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1 Review on fields

We review briefly well-know results in field theory. The notions and results specific to positive
characteristic (p-bases, p-independence, etc... ) can be found in Bourbaki [2]. The other
unreferenced results come from Chapter III of Lang’s book [38]. We assume a good knowledge
of Galois theory.

1.1. Notation. Let A be a field. Then Aalg denotes the (field-theoretic algebraic) closure of
A, and As the separable closure of A (i.e., the elements of Aalg which are separably algebraic
over A). We denote by G(A) the absolute Galois group of A, i.e., G(A) = Gal(As/A). We often
identify G(A) with Aut(Aalg/A).

If A and B are subfields of some larger field Ω, we denote by A[B] or B[A] the subring of
Ω generated by A and B, and by AB the quotient field of A[B].
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If the characteristic of A is p > 0, then the map x 7→ xp defines a monomorphism A → A;
the image of A under this homomorphism is denoted by Ap. We also define A1/p = {a ∈ Aalg |
ap ∈ A} and A1/p∞ = {a ∈ Aalg | apn ∈ A for some n ∈ N}.

A field K is perfect if it is of characteristic 0, or if it is of characteristic p > 0, and Kp = K.
The perfect hull of K is K1/p∞ .

In what follows we will work within models of a complete theory T of fields, and if A is a
subfield of a model F of T , then acl(A) will denote the (model-theoretic) algebraic closure of
A in F and dcl(A) the (model-theoretic) definable closure of A in F .

1.2. Linear disjointness. We refer to Chapter III of Lang [38] for the proofs and details.
Unless otherwise stated, we work inside some large algebraically closed field Ω, and K, L, M ,
E are subfields of Ω.

Assume that K ⊆ L,M . We say that L is linearly disjoint from M over K if every finite
set of elements of L that is linearly independent over K remains linearly independent over M
in the field composite LM .

Even though the definition is asymmetric, the property is symmetric: L is linearly disjoint
from M over K if and only if M is linearly disjoint from L over K. Thus we will also say: L
and M are linearly disjoint over K.

The following are equivalent:

(1) L and M are linearly disjoint over K.

(2) The canonical map L⊗K M → L[M ] is an isomorphism.

(3) If B ⊂ L is a basis of the K-vector space L, then B is a basis of the M -vector space L[M ].

1.3. Let K ⊆ L,M , and assume that L is algebraic over K. Then L and M are linearly disjoint
over K if and only if [K(a) : K] = [M(a) : M ] for every finite tuple a from L. Assume that L
is a finite Galois extension of K, linearly disjoint from M over K. Then [L : K] = [ML : M ]
implies that Gal(LM/M) is canonically isomorphic to Gal(L/K) via the restriction map.

This has the following consequences:
(1) If L is a Galois extension of K, then L and M are linearly disjoint over K if and only if

L ∩M = K, if and only if the restriction map : Gal(LM/M) → Gal(L/K) is an isomorphism
(of profinite groups).

(2) If L and M are linearly disjoint over K and are Galois extensions of K, then Gal(LM/K)
is canonically isomorphic to Gal(L/K)× Gal(M/K).

(3) Note that (1) can fail when L is not Galois: consider e.g., a 6= b ∈ Qalg such that
a3 = b3 = 2; then Q(a) ∩ Q(b) = Q, and [Q(a, b) : Q(a)] = 2 < [Q(b) : Q], which shows that
Q(a) and Q(b) are not linearly disjoint over Q.

1.4. Let K ⊆ L,M , and assume that E is a subfield of L containing K. Then L and M are
linearly disjoint over K if and only if E and M are linearly disjoint over K and L and EM are
linearly disjoint over E.
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1.5. Let K ⊆ L, and let u1, . . . , un be a tuple of elements of Ω which are algebraically inde-
pendent over L. Then K(u1, . . . , un) and L are linearly disjoint over K.

1.6. Let {Li | i ∈ I} be a family of extensions of K contained in Ω. We say that {Li | i ∈ I}
is linearly disjoint over K, if for every i ∈ I, the field Li and the field composite of {Lj | j ∈
I, j 6= i} are linearly disjoint over K. Note that, by 1.4, if < is a linear ordering on I, this
is equivalent to: for every i, the field Li and the field composite of {Lj | j < i} are linearly
disjoint over K.

1.7. Algebraic independence or freeness. Let K ⊆ L,M be fields. We say that L and
M are free over K, or that L and M are algebraically independent over K, if every finite set
of elements of L which is algebraically independent over K remains algebraically independent
over M . Again, this notion is symmetric.

If L and M are linearly disjoint over K, then L and M are algebraically independent over
K. The converse is not true: if L is algebraic over K, then L is algebraically independent over
K from any extension of K.

1.8. Separable extensions. Let K ⊆ L be fields of characteristic p > 0. We say that L is a
separable extension of K if the fields L and K1/p are linearly disjoint over K. If L is algebraic
over K, this is equivalent to L ⊆ Ks, and in that case we have KLp = L.

Remark. One extends the definition to the characteristic 0 case as follows: if char(K) = 0,
then any field extension of K is separable over K.

1.9. The following conditions are equivalent:

(1) L is a separable extension of K.

(2) L and K1/p∞ are linearly disjoint over K.

(3) Whenever u is a finite tuple from L, then K(u) has a transcendence basis {t1, . . . , tm}
over K, such that K(u) is separably algebraic over K(t1, . . . , tm). Such a transcendence
basis is called a separating transcendence basis.

(4) Lp and K are linearly disjoint over Kp.

1.10. Let K ⊆ L ⊆M . If M is separable over L and L is separable over K then M is separable
over K.

If M is separable over K, then L is separable over K, but M is not necessarily separable
over L (e.g.: K ⊂ K(t) ⊂ K(t1/p)).

If M has a separating transcendence basis over K, then M is separable over K. The converse
holds if M is a finitely generated field extension of K, but does not always hold in the general
case. If the characteristic is p > 0, then K(tp

−n | n ∈ N) is a separable extension of K (since
any finitely generated subextension is separable over K), but it does not have a separating
transcendence basis over K.
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1.11. Assume that L is a separable extension of K and that M is an extension of K algebraically
independent from L over K. Then LM is a separable extension of M .

Assume that L and M are separable extensions of K, which are algebraically independent
over K. Then LM is a separable extension of L and of M (and also of K).

1.12. Regular extensions. Let K ⊆ L. We say that L is a regular extension of K if the fields
L and Kalg are linearly disjoint over K. In that case, the restriction map : G(L) → G(K) is
onto.

The following conditions are equivalent:

(1) L is a regular extension of K.

(2) L is a separable extension of K, and L and Ks are linearly disjoint over K.

(3) L is a separable extension of K, and L ∩Ks = K.

(4) L is a separable extension of K, and the restriction map : G(L)→ G(K) is onto.

1.13. Properties of regular extensions. Let K ⊆ L,M .

(1) If L is a regular extension of K and M is a regular extension of L, then M is a regular
extension of K.

(2) If M is regular over K and L ⊆M , then L is regular over K.

(3) Assume that L and M are linearly disjoint over K. Then L is regular over K if and only
if LM is regular over M .

(4) If L and M are algebraically independent over K and L is a regular extension of K, then
L and M are linearly disjoint over K. Thus LM is a regular extension of M .

(5) If L and M are regular extensions of K, and algebraically independent over K, then LM
is a regular extension of L, M and K.

1.14. A particular case: algebraic closure of a set within a model.
Let A ⊆ K, and consider the algebraic closure acl(A) of A in the model K. Then acl(A) is

a field and K is a regular extension of acl(A).

Proof. Any element of K which is separably algebraic over acl(A) is clearly in acl(A), which
implies K ∩ acl(A)s = acl(A). By 1.12(2) it suffices to show that K is a separable extension
of acl(A). If char(K) = 0 then K is a separable extension of any subfield, and we are done.
Otherwise, the λ-functions of K are definable in K (see 1.17 for the definition). Thus acl(A) is
closed under the λ-functions of K, which implies that K is a separable extension of acl(A) by
1.18(7).

The same argument gives: if A ⊆ K, then K is a separable extension of dcl(A) (the definable
closure of A within K).
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1.15. Definition. We say that the field F is bounded if F has finitely many separably algebraic
extensions of degree n for all n > 1.

Lemma. Assume that F is bounded, and let F ∗ be an elementary extension of F (in a language
containing the language of fields). Then the restriction map : G(F ∗)→ G(F ) is an isomorphism.
Proof. Equivalently, we need to show that the separable closure of F ∗ is F ∗F s. Fix n > 1,

and let L1, . . . , LN be the separable extensions of F of degree n. Since F ≺ F ∗, the extensions
LiF

∗ have degree n over F ∗ and are distinct. On the other hand, the phrase: “F has exactly
N separable extensions of degree n” is expressible by a first-order sentence of the language of
fields, and is therefore satisfied by F ∗. Hence L1F

∗, . . . , LNF
∗ are precisely the extensions of

F ∗ of degree n. Thus, for every n ∈ N, any separable extension of F ∗ of degree n over F ∗ is
contained in F ∗F s. This proves our assertion.

1.16. p-bases, p-independence. Let F be a field of characteristic p > 0. Then F p is a
subfield of F , isomorphic to F via the map x 7→ xp. Thus F is naturally an F p-vector space.
We say that B ⊆ F is p-independent in F if the set M of all monomials in B of the form
b
i(1)
1 · · · bi(n)

n with b1, . . . , bn ∈ B and 0 ≤ i(1), . . . , i(n) ≤ p− 1, is independent in the F p-vector
space F . If furthermore M is a basis of the F p-vector space F , then we call B a p-basis of F .
Note that B is a p-basis of F if and only if B is a maximal p-independent subset of F (and
then F = F p[B]).

Any p-independent subset of F extends to a p-basis of F , and any two p-bases of F have
the same cardinality. The size of a p-basis of F is called the degree of imperfection of F . The
following are easy consequences of the definition:

(1) Let B ⊂ F . Then B is p-independent in F if and only if for every b ∈ B, b /∈ F p[B \ {b}].

(2) Let B ⊂ F be p-independent in F . Then B is a p-basis of F if and only if F p[B] = F .

If E is a subfield of F , we say that B is a p-basis of F over E if the set M of all monomials
in B of the form b

i(1)
1 · · · bi(n)

n with b1, . . . , bn ∈ B and 0 ≤ i(1), . . . , i(n) ≤ p− 1, is a basis of the
EF p-vector space F . Then F = EF p[B]. Observe that a p-basis of F over E is also a p-basis
of F s over E and over Es.

The size of a p-basis of F over E (by convention, an element of N∪{∞}) is called the degree
of imperfection of F over E. For properties of p-bases, see 1.19 below.

