Examen du cours spécialisé *Corps réels clos et structures o-minimales* - Partie 2 (M2 MathFonda, printemps 2022).

La deuxième partie du devoir est à faire à la maison, et à rendre le 6 mai. Vous pouvez consulter vos notes de cours, ainsi que les miennes, mais c'est tout. N'hésitez pas à me poser des questions si vous en avez. Dans tous les problèmes on peut admettre les résultats des questions précédentes.

Tous les anneaux et tous les corps sont commutatifs.

Problème 8. Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions. On dit qu'elles ont le même germe à l'infini s'il existe $a \in \mathbb{R}$ tel que pour tout $x \in (a, +\infty)$, f(a) = g(a). C'est noté $f \sim g$.

- (a) Montrez que \sim est une relation d'équivalence.
- (b) Soit S un anneau de fonctions $\mathbb{R} \to \mathbb{R}$. Montrez que S/\sim est un anneau. Donnez un exemple pour montrer que ce n'est pas nécéssairement un anneau intègre.

Soit $\mathcal{R} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \ldots)$ une structure o-minimale sur le corps des réels (i.e., $+, -, \cdot$ sont les opérations habituelles, mais il peut y avoir d'autre structure).

(c) Soit $Def(\mathcal{R})$ l'ensemble des fonctions $\mathbb{R} \to \mathbb{R}$ qui sont définissables dans la structure o-minimale \mathcal{R} . Montrez que $Def(\mathcal{R})/\sim$ est un corps ordonné, clos par différentiation.

Problème 9. Soit $\mathcal{R} = (\mathbb{R}, +, -, \cdot, 0, 1, <, \ldots)$ une structure o-minimale sur le corps des réels. On suppose que si $f : \mathbb{R} \to \mathbb{R}$ est une fonction définissable (noté: $f \in \text{Def}(\mathcal{R})$), alors il existe $n \in \mathbb{N}$ tel que pour $x \gg 0$, on a $|f(x)| \leq x^n$.

- (a) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction définissable dans \mathcal{R} , qui est non nulle pour $x \gg 0$. On peut montrer qu'il existe $r \in \mathbb{R}$ tel que $\lim_{x \to +\infty} f(x)/x^r \in \mathbb{R} \setminus \{0\}$ (C'est ici que l'hypothèse sur la croissance des fonctions définissables intervient). Montrez que cet élément r est unique.
- (b) Montrez que l'ensemble Λ des réels r tels qu'il existe $f \in \text{Def}(\mathcal{R})$ avec $\lim_{x \to +\infty} \frac{f(x)}{x^r} \in \mathbb{R}^{\times}$, est un corps.
- (c) Montrez que si $r \in \Lambda$, alors la fonction $(0, +\infty) \to \mathbb{R}$, $x \mapsto x^r$, est définissable dans \mathcal{R} . (Astuce: $y^r = (xy)^r/x^r$).