:

λ[0](M) ≤ γ(M) ≤ 2 ρ(M) ≤ 2 ρ(M)

— only the second inequality is not trivial, and has been established in Proposition 6.4.10 — and
consequently:

evλ[0](M) ≤ evγ(M) ≤ 2 evρ(M) ≤ 2 evρ(M).

In particular, we have:

ρ(M) < +∞ =⇒ ρ(M) < +∞ =⇒ γ(M) < +∞ =⇒ λ[0](M) < +∞,

and:

evρ(M) = 0 =⇒ evρ(M) = 0 =⇒ evγ(M) = 0 =⇒ evλ[0](M) = 0.

Moreover, as observed in Proposition 6.3.11, the general formalism of Section 4.5 establishes the
implication:

M ρ2-summable =⇒ evρ(M) = 0.

Similarly, as stated in Theorem 8.2.1, the following implication holds:

M θ1-summable =⇒ evh1θ(M) = 0

In Theorem 9.1.1, we have established the following estimate:

h
1

θ(M) ≤ π ρ(M)2,

which in turn implies:

evh
1

θ(M) ≤ π evρ(M)2.

In particular, the following implications hold:

ρ(M) < +∞ =⇒ h
1

θ(M) < +∞ and evρ(M) = 0 =⇒ evh
1

θ(M) = 0.

Moreover, in Proposition 9.4.6, we have established the implication:

M ρ2-summable =⇒M θ1-finite.



394 9. THETA INVARIANTS AND INFINITE-DIMENSIONAL GEOMETRY OF NUMBERS

9.7.2. As before, let M := (M, ∥.∥) be a Euclidean quasi-coherent sheaf. Moreover let ∥.∥c
(resp. ∥.∥SE , resp. ∥.∥HS) be a Euclidean seminorm on MR that is compact (resp. that satisfies the
condition SE, resp. that is Hilbert-Schmidt) with respect to ∥.∥.

For each of the invariants φ = λ[0], γ, or ρ, the following implication holds:

φ(M) < +∞ =⇒ evφ(M, ∥.∥c) = 0,

and moreover:
M θ1-summable =⇒ (M, ∥.∥c) θ1-finite.

Finally, according to Propositions 9.6.1, 6.5.3 and 9.4.6, the following implications hold:

λ[0](M) < +∞ =⇒ (M, ∥.∥SE) θ1-finite,

λ[0](M) < +∞ =⇒ evρ(M, ∥.∥HS) = 0,

and:
M θ1-summable =⇒ (M, ∥.∥HS) ρ2-summable.

9.7.3. From the implications recalled in the previous subsections, we immediately derive the
following proposition, concerning families of Euclidean quasi-coherent sheaves (M, ∥.∥α)α∈A defined
by fixed countably generated Z-module M , equipped with Euclidean semi-norms (∥.∥α)α∈A that
satisfy a suitable nuclearity condition.

Proposition 9.7.1. Let M be a countably generated Z-module and let (∥.∥α)α∈A a family of
Euclidean seminorms over MR.

If for every α ∈ A, there exists β ∈ A such that ∥.∥β is Hilbert-Schmidt with respect to ∥.∥α,
then the validity of the condition:

(9.7.1) for some α in A, the Euclidean coherent sheaf Mα := (M, ∥.∥α) satisfies P

does not depend on the choice of P among the following properties, where φ denotes any of the

invariants λ[0], γ, ρ, ρ, or h
1

θ:

(1) φ(Mα) < +∞;
(2) evφ(Mα) = 0;
(3) Mα is ρ2-finite;
(4) Mα is θ1-finite;
(5) Mα is θ1-summable.

9.7.4. Families (Mα)α∈A of Euclidean quasi-coherent sheaves as in Proposition 9.7.1 will play
a key role in Diophantine applications of the formalism developed in this monograph. Actually such
families naturally arise in Diophantine geometry as demonstrated by Example 9.7.2 below.

This example will rely on some basic facts concerning L2-norms of analytic sections of complex
analytic vector bundles on complex analytic manifolds which we briefly recall.

If F := (F, ∥.∥) is a Hermitian vector bundle23 on some complex analytic manifold V equipped
with some positive volume form µ, we shall denote by ∥.∥L2(V,µ,F ) the L2-quasinorm on the space

Oan(V, F ) of complex analytic sections of F over V defined by the equality:

∥s∥2
L2(V,µ,F )

:=

∫
V

∥s(x)∥2 dµ(x).

In particular, for every relatively compact open subset U of V, we may consider the L2-Hermitian
seminorm on Oan(V, F ):

∥.∥U := ∥.∥L2(U,µ|U ,F |U ).

23In other words, F is a complex analytic vector bundle over V , and ∥.∥ a continuous Hermitian metric on F .
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It is defined by the following equality, for every s ∈ Oan(V, F ):

∥s∥2U :=

∫
U

∥s(x)∥2 dµ(x).

If moreover U ′ is a relatively compact open subset of U , the seminorm ∥.∥U ′ is well-known to
be Hilbert-Schmidt with respect to ∥.∥U . Actually, for every p ∈ R∗

+, these seminorms satisfy:

(9.7.2) Tr(∥.∥pU ′/∥.∥pU ) < +∞.

Example 9.7.2. Let X be a separated scheme of finite type over SpecZ such that XQ is smooth
over Q. Then X(C) is a complex manifold, and we may choose a positive volume form µ over X(C),
invariant under complex conjugation.

Moreover let E := (E, ∥.∥) be a Hermitian vector bundle over X, defined by a vector bundle E
over X and a continuous metric ∥.∥, invariant under complex conjugation, on the complex analytic
vector bundle Ean

C on X(C).
According to Proposition 1.1.6 (2), the Z-module of sections of E over X:

M := Γ(X,E),

is countably generated. Moreover the complex (resp. real) vector space:

MC ≃ Γ(XC, EC) (resp. MR ≃ Γ(XR, ER))

may be identified to a subspace of Oan(X(C), Ean
C ) (resp. of the subspace of Oan(X(C), Ean

C ) defined
by analytic sections of Ean

C over X(C) that are invariant under complex conjugation).

Consequently, if U is a relatively compact subset of X(C), invariant under complex conjugation,
the Hermitian seminorm:

∥.∥U := ∥.∥L2(X(C),µ|U ,E
an
|U )

defines a Hermitian seminorm on MC which is invariant under complex conjugation, or equivalently
a Euclidean seminorm on MR.

Therefore the pair MU := (M, ∥.∥U ) defines a Euclidean quasi-coherent sheaf.

Finally, letK be a compact subset of the complex manifoldX(C) that is invariant under complex
conjugation, and let N (K) be the set of open neighborhoods of K in X(C) which are invariant under
complex conjugation and relatively compact in X(C).

The nuclearity properties of the seminorms ∥.∥U recalled in (9.7.2) above show that the family of
Euclidean quasi-coherent sheaves (MU )U∈N (K) satisfy the assumption of Proposition 9.7.1. Conse-
quently the existence of some U ∈ N (K) such that one of the properties (1)–(5) in Proposition 9.7.1
is satisfied (with α = U) does not depend of this property.

The existence of such a U is easily seen not to depend of the choice of the volume form µ and of
the Hermitian metric ∥.∥ on Ean

C defining E, and accordingly to be a property of the triple (X,E,K).

It is actually possible to extend the above construction of the Euclidean quasi-coherent sheaves
MU to the situation where XQ is not assumed to be smooth anymore, and where E is an arbitrary
coherent sheaf over X.
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APPENDIX A

The Singular Values Attached to a Pair of Euclidean
Seminorms

A.1. Pairs of Euclidean Seminorms: Continuity and Compactness

Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean seminorms on V , defined by
some Euclidean scalar products ⟨., .⟩ and ⟨., .⟩′.

We may consider the associated “separated completions” V cpt
∥.∥ and V comp

∥.∥′ and the canonical

morphisms
jV,∥.∥ : V −→ V comp

∥.∥ and jV,∥.∥′ : V −→ V cpt
∥.∥′ .