1.17. The λ-functions. Let F be a field of characteristic p > 0. For each n fix an enumeration
mi,n(x̄) of the monomials x

i(1)
1 · · ·xi(n)

n with 0 ≤ i(1), . . . , i(n) ≤ p − 1. Define the (n + 1)-ary
functions λi,n : F n × F → F as follows:

If the n-tuple ā is not p-independent, or if the (n + 1)-tuple (ā, b) is p-independent, then
λi,n(ā, b) = 0. Otherwise, the λi,n(ā, b) satisfy

b =

pn−1∑
i=0

λi,n(ā, b)pmi,n(ā).
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Note that these functions depend on the field F , and that the above properties define them
uniquely. They are first-order definable in the field F . We will refer to them as: the λ-functions
defined on F”.

1.18. The following conditions are equivalent:

(1) L is a separable extension of K.

(2) L and K1/p∞ are linearly disjoint over K.

(3) Whenever u is a finite tuple from L, then K(u) has a transcendence basis {t1, . . . , tm}
over K, such that K(u) is separably algebraic over K(t1, . . . , tm). Such a transcendence
basis is called a separating transcendence basis.

(4) Lp and K are linearly disjoint over Kp.

(5) Any p-basis of K remains p-independent in L.

(5’) Any p-basis of K is contained in a p-basis of L.

(6) Some p-basis of K remains p-independent in L.

(6’) Some p-basis of K is contained in a p-basis of L.

(7) K is closed under the λ-functions of L.

Remark. One extends the definition to the characteristic 0 case as follows: if char(K) = 0,
then any field extension of K is separable over K.

Proof of (1) implies (7). This follows easily from the definition of the λ-functions of L, but
we will give the proof. Here the λ-functions are those of L. Assume that L is not a separable
extension of K. Choose a tuple (a1, . . . , an) ∈ Kn which is p-independent in K but not p-
independent in L, with n minimal such. Then a1, . . . , an−1 are p-independent in L, and an ∈
Lp[a1, . . . , an−1], an /∈ Kp[a1, . . . , an−1]. Hence λi,n−1(a1, . . . , an−1; an) ∈ L \K for some i. This
shows one direction. For the other assume that for some a1, . . . , an ∈ K and some i the element
λi,n−1(a1, . . . , an−1; an) is not in K. Note that the λj(a1, . . . , an−1; an) are (the unique) solutions
in L of the equation

(∗)
∑
j

Xp
jmj,n−1(a1, . . . , an−1) = an.

From λi,n−1(a1, . . . , an−1; an) /∈ K, we obtain first that {a1, . . . , an−1} is p-independent in L, and
then that {a1, . . . , an} is p-independent in K: if not, there would be elements bj in K satisfying
(∗) in K, and we would have bj = λj,n−1(a1, . . . , an−1; an) ∈ K for all j. Thus a1, . . . , an is
p-independent in K but not in L.

1.19. Properties of p-bases. Let K be a field of characteristic p > 0 and L a separable
extension of K. The following facts are easy consequences of the definitions:
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(1) If B is a p-basis of L over K, then the elements of B are algebraically independent over
K.

(2) Assume that L is finitely generated over K. Then the degree of imperfection of L over K
equals the transcendence degree of L over K. Any p-basis of L over K is a (separating)
transcendence basis of L over K.

(3) A subset B of L is p-independent over K if and only if for every element b ∈ B, b /∈
KLp[B \ {b}].

(4) A subset B of L which is p-independent over K is a p-basis of L over K if and only if
L = KLp[B].

(5) Assume that B0 is a p-basis of K and B1 is a p-basis of L over K. Then B0 ∪ B1 is a
p-basis of L.

1.20. p-independent extensions. Assume that L and M are separable extensions of K and
char(K) = p > 0. We say that L and M are p-independent over K, if any subset of L which is
p-independent over K remains p-independent over M (in the field LM).

Choose a p-basis B0 of K, and extend it to p-bases B1 of L and B2 of M . The following are
equivalent:

(1)L and M are p-independent over K.

(2)B1 ∪B2 is a p-basis of LM .

(3)(B1 \B0) ∪ (B2 \B0) is p-independent over K in the field LM .

Remark. Note that if L and M are linearly disjoint over K, then they are p-independent over
K: assume that B = B1 \ B0 is not p-independent over M in LM . Then some non-trivial M -
linear combination of elements of Lp[B] is 0. By linear disjointness, some non-trivial K-linear
combination of these elements equals 0, which contradicts our assumption on B.

1.21. Derivations. Let R ⊂ S be commutative rings. Recall that an R-derivation on S is
an additive map δ : S → S which vanishes on R and satisfies δ(xy) = δ(x)y + xδ(y). Let
A ⊆ Ω be a finite set, and assume that every k-derivation on k(A) vanishes on k(A). Then
k(A) is separably algebraic over k, see [37]?? Proposition X.7.2. We will use the following easy
consequence of this:

Lemma. Let A,B be finite subsets of Ω.

(1) A ⊆ k(Ap) if and only if A is separably algebraic over k.

(2) Assume that A is separably algebraic over k(Bp) and that B is separably algebraic over
k(A). Then (A,B) is separably algebraic over k.

Proof. (1) If a is separably algebraic over k then a ∈ k(ap), and this gives the right-to-left
implication. Conversely, assume that A ⊂ k(Ap) and let D be a k-derivation on k(A). Then D
vanishes on k(Ap), and therefore vanishes on A. Hence A is separably algebraic over k.
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(2) Let D be a k-derivation on k(A,B). Then D vanishes on k(Bp) and therefore vanishes on
A since A is separably algebraic over k(Bp). This implies that D vanishes on B, and therefore
that (A,B) is separably algebraic over k.

1.22. Basic λ-terms. We work in a large field K, with p-basis B. We first suppose that
B = {b1, . . . , be}. We let I = I(B) = {1, . . . , pe}, λi(B;−) = λi,e(b1, . . . , be;−) and mi(B) =
mi,e(b1, . . . , be). If µ ∈ In, we define by induction on n the function λµ(B;−) and the pn-
monomial mµ(B) as follows: if n = 0, then λµ(B;x) = x, mµ(B) = 1; if n ≥ 1, write µ = ν_i,
where ν ∈ In−1, i ∈ I, and define

λµ(B;x) = λi(B;λν(B;x)), mµ(B) = mi(B)p
n−1

mν(B).

Then we have, for any a ∈ K and n ∈ N:

a =
∑
µ∈In

λµ(B; a)p
n

mµ(B).

If µ ∈ In, we call λµ a λ-term of level n. Note that all basic λ-terms are terms of the language
Lλ(b1, . . . , be). We let I<ω =

⋃
n∈N I

n.

If B ⊆ K is infinite, then by abuse of notation, we will denote by (λµ(B;x) | µ ∈ In) the
set of all terms λµ(b1, . . . , be;x) where e ∈ N, b1, . . . , be ∈ B, and µ ∈ I({b1, . . . , be})n. Note
that for a given element c ∈ K, the set {λµ(B; c) | µ ∈ In} is finite, and that c ∈ Fp[λµ(B; c) |
µ ∈ In]p

n
[B].

Lemma. Let k ⊆ L ⊆ K, assume that B is a p-basis of k and of K. Let C be a p-basis of L
over k, and let k〈C〉 = k(λµ(B; c) | c ∈ C, µ ∈ I<ω), the λ-functions being those of K.

(1) If c ∈ Lpn
(B), then λµ(B; c) ∈ L for every µ ∈ In.

(2) Lk〈C〉 is closed under the λ-functions of K. If a ∈ L and ν ∈ In, then λν(B; a) ∈
L[λµ(B; c) | c ∈ C, µ ∈ In].

(3) If D is another p-basis of K and a ∈ L, ν ∈ In, then λν(B; a) ∈ Fp[λµ(D; a), λµ(B; d) |
d ∈ D,µ ∈ In]. If D ⊂ k, then λν(B; a) ∈ k[λµ(D; a) | µ ∈ In].

Proof. (1) As B ⊂ L, we have Lp
n
(B) = Lp

n
[B], and c ∈ Lpn

[B0] for some finite subset B0 of
B, so that we may assume that B is finite. Then c =

∑
j∈I c

p
jmj(B) for some cj ∈ Lp

n−1
. Thus

cj = λj(B; c) ∈ Lpn−1
. Since λµ = λν ◦ λj for some ν ∈ In−1 and j ∈ I, an induction on n gives

us that λµ(B; cj) ∈ L.
(2) By assumption, B∪C is a p-basis of L; hence L = Lp

n
[B,C] for every n ≥ 0. By definition

of the λ-functions, we also have that c ∈ (Fp[λµ(B; c) | µ ∈ In])p
n
[B] for any c ∈ K. Hence

L = (L[λµ(B; c) | c ∈ C, µ ∈ In])p
n
[B], and (1) gives that λν(B; a) ∈ L[λµ(B; c) | c ∈ C, µ ∈ In].

Hence Lk〈C〉 is closed under the λ-functions of K.
(3) By assumption, K = Kpn

[D] = Kpn
[B]. If a ∈ L, then a ∈ (Fp[λµ(D; a) | µ ∈ In])p

n
[D],

and if d ∈ D then d ∈ (Fp[λµ(B; d) | µ ∈ In])p
n
[B]. Thus a ∈ Fp[λµ(D; a), λµ(B; d) | µ ∈ In, d ∈

D]p
n
[B], and (1) gives the first assertion. The second assertion follows from the fact that D ⊂ k

and that k is closed under the λ-functions of K.
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1.23. λ-polynomial rings over k when k has finite degree of imperfection.
Let B be a p-basis of k of finite size e. Then the set I defined above has size pe. We define

k〈X〉≤n,B to be the quotient of the polynomial ring k[Xµ | µ ∈ I≤n] by the ideal generated by
the polynomials

Xµ −
∑
i∈I

Xp
µ_imi(B)

for µ ∈ I≤n−1, and we let k〈X〉B =
⋃
n k〈X〉≤n,B. If we consider only one p-basis B, then we

will omit B from the notation. We define k〈X1, . . . , Xn〉≤n,B and k〈X1, . . . , Xn〉B analogously.
Then B is a p-basis of (the field of fractions of) k〈X1, . . . , Xn〉B. If B is a p-basis of an

extension K of k and a1, . . . , an ∈ K, then there is a unique k-morphism k〈X1, . . . , Xn〉B → K
which sends Xi to ai. Note also that k〈X1, . . . , Xn〉B is generated as a ring by the elements
λµ(B;Xi), i = 1, . . . , n, µ ∈ I(B)<ω.

If C is another p-basis of k, then there is a natural k[X1, . . . , Xn]-isomorphism

k〈X1, . . . , Xn〉B → k〈X1, . . . , Xn〉C .

This follows from the previous observation, and the fact that by Lemma 1.12(3), we have

k〈X1, . . . , Xn〉≤m,C ⊆ k〈X1, . . . , Xn〉≤m,B

and
k〈X1, . . . , Xn〉≤m,B ⊆ k〈X1, . . . , Xn〉≤m,C

for every m ∈ N.

1.24. Lemma. Let K be a separable extension of k, with p-basis B over k, and let C ⊂ k be
p-independent. Consider the fields k1 = k(c1/p | c ∈ C) and k2 = k(c1/pn | c ∈ C, n ∈ N). Then
B is a p-basis of k1K over k1 and of k2K over k2.

Proof. Clearly k1K = k1K
p[B] and k2K = k2K

p[B], so we only need to show that B is p-
independent over k1 in k1K and over k2 in k2K. Since K is a separable extension of k, the
fields kp

−∞
and K are linearly disjoint over k. Hence K is linearly disjoint from k1 and from k2

over k. This implies that k1K
p and K are linearly disjoint over kKp: hence linearly independent

elements of the kKp-vector space K stay linearly independent in the k1K
p-vector space k1K.

This shows that B stays p-independent over k1 in k1K. The proof for k2K is similar.

1.25. Separably closed fields.
For each e ∈ N ∪ {∞}, the theory expressing that K is a separably closed field of degree of
imperfection e, is a complete theory (Ershov [E]), which we denote by SCFe, and is stable (Wood
[W]). If K is separably closed and {b1, . . . , be} is a p-basis of K, then SCFe,b = Th(K, b1, . . . , be)
is model complete in the language L(b1, . . . , be).

Consider the language Lλ = L ∪ {λi,n | n ∈ N, 1 ≤ i ≤ pn}, and let Tλ be the Lλ-theory
obtained by adjoining to the theory of fields axioms expressing the defining properties of the
functions λi,n defined above. Let SCFe,λ = SCFe ∪ Tλ. Then SCFe,λ is complete and eliminates
quantifiers but does not eliminate imaginaries (Delon [D]).
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1.26. Separably closed fields of finite degree of imperfection.
Fix a separably closed field K. When the degree of imperfection of K is finite, one may fix a
p-basis {b1, . . . , be} of K, and only consider the unary functions λi(x) := λi,e(b1, . . . , be;x). Then
Th(K) eliminates quantifiers and imaginaries in the language Lλ(b1, . . . , be) = L∪{b1, . . . , be, λi :
1 ≤ i ≤ pe} (Delon [15]).

2 Preliminaries in algebraic geometry: definitions and

main facts

2.1. Algebraic sets, (affine) varieties and regular extensions. Details can be found in
Chapter III of [38]. Let K be a field, Ω a large algebraically closed field containing K.

Let n be an integer. The set Ωn is called the affine space of dimension n (over Ω); it is also
sometimes denoted by An, or by An(Ω). A subset V of Ωn is called an algebraic set, or a Zariski
closed set, if V = {a ∈ Ωn | f1(a) = . . . = fm(a) = 0} for some polynomials fi(X) ∈ Ω[X],
X = (X1, . . . , Xn). We denote by V (K) the set V ∩Kn.

If the polynomials f1(X), . . . , fm(X) ∈ K[X], then we say that V is definable over K, or
that V is a K-closed set. The set V is K-irreducible if it is not the proper union of two proper
K-closed sets. The set V is called irreducible (or absolutely irreducible, or a variety) if it is
Ω-irreducible.

If V is defined over K, then V is irreducible if and only if it is Ks-irreducible. Every
algebraic set V decomposes into a finite union of irreducible closed sets, say V1, . . . , Vm, and
this decomposition is unique up to a permutation, if one assumes that Vi ⊆ Vj implies that
i = j. The sets Vi are called the irreducible components of V .

To an algebraic set V we associate the ideal I(V ) = {f(X) ∈ Ω[X] | f(a) = 0 for all a ∈ V }.
We say that V is defined over K if and only if I(V ) is generated by I(V ) ∩ K[X]. For

every algebraic set V , there is a unique smallest field over which V is defined, called the field
of definition of V .

2.2. Note: if V is defined over K, then it is definable over K. The converse is not true in
general, but we have: if V is definable over K then V is defined over K1/p∞ . Thus the notions
of defined and definable agree when the characteristic is 0.

Assume that V is definable over K. Then V is K-irreducible if and only if I(V ) ∩K[X] is a
prime ideal.
Assume that V is K-irreducible. Then the irreducible components of V are defined over Kalg,
and are permuted transitively by Aut(Kalg/K). Moreover, V is irreducible and defined over K
if and only if the field of quotients of K[V ] =def K[X]/I(V ) ∩K[X] is a regular extension of
K.

2.3. The topology on Kn whose closed sets are the algebraic sets, is called the Zariski topology.
If S ⊆ Kn, there is a smallest algebraic set containing S: it is called the Zariski closure of S
and denoted by S̄.
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The topology induced on Kn by the Zariski topology on Ωn coincides with the Zariski
topology on Kn.

2.4. For S ⊆ Ωn we define

I(S) = {f ∈ Ω[X1, . . . , Xn] | f(a) = 0 for all a ∈ S}.

Then S̄ is precisely the set of zeros of I(S). Observe that because Ω[X1, . . . , , Xn] is noetherian,
every descending chain of closed sets is finite.

2.5. For an algebraic set V , we define the affine coordinate ring of V to be

Ω[V ] :=def K[X1, . . . , Xn]/I(V ).

If V is a variety, then Ω[V ] is an integral domain and its quotient field, Ω(V ), is called the
function field of V .

If V is F -closed, we define F [V ] = F [X1, . . . , Xn]/(I(V ) ∩ F [X1, . . . , Xn]). If V is F -
irreducible, F (V ) is the quotient field of F [V ]. Then

V is a variety if and only if F is relatively separably closed in F (V ).
V is a variety defined over F if and only if F (V ) is a regular extension of F .

If V and W are varieties, then so is their cartesian product V × W , and Ω[V × W ] =
Ω[V ]

⊗
Ω Ω[W ]. If V and W are F -closed and F -irreducible, then V ×W may be F -reducible.

This happens if F [V ] ∩ F s and F [W ] ∩ F s are not linearly disjoint over F .

2.6. For a variety V , we define dim(V ) to be the transcendence degree of K(V ) over K (or
equivalently of F (V ) over F if V is defined over F ). A point a ∈ V is called generic over
F if the transcendence degree of F (a) over F equals dim(V ). Note that if a is generic, then
F (a) 'F F (V ). If K has infinite transcendence degree, then it contains generic points of any
variety (over its field of definition).

For an algebraic set V , we define dim(V ) to be the supremum of the dimensions of the
irreducible components of V . For S ⊆ Kn, we define dim(S) = dim(S̄).

2.7. Let a ∈ Ωn; we define I(a/K) to be the ideal consisting of all polynomials f ∈ K[X1, . . . , Xn]
such that f(a) = 0; then I(a/K) is a prime ideal. If V ⊆ Ωn is the associated algebraic set, it is
then K-irreducible and K(a) 'K K(V ); we call V the (algebraic) locus of a over K. Thus V is
a variety if and only if K is relatively separably closed inside K(a). Observe that by definition
a is a generic point of V over K.

2.8. Let a, V be as above. The model-theoretic interpretation, in the sense of the theory ACF,
is:

The Morley rank and U -rank of tp(a/K) both equal dim(V ). The type tp(a/K) is stationary
if and only if V is a variety. If V is not a variety, then the multiplicity of tp(a/K) equals the
number of irreducible components of V . In terms of field extensions: tp(a/K) is stationary
if and only if K is relatively separably closed in K(a); the multiplicity of tp(a/K) equals
[Ks ∩K(a) : K].
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We define the canonical base of tp(a/K), denoted by Cb(a/K), to be the perfect hull of
the field of definition of V ; it is definably closed in the sense of ACF, and is contained in the
perfect hull of K. It is the smallest definably closed subset of K over which a has same rank
and multiplicity as over K. Note that we do not require tp(a/K) to be stationary, for more
details on canonical bases of non-stationary types see [3]. By abuse of notation we will write
b = Cb(a/K) whenever b is a tuple such that dcl(b) = Cb(a/K).

Observe that, if tp(a/K) is not stationary, then Cb(a/Kalg) is contained in the definable
closure of K(a) ∩Ks, and tp(a/K(a) ∩Ks) ` tp(a/Kalg).

2.9. Let V ⊆ Ωn, W ⊆ Ωm be varieties. A morphism from V to W is a map f = (f1, . . . , fm)
defined on V and taking its values in W , where each fi ∈ Ω[V ]. It induces a dual map
f ∗ : Ω[W ] → Ω[V ], g 7→ g ◦ f , which is an inclusion of Ω-algebras if f(V ) is Zariski dense in
W . A morphism is continuous (for the Zariski topology).

If f is bijective and f−1 is also a morphism, then f is called an isomorphism. There are
bijective morphisms which are not isomorphisms, for instance in characteristic p > 0, the
morphism x 7→ xp. If f is an isomorphism then f ∗ is an isomorphism, and conversely.

A rational map from V to W is a map f = (f1, . . . , fm) defined on some open subset of V and
taking its values in W , and where each fi ∈ K(V ). It induces a dual map f ∗ : Ω(W )→ Ω(V ),
g 7→ g ◦ f , which is an inclusion of K-algebras if f(V ) is Zariski dense in W . A rational map
is continuous.

We say that f is birational if there is a rational map g : W → V such that f ◦ g is
the identity. If f is birational then f ∗ is an isomorphism, and conversely. Two varieties are
birationally equivalent if there is a birational map between them.

2.10. A constructible set in Ωn is a boolean combination of Zariski closed sets; it can be written
as a finite union of sets of the form V ∩U , where V is a variety, and U a basic open set, i.e. of
the form {a ∈ Ωn | g(a) 6= 0} for some polynomial g over Ω.

By quantifier-elimination of the theory ACF, every definable subset of Ωn is constructible.

2.11. Abstract varieties. So far we have talked only of affine algebraic sets and varieties.
There is a more general notion of variety, whose definition encompasses both affine varieties
and projective varieties. Below, we will list the definitions pertaining to abstract varieties and
some of their properties.

(1) An abstract variety (V, Ui, Vi, ϕi)i∈I , I a finite set of indices, is given by a set V =
⋃
i∈I Ui,

affine varieties Vi, i ∈ I, and bijections ϕi : Ui → Vi such that for i 6= j, fij = ϕjϕ
−1
i : Vi → Vj

is a rational map, defined on the open subset ϕi(Ui ∩ Uj) of Vi.
(2) The topology on V is then defined in the following manner: a subset W of V is open if

and only if ϕi(W ∩ Ui) is open (for the Zariski topology) in Vi for all i ∈ I. Our assumption
on the sets ϕi(Ui ∩ Uj) implies that each Ui is open in V . This topology is called the Zariski
topology.

(3) If all the varieties Vi and rational maps fij are defined over the field F , we say that V
is defined over F . Note that the abstract variety is actually uniquely determined by the data
(Vi, fij)i,j∈I .
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(4) Observe that all varieties Vi have the same dimension, since each map fij is birational
(with inverse fji) and therefore F (Vi) ' F (Vj).