We shall still denote by ∥.∥ and ∥.∥′ the Hilbertian norms on V comp
∥.∥ and V comp

∥.∥′ deduced from the

Euclidean seminorms ∥.∥ and ∥.∥′. By construction, for every v ∈ V, we have:

∥jV,∥.∥(v)∥ = ∥v∥ and ∥jV,∥.∥′(v)∥ = ∥v∥.′

A.1.1. Continuity. We shall say that ∥.∥′ is continuous, or bounded, relatively to ∥.∥ when the
seminorm ∥.∥′ defines a continuous function on the seminormed vector space (V, ∥.∥′). This holds
precisely when the identity map IdV is continuous from (V, ∥.∥) to (V, ∥.∥′), or equivalently, when
the unit ball B(V, ∥.∥; 1) in (V, ∥.∥) is bounded in (V, ∥.∥′), or when

sup(∥.∥′/∥.∥) := sup {C ∈ R+ | ∀v ∈ V, ∥v∥′ ≤ C∥v∥}
is finite.

When these conditions are satisfied, the identity map IdV of V defines a continuous linear map

I
∥.∥
∥.∥′ : V

cpt
∥.∥ −→ V cpt

∥.∥′ ,

characterized by the commutativity of the diagram:

V
IdV //

jV,∥.∥
��

V

jV,∥.∥
��

V cpt
∥.∥

I
∥.∥
∥.∥′ // V cpt

∥.∥′ ,

between the pre-Hilbert spaces (V cpt
∥.∥ , ∥.∥) and (V cpt

∥.∥′ , ∥.∥′), and the operator norm of I
∥.∥
∥.∥′ coincides

with sup(∥.∥′/∥.∥).
Moreover, there exists a unique selfadjoint continuous linear map

A : V comp
∥.∥ −→ V comp

∥.∥

such that,

(A.1.1) for every v ∈ V comp
∥.∥ , ∥v∥′2 = ⟨v,Av⟩.

This operator coincide with the composition of I
∥.∥
∥.∥′ and its adjoint:

A = (I
∥.∥
∥.∥′)

∗.I
∥.∥
∥.∥′ .

399
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The operator A is positive, and its square root B := A1/2 is the unique positive continuous
linear map

B : V comp
∥.∥ −→ V comp

∥.∥

such that,

(A.1.2) for every v ∈ V comp
∥.∥ , ∥v∥′2 = ⟨B(v), B(v)⟩.

A.1.2. Compactness. We shall say that ∥.∥′ is compact with respect to ∥.∥ when the unit ball
B(V, ∥.∥; 1) in (V, ∥.∥) is precompact in (V, ∥.∥′). This implies the continuity of ∥.∥′ with respect
to ∥.∥.

Observe that for any sequence (vn)n∈N in V , the following two conditions are equivalent:

(i) the sequence (jV,∥.∥(vn))n∈N converges weakly to zero in the Hilbert space (V cpt
∥.∥ , ∥.∥);

(ii) the sequence (vn)n∈N is bounded and converges weakly to zero in (V, ∥.∥); in other words,

(A.1.3) sup
n∈N
∥vn∥ < +∞ and lim

n→+∞
⟨vn, w⟩ = 0 for every w ∈ V .

Proposition A.1.1. If the Euclidean seminorm ∥.∥′ is continuous relatively to ∥.∥, then the
following conditions are equivalent:

(i) the Euclidean seminorm ∥.∥′ on V is compact relatively to ∥.∥;
(ii) the Euclidean seminorm ∥.∥′ ◦ I∥.∥∥.∥′ is compact relatively to the Hilbert norm ∥.∥ on V cpt

∥.∥ ;

(iii) the continuous linear map I
∥.∥
∥.∥′ from V cpt

∥.∥ to V cpt
∥.∥′ is compact;

(iv) the continuous endomorphism A of V cpt
∥.∥ is compact;

(v) the continuous endomorphism B of V cpt
∥.∥ is compact;

(vi) for every sequence (xn)n∈N converging weakly to zero in the Hilbert space V cpt
∥.∥ , we have:

lim
n→+∞

∥I∥.∥∥.∥′(xn)∥′ = 0;

(vii) for every sequence (vn)n∈N that is bounded and converges weakly to zero in (V, ∥.∥), we
have:

lim
n→+∞

∥vn∥′ = 0.

The equivalences between these conditions are either well known, or easy to establish. We leave
the details to the reader.

If C is a R-vector subspace of V , we may consider the seminorms ∥.∥V/C and ∥.∥′V/C on the

quotient V/C defined as the quotient seminorms of ∥.∥ and ∥.∥′. Clearly, if ∥.∥′ is bounded with
respect to ∥.∥, then ∥.∥′V/C is bounded with respect to ∥.∥V/C , and we have:

sup(∥.∥′V/C/∥.∥V/C) ≤ sup(∥.∥′/∥.∥).

More generally, sup(∥.∥′V/C/∥.∥V/C) is a decreasing function of C.

In particular, sup(∥.∥′V/C/∥.∥V/C) admits a well-defined limit when C varies over the directed

set (Fd(V ),⊆) of finite dimensional vector subspaces of V :

(A.1.4) lim
C∈Fd(V )

sup(∥.∥′V/C/∥.∥V/C) = inf
C∈Fd(V )

sup(∥.∥′V/C/∥.∥V/C) ∈ [0, sup(∥.∥′/∥.∥)].

Proposition A.1.2. The seminorm ∥.∥′ is compact with respect to ∥.∥ if and only if the limit
(A.1.4) vanishes.

If (Ci)i∈N is an increasing sequence of finite dimensional vector subspaces of V such that
⋃
i∈N Ci

is dense in (V, ∥.∥′), then ∥.∥′ is compact with respect to ∥.∥ if and only if:

lim
i→+∞

sup(∥.∥′V/Ci
/∥.∥V/Ci

) = 0.
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A.2. The Singular Values Attached to a Pair of Euclidean Seminorms

To any pair (∥.∥, ∥.∥′) of Euclidean seminorms such that ∥.∥′ is compact with respect to ∥.∥, we
may associate its sequence of singular values:

(A.2.1) λ1 ≥ λ2 ≥ · · · ≥ 0.

It satisfies:
lim

i→+∞
λi = 0,

and is characterized by the following properties:

(i) It is the sequence of singular values of the compact operator I
∥.∥
∥.∥′ , defined as the eigenvalues

of B, in decreasing order, each one repeated according to its multiplicity.1

(ii) Assume that V cpt
∥.∥ is a separable infinite dimensional Hilbert space (resp. has finite dimen-

sion n). There exists a Hilbert basis (ei)i∈N≥1
(resp. (ei)1≤i≤n) of V

cpt
∥.∥ such that, for any

v ∈ V cpt
∥.∥ ,

(A.2.2) ∥v∥′2 =

∞∑
i=1

λ2i ⟨v, ei⟩2 (resp. ∥v∥′2 =

n∑
i=1

λ2i ⟨v, ei⟩2.)

(iii) For any k ∈ N, we may endowed the k-the exterior power ΛkV of the Euclidean seminorm
∥.∥∧k deduced from ∥.∥: by definition, the Euclidean scalar product ⟨., .⟩ associated to
∥.∥∧k satisfies

(A.2.3) ⟨v1 ∧ · · · ∧ vk, wi ∧ · · · ∧ wk⟩∧k = det(⟨vi, wj⟩)1≤i,j≤k.
Then we have:

k∏
i=1

λi = sup(∥.∥′∧k/∥.∥∧k).

It is also the operator norm of the continuous linear map defined by taking the k-th exterior

power ∧k(I∥.∥∥.∥′) of I
∥.∥
∥.∥′ , which defines a continuous linear map from ∧kV cpt

∥.∥ to ∧kV cpt
∥.∥′ .

(iv) We may consider the projective space

P(V cpt
∥.∥ ) := (V cpt

∥.∥ \ {0})/C
∗,

which parametrizes the one-dimensional complex vector subspaces of V cpt
∥.∥ , and the function

q : P(V cpt
∥.∥ ) −→ R+, [v] 7−→ ∥v∥′2/∥v∥2.

It is a C∞ function on the Hilbert manifold P(V cpt
∥.∥ ), and the positive singular values of

the pair (∥.∥, ∥.∥′) are precisely the positive singular values of the function q, namely the
elements of R∗

+ ∩ q(Dq−1(0)). Moreover a positive singular value λ of q occurs in the
sequence (A.2.1) with a multiplicity

n = 1 + dimC q
−1(λ).