A point a ∈ V is a generic point of V if ϕi(a) is a generic point of Vi for all i ∈ I (or,
equivalently, for some i ∈ I, since one has: if b = ϕi(a) is generic, then so is fij(b)).

For a ∈ V , one can define F (a) to be the field F (ϕi(a)) for some i ∈ I such that a ∈ Ui.
Note that this definition is independent of the choice of i (up to an F -automorphism).

(5) A subvariety of V is an irreducible closed subset W of V . Equivalently, W is a subvariety
of V if ϕi(W ∩Ui) is a subvariety of Vi for each i. A point b ∈ W is a generic of W if ϕi(b) is a
generic of ϕi(W ∩ Ui) for each i.

(6) Let S ⊆ V be a set. We denote by S̄ the closure of S for the topology on V . Then
S̄ =

⋃
i∈I ϕ

−1
i (ϕi(S ∩ Ui)).

(7) Let (V, Ui, Vi, ϕi)i∈I and (W,Sj,Wj, ψj)j∈J be two abstract varieties. A rational map
θ : V → W is a map with domain an open subset of V , and such that for i ∈ I and j ∈ J the
maps θij = ψjθϕ

−1
i : Vi → Wj are rational maps. Note that θ is continuous for the topology.

(8) If (V, Ui, Vi, ϕi)i∈I and (W,Sj,Wj, ψj)j∈J are abstract varieties, then their product is also
an abstract variety, given by (V ×W,Ui × Sj, Vi ×Wj, ϕi × ψj)i∈I,j∈J .

2.12. Example: projective varieties. Consider the projective space of dimension n, Pn. It
is the set of lines in affine (n + 1)-space, and can be described as follows: let S = Kn+1 \ {0},
and define an equivalence relation on S by: (x0, . . . , xn) ∼ (y0, . . . , yn) if λx0 = y0, . . . , λxn = yn
for some λ ∈ K. Then Pn = S/ ∼. The representative of the equivalence class of (x0, . . . , xn)
is often denoted by (x0 : · · · : xn).

One defines (projective) algebraic sets as in the affine case, except that one has to be careful
to only consider zero-sets of sets of homogeneous polynomials. We will now show that Pn has
a natural structure of abstract variety, and that the closed sets are precisely finite unions of
algebraic sets. For i = 0, . . . ,m, consider the hyperplane Hi of Pn defined by the equation
xi = 0, and let Ui = Pn \Hi. There is a natural bijection ϕi : Ui → Kn = Vi given by

(x0 : · · · : xn) 7→
(x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
. . . ,

xn
xi

)
.

Then the maps ϕjϕ
−1
i : Vi → Vj are rational maps. Hence (Pn, Ui, Vi, ϕi)0≤i≤n is an abstract

variety. One also verifies that algebraic sets are closed, and conversely that an irreducible closed
set is an algebraic set (look at the polynomials vanishing at a generic point of the closed set).

2.13. Algebraic groups. Recall that a connected algebraic group is a group G, with a
structure of abstract variety on G, and such that multiplication: G × G → G and inverse:
G → G are rational maps which are everywhere defined (on G × G and G). If the underlying
variety is affine, we say that G is an affine algebraic group.

One can extend this definition to non-connected algebraic groups by defining an “abstract
algebraic set”: it is a union of sets Ui, each of them in bijection with some algebraic affine set
Vi via a map ϕi, with the maps ϕjϕ

−1
i defined on an open subset of Vi, and given locally by

rational maps.
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Then, an algebraic group G is an abstract algebraic set, such that multiplication and inverse
are everywhere defined and given locally by rational functions. In particular, closed subgroups
of algebraic groups are algebraic groups. See [44] for a precise definition, and [24] for a detailed
definition in the affine case and for related results. We conclude this section with two easy
results on algebraic groups.

2.14. Let G be an algebraic group defined over F , let S be a subset of G such that:

(i) S contains all the generics of S̄ over F .

(ii) If a, b ∈ S are generic and independent over F then ab ∈ S and a−1 ∈ S.

Then S̄ is a subgroup of G.

Proof. By assumption and since the map a 7→ a−1 is continuous, S−1 is a dense subset of the
closed set (S̄)−1 which contains all the generics of S. This implies that (S̄)−1 = S−1 ⊇ S̄, from
which one deduces that S̄ = S̄−1.

Let a ∈ S be generic; then the set S(a) = {b ∈ S̄ | ab ∈ S̄} is closed and contains all
the generic elements of S̄ which are independent from a over F ; thus S(a) = S̄, and aS̄ = S̄;
similarly, the set {a ∈ S̄ | aS̄ = S̄} is closed, contains all the generic elements of S̄ and therefore
equals S̄; thus S̄S̄ = S̄ = S̄−1, which proves the result.

2.15. Let G be an algebraic group defined over F , let a ∈ G and b be a generic of G, independent
from a over F . Then ab is also a generic of G, and is independent from a over F .

Proof. This is a simple argument using transcendence degrees. Let n = dim(G). Then F (a, b) =
F (a, ab) has transcendence degree n over F (a). Hence

n = tr.deg(F (a, ab)/F (a)) ≤ tr.deg(F (ab)/F ) ≤ n,

which shows that ab is a generic of G, independent from a over F .

3 Preliminaries on finite and pseudo-finite fields

3.1. Definitions. (1) A field F is pseudo-algebraically closed (abbreviated by PAC) if every
affine variety defined over F has an F -rational point.

(2) A field F is pseudo-finite if it is PAC, perfect, and has precisely one algebraic extension
of degree n for every n ∈ N.

3.2. Let m,n, d be positive integers; there exists an integer e such that, for any field F , if
f1, . . . , fm, f are polynomials in n variables over F of total degree ≤ d then:

(1) if f ∈ I = (f1, . . . , fm), then f =
∑m

i=1 gifi for polynomials gi of total degree ≤ e.
(2) if I is not prime, then there are some polynomials g and h of total degree ≤ e such that

gh ∈ I but g, h /∈ I.
The proof can be found e.g. in [17]; from this it follows that “f1, . . . , fm generate a prime

ideal in F [X1, . . . , Xn]” is a first-order property of the coefficients of f1, . . . , fm. Moreover, since

14



ACF eliminates quantifiers, there is a quantifier-free formula which defines in all fields F (the
coefficients of) the polynomials f1, . . . , fm in n variables and of total degree ≤ d whose zero-set
is a variety (i.e., such that f1, . . . , fm generate a prime ideal in F alg[X1, . . . , Xn]). Thus one can
talk about varieties in a first-order way.

Observe also that the statement “F has one extension of degree n” can be formulated by
translating in a first-order way: there are c1, . . . , cn such that f(X) = Xn + c1X

n−1 + · · ·+ cn
is irreducible, and for all d1, . . . , dn such that g(X) = Xn +d1X

n−1 + · · ·+dn is irreducible, the
field obtained by adjoining to F a root of f(X) contains a root of g(X).

From these we deduce that being pseudo-finite is a first-order property in the language L,
and we denote by Psf the theory of all pseudo-finite fields. It is immediate that every finite field
is perfect and has one extension of degree n for each n ∈ N (the unique extension of Fq of degree
n is Fqn); it also follows from the Lang-Weil theorem that every non-principal ultraproduct of
finite fields is PAC. J. Ax [1] showed that pseudo-finite fields are precisely the infinite models
of the theory Tf of all finite fields. The fact that every infinite model of the theory of finite
fields is a model of Psf follows easily from the Lang-Weil estimates on the number of points in
finite fields of varieties; the reverse direction is given by 3.7.

We list below the main properties of the theory Psf; the proofs can be found in [1], [7] and
[22]. Let F , F1 and F2 be pseudo-finite fields.

3.3. Let E be a subfield of F1 and F2. Then

F1 ≡E F2 ⇐⇒ (F1 ∩ Ealg) 'E (F2 ∩ Ealg).

3.4. Taking for E the prime field, one obtains invariants for the elementary theories of pseudo-
finite fields:

F1 ≡ F2 ⇐⇒ Abs(F1) ' Abs(F2),

where Abs(F1) is the subfield of F1 of elements algebraic over the prime field.

3.5. Assume that F1 ⊆ F2; then, taking E = F1:

F1 ≺ F2 ⇐⇒ F alg
1 ∩ F2 = F1.

3.6. Another application of 3.3 is the following: let E be a subfield of F , and a, b ∈ F ; then
tp(a/E) = tp(b/E) if and only if there is an E-isomorphism f between (E(a)alg ∩ F ) and
(E(b)alg ∩ F ) which sends a to b.

From this one then deduces: let ϕ(x) be a formula (x a tuple of variables); there is a formula
ψ(x), boolean combination of sentences of the form (∃t f(x, t) = 0), where f(x, t) ∈ Z[x, t], t a
single variable, such that

Psf ` ϕ(x)↔ ψ(x).

3.7. Let E be a perfect field, and assume that E has at most one algebraic extension of each
degree. Then there is a field F isomorphic to an ultraproduct of finite fields, such that

F ∩ Ealg = E.
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Moreover if E is of characteristic 0, F can be chosen isomorphic to an ultraproduct of prime
fields Fp.

This shows that Psf is precisely the theory of all infinite models of Tf , and that the pseudo-
finite fields of characteristic 0 are exactly the infinite models of Th(Fp | p a prime ).

3.8. As an illustration of techniques of proofs, we will show that the algebraic-geometric and
model-theoretic notions of algebraic closure coincide:
Let E be a subfield of the pseudo-finite field F , relatively algebraically closed inside F , and
let a ∈ F , a /∈ E; then tp(a/E) is not algebraic. Proof. Choose a field F ′ isomorphic to F

over E, and linearly disjoint from F over E; because F and F ′ are linearly disjoint over E, the
ring F alg

⊗
Ealg F ′

alg is an integral domain; choose (topological) generators σ of Aut(F alg/F )

and σ′ of Aut(F ′alg/F ′) such that σ and σ′ have the same restriction to Ealg; define τ on the
quotient field M of F alg

⊗
Ealg F ′

alg by setting τ(b⊗c) = σ(b)⊗σ′(c) for b ∈ F alg, c ∈ F ′alg, and
extending in the obvious manner. Lift τ to an automorphism τ1 of Malg, and let M1 ⊆ Malg

be the subfield of Malg fixed by τ1; then Aut(Malg
1 /M1) is by definition generated by τ1, and

F and F ′ are relatively algebraically closed in M1, since τ1 extends σ and σ′. By 3.7, there is
a pseudo-finite field L containing M1 and such that M1 is relatively algebraically closed in L.
By 3.5, L is an elementary extension of both F and F ′, and therefore contains a realisation of
tp(a/E) not in F . Hence tp(a/E) is not algebraic.