Actually q−1(λ) is a complex projective space Pn−1(C), C-analytically embedded in the

Hilbert manifold P(V cpt
∥.∥ ).

For any function
φ : R+ −→ R+,

we shall define:

Trφ(∥.∥′/∥.∥) :=
+∞∑
i=1

φ(λi) (∈ [0,+∞]).

1When n := dimR V is finite, this defines λ1, . . . , λn. Then λi := 0 for every i > n.
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When φ is a Borel function, we may define the (possibly unbounded) self-adjoint operator φ(B)
by means of the Borel functional calculus and the following equality holds:

Trφ(∥.∥′/∥.∥) = Trφ(B).

We will use only the special instance of this definition where φ is a continuous function such that
φ(0) = 0, in which case φ(B) is a compact self-adjoint (symmetric) operator.

We shall also use the related notation:

Trφ(∥.∥′2/∥.∥2) := Trφ(B2) = Trφ(A) =

+∞∑
i=1

φ(λ2i ).

In particular,

Tr ∥.∥′2/∥.∥2 := TrB2 = TrA =

+∞∑
i=1

λ2i .

A.3. The Peierls-Bogoliubov Inequality.

A.3.1. Traces of convex functions of positive compact operators. The following propo-
sition shows how a convex function of the diagonal matrix elements of a positive compact operator
may be bounded in terms of the trace of the convex function applied to the operator:

Proposition A.3.1. Let (H, ∥.∥) be a real Hilbert space, and let A : H → H be a positive
compact operator.

For every convex function φ : R+ → R+ and for every orthonormal family (ei)i∈I in (H, ∥.∥),
the following inequality holds in [0,+∞]:

(A.3.1)
∑
i∈I

φ(⟨ei, Aei⟩) ≤ Trφ(A).

The inequality (A.3.1) appears in the literature of mathematical physics under the name of
Peierls-Bogoliubov inequality (see for instance [Sim79, 8, (c)]). Indeed this inequality, or some
variant, plays a key role in the work of Peierls and Bogoliubov on quantum statistical mechanics,
who used it to derive estimates and variational principles for quantum partition functions (see
[Pei38], and [Hua87, section 10.4]).

The inequality (A.3.1) also appears in the mathematical literature on a par with classical esti-
mates on singular values due to Weyl, Horn, and Fan; see notably [GK69, Section II.5, Theorem
5.2], where a more general version of Proposition A.3.1 is established.

For the sake of completeness, we recall a simple proof of the estimate (A.3.1) (compare [Sim79,
8, (c)]).

Proof. Observe that, for every vector e ∈ H such that ∥e∥ = 1, we have:

(A.3.2) φ(⟨e,Ae⟩) ≤ ⟨e, φ(A)e⟩.

Indeed this is Jensen’s inequality applied to the convex function φ and to the probability measure
µ on R+ defined as the spectral mesure2 attached to the operator A and to the vector e.

By applying (A.3.2) to the vectors ei and taking the sum over i ∈ I, we obtain:∑
i∈I

φ(⟨ei, Aei⟩) ≤
∑
i∈I
⟨ei, φ(A)ei⟩ ≤ Trφ(A). □

2If (fα)α∈A is an Hilbert basis of (H, ∥.∥) consisting of eigenvectors of A, and if λα ∈ R+ is the eigenvalue of C

attached to C, defined by Cfα = λαfα, then µ :=
∑

α∈A⟨e, fα⟩2 δλα .
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Corollary A.3.2. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean seminorms
on V , with ∥.∥′ compact relatively to ∥.∥.

For every convex function φ : R+ → R+ and every family (ei)i∈I in V orthonormal for the
scalar product ⟨. , .⟩ defining ∥.∥, the following inequality holds in [0,+∞]:

(A.3.3)
∑
i∈I

φ(∥ei∥′2) ≤ Trφ(∥.∥′2/∥.∥2).

Proof. With the notation of Proposition A.1.1, this is Proposition A.3.1 applied to the Hilbert
space H := V cpt

∥.∥ , the positive compact operator A defined by (A.1.1), and the orthonormal family

(jV,∥.∥(ei))i∈I in H. □

A.3.2. Application: pair of compact Euclidean seminorms and seminorms on sub-
quotients. In the next sections, we shall rely on the estimate (A.3.1) to establish finiteness prop-
erties of the θ-invariants of certain Euclidean quasi-coherent sheaves. To achieve this, we will use it
in the following setting.

Let V be a real vector space and let ∥.∥ and ∥.∥′ be two Euclidean seminorms on V , with ∥.∥′
compact relatively to ∥.∥.

Let N be an element of N ∪ {+∞}, and let (vi)0≤i<N be a sequence of elements in V . We let
V−1 := 0, and, for every i ∈ N ∩ [0, N),

Vi :=

i∑
k=0

R.vi,

and we denote by v̄i the class of vi in the R-vector space Vi/Vi−1, and by ∥.∥′i the Euclidean seminorm
on Vi/Vi−1 defined as the quotient of the Euclidean seminorm ∥.∥′|Vi

on Vi. Clearly, the quotient

Vi/Vi−1 is either 0, or the line R.v̄i.

Corollary A.3.3. Let us keep the previous notation, and let us assume that the following
condition is satisfied:

(A.3.4) for every i ∈ N ∩ [0, N), ∥vi∥ ≤ 1.

Then, if N = +∞, we have:

(A.3.5) lim
i→+∞

∥v̄i∥′i = 0.

Moreover, for any convex function φ : R+ → R+ such that φ(0) = 0, the following inequality
holds:

(A.3.6)
∑

0≤i<N

φ(∥v̄i∥′2i ) ≤ Trφ(∥.∥′2/∥.∥2).

When φ = IdR+ , the inequality (A.3.6) reads:

(A.3.7)
∑

0≤i<N

∥v̄i∥′2i ≤ Tr (∥.∥′2/∥.∥2).

In substance, the inequality (A.3.7) goes back to the work of Schur [Sch09].

Proof. We divide the proof in successive steps, where the validity of Corollary A.3.3 is estab-
lished under assumptions of increasing generality on the sequence (vi)0≤i<N and on the Euclidean
seminorm ∥.∥.

(i) Let us first assume that the vi, 0 ≤ i < N, are linearly independent, and that the Euclidean
seminorm ∥.∥ is actually a norm.
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Let us denote ⟨., .⟩ the Euclidean scalar product on V that defines ∥.∥, and let us consider the
sequence (ei)0≤i<N deduced from (vi)1≤i<N by Gram-Schmidt orthonormalization in the pre-Hilbert
space (V, ∥.∥). For every i ∈ [0, N) ∩ N, we may write:

ei = tivi + ri,

with ti in R∗
+, and vi in Vi−1. Moreover, ⟨ei, rI⟩ = 0, and therefore:

t2i ∥vi∥2 = ∥ei∥2 + ∥ri∥2 ≥ ∥ei∥2 = 1.

Since ∥vi∥ ≤ 1, this shows that ti belongs to [1,+∞).

The class ēi of ei in Vi/Vi−1 satisfies:

ēi = tiv̄i,

and therefore:

(A.3.8) ∥v̄i∥′i = t−1
i ∥ēi∥

′
i ≤ ∥ēi∥′i ≤ ∥ei∥′.

When N = +∞, the sequence (ei)i∈N is bounded and converges weakly to zero in the pre-Hilbert
space (V, ∥.∥). Since ∥.∥′ is compact relatively to ∥.∥, this implies:

lim
i→+∞

∥ei∥′ = 0.

Together with (A.3.8), this implies (A.3.5).

Finally, as φ is increasing, the estimates (A.3.8) also yield:∑
0≤i<N

φ(∥v̄i∥′2i ) ≤
∑

0≤i<N

φ(∥ei∥′2).

According to (A.3.3), the last sum is bounded from above by Trφ(∥.∥′/∥.∥).
(ii) Let us assume that the Euclidean seminorm ∥.∥ is a norm.

Let us introduce

Ñ := dimR
∑

0≤i<N

R.vi (∈ N ∪ {+∞}),

and for every k ∈ [0, Ñ) ∩ N, let:

i(k) := min{i ∈ [0, N) ∩ N | dimR Vi = k + 1}.

For any i ∈ [0, N) ∩ N, the quotient Vi/Vi−1 is one-dimensional, or equivalently v̄i ̸= 0, if and
only if i occurs in the sequence (i(k))0≤k<Ñ . The vectors (vi(k))0≤k<Ñ are R-linearly independent,

and Step (i), applied with (vi)0≤i<N replaced by (vi(k))0≤k<Ñ , establishes the validity of Corollary
A.3.5.

(iii) In general, we may consider the quotient map

q : V −→ V/ ker ∥.∥.

The Euclidean seminorm ∥.∥ (resp. ∥.∥′) on V descends to a Euclidean norm ∥.∥ on V/ ker ∥.∥ (resp.
to a Euclidean seminorm ∥.∥′ on V/ ker ∥.∥ that is compact relatively to ∥.∥). Step (ii) applied to
V/ ker ∥.∥ equipped with these Euclidean (semi)-norms and to the sequence (q(vi))0≤i<N completes
the proof of Corollary A.3.5 □

Corollary A.3.4. The following inequality holds:

(A.3.9)
∑

0≤i<N

∥v̄i∥′2i ≤ Tr (∥.∥′2/∥.∥2) sup
0≤i<N

∥vi∥2.

Proof. When sup0≤i<N ∥vi∥ = 1, this is Corollary A.3.3 applied with φ = IdR+ . The general
case follows by homogeneity. □



A.4. INTERMEDIATE EUCLIDEAN SEMINORMS 405

Observe that the proof of (A.3.9) does not require the full strength of the Peierls-Bogoliubov
inequality (A.3.6), and relies only on Schur’s inequality (A.3.7).

Corollary A.3.5. Let φ̃ : R+ → R+ be an increasing function such that φ̃(0) = 0 and φ̃|[0,ε0)
is convex for some ε0 ∈ R∗

+. If

Tr φ̃(∥.∥′2/∥.∥2) < +∞,
then:

(A.3.10)
∑

0≤i<N

φ̃(∥v̄i∥′2i ) < +∞.

Proof. We may find a convex function φ : R+ → R+ that coincides with φ̃ on some neigh-
borhood of 0 in R+. Then the finiteness of Tr φ̃(∥.∥′2/∥.∥2) and Trφ(∥.∥′2/∥.∥2) are equivalent, and
(A.3.10) directly follows from (A.3.6). □

A.4. Intermediate Euclidean Seminorms

The following properties of converging sequences and series in R+ are elementary and well-
known:

Proposition A.4.1. Let (λi)i≥1 be a sequence in R+ such that

lim
i→+∞

λi = 0.

(1) There exist sequences (µi)i≥1 and (νi)i≥1 in R+ such that

λi = µiνi

for every i ≥ 1, and
lim

i→+∞
µi = lim

i→+∞
νi = 0.

(2) If moreover ∑
i≥1

λi < +∞,

then we may find (µi)i≥1 and (νi)i≥1 as in (1) that also satisfy:∑
i≥1

µi < +∞.

Indeed (1) is satisfied if we let µi = νi := λ
1/2
i for every i ≥ 1. Moreover, when

∑
i≥1 λi < +∞,,

we may choose a strictly increasing sequence of positive integer (ik)k∈N such that∑
i≥ik

λi ≤ 2−k.

Then it is straightforward that (2) holds if we let, for every integer i such that ik ≤ i < ik+1:

µi := 2k/2λi and νi := 2−k/2.

The following proposition may be seen as an avatar, concerning relatively compact pairs of
Euclidean seminorms, of the above properties of sequences in R+.

Proposition A.4.2. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean semi-
norms on V , with ∥.∥′ compact relatively to ∥.∥.

(1) There exists a Euclidean seminorm ∥.∥∼ on V such that ∥.∥∼ is compact relatively to ∥.∥
and ∥.∥ is compact relatively to ∥.∥∼.

(2) Let (φα)α∈A be a countable family of continuous increasing functions from R+ to R+, van-
ishing at 0.
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If, for very α ∈ A,
(A.4.1) Trφα(∥.∥′/∥.∥) < +∞,
then there exists ∥.∥∼1 and ∥.∥∼2 as in (1) such that, moreover, for every α ∈ A,
(A.4.2) Trφα(∥.∥∼1 /∥.∥) < +∞
and

(A.4.3) Trφα(∥.∥′/∥.∥∼2 ) < +∞.

Proof. By means of the canonical isometry from V to V cpt
∥.∥ , one easily reduces to the situation

where (V, ∥.∥) is a Hilbert space. Then we may introduce the compact positive operator B : V → V
such that, for any v ∈ V,

∥v∥′ = ∥Bv∥.

With this notation, for any Borel function ψ : R+ → R+, positive on R∗
+, such that

lim
x→0+

ψ(x) = ψ(0) = 0 and lim
x→0+

ψ(x)/x = +∞,

the Euclidean seminorm ∥.∥∼ on V defined by:

(A.4.4) ∥v∥∼ := ∥ψ(B)v∥
satisfies the conditions in (1).

To prove (2), let us introduce the sequence (λi)i≥1 of the singular values of ∥.∥′ with respect
to ∥.∥, and let us first assume that A contains a single element ∗. Then the condition (A.4.1) is
equivalent to: ∑

i≥1

φ∗(λi) < +∞.

Moreover, if ∥.∥∼ is defined by (A.4.4) with ψ as above, then the condition (A.4.2) (resp. (A.4.3))
holds if and only if

(A.4.5)
∑
i≥1

φ∗(ψ(λi)) < +∞

(resp. if and only if

(A.4.6)
∑

i≥1,λi>0

φ∗(λi/ψ(λi)) < +∞).

The existence of ∥.∥∼1 (resp. of ∥.∥∼2 ) follows from the existence of ψ as above that satisfies (A.4.5)
(resp. (A.4.6)) and

ψ(0) = 0 and lim
x→0+

ψ(x)/x = +∞

(resp. and

ψ(0) = 0 and lim
x→0+

ψ(x) = 0.)

This is proved by a variant of the argument establishing part (2) of Proposition A.4.1, and we leave
its details to the reader.

To establish (2) in full generality, we choose a family (εα)α∈A in R∗A
+ such that the series of

functions

φ∗ :=
∑
α∈A

φα

converges normally on every compact subset of R+, and such that∑
α∈A

Trφα(∥.∥′/∥.∥) < +∞.
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This last condition is equivalent to:

Trφ∗(∥.∥′/∥.∥) < +∞.
Therefore the validity of (2) whenA has a single element implies the existence of Euclidean seminorms
∥.∥∼1 and ∥.∥∼2 as in (1) such that

(A.4.7) Trφ∗(∥.∥∼1 /∥.∥) < +∞
and

(A.4.8) Trφ∗(∥.∥′/∥.∥∼2 ) < +∞.
For every α ∈ A, the estimate φα ≤ ε−1

α φ∗ shows that (A.4.2) (resp. (A.4.3)) follows from (A.4.7)
(resp. (A.4.8)). □





APPENDIX B

The Relative Trace of Two Euclidean Seminorms

In this work, we shall make use of the notion of relative trace of (the squares of) two Euclidean
seminorms, at the level of generality considered in [Bou69, Annexe, 1]. In this section, we provide
a short but self-contained discussion of this notion and of its various properties that will be used in
the sequel.

B.1. Definitions

Let V be a real vector space, equipped with a Euclidean seminorm ∥.∥; let us denote the
Euclidean scalar product that defines ∥.∥ by ⟨., .⟩.

We may consider the subspace

ker ∥.∥ := {v ∈ V | ∥v∥ = 0}

of V , and equip the quotient vector space V/ ker ∥.∥ with the Euclidean norm induced by ∥.∥, that
we will still denote by ∥.∥. The completion of the pre-Hilbert space (V/ ker ∥.∥, ∥.∥) is a real Hilbert
space, which we shall denote by (V, ∥.∥)comp, or shortly V comp.

The quotient map from V to V/ ker ∥.∥ defines a R-linear map

jV,∥.∥ : V −→ V comp.

It is an isometry, with dense image, from the seminormed vector space (V, ∥.∥) to the Hilbert space
(V, ∥.∥)comp.

For any n ∈ N, we define Orth≤1
n (V, ∥.∥) as the set of the R-linear maps

φ : Rn −→ V

that satisfy the condition

Orth≤1 : ∥φ(x)∥ ≤ |x| for every x ∈ Rn,

where |.| denotes the standard Euclidean norm on Rn, defined by

|(x1, . . . , xn)|2 := x21 + · · ·+ x2n.