3.9. We now give a sharper description of definable sets.

Let ϕ(x, y) be a formula, x = (x1, . . . , xm), y = (y1, . . . , yn), let a ∈ Fm and let S = ϕ(a, F n) =
{b ∈ F n | F |= ϕ(a, b)}; there is a positive integer e, an algebraic set V defined over F , and a
projection map (on the first n coordinates) π from V (F ) onto S, with fibers π−1(y) of size ≤ e
for y ∈ S.

3.10. Using the Lang-Weil estimates on the number of rational points of varieties in finite
fields, the above description of definable sets, and some counting arguments, one then obtains
similar estimates for definable subsets of finite fields:

Theorem. Let ϕ(x, y) be a formula in L, with x = (x1, . . . , xm), y = (y1, . . . , yn). There is a
positive constant C, and a finite set D of pairs (d, µ) with d ∈ {0, 1, . . . , n} and µ a positive
rational number, or (d, µ) = (0, 0), such that for each finite field Fq and tuple a ∈ Fmq ,

(∗) |card(ϕ(a,Fnq ))− µqd| ≤ Cqd−(1/2)

for some (d, µ) ∈ D.
Furthermore, for each (d, µ) ∈ D there is a formula ϕ(d,µ)(x), which defines in each finite

field Fq the set of tuples a such that (∗) holds.

Let a be an m-tuple from the pseudo-finite field F . Then there is a unique pair (d, µ) ∈ D such
that F |= ϕ(d,µ)(a); one verifies that d = dim(ϕ(a, F n)). The number µ can be used to define
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a measure mS on the definable subsets of S = ϕ(a, F n): for T a definable subset of S with
associated pair (e, ν), define:

mS(T ) =

{
0 if e < d,

ν/µ if e = d.

Since the definition of mS originates from counting points in finite sets, mS is clearly a
finitely additive probability measure, defined on the definable subsets of S, taking only rational
values, and invariant under definable bijection.

From these considerations, one obtains easily the following results:

3.11. (Finiteness of the S1-rank) Let S ⊆ F n be definable, with dim(S) = d; let ϕ(x, y) be
a formula, and (ai)i∈I a sequence such that dim(S ∩ ϕ(ai, F

n)) = d for all i, and dim(S ∩
ϕ(ai, F

n) ∩ ϕ(aj, F
n)) < d for all i 6= j; then I is finite.

Proof. By 3.10 there is a positive rational number r ≤ 1 such that for any a ∈ Fm, mS(ϕ(a, F n)) >
0 implies mS(ϕ(a, F n)) > r; from the additivity of mS, we obtain that I has less than (1/r)
elements.

3.12. We will denote the second coordinate of the pair associated to a definable set S by µ(S);
then one has:

(a) For a variety V defined over F , µ(V (F )) = 1 (This is the Lang-Weil Theorem).

(b) For disjoint definable subsets S and T of F n,

µ(S ∪ T ) =


µ(S) + µ(T ) if dim(S) = dim(T ),

µ(S) if dim(S) > dim(T ),

µ(T ) if dim(S) < dim(T ).

(c) If f : S → T is definable, and dim(f−1(a)) = d for each a ∈ T , then dim(S) = dim(T )+d.
If moreover µ(f−1(a)) = m for every a ∈ T , then µ(S) = mµ(T ).

3.13. (not the strict order-property) Let ϕ(x, y) be a formula; then every sequence of tuples
ai ∈ F such that the sets ϕ(ai, F

n) form a strictly increasing chain, is of bounded length.

We should mention that pseudo-finite fields are unstable: indeed Duret showed they have
the independence property [18].

3.14. Adjoin to the language new constant symbols ci,n for 0 ≤ i < n ∈ N to obtain the
language Lc, and consider the extension Psfc obtained by adding to Psf axioms expressing that
the polynomials Xn+cn−1,nX

n−1 + · · ·+c0,n are irreducible for each n. Every pseudo-finite field
then expands (non-uniquely) to a model of Psfc; also, Psfc is model-complete, since whenever
(F1, c) ⊆ (F2, c) are models of Psfc then F1 is relatively algebraically closed in F2.

F admits elimination of imaginaries in the language Lc. Thus every group G interpretable
in F is F -definably isomorphic to a group defined in F .
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3.15. Let G be a group definable in F ; then there is a connected algebraic group H defined over
F , definable subgroups of finite index G0 of G and H0 of H(F ), and a surjective isomorphism
f : G0 → H0, defined over F and with finite central kernel.

3.16. If V is a variety defined over F , then the set V (F ) is Zariski dense in V , that is, its
Zariski closure equals V (actually, this holds in arbitrary PAC-fields).

Indeed, for 0 6= g(x) ∈ F [V ], the algebraic set V ′ = {(a, b) | a ∈ V, bg(a) = 1} is clearly
a variety, so it has an F -rational point. This shows that V (F ) intersects every open set of Ωn

defined over F . If W is a proper closed subset of V defined over F alg, then the union of the
conjugates of W over F is defined over F , which shows that V (F ) is dense in V (F alg). Because
V (F alg) is dense in V , we deduce that V (F ) is dense in V .

4 PAC fields

4.1. Pseudo-algebraically closed fields. A field F is pseudo-algebraically closed (PAC) if
every (absolutely irreducible) variety V defined over F has an F -rational point, i.e., a point
with all its coordinates in F .

4.2. Properties of PAC fields. Let E and F be fields, with F PAC.

(1) (10.7 in [22]) An algebraic extension of a PAC field is also PAC.

(2) Let E be a regular field extension of F . Then F has an elementary extension F ∗ containing
E. If the degree of imperfection of F is infinite and B is a p-independent subset of E
containing a p-basis of F , then F ∗ can be chosen so that B is a p-basis of F ∗. This is an
immediate consequence of the definition of PAC and of 2.2.

(3) ((4.5) in [10]) If E ⊆ F , then acl(E) is obtained by closing E under the λ-functions of F
and taking the relative (field-theoretic) algebraic closure in F .

4.3. Definitions.

(1) Recall that a profinite group G is projective if every diagram

(∗)
Gy

B −→ A

where the maps are continuous epimorphisms, can be completed by a continuous homo-
morphism (not necessarily onto!) G → B making the diagram commutative. If G is
projective, H is a profinite group and f : H → G is a continuous epimorphism, then H
has a closed subgroup G1 such that f restricts to a homeomorphism from G1 onto G, see
Remark 20.11 in [22].
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(2) A field F is ω-free if it has a countable elementary substructure F0 with G(F0) ' F̂ω, the
free profinite group on countably many generators.

(3) A field F is Frobenius, if it is PAC and its absolute Galois group G(F ) has the so-called
embedding property (or Iwasawa property), i.e.: every diagram

(∗)
G(F )y

B −→ A

where the maps are continuous epimorphisms and B is isomorphic to a finite (continuous)
quotient of G(F ), can be completed by a continuous epimorphism G(F )→ B making the
diagram commutative. The class of Frobenius fields is elementary, see §5. Since F̂ω
satisfies the above property, ω-free PAC fields are Frobenius.

4.4. If F is PAC, then G(F ) is projective (10.17 in [22]), and any algebraic extension of F is
PAC (10.7 in [22]).

4.5. Properties of ω-free PAC fields and Frobenius fields. Let E, F , F ′ and L be fields,
with F and F ′ Frobenius fields.

(1) Assume that F and F ′ have the same degree of imperfection, and are separable extensions
of L. Then F ≡L F ′ if and only if F ∩ Ls 'L F ′ ∩ Ls.

(2) Assume that F and F ′ have the same degree of imperfection, and that F ′ is a separable
extension of F . Then F ≺ F ′ ⇐⇒ F ′ ∩ F s = F .

(3) (18.2 in [22]) Let L = acl(L) ⊆ F , and assume that F is sufficiently saturated. Let E be a
regular extension of L, with [E : Ep] ≤ [F : F p], and assume that every finite (continuous)
quotient of G(E) is also a finite quotient of G(F ). Then there is an L-isomorphic copy
E ′ of E in F , such that F is a regular extension of E ′.

Proof. For (1), see 5.12, and (2) is a direct consequence of (1). For (3), assume that F is
|E|+-saturated. We now use the terminology of section 5, see in particule 5.11: our assumption
on the finite quotients means that Im(G(E)) ⊂ Im(G(F )). The inclusions L ⊆ E and L ⊆ F
gives us embeddings SG(L) ⊂ SG(E) and SG(L) ⊂ SG(F ). By the embedding property and
the |E|+-saturation of SG(F ), there is an SG(L)-embedding ϕ : SG(E)→ SG(F ). Dualising,
this gives us a group epimorphism Φ : G(F ) → G(E), which commutes with the restriction
maps onto G(L). We now get the result by the embedding lemma (18.2 of [22]).

4.6. Consequences. Let F be a Frobenius field, sufficiently saturated. 4.5(1) allows us to
describe the types in a simple manner: If a, b are tuples in F , and E ⊆ F , then tp(a/E) =

tp(b/E) if and only if there is an isomorphism ϕ between acl(Ea) and acl(Eb), which sends a
to b and is the identity on E. One direction is clear. For the other, extend ϕ to an isomorphism

of F with some field F ′. Then F ′ is also Frobenius. Since F is a regular extension of acl(Ea),
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F ′ is a regular extension of acl(Eb). Then 4.5(1) gives us that F ′ ≡acl(Eb) F , i.e., b realises the
same type over E in F and in F ′. Since ϕ is the identity on E, sends a to b and F to F ′, this
implies that tp(a/E) = tp(b/E).

4.7. Lemma . Let F be a Frobenius field, and assume that F is sufficiently saturated and
that L = acl(L) ⊆ F . Let E be a regular extension of L, and assume that every finite quotient
of G(E) appears as a finite quotient of G(F ). Then there is an L-isomorphic copy E ′ of E in
F such that F ∩ E ′s = E ′.

Proof. If the characteristic is 0, or if the characteristic is p > 0 and [E : Ep] ≤ [F : F p], then
this is 4.5(3). Hence, we may assume that the characteristic is p > 0 and that the degree of
imperfection of F is finite and smaller than the degree of imperfection of E. Let C be a p-basis
of E over L, and consider the extension M = E(c1/pn | c ∈ C, n ∈ N). We claim that this is
a regular extension of L. Indeed, without loss of generality, we may assume that E is finitely
generated over L; then C is a separating transcendence basis of E over L, and for every n ∈ N,
the extension E(c1/pn | c ∈ C) is separably algebraic over L(c1/pn | c ∈ C). This shows that M
is a separable extension of L. As E is regular over L and M is purely inseparable over E, this
implies that M ∩ Ls = L, and therefore that M is a regular extension of L. By construction,
[M : Mp] = [L : Lp] ≤ [F : F p], so that 4.5(3) applies and give the result.