We shall also consider the subsets Orth<1(V, ∥.∥) and Orth(V, ∥.∥) of Orth(V, ∥.∥) defined respectively

by replacing the condition Orth≤1 by the conditions

Orth<1 : ∥φ(x)∥ < |x| for every x ∈ Rn \ {0},

and

Orth : ∥φ(x)∥ = |x| for every x ∈ Rn.

Finally, we shall consider the disjoint union1

Orth≤1(V, ∥.∥) :=
∐
n∈N

Orth≤1
n (V, ∥.∥),

1By definition, an element of Orth≤1(V, ∥.∥) is a pair (n, φ) with n in N and φ in Orth≤1
n (V, ∥.∥).
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and its subsets
Orth<1(V, ∥.∥) :=

∐
n∈N

Orth<1
n (V, ∥.∥),

and
Orth(V, ∥.∥) :=

∐
n∈N

Orthn(V, ∥.∥).

Observe that Orth(V, ∥.∥) may be identified with the set of finite orthonormal sequences in the
inner-product space (V, ⟨., .⟩), by the map which sends (n, φ) ∈ Orth(V, ∥.∥) to (φ(e1), . . . , φ(en)),
where (e1, . . . , en) denotes the canonical basis of Rn.

Definition B.1.1. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean seminorms
on V . The relative trace of ∥.∥′2 with respect to ∥.∥2 is defined as:

(B.1.1) Tr(∥.∥′2/∥.∥2) := sup
(n,φ)∈Orth≤1(V,∥.∥)

n∑
i=1

∥φ(ei)∥′2 ∈ [0,+∞].

B.2. Properties of the Relative Trace

The relative trace Tr(∥.∥′2/∥.∥2) defined by (B.1.1) satisfies the following properties, which
indeed provide alternative definitions of it.2

Proposition B.2.1. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean semi-
norms on V .

(i) For any v ∈ V, we have:

∥v∥′2 ≤ Tr(∥.∥′2/∥.∥2) ∥v∥2.
In particular, if the relative trace Tr(∥.∥′2/∥.∥2) is finite, then the seminorm ∥.∥′ is contin-
uous on V equipped with the seminorm ∥.∥.

(ii) If there exists v ∈ V such that ∥v∥ = 0 and ∥v∥′ ̸= 0, or equivalently if ker ∥.∥ ⊈ ker ∥.∥′,
then

Tr(∥.∥′2/∥.∥2) = +∞.
If ker ∥.∥ ⊆ ker ∥.∥′, then

Tr(∥.∥′2/∥.∥2) := sup
(n,φ)∈Orth(V,∥.∥)

n∑
i=1

∥φ(ei)∥′2.

(iii) The relative trace of ∥.∥′2 with respect to ∥.∥2 satisfies:

(B.2.1) Tr(∥.∥′2/∥.∥2) := sup
(n,φ)∈Orth<1(V,∥.∥)

n∑
i=1

∥φ(ei)∥′2.

(iv) If V0 is a real vector subspace of V , dense in V for the topology defined by ∥.∥, then the
relative trace of ∥.∥′2 with respect to ∥.∥2 coincides with that of their restriction to V0:

Tr(∥.∥′2|V0
/∥.∥2|V0

) = Tr(∥.∥′2/∥.∥2).

(v) If (V, ∥.∥) is a real Hilbert space, or equivalently if ∥.∥ is a complete norm on V , then, for
every Hilbert basis (ei)i∈I of (V, ∥.∥), we have:

Tr(∥.∥′2/∥.∥2) =
∑
i∈I
∥ei∥′2.

From the expressions (B.1.1) and (B.2.1) for the relative trace, one easily derives that it satisfies
the monotonicity and continuity properties in the next two propositions.

2For instance, Property (ii) is used as a definition of Tr(∥.∥′2/∥.∥2) in [Bou69, Annexe, 1].
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Proposition B.2.2. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean semi-
norms on V .

(i) The relative trace Tr
(
∥.∥′2/∥.∥2

)
is an increasing (resp. decreasing) function of the Eu-

clidean seminorm ∥.∥′ (resp. of ∥.∥).
(ii) If (∥.∥i)i∈N is a decreasing sequence of Euclidean seminorms on V (resp. (∥.∥′i)i∈N an

increasing sequence) of Euclidean seminorms on V such that

lim
i→+∞

∥v∥i = ∥v∥ and lim
i→+∞

∥v∥′i = ∥v∥′

for every v ∈ V, then the increasing sequence
(
Tr(∥.∥′2i /∥.∥2)

)
i∈N satisfies:

lim
i→+∞

Tr(∥.∥′2i /∥.∥2i ) = Tr(∥.∥′2/∥.∥2).

Proposition B.2.3. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two Euclidean semi-
norms on V .

(i) For any R-vector subspace W of V, we have:

Tr(∥.∥′2|W /|.∥
2
|W ) ≤ Tr

(
∥.∥′2/∥.∥2

)
and

Tr(∥.∥′2V/W /∥.∥
2
V/W ) ≤ Tr

(
∥.∥′2/∥.∥2

)
,

where ∥.∥V/W and ∥.∥′2V/W denote the quotient Euclidean seminorms on V/W associated to

∥.∥ and ∥.∥′ respectively.
(ii) If (Wi)i∈N is an increasing sequence of vector subspaces of V such that

⋃
i∈NWi = V, then

the increasing sequence
(
Tr(∥.∥′2|Wi

/∥.∥2|Wi
)
)
i∈N

satisfies:

lim
i→+∞

Tr(∥.∥′2|Wi
/∥.∥2|Wi

) = Tr(∥.∥′2/∥.∥2).

If moreover Tr
(
∥.∥′2/∥.∥2

)
is finite, the decreasing sequence

(
Tr(∥.∥′2V/Wi

/∥.∥2V/Wi
)
)
i∈N

satisfies:
lim

i→+∞
Tr(∥.∥′2V/Wi

/∥.∥2V/Wi
) = 0.

Definition B.2.4. Let V be a real vector space, and let ∥.∥ and ∥.∥′ be two euclidean seminorms
on V . We say that the quadratic form ∥.∥′2 is nuclear with respect to the quadratic form ∥.∥2 or that
∥.∥′ is Hilbert-Schmidt with respect to ∥.∥ if the relative trace Tr(∥.∥′2/∥.∥2) is finite.

One easily checks that ∥.∥′ is Hilbert-Schmidt with respect to ∥.∥ if and only if the seminorm
∥.∥′ is continuous on V equipped with the topology defined by ∥.∥ and if the continuous linear map
of Hilbert spaces

ι : (V, ∥.∥)comp −→ (V, ∥.∥′)comp,

induced by the identity map of V , is a Hilbert-Schmidt operator.





APPENDIX C

Measure Theory on some Infinite Dimensional Topological
Vector Spaces

Let V be a R-vector space of countable dimension. The choice of a R-basis (ei)i∈I of V , indexed
by some countable set I, is equivalent to the datum of an isomorphism of R-vector spaces:

(C.0.1) ι : V
∼−→ R(I).

The dual R-vector space
V ∨ := HomR(V,R),

when equipped with the topology of pointwise convergence, or equivalently with the topology
σ(V ∨, V ), is a Fréchet space. Indeed the isomorphism (C.0.1) determines an isomorphism of topo-
logical vector spaces:

ι∨−1 : V ∨ ∼−→ R(I)∨ = RI ,
where RI is equipped with the product topology defined by endowing each factor R with its usual
topology.

In this Appendix, we present various results concerning positive Borel measures on V ∨ and their
Fourier transform on V that play a key role in Chapter 8, in the study of the function BF and the

measure βF∨ associated to an object F in qCohZ.

These results are variations on some classical results of Bochner [Boc55], Prokhorov [Pro56],
Sazonov [Saz58], and Minlos [Min59]. Our aim in this Appendix is twofold: to present these results
in the specific form required for their applications in Chapter 8; and to make them accessible with
only some familiarity with the basic tools of measure theory.

For more results and references on this circle of questions, we refer the reader to the masterly
introduction by Gelfand and Vilenkin [GV64] and to the more thorough presentation in [Bou69]
which also contains an illuminating “Note historique.”1 Useful expositions of this material also
appear in [Sch73], [SF76], and [VTC87].