5 Results of Cherlin, Van den Dries and Macintyre on

PAC fields

In this section we give a proof of a result of Cherlin, Van Den Dries and Macintyre, which was
announced in [11], but was never published in spite of the existence of two manuscripts [12]
and [13]. The proof we give does not differ much from theirs, but of course, all mistakes are of
my doing. I give references to the parts of their proof which have been published.

We first recall the definition of the inverse system of an absolute Galois group. This concept
was introduced in [12], see also [11] and [13].

5.1. The inverse system of a profinite group. Recall that a profinite group is a compact
Hausdorff, totally disconnected topological group. Equivalently, it is the inverse limit of an
inverse system of finite groups with the discrete topology. We refer to [49] or to [22] for the
basic properties of profinite groups. We will use an ω-sorted language, with sorts indexed by the
positive integers, and we refer to the book by Kreisel and Krivine [36] for properties of many-
sorted logics. They behave very much like ordinary first-order logic, except that all variables
and constants have a prescribed sort. Eg, if x is of sort n, then the quantifier ∀x ranges over
all elements of sort n. Traditionally, the universes of distinct sorts are disjoint, however one
can easily bypass this restriction by introducing functions which identify elements of distinct
sorts. This is what we will do implicitly in our case. In particular, in the terminology of [36],
the relations introduced below should be infinite collections of relations. We leave the reader
to make the appropriate adjustments to the terminology of [36].
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Let G be a profinite group. Consider the set SG =
⋃
· G/N , where N ranges over the set

N (G) of all open normal sugroups of G; if N ⊆ M are in N (G), denote by πN,M the natural
epimorphism G/N → G/M . We denote the elements of G/N by gN , g ∈ G. Consider the
ω-sorted language LG = {≤, C, P} where ≤ and C are binary relations, P is a ternary relation,
and the sorts are indexed by the positive integers.

We define an LG-structure on SG as follows:
— gN is of sort n if and only if [G : N ] ≤ n. Note that we do not assume that the sorts are

disjoint.
— gN ≤ hM if and only if N ⊆M .
— C(gN, hM) if and only if N ⊆M and gM = hM .
— P (g1N1, g2N2, g3N3) if and only if N1 = N2 = N3 and g1g2N1 = g3N1.

Note that the LG-structure SG encodes precisely the inverse system {G/N, πN,M | N,M ∈
N (G), N ⊆ M}, and therefore determines G uniquely, since G = lim←G/N . We call the LG
structure SG the complete system associated to G. The class of LG-structures of the form
SG for some profinite group G is axiomatised by the following scheme of axioms TG:

(1) ≤ is transitive and reflexive, with a unique largest element which is of sort 1. The elements
of sort n are exactly the elements having at most n elements in their ∼-equivalence class,
where ∼ is the equivalence relation defined by: x ∼ y ⇐⇒ x ≤ y and y ≤ x. We will
denote by [x]∼ the ∼-equivalence class of x.

(2) S/ ∼ is a modular lattice (with respect to the partial ordering ≤). For the axiom stating
the existence of the infimum, note that [G : N ∩M ] ≤ [G : N ][G : M ].

(3) P (x, y, z)→ (x ∼ y ∧ y ∼ z), C(x, y)→ x ≤ y.

(4) P defines on each ∼-equivalence class the graph of a group multiplication.

(5) If x ≤ y, then the intersection of C with the product [x]∼ × [y]∼ is the graph of a group
epimorphism πx,y from [x]∼ to [y]∼. These epimorphisms from a compatible system:
πxx = id, πyzπxy = πxz if x ≤ y ≤ z.

(6) If N is a normal subgroup of [x]∼, then there is a unique y such that C(x, y) and {xz−1 |
z ∼ x ∧ C(z, y)} = N .

If S |= TG, one then defines a profinite group G(S) as the inverse limit of the system of
finite groups and epimorphisms {[α]∼, παβ | α, β ∈ S, α ≤ β}. Unravelling the definitions and
using the isomorphism G ' lim←{G/N, πN ,M | N ⊆ M ∈ N (G)}, one checks easily that if G
is a profinite group then G(SG) is naturally isomorphic to G.

If S |= TG, then G(S) can be identified with the closed subgroup of
∏

α∈S/∼[α]∼ consisting

of those sequences (gα) satisfying πα,β(gα) = gβ for α ≤ β ∈ S. (Here
∏

α∈S/∼[α]∼ is equipped

with the product topology. Also, to simplify notation we write gα instead of g[α]∼ .)
We will define an embedding i of S into SG(S), and show that i is onto. Let γ ∈ S. Since

the maps πα,β are epimorphisms and compatible, there is an element (gα)α ∈ G(S) such that
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gγ = γ. For β ∈ S, let Nβ = G(S) ∩Mβ, where Mβ is the kernel of the natural projection∏
α[α]∼ → [β]∼. Then Nβ is an open normal subgroup of G(S), and we define i(γ) = (gα)Nγ.

This clearly defines an embedding of S into SG(S). It remains to show that i is onto: let N
be an open normal subgroup of G(S). Because G(S) is a closed subgroup of

∏
α∈S/∼[α]∼, and

by the definition of the product topology, there are α1, . . . , αm ∈ S such that N contains the
intersection of the Nαi

. Because of axiom (2), there is α ∈ S such that Nα ⊆ N , and by axiom
(6), there is a unique β ∈ S/ ∼ such that N/Nα is the kernel of the map παβ. Thus N = Nβ,
and this shows that i is onto.

A continuous epimorphism of profinite groups π : G → H induces a dual LG-embedding
Sπ : SH → SG: if hN ∈ SH, define Sπ(hN) = π−1(hN). Conversely, we will show below
that if S1, S2 |= TG, an LG-embedding i : S2 → S1 defines a unique continuous epimorphism
G(i) : G(S1) → G(S2). First observe that i induces a group isomorphism from [y]∼ onto
[i(y)]∼ for every y ∈ S2, because y and i(y) have the same sort and i respects P . If x ∈ S1

let us denote by πx the canonical epimorphism G(S1) → [x]∼. Then for each y ∈ S2, the
map fy = i−1 πi(y) : G(S1) → [i(y)]∼ → [y]∼ is a group epimorphism, and is continuous since
Ker(fy) = Ker(πi(y)). Furthermore, if y ≤ z ∈ S2, then fz = πi(y),i(z)fy because i respects C.
The universal property of the inverse limit implies then that there is a unique continuous group
morphism G(i) : G(S1)→ G(S2) which agrees with the system {fy | y ∈ S2}. By definition, for
every y ∈ S2, πyG(i)(G(S1)) = fy(G(S1)) = [y]∼, which implies that G(i)(G((S1)) is dense in
G(S2), and therefore that G(i) is onto since the continuous image of a compact set is compact.

Hence the functors G and S define a duality between the category of profinite groups with
continuous epimorphisms and the category of models of TG with LG-embeddings.

5.2. The inverse system of the absolute Galois group of a field. Let K be a field,
G(K) its absolute Galois group Gal(Ks/K). Then SG(K) =

⋃
· Gal(L/K), where L ranges over

all finite Galois extensions of K. The group epimorphisms encoded by the binary relation C
correspond to the restriction maps Gal(M/K)→ Gal(L/K) whenever M is a Galois extension
of K containing L. The largest element of SG(K) is Gal(K/K) = (1). If K is a regular
extension of some subfield E, then SG(E) identifies naturally with a substructure of SG(K)
(as the restriction map G(K)→ G(E) is onto).

The following result is due to Cherlin, van den Dries and Macintyre. It is stated in [11],
and proved in the preprints [12] and [13].

5.3. Theorem. Let K and L be fields, and E a common subfield of K,L, such that K and L
are regular extensions of E.

(1) If K ≡E L then SG(K) ≡SG(E) SG(L).

(2) If K is κ-saturated, so is SG(K).

5.4. Since their result is unpublished, we will give a sketch of the proof. The approach we take
is slightly different from theirs. As in [CDM2], we first introduce a new ω-sorted structure,
Sep(K), which encodes the direct system of finite Galois extensions of K together with the
possible inclusions. 5.3 will then be an immediate corollary of 5.7 and 5.5.
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Let Lsep be the language {≤, I, A,M}, with sorts indexed by the positive integers. The
elements of Sep(K) are the pairs (a, L), where L is a finite Galois extension of K containing a.
We interpret the language symbols in the natural way:

— The elements of sort n are the pairs (a, L) where L is a finite Galois extension of K of
degree ≤ n which contains a. Thus the pairs (a,K) are the only elements of sort 1.

— (a, L) ≤ (b,M) if and only if L ⊆ M . We consider the (definable) equivalence relation
(a, L) ∼ (b,M) ⇐⇒ L = M . Thus we may identify the equivalence class of (a, L) with L.

— I((a, L), (b,M)) if and only if L ⊆M and a = b.
— If L is a finite Galois extension of K, then A∩L3 and M ∩L3 are the graphs of addition

and multiplication on L respectively.

5.5. Proposition. Let K be a field. Consider the ω2-sorted structure (Sep(K), SG(K), ·) in
the language Lsep ∪ LG ∪ {·}, where · denotes the action of Gal(L/K) on L, for every finite
Galois extension L of K. Then (Sep(K), SG(K), ·) is interpretable in Sep(K).

5.6. Theorem (Keisler [Ke]). Let K1 and K2 be fields, which are elementary equivalent in
some language L′ containing the language of fields, let P be a unary predicate not in L′. Let
F1 and F2 be algebraically closed fields containing K1 and K2, with Fi infinite dimensional as
a Ki-vector space, and consider the L′ ∪ {P}-structures (Fi, Ki) defined above.

(1) If K1 ≡ K2 then (F1, K1) ≡acl(∅) (F2, K2).

(2) If K1 is κ-saturated and the transcendence degree of F1 over K1 is ≥ κ, then (F1, K1) is
κ-saturated.

5.7. Theorem.. Let K and L be fields, and E a subfield of K,L, such that K and L are
regular extensions of E.

(1) If K ≡E L then Sep(K) ≡Sep(E) Sep(L).

(2) If K is κ-saturated, so is Sep(K).

5.8. Interpretation of finite Galois extensions in K. Let L be a finite Galois extension of
K, and assume that L = K(α). Let p(X) = Xn+a1X

n−1 + · · ·+an be the minimal polynomial
of α over K, and identify L with K ⊕ αK ⊕ · · · ⊕ αn−1K. Then L is isomorphic to Kn as a
K-vector space. Consider the structure L∗ = (Kn,+,�), where � is a bilinear map, image of
multiplication under the identification of L with K ⊕ αK ⊕ · · · ⊕ αn−1K. E.g., α � − is the
linear transformation with matrix

Mα =


0 0 · · · 0 −an
1 0 · · · 0 −an−1
...

...
. . .

...
...

0 0 · · · 1 −a1


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and similarly αi � − has matrix M i
α. Note that the only parameters needed to define L∗ are

the elements a1, . . . , an, and that this interpretation is uniform in n.
An element of Gal(L/K) is then a linear transformation of Kn respecting �. Alternatively,

an element σ of Gal(L/K) is uniquely determined by σ(α), i.e., by an element of L∗ satisfying
p(X) = 0.

5.9. For later use, we will show an analog of the Keisler Shelah theorem.

Proposition. Let K1 and K2 be fields, which are regular extensions of a subfield E. We
then have inclusions SG(E) ⊆ SG(K1) and SG(E) ⊆ SG(K2). Assume that SG(K1) ≡SG(E)

SG(K2). Then there is an ultrafilter U on some index set I such that

SG(K1)U 'SG(E) SG(K2)U .

5.10. Theorem (Cherlin, Van den Dries, Macintyre). Let K1 and K2 be PAC fields, separable
over a common subfield E. The following conditions are equivalent:

(1) K1 ≡E K2.

(2) (i) K1 and K2 have the same degree of imperfection.

(ii) There is ϕ ∈ G(E) such that ϕ(K1 ∩ Es) = K2 ∩ Es, and

(iii) Let Φ : G(K2 ∩ Es) → G(K1 ∩ Es) be the isomorphism of profinite groups induced
by ϕ, and let SΦ : SG(K1 ∩Es)→ SG(K2 ∩Es) be the dual map. Then the partial
map SΦ : SG(K1)→ SG(K2) (with domain SG(K1∩Es)) is an elementary LG-map.

5.11. Application to Frobenius fields. Recall that a Frobenius field is a PAC field K,
whose absolute Galois group G(K) has the so-called embedding property (also called Iwasawa
property in [CDM]), namely:

Definition. A profinite group G has the embedding property iff every diagram

(∗)
Gy

B −→ A

where the maps are continuous epimorphisms and B is isomorphic to a finite (continuous)
quotient of G, can be completed by a continuous epimorphism G → B making the diagram
commutative.

Note that the definition of the embedding property only talks about finite quotients of G,
i.e., about ∼-equivalence classes of SG. Hence there is a LG-theory which we will denote by
TIP , whose models are precisely the complete systems associated to groups with the embedding
property. If G is a profinite group, we denote by Im(G) the set of (isomorphism classes of) finite
continuous quotients of G. Iwasawa has shown that the free profinite group on ℵ0 generator,
F̂ω, is characterised by the embedding property, by the fact that Im(F̂ω) contains all finite
groups, and by |SF̂ω| = ℵ0. This result translates as the ℵ0-categoricity of the theory of SF̂ω,
and was extended by Cherlin, Van den Dries and Macintyre as follows:
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Theorem (Cherlin, Van den Dries, Macintyre). Let G be a profinite group with the embedding
property. Then Th(SG) is ℵ0-categorical, and is axiomatised by adding to TIP the sentences
describing Im(G).

Remark. The proof of this result shows more: given G and H with the embedding property,
with Im(G) = Im(H) and |SG| = |SH| = ℵ0, and ∼-equivalence classes [α]∼ in SG and [β]∼
in SH, and a partial isomorphism f : [α]∼ → [β]∼, the isomorphism f lifts to an isomorphism
SG → SH (or see [22] 23.21). This implies also, using compactness, that any partial LG-
isomorphism f : SG → SH, where dom(f) |= TG, is an elementary LG-map. (Recall that the
subsets of SG which are models of TG correspond by duality to the continuous quotients of G.
Our hypothesis implies that Im(f) will also be a model of TG.)

5.12. Theorem (Cherlin, Van den Dries, Macintyre). Let K1 and K2 be Frobenius fields of
the same degree of imperfection, and separable over a subfield E. Assume that Im(G(K1)) =
Im(G(K2)). The following conditions are equivalent:

(1) K1 ≡E K2.

(2) There is an E-isomorphism ϕ : Es ∩K1 → Es ∩K2.

6 Difference fields

6.1. Setting and notation. We will always work inside a large algebraically closed field
Ω, which will contain all fields considered. The language Lσ is obtained by adjoining to the
language L = {+,−, ·, 0, 1} of rings a unary function symbol for σ. A difference field is a field K
with a distinguished automorphism σ, and is naturally an Lσ-structure. I should mention that
our definition of difference fields slightly differs from the usual definition which only requires σ
to be a field embedding, i.e., not necessarily onto. Our difference fields are called inversive by
Cohn. All the basic algebraic results on difference fields can be found in the first few chapters
of Cohn’s book [14]. The main model-theoretic results can be found in [8] and [9].

In characteristic p > 0, the map Frob : x 7→ xp defines a monomorphism on K, called the
Frobenius automorphism, and the image Kp of K by this map is a subfield of K.

6.2. The theory ACFA
Recall that the model companion ACFA of the theory of difference fields in the language

Lσ is axiomatised by the scheme of axioms expressing the following properties of (K, σ):
— K is an algebraically closed field and σ is an automorphism of K.
— If U and V are varieties defined over K, such that V ⊆ U × σ(U) and the projections

V → U and V → σ(U) are generically onto, then there is a tuple ā such that (ā, σ(ā)) ∈ V
(here σ(U) denotes the variety image by σ of the variety U).

6.3. Difference polynomial rings
Let k ⊆ K be difference fields, with K a sufficiently saturated model of ACFA. We define the

difference polynomial ring k[X1, . . . , Xn]σ by taking the ring k[X1, . . . , Xn]σ to be the ordinary
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polynomial ring k[σj(Xi) | i = 1, . . . , n, j ∈ N], and extending σ to k[X1, . . . , Xn]σ in the way
suggested by the name of the generating elements. Note that σ is not onto. The order of a
difference polynomial f is the largest m such that some indeterminate σm(Xi) appears in f .

Ideals I of k[X1, . . . , Xn]σ satisfying σ(I) ⊆ I are called σ-ideals. A perfect σ-ideal of
k[X1, . . . , Xn]σ is a σ-ideal I satisfying moreover that aσ(am) ∈ I implies a ∈ I for all m ∈ N.
Thus a perfect σ-ideal is radical. A prime σ-ideal is a σ-ideal which is prime and perfect.
Quotients of k[X1, . . . , Xn]σ by prime σ-ideals are domains, on which σ defines an embedding.
Thus they embed uniquely in a smallest difference field. If ā is an n-tuple of K, we define
Iσ(ā/k) = {f(X̄) ∈ k[X̄]σ | f(ā) = 0}, where X̄ = (X1, . . . , Xn). Then Iσ(ā/k) is a prime
σ-ideal of k[X1, . . . , Xn]σ.

While k[X1, . . . , Xn]σ has infinite ascending chains of σ-ideals, it satisfies the ascending chain
condition on perfect σ-ideals and on prime σ-ideals. A σ-equation (over k) is an equation of the
form f(x1, . . . , xn) = 0 where f(X1, . . . , Xn) ∈ k[X1, . . . , Xn]σ. The set of solutions (in Kn) of a
set of σ-equations is called a σ-closed set; it can be defined by a finite set of σ-equations. Thus
the topology on Kn whose basic closed sets are the σ-closed sets is Noetherian. A σ-closed
set is called irreducible if it is not the union of two proper σ-closed subsets. Every σ-closed
set of Kn is the union of finitely many irreducible σ-closed sets, which are called its irreducible
components. If the irreducible σ-closed set V is defined by σ-equations over k, then V is defined
over k, and the set of difference polynomials over k vanishing on V is a prime σ-ideal of
k[X1, . . . , Xn]σ, denoted by I(V ). If ā ∈ Kn and I(V ) = Iσ(ā/k), then a is called a generic of
V over k.

6.4. Transformal transcendence bases. Let k ⊆ K be as above, and let ā be a tuple
of elements of K. We denote by k(ā)σ the difference field generated by ā over k, i.e., the
difference subfield k(σi(ā) | i ∈ Z) of K. If the transcendence degree tr.deg(k(ā)σ/k) of k(ā)σ
over k is finite then we say that ā is transformally algebraic over k. In that case, there is a
non-negative integer m such that k(ā)σ ⊆ k(ā, . . . , σm(ā))alg. Observe that since σ and σ−1 are
automorphisms of k(ā)σ, we then have k(ā)σ ⊆ k(σj(ā), . . . , σj+m(ā))alg for every j ∈ Z.

An element b ∈ K is transformally transcendental over k, if the elements σi(b), i ∈ Z,
are algebraically independent over k. Observe that a tuple ā is either transformally algebraic
over k, or contains an element which is transformally transcendental over k. We call a set
B ⊆ K transformally independent over k if the elements σj(b), b ∈ B, j ∈ Z, are algebraically
independent over k. Equivalently, if the elements σj(b), b ∈ B, j ∈ N, are algebraically
independent over k. If L is a difference subfield of K containing k, and B ⊂ L is transformally
independent over k and maximal such, then B is called a transformal transcendence basis of
L over k. Observe that L is then transformally algebraic over k(B)σ. Any two transformal
transcendence bases of L over k have the same cardinality, and this cardinality is called the
transformal transcendence degree of L over k, and denoted by ∆(L/k). If ā is a finite tuple, we
also define ∆(ā/k) = ∆(k(ā)σ/k); observe that ∆(ā/k) ≤ tr.deg(k(ā)/k) (the transcendence
degree of k(ā) over k).
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7 Abelian varieties

7.1. Definitions. Recall that a variety V is complete if for any variety W the projection map
π : V ×W → W is closed, that is the image of a (Zariski) closed set by π is closed.

Using the definition, one shows easily that a closed subvariety of a complete variety is
complete, and that the image of a complete variety by a morphism is also complete. Examples
of complete varieties are the projective spaces Pn, n ≥ 1.

An abelian variety is a connected algebraic group which is complete. The completeness and
connectedness imply that the group law is commutative. By the above, a connected algebraic
subgroup B of an abelian variety A is an abelian variety, and so is the quotient group A/B.
Below we list some important results on abelian varieties. The references are to S. Lang’s book
on abelian varieties [38], chapter II.

From now on, A will denote an abelian variety defined over the field k. The group law of A
is +, and its identity element is 0.

7.2. Let f : V → A be a rational map from a variety V into the abelain variety A. Then f is
defined at every simple point of V .

Recall that in an algebraic group all points are simple. Hence if V is an algebraic group, f
is everywhere defined.

7.3. Let f : V ×W → A be a rational map of a product of varieties into an abelian variety A.
Then there are two rational maps f1 : V → A and f2 : W → A such that if (a, b) is a generic
point of V ×W then f(a, b) = f1(a) + f2(b).

f1 and f2 are uniquely determined by this property, up to addition by an element of A. If f
(and V,W,A) is defined over k and V (k) contains a simple point, then f1 and f2 can be chosen
defined over k.

7.4. Let f : G → A be a rational map of a connected algebraic group G into an abelian
variety A. Then the map f0 : G → A defined by f0(a) = f(a) − f(e) is an algebraic group
homomorphism (e is the identity element of G).