C.1. The Theorems of Bochner and P. Lévy

We shall denote by Mfin
+ (V ∨) the convex cone of positive Borel measure of finite mass on the

topological space V ∨. To any measure µ inMfin
+ (V ∨) we may attach its Fourier transform, namely

the function

Fµ : V ∨ −→ C
defined by the equality:

(C.1.1) Fµ(x) :=
∫
V ∨

e−2πi⟨ξ,x⟩ dµ(ξ).

1The reader should be aware that the use of Euclidean norms, and not of more general seminorms, in [GV64]
make their exposition not directly suitable in the context of the present monograph, and of the idiosyncratic approach

to measure theory in [Bou69].
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The function Fµ is continuous on V ∨ equipped with the inductive topology. In other words,
its restriction to every finite dimensional R-vector space W of V is continuous2. This is indeed a
straightforward consequence of dominated convergence theorem.

Moreover the function Fµ is easily checked to be of positive type.3 In particular, for every
(v, w) ∈ V 2, the following relations hold:

(C.1.2) Φ(−v) = Φ(v),

(C.1.3) |Φ(v)| ≤ Φ(0),

and:

(C.1.4) |Φ(v)− Φ(w)|2 ≤ 2Φ(0) (Φ(0)− ReΦ(v − w)) .

Observe also that the following equality holds:

Φ(0) := µ(V ∨),

and that, for every x ∈ V, we have:

(C.1.5) ReΦ(x) =

∫
V ∨

cos(2π⟨ξ, x⟩) dµ(ξ) ∈ [−Φ(0),Φ(0)] = [−µ(V ∨), µ(V ∨)].

In particular, when µ is a probability measure, 1− ReΦ(x) lies in the interval [0, 2].

Theorem C.1.1. The map (µ 7−→ Fµ) defined by (C.1.1) establishes a bijection fromMfin
+ (V ∨)

onto the convex cone P+(V ) of continuous functions of positive type on V equipped with the inductive
topology.

When V is finite dimensional, it is a classical theorem of Bochner; see [Boc33]. When V
has infinite countable dimension, it is a special case of Minlos theorem, and actually directly follows
from Bochner theorem concerning measures on finite dimensional R-vector spaces combined with the
identification ofMfin

+ (V ∨) with the space of finite positive promeasures on V ∨, which is a classical
result of Kolmogorov. This extension of the original Bochner theorem in [Boc33] to the infinite
dimensional setting is actually due to Bochner himself, and appears in his monograph [Boc55,
Chapter 5].

Observe also that, as a consequence of the estimates (C.1.3) and (C.1.4), a function Φ of positive
type on V is continuous on V equipped with the inductive topology if and only if it is continuous
at the point 0 of V .

From the injectivity of F , we immediately deduce:

Corollary C.1.2. A measure µ ∈ Mfin
+ (V ∨) is a symmetric probability measure — in other

words µ satisfies the conditions:

µ(V ∨) = 1

and

µ(−E) = µ(E) for every Borel subset E of V ∨

— if and only if the function Φ := Fµ satisfies:

Φ(0) = 1 and Φ(V ) ⊆ R.

The injectivity of F also admits the following consequence, which we leave as an easy exercise:

2when W equipped with its standard Hausdorff locally convex topology.
3Recall that a function Φ : A→ C defined on some abelian group (A,+) is called of positive type when, for every

finite family (aα)α∈F of elements of A, the matrix (Φ(aα − aβ))(α,β)∈F2 is Hermitian and semi-positive.
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Corollary C.1.3. Let W be a vector subspace of V and let

W⊥ := {ξ ∈ V ∨ | ⟨ξ, x⟩ = 0}

be the associated closed vector subspace of V ∨. For every measure µ ∈Mfin
+ (V ∨) of Fourier transform

Φ := Fµ, the following conditions are equivalent:

(i) µ is supported by W⊥;
(ii) Φ|W = Φ(0);
(iii) for every (v, w) ∈ V ×W, Φ(v + w) = Φ(v).

The space Mfin
+ (V ∨) is equipped with the topology of narrow convergence4. By definition a

family (µα)α∈A of elements ofMfin
+ (V ∨) indexed by a directed set (A,⪯) converges to µ ∈Mfin

+ (V ∨)
in this topology when, for every bounded continuous function φ on V ∨:

(C.1.6) lim
α∈A

∫
V ∨

φdµα =

∫
V ∨

φdµ.

The topology of narrow convergence on Mfin
+ (V ∨) is actually metrizable and makes Mfin

+ (V ∨) a

Polish space; see [Pro56, Â§1.4], [Bou69, Â§5.4], or [Str11, Â§9.1].

Theorem C.1.4. For every family (µα)α∈A of elements of Mfin
+ (V ∨) indexed by a directed set

(A,⪯) possessing a countable directed subset and every µ inMfin
+ (V ∨), the following conditions are

equivalent:

(i) (µα)α∈A converges to µ in the topology of narrow convergence;
(ii) for every finite dimensional R-vector subspace W of V ∨ and every compact subset K of W,

the family (Fµα)α∈A converges to Fµ uniformly on K;
(iii) for every x ∈ V,

lim
α∈A
Fµα(x) = Fµ(x).

When V is finite dimensional, Theorem C.1.4 is a classical result of P. Lévy.5 The infinite
dimensional case covered in Theorem C.1.4 follows easily by using the basic properties of narrow
convergence.6

C.2. The Theorems of Minlos and of Prokhorov-Sazonov

In this section, we assume that the R-vector space V is equipped with some Euclidean semi-
norm ∥.∥.

C.2.1. Definitions. Statements of the theorems.

4We follow the terminology of [Bou69, Â§5.3] and [Sch73]. This topology, or the induced topology on the set
M1

+(V ∨) of probability measure on V ∨, is often called the topology of weak convergence, see for instance [Pro56],

[Bil99] or [Str11]. When V is finite dimensional, this topology does not coincide with the topology induced by the
weak topology on the space D′(V ∨) of distributions on V ∨; the latter coincides with the topology called topology of

vague convergence in [Bou69].
5See for instance [Bou69], Â§5, Exercice 13, or [Str11, Â§3.1].
6See for instance [Bil99], Example 2.4. In Chapter 8, we use only the finite dimensional version of Theorem

C.1.4. The reader may refer to [Fer67, III.6] for more general versions of P. Lévy’s theorem in the infinite dimensional

setting.
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C.2.1.1. To the seminorm ∥.∥ is attached by duality a definite quasinorm on V ∨,

∥.∥∨ : V ∨ −→ [0,+∞],

defined by the equality:

∥ξ∥∨ := sup
x∈V,∥x∥≤1

|⟨ξ, x⟩| for every ξ ∈ V ∨.

This quasinorm is lower semicontinuous on the Fréchet space V ∨, and if we let:

V ∨Hilb := {ξ ∈ V ∨ | ∥ξ∥∨ < +∞} ,
then (V ∨Hilb, ∥.∥∨) is a Hilbert space and the inclusion V ∨Hilb ↪→ V ∨ is a continuous linear map
from this Hilbert space to the Fréchet space V ∨. Moreover the space

V ∨Hilb =
⋃
n∈N
{ξ ∈ V ∨ | ∥ξ∥∨ ≤ n}

is a countable union of closed subsets, and therefore a Borel subset, of the Fréchet space V ∨. Actually
each “closed ball”

(C.2.1) Bn := {ξ ∈ V ∨ | ∥ξ∥∨ ≤ n}
is easily seen to be a compact subset of the Fréchet space V ∨, and a subset E of V ∨Hilb to be a Borel
subset of the Hilbert space (V ∨Hilb, ∥.∥∨) if and only if it is a Borel subset of the Fréchet space V ∨.

Moreover a simple application of the Hahn-Banach theorem shows that the closure V ∨Hilb of
V ∨Hilb in the Fréchet space V ∨ satisfies:

V ∨Hilb = K⊥ :=
{
ξ ∈ V ∨ | ξ|K = 0

}
,

where K denotes the “kernel” of the seminorm ∥.∥:
K := {x ∈ V | ∥x∥ = 0} .

In particular V ∨Hilb is dense in V ∨ if and only if ∥.∥ is a norm.

Definition C.2.1. The Sazonov topology of (V, ∥.∥) is the locally convex topology on V defined
by the Euclidean seminorms ∥.∥′ on V such that:

Tr(∥.∥′2/∥.∥2) < +∞.

C.2.1.2. When (V, ∥.∥) is a finite dimensional Euclidean vector space, the following result appears

in the literature under the name of Minlos lemma; see for instance [Bou69, Â§ 6.9]. It constitutes
the key technical point underlying the proof of Minlos theorem which extend Bochner theorem to
probability measures on the topological dual of nuclear spaces; see [Min59] and [Bou69, Â§ 6.10].

Theorem C.2.2. Let µ be a Borel probability measure on V ∨ and let Φ := Fµ be its Fourier
transform. Assume that, for some Euclidean seminorm ∥.∥′ on V and some ε ∈ R∗

+, the following
implication holds for every x ∈ V :

(C.2.2) ∥x∥′ < 1 =⇒ 1− ReΦ(x) < ε.

Then the following estimate holds for every C ∈ R∗
+:

(C.2.3) µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 > C

})
≤ (1− e−1/2)−1

[
ε+ (2π2C)−1Tr(∥.∥′2/∥.∥2)

]
.

The following theorem is basically due to Prokhorov and Sazonov; see [Pro56, Â§1.6] and

[Saz58]; see also [Bou69, Â§6.11].

Theorem C.2.3. Let µ be a Borel probability measure on V ∨ and let

Φ := Fµ : V −→ C
be its Fourier transform. The following conditions are equivalent:
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(i) The measure µ is supported by V ∨Hilb.7

(ii) For every ε ∈ R∗
+, there exists a Euclidean seminorm ∥.∥′ on V which satisfies the following

conditions:
Tr(∥.∥′2/∥.∥2) < +∞,

and, for every x ∈ V ,
1− ReΦ(x) ≤ ε+ ∥x∥′2.

(iii) The function Φ is continuous on V endowed with the Sazonov topology of (V, ∥.∥).
(iv) The function ReΦ is continuous at the point 0 of V equipped with the Sazonov topology.

Equivalently, for every ε ∈ R∗
+, there exists a Euclidean seminorm ∥.∥′ on V which satisfies

the following conditions:
Tr(∥.∥′2/∥.∥2) < +∞,

and, for every x ∈ V ,

∥x∥′ < 1 =⇒ 1− ReΦ(x) ≤ ε.

In the next subsections, we present a selfcontained derivation of Theorems C.2.2 and C.2.3. Our
line of arguments originates in the lucid short note by Kolmogorov [Kol59], which gives a central
role to “Fourier duality” formulae like (C.2.5) below, and thus provides a simpler proof of Minlos
lemma and elucidates its relations to the earlier contributions of Prokhorov and Sazonov.

C.2.2. Proof of Theorem C.2.2.

C.2.2.1. The proof of “Minlos estimate” (C.2.3) will rely on the following integral formulae
concerning finite dimensional Euclidean vector spaces.

Proposition C.2.4. Let W be a finite dimensional R-vector space, ∥.∥ a Euclidean norm on
W , and λW the Lebesgue measure on W attached to the Euclidean vector space W := (W, ∥.∥).

(1) For every Euclidean seminorm ∥.∥′ on W , the following equality holds:

(C.2.4) 2π

∫
W

∥x∥′2 e−π∥x∥
2

dλW (x) = Tr(∥.∥′2/∥.∥2).

(2) For every Borel probability measure ν on the dual W∨ of W , of Fourier transform Ψ :=
FW∨ν, the following equality holds:

(C.2.5)

∫
W∨

(
1− e−π∥ξ∥

2

W∨
)
dν(ξ) =

∫
W

[1− ReΨ(x)] e−π∥x∥
2

dλW (x) (∈ [0, 1]).

We have denoted by ∥.∥W∨ the Euclidean norm on W∨ dual of the norm ∥.∥. By definition of
the Fourier transform FW∨ , we have, for every x ∈W :

Ψ(x) :=

∫
W∨

e−2πi⟨ξ,x⟩ dν(ξ).

Proof. Let us introduce the Gaussian probability measure γW on W :

dγW (x) = e−π∥x∥
2

dλW .

To prove (1), observe that the formation of γW is compatible with direct sums of Euclidean
vector spaces. By considering a basis of W that is orthogonal both for the scalar product defining
the quadratic form ∥.∥2 and the one defining ∥.∥′2, we are reduced to establish the identity (C.2.4)
when W has dimension 1. In this case, it reduces to the identity:

2π

∫
R
x2e−πx

2

dx =

∫
R
t2e−t

2/2 dt√
2π

= 1,

which expresses that the standard normal distribution has variance one.

7Namely µ satisfies: µ(V ∨ \ V ∨Hilb) = 0, or equivalently: µ(V ∨Hilb) = 1.
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To prove (2), observe that, using that ν and γW are probability measures and that Ψ satisfies
the relation (C.1.2), the identity (C.2.5) may be written:

(C.2.6)

∫
W∨

e−π∥ξ∥
2

W∨ dν(ξ) =

∫
W

Ψ(x) dγW (x).

Moreover the Fourier transform of γW is a Gaussian function. Namely, for every ξ ∈ W∨, we
have:

FW γW (ξ) :=

∫
W

e−2πi⟨ξ,x⟩ dγW (x) = e−π∥ξ∥
2

.

Accordingly, (C.2.6) is nothing but the Fourier duality formula:

(C.2.7)

∫
W∨
FW γW dν =

∫
W

FW∨ν dγW

for the measures γW and ν on the dual vector spacesW andW∨. In turn (C.2.7) is a straightforward
consequence of Fubini theorem, which shows that both sides of (C.2.7) equal the integral:∫

W×W∨
e−2π⟨ξ,x⟩ dγW (x) dν(ξ). □

C.2.2.2. To prove the estimate (C.2.3), after replacing the seminorm ∥.∥ by
√
2πC∥.∥, it is

sufficient to handle the case where C = (2π)−1, namely to establish that if condition (C.2.2) is
satisfied, then the following estimate holds:

(C.2.8) µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 > (2π)−1

})
≤ (1− e−1/2)−1

[
ε+ π−1Tr(∥.∥′2/∥.∥2)

]
.

Wemay choose a decreasing sequence (∥.∥i)i∈N of Euclidean norms on V that converges pointwise
to ∥.∥. Then the sequence of dual quasinorms (∥.∥∨i )i∈N on V ∨ is increasing and converges pointwise
to ∥.∥∨. Consequently the sequence

({
ξ ∈ V ∨ | ∥ξ∥∨2

i > (2π)−1
})
i∈N of subsets of V ∨ is increasing,

and its union is
{
ξ ∈ V ∨ | ∥ξ∥∨2 > (2π)−1

}
. Therefore:

(C.2.9) lim
i→+∞

µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 > (2π)−1

})
= µ

({
ξ ∈ V ∨ | ∥ξ∥∨2 > (2π)−1

})
.

Moreover, for every i ∈ N, we have:

(C.2.10) Tr(∥.∥′2/∥.∥2i ) ≤ Tr(∥.∥′2/∥.∥2).

From (C.2.9) and (C.2.10), it follows that the validity of (C.2.8) follows from its validity when
∥.∥ is replaced by each of the Euclidean norms ∥.∥i. Consequently, to establish (C.2.8), we may and
will assume that the Euclidean seminorm ∥.∥ is a norm.

C.2.2.3. Let us introduce the directed set (coh(V ),⊆) of finite dimensional vector subspaces of
V . The following proposition provides an extension to the infinite dimensional setting of the identity
(C.2.5).

Proposition C.2.5. For every W ∈ coh(V ), the integral∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x)

belongs to [0, 1] and defines an increasing function of W in coh(V ). Its limit over the directed set
coh(V,⊆):

lim
W∈coh(V )

∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x) = sup
W∈coh(V )

∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x),

satisfies the equality:

(C.2.11)

∫
V ∨

(
1− e−π∥ξ∥

∨2
)
dµ(ξ) = lim

W∈coh(V )

∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x).
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Proof. For every W ∈ coh(V ), we may consider the inclusion map:

iW :W↪−→V

and its transpose:

pW : V ∨↪−→W∨.