7.5. Let f : G×H → A be an algebraic group homomorphism defined over k, where G, H are
connected algebraic groups. Then there are algebraic group homomorphisms f1 : G → A and
f2 : H → A, both defined over k, and such that f(a, b) = f1(a) + f2(b) for (a, b) ∈ G×H.

7.6. Chow’s Theorem. Let B be an abelian subvariety of A, defined over K ⊇ k. Assume
that the relative algebraic closure of k in K is purely inseparable over k. Then B is defined
over k.

Note that this in particular implies:

7.7. All abelian subvarieties of A are defined over the separable closure ks of k.

7.8. If B is an abelian variety defined over k, then the group Hom(A,B) of algebraic homo-
morphisms from A to B is countable, and all its elements are defined over ks.
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7.9. Let B be an abelian variety. Then Hom(A,B) is a a free Z-module of finite rank.

7.10. Poincaré’s complete reducibility theorem. Let B be an abelian subvariety of A.
Then there is an abelian subvariety C of A such that A = B + C and B ∩ C is finite. If B is
defined over k then we can take C also defined over k.

7.11. Let B be an abelian variety, and f : A → B be a homomorphism. Then the graph of f
is an abelian subvariety C of A × B satisfying: for every a ∈ A there is a unique b ∈ B such
that (a, b) ∈ C.

The converse is also true: if C is an abelian subvariety of A×B having the property that for
every a ∈ A there is a unique b ∈ B with (a, b) ∈ C, then C is the graph of a homomorphism
from A to B.

From this one deduces:

7.12. Let A, B, C be abelian varieties. Assume that f : A → B and g : A → C are
homomorphisms and satisfy ker(f) ⊆ ker(g), and that f is onto. Then there is a unique
homomorphism h : B → C such that g = hf . Proof. Let D ⊆ A × B × C be the graph of

(f × g), and let E ⊆ B × C be its projection. Then E is an abelian variety, which projects
onto B since f is surjective. Let b ∈ B, c ∈ C such that (b, c) ∈ E. By definition of E, there
is a ∈ A such that f(a) = b and g(a) = c. If a′ ∈ A is such that f(a′) = b, then f(a− a′) = 0,
which implies that g(a− a′) = 0 and g(a′) = c. This shows that given b ∈ B, there is a unique
c ∈ C such that (b, c) ∈ E, and therefore that E is the graph of a homomorphism h : B → C.
Clearly g = hf , and h is unique.

7.13. Definition. Let B be an abelian variety. We say that a homomorphism f : A → B is
an isogeny if f is onto and its kernel is finite. We say that A and B are isogenous if there is an
isogeny f : A→ B.

Clearly the relation of isogeny is reflexive and transitive. It is also symmetric:

7.14. Let f : A→ B be an isogeny, and let n be the size of its kernel. There is a unique isogeny
g : B → A such that fg = [n]B and gf = [n]A (multiplication by n in the abelian groups B and
A respectively). Proof. By definition f is onto, and its kernel is contained in A[n] = ker([n]A)

(the elements of A of order n). Now apply 7.12 to get g : B → A such that [n]A = gf . Since
gf is an isogeny and f is onto, g is an isogeny. We then have (fg)f = f(gf) = f [n]A = [n]Bf ,
which implies that fg = [n]B.

7.15. Torsion subgroup. Let Tor(A) be the subgroup of torsion elements of A. Then
Tor(A) is divisible, and is dense in A. Thie implies in particular that if f, g : A → B are
homormorphisms of abelian varieties which agree on Tor(A), then they are equal. If ` is a
prime number different from char(k), the same is true for Tor`(A), the subgroup of elements
of A of order a power of `.

Let q be a prime power, and A[q] the subgroup of A of elements of order q. There are
numbers s ≤ r not depending on q such that

A[q] '

{
(Z/qZ)r if q is prime to char(k),

(Z/qZ)s if char(k) divides q.
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7.16. Definition. An abelian variety is simple if it has no infinite proper abelian subvariety.
Assume that A and B are simple varieties.

(1) If A and B are isogenous, then every non-zero element of Hom(A,B) (the group of
homomorphisms from A to B) is an isogeny.

(2) If A and B are not isogenous, then Hom(A,B) = (0).

(3) Let End(A) be the ring of endomorphisms of A; it contains a copy of Z, namely {[n]A |
n ∈ Z}. The ring E(A) = End(A)

⊗
Z Q is a division ring.

Proof. Let f : A → B be a homorphism. The simplicity of A and B implies that ker(f) is
either finite or all of A. In the first case, f(A) is an infinite abelian subvariety of B, which
must therefore equal B, which shows that f is then an isogeny. If ker(f) = A then f = 0. This
proves (1) and (2).

For (3), let f ∈ E(A) be non-zero, and choose N ∈ N∗ such that [N ]f ∈ End(A). By 7.14,
there is g ∈ End(A) such that g[N ]f ∈ Z, which shows that f is invertible in E(A) since all
non-zero integers are invertible in E(A).

7.17. By Poincaré’s reducibility theorem 7.10, there are simple subvarieties A1, . . . , Ak of A
such that for any i, the intersection of Ai with the sum of the others is finite. From this one
deduces that the abelian varieties A1 × · · · ×Ak and A are isogenous. Moreover, by the above,
the varieties A1, . . . , Ak are uniquely determined up to an isogeny and a permutation of indices.

Observe also that if B is a simple variety and Hom(A,B) 6= (0), then B is isogenous to a
subvariety of A.

Assume that A1, . . . , Am are pairwise non-isogenous, and that each Aj, j > m, is isogenous
to Ai for some i ≤ m. For i ≤ m let ni be the number of varieties among {A1, . . . , Ak} which are
isogenous to Ai. By 7.5, every endomorphism of A decomposes into a product of homorphisms
Ai → Aj for 1 ≤ i, j ≤ k, and therefore

End(A) '
m∏
i=1

Mni
(End(Ai)).

7.18. Let B be an abelian subvariety of A. There are homomorphisms fi : A → Ai where
the Ai’s are isogenous to simple subvarieties of A, i = 1, . . . ,m, such that B =

⋂
i ker(fi).

Proof. LetC = A/B, and choose simple subvarieties A1, . . . , Ak of A and an isogeny f : C →
A1 × · · · × Ak. Let π : A → C and πi : A1 × · · · × Ak → Ai, i = 1, . . . , k be the natural
projections. Then ker(f) =

⋂
i ker(πif). Let n = | ker(f)|, and let fi = [n]πifπ : A → Ai.

Since B is connected, B =
⋂
i ker(fi).

From this one deduces easily:

Let A,B be abelian varieties, and assume that Hom(A,B) = (0). Let C be an abelian sub-
variety of A × B. Then C = C1 × C2 where C1 and C2 are abelian subvarieties of A and B
respectively.
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8 Graded rings, twisted Laurent polynomial rings

8.1. Definitions. A (Z-)graded ring is a ring R whose underlying additive group is written as
R =

⊕
m∈ZRm, with RiRj ⊂ Ri+j for i, j ∈ Z.

The decomposition
⊕

Rm is called the grading of R. The elements of Rm are called homo-
geneous of degree m, and Rm is the homogeneous component of degree m.

8.2. Example. Let R be a ring, t an indeterminate. Then R[t] has a natural grading: K[t] =⊕
m∈NRt

m. Observe that the homogeneous components of negative degree are 0. In fact, since
the component of degree 0 contains R, R[t] is a graded R-algebra.

8.3. Let R be a ring, and τ ∈ Aut(R). We define the twisted Laurent polynomial ring Rt[τ, τ−1]
to be the ring whose underlying additive group is

⊕
m∈ZRτ

m, with multiplication defined by
aτ ibτ j = aτ i(b)τ i+j for i, j ∈ Z, and extended using distributivity to Rt[τ, τ−1].

Rt[τ, τ−1] has a natural Z-grading, with Rτm the homogeneous component of degree m for
m ∈ Z. We also consider the subring Rt[τ ] of Rt[τ, τ−1]. If f =

∑n
i=0 aiτ

i ∈ Rt[τ ] satisfies
an 6= 0, we will call n the degree of f .

8.4. Proposition. Assume that R is a division ring (every element has an inverse). Then
Rt[τ ] is a left-euclidian domain and every ideal of Rt[τ, τ−1] is principal. If m ∈ N∗, then every
left ideal of Rt[τ, τ−1] is generated by m elements.

Proof. Let f =
∑m

i=0 aiτ
i, g =

∑n
j=0 bjτ

j, with ambn 6= 0. First of all, fg 6= 0: the coefficient of
τm+n is amτ

m(bn) which is non-zero since am and bn are non-zero and τ is an automorphism.
This shows that Rt[τ ] is a domain.

We will now show that there is a unique pair (u, v), with v of degree < n, such that
f = ug + v. Note that the unicity will follow from the existence: an element of degree < n is
in
⊕n−1

i=0 Rτ
i, a multiple of g is in

⊕
i≥nRτ

i, and Rt[τ ] is a domain. We show the existence of
(u, v) by induction on m: if m < n, then u = 0, v = f . Suppose m ≥ n, and that it is proved
for all polynomials of degree ≤ m− 1.

Consider f ′ = f − amτm−n(b−1
n )τm−ng. Then f ′ is of degree ≤ m, and the coefficient of τm

in f ′ is equal to am− (amτ
m−n(b−1

n )τm−n(bn)) = 0. By induction hypothesis, f ′ = u′g+ v, with
v of degree < n, and therefore f = ug + v with u = u′ + amτ

m−n(b−1
n )τm−n.

Let I be a left ideal of Rt[τ, τ−1]. Then I is generated by the left ideal I0 = I ∩ Rt[τ ] of
Rt[τ ], and it therefore suffices that I0 is principal. Let g ∈ I0 be of least possible degree, and
let f ∈ I0. Then f = ug+ v with v ∈ I0 of degree smaller than the degree of g. By choice of g,
we have v = 0, which shows that I0 is the ideal generated by g.

Let I be a left ideal of Rt[τ, τ−1]m. If m = 1, then I is principal. Assume m > 1 and
that the result is proved for m − 1. Let I1 be the projection on the first coordinate of I, and
I2 = I ∩ ((0) × Rt[τ, τ−1]m−1). Then I1 is principal, generated by f1 say, and I2 is a left ideal
of (0)×Rt[τ, τ−1]m−1. Let f2, . . . , fm ∈ Rt[τ, τ−1] be such that (f1, . . . , fm) ∈ I.

Let (g1, . . . , gm) ∈ I. Then g1 = h1f1 for some h1 ∈ Rt[τ, τ−1]. Thus (g1, . . . , gm) −
h1(f1, . . . , fm) ∈ I2, which shows that I is generated by I2 and (f1, . . . , fm). Using the induction
hypothesis, this shows that I is generated by m elements.
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