As a straightforward consequence of the definitions, the Fourier transform of the Borel proba-
bility measure pW∗µ satisfies:

FW∨pW∗µ = i∗WFµ = Φ|W .

Consequently Proposition C.2.4 (2), applied to W := (W, ∥.∥|W ), shows that the following equalities
hold: ∫

V ∨

(
1− e−π∥pW (ξ)∥2

W∨
)
dµ(ξ) =

∫
W∨

(
1− e−π∥ξ∥

2

W∨
)
dpW∗µ(ξ)

=

∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x).(C.2.12)

Moreover for every ξ in V ∨, ∥pW (ξ)∥W∨ is an increasing function of W in coh(V ), and satisfies:

lim
W∈coh(V )

∥pW (ξ)∥W∨ = ∥ξ∥∨.

According to the monotonicity of the integral and to Lebesgue monotone convergence theorem,
together with (C.2.12) this observation establishes the proposition. □

When condition (C.2.2) holds, for every W ∈ coh(V ) and every x ∈W, we have:

1− ReΦ(x) ≤ ε if ∥x∥′ < 1,

and:

1− ReΦ(x) ≤ 2 ≤ 2∥x∥′2 if ∥x∥′ ≥ 1.

Consequently, using Proposition (C.2.4) (1), we obtain:

(C.2.13)

∫
W

[1− ReΦ(x)] e−π∥x∥
2

dλW (x) ≤
∫
W

(ε+ 2∥x∥′2) e−π∥x∥
2

dλW (x)

= ε+ π−1 Tr(∥.∥′2|W /∥.∥
2
|W ).

Using (C.2.11) and Proposition C.2.3, we finally obtain the estimate:

(C.2.14)

∫
V ∨

(
1− e−π∥ξ∥

∨2
)
dµ(ξ) ≤ sup

W∈coh(V )

(
ε+ π−1 Tr(∥.∥′2|W /∥.∥

2
|W )
)

= ε+ π−1 Tr(∥.∥′2/∥.∥2).

Observe that, for every ξ ∈ V ∨, the following equivalence holds:

∥ξ∥∨2 ≥ (2π)−1 ⇐⇒ 1− e−π∥ξ∥
∨2

≥ 1− e−1/2.

This immediately implies the following estimate:

(C.2.15) (1− e−1/2)µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 ≥ (2π)−1

})
≤
∫
V ∨

(
1− e−π∥ξ∥

∨2
)
dµ(ξ).

The estimate (C.2.3) follows from (C.2.14) and (C.2.15).

C.2.3. Proof of the theorem of Prokhorov-Sazonov. In this subsection, we finally estab-
lish the Theorem of Prokhorov-Sazonov (Theorem C.2.3) by means of Theorem C.2.2.
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C.2.3.1. The implications (ii)⇒ (iv) and (iii)⇒ (iv) in Theorem C.2.3 are straightforward.8

The estimates (C.1.3) and (C.1.4) show that the function Φ is continuous on V endowed with
the Sazonov topology if ReΦ is continuous at the point 0 of V endowed with the Sazonov topology,
and therefore establish the implication (iv)⇒ (iii).

C.2.3.2. To prove the implication (i)⇒ (ii) in Theorem C.2.3, let us assume that µ is supported
by V ∨Hilb and let us choose ε ∈ R∗

+.

If the integer n is large enough, then the ball Bn defined by (C.2.1) satisfies:

(C.2.16) µ(V ∨ \Bn) ≤ ε/2.
Indeed:

lim
n→+∞

µ(V ∨ \Bn) = µ(V ∨ \
⋃
n∈N

Bn) = µ(V ∨ \ V ∨Hilb) = 0.

Then, using the estimate:

1− cos t ≤ min(2, t2/2) for every t ∈ R,
for obtain the following upper bound, for every x ∈ V :

1− ReΦ(x) =

∫
V ∨

[1− cos(2π⟨ξ, x⟩)] dµ(ξ)

≤
∫
Bn

2π2⟨ξ, x⟩2 dµ(ξ) +
∫
V ∨\Bn

2 dµ(ξ)

≤ ∥x∥′2 + ε,

where:

(C.2.17) ∥x∥′2 := 2π2

∫
Bn

⟨ξ, x⟩2 dµ(ξ).

To complete the proof of (iii), we are left to show that the Euclidean seminorm ∥.∥′ on V defined
by (C.2.17) is such that Tr(∥.∥′2/∥.∥2) is finite. To achieve this, observe that for every finite family
(ei)i∈F of vector of V orthonormal with respect to the scalar product defining ∥.∥ and for every
ξ ∈ Bn, we have: ∑

i∈I
⟨ξ, ei⟩2 ≤ ∥ξ∥∨2 ≤ n2.

Consequently we have: ∑
i∈I
∥ei∥′2 = 2π2

∫
Bn

∑
i∈I
⟨ξ, ei⟩2 dµ(ξ) ≤ 2π2n2.

This establishes the upper bound:

Tr(∥.∥′2/∥.∥2) ≤ 2π2n2.

C.2.3.3. The implication (iv)⇒ (i) in Theorem C.2.3, follows from Theorem C.2.2. Indeed this
theorem shows that, when (iv) holds, the measure

µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 ≥ C

})
admits the limit 0 when C ∈ R∗

+ goes to infinity. Since this limit coincides with

µ
({
ξ ∈ V ∨ | ∥ξ∥∨2 = +∞

})
= µ(V ∨ \ V

∨Hilb),

this establishes that µ is supported by V ∨Hilb.

8The implication (iv) ⇒ (ii) also is straightforward, but will not be used directly in this proof. Condition (ii)
has been included in Theorem C.2.3 for the convenience of the proof, and to facilitate the comparison with other

formulations of the theorem of Prokhorov-Sazonov, for instance in [Bou69, Â§6.11].
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[Gro61] A. Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de

morphismes. Inst. Hautes Études Sci. Publ. Math., (8):222, 1961.

[Gro01] R. P. Groenewegen. An arithmetic analogue of Clifford’s theorem. J. Théor. Nombres Bordeaux,
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[Ulm33] H. Ulm. Zur Theorie der abzählbar-unendlichen Abelschen Gruppen. Math. Ann., 107(1):774–803, 1933.
[vdGS00] G. van der Geer and R. Schoof. Effectivity of Arakelov divisors and the theta divisor of a number field.

Selecta Math. (N.S.), 6(4):377–398, 2000.

[vdW56] B. L. van der Waerden. Die Reduktionstheorie der positiven quadratischen Formen. Acta Math., 96:265–
309, 1956.

[VTC87] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability distributions on Banach spaces,

volume 14 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht,
1987.

[Wei39] A Weil. Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques.
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[Wei80] A Weil. Une lettre et un extrait de lettre à Simone Weil. [1940a] in Œuvres scientifiques, Springer-Verlag,
New York-Heidelberg-Berlin, volume I, 244–255, 1980.



426 BIBLIOGRAPHY

[WL16] W. Wang and K. Lv. On promise problem of the generalized shortest vector problem. In Information and
communications security, volume 9543 of Lecture Notes in Comput. Sci., pages 37–49. Springer, [Cham],

2016.

[WLW15] W. Wei, M. Liu, and X. Wang. Finding shortest lattice vectors in the presence of gaps. In Topics in
cryptology—CT-RSA 2015, volume 9048 of Lecture Notes in Comput. Sci., pages 239–257. Springer,

Cham, 2015.
[Woo65] A. C. Woods. The densest double lattice packing of four-spheres. Mathematika, 12:138–142, 1965.

[WTW14] W. Wei, C. Tian, and X. Wang. New transference theorems on lattices possessing nε-unique shortest

vectors. Discrete Math., 315:144–155, 2014.
[YZ21] X. Yuan and S.-W. Zhang. Adelic line bundles on quasi-projective varieties. ArXiv eprints

arXiv:2105.13587, 2021.

[Zha92] S. Zhang. Positive line bundles on arithmetic surfaces. Ann. of Math. (2), 136(3):569–587, 1992.
[Zha95] S. Zhang. Positive line bundles on arithmetic varieties. J. Amer. Math. Soc., 8(1):187–221, 1995.

[Zha98] S. Zhang. Small points and Arakelov theory. In Proceedings of the International Congress of Mathemati-

cians, Vol. II (Berlin, 1998), number Extra Vol. II, pages 217–225, 1998.


