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DIFFERENTIAL-ALGEBRAIC JET SPACES PRESERVE
INTERNALITY TO THE CONSTANTS

ZOE CHATZIDAKIS, MATTHEW HARRISON-TRAINOR, AND RAHIM MOOSA

Abstract. Suppose p is the generic type of a differential-algebraic jet space to a finite dimensional
differential-algebraic variety at a generic point. It is shown that p satisfies a certain strengthening of almost
internality to the constants. This strengthening, which was originally called “being Moishezon to the
constants” in [9] but is here renamed preserving internality to the constants. is a model-theoretic abstraction
of the generic behaviour of jet spaces in complex-analytic geometry. An example is given showing that
only a generic analogue holds in the differential-algebraic case: there is a finite dimensional differential-
algebraic variety X with a subvariety Z that is internal to the constants, such that the restriction of the
differential-algebraic tangent bundle of X to Z is not almost internal to the constants.

§1. Introduction. This paper hasto do with the fine structure of finite dimensional
definable sets in differentially closed fields of characteristic zero. A somewhat new
and powerful tool in the study of differential-algebraic varieties is the differential
jet space. This higher order analogue of Kolchin’s differential tangent space was
introduced by Pillay and Ziegler in [14] where it was used to prove what is now called
the Canonical Base Property; a strong property which, among other things, gives
a quick and Zariski-geometry-free proof of the Zilber dichotomy for differentially
closed fields in characteristic zero. Here we study differential jet spaces in their
own right, and prove that they satisfy a certain strengthening of internality to the
constants introduced implicitly by the third author and Pillay in [10], and then
refined and formalised in [9]. This strengthening of internality is the differential
analogue of a property that complex-analytic jet spaces enjoy, and went provisionally
by the name “being Moishezon” in [9]. However, in retrospect we find the term
misleading and would like to rename it here as follows:

DerFmNITION 1.1. Work in a sufficiently saturated model M ofa complete stable
theory. and suppose P is an Aut(M)-invariant set of partial types. We say that a
stationary type tp(a/b) preserves P-internality if whenever c is such that stp(b/c) is
almost P-internal, then so is stp(a/c).

By taking ¢ = b we see that this is a strengthening of almost P-internality. See
Proposition 2.4 of [9] for a list of its basic properties.
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Here is our main theorem.

THEOREM 1.2. If X is a finite dimensional differential-algebraic variety then inter-
nality to the constant field is preserved by the generic types of the differential jet spaces
to X at generic points.

More concretely, working in a sufficiently saturated partial differentially closed
field (K. A) of characteristic zero. suppose that X is a finite dimensional irreducible
A-variety defined over a A-fieldk, a € X is generic over k, andv € Jety (X), is generic
over k(a) for some m > 0. Then for any algebraically closed A-field L extending k. if
tp(a/L) is almost internal to the constant field then so is tp(v/L).

m

A precise definition of the differential jet space Jet) (X), is recalled in Section 2,
where we also prove something new that we need about differential jet spaces of
fibred products (see Proposition 2.2 below).

The theorem itself is proved in Section 3.

It may be worth translating this theorem into purely differential-algebraic terms.
First of all, note that for the generic type of an irreducible A-variety X to be almost
internal to the constant field is equivalent to the following geometric property: there
exists an irreducible algebraic variety V' over C and an irreducible A-subvariety
I' C X x V(C) that projects generically finite-to-one and A-dominantly onto both
X and V(C). In this case we will say that X is C-algebraic. Theorem 1.2 can be
restated as:

COROLLARY 1.3. Suppose X is a finite dimensional irreducible A-variety over k
and consider the A-jet bundle Jety (X) — X, for any m > 0. Suppose Z C X is
an irreducible C-algebraic A-subvariety, over some A-field extension of k. that passes
through a generic point of X over k. Then the restriction of the A-jet bundle to Z,
Jety (X)|z. is C-algebraic.

One could ask for a stronger geometric statement; one could ask that for any
C-algebraic A-subvariety Z C X, Jet} (X )|z is again C-algebraic. Indeed, the anal-
ogous statement for complex-analytic jet spaces is true. In Section 4, however, we
will give a counterexample showing that this expectation does not hold (even in the
case of m = 1, so for A-tangent bundles). So while we view this work as furthering
the analogy that model theory provides between differential-algebraic geometry and
complex-analytic geometry, that analogy is not perfect.

Throughout this paper all our fields are of characteristic zero.

§2. Preliminaries on differential jet spaces. In this section we review the theory
of differential jet spaces introduced by Pillay and Ziegler in [14]., and then prove
something about how they interact with fibred products (Proposition 2.2).

We assume some familiarity with the theory of (partial) differentially closed
fields, DCFy,. as well as the associated differential-algebraic geometry, see for
example [7]. We work in a sufficiently saturated model (K, A) = DCF,, with field
of total constants C. While everything can be made sense of in a more abstract
setting, we will work in the strictly affine setting and identify geometric objects with
their K-points. So, for us a A-variety is simply a Kolchin closed subset X C K”.
To say that X is finite dimensional is to say that if k is a differential field over which
X is defined and ¢ € X. then the differential field k (@), is of finite transcendence
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degree over k. It is a fact that every finite dimensional A-variety is A-birationally
equivalent to an “algebraic D-variety” in the sense of Buium [1]; that is, of the form

V.s)={aecV:(ada..... Oa) = s(a)},

where V' is an algebraic variety and s : V' — 7}/ is an algebraic section to the
prolongation of V. (See, for example, Section 3.7(ii) of [14] for the ordinary case
and Section 3.10 of [6] for the partial case.)

Pillay and Ziegler [14] introduced differential jet spaces for differential varieties
of the form X = (¥, s)*. The mth A-jet space of X at a is a certain finite dimensional
C-vector subspace of the algebraic mth jet spaces of V' at a. Let us first recall the
algebraic notion: the algebraic mth jet space of the algebraic variety V' at a point
a € V is by definition

Jet" (V), = homg (M, /M K).

To give an explicit co-ordinate description of Jet”(V), as a definable K-vector
space, fix an affine embedding V' C A” with co-ordinates x = (xj.....x,). We can
identify Jet" (A"), = K, where A := {a € N" : 0 < }°, a; < m}. Then, using
z = (Za)aen as co-ordinates for K, we have that Jet” (1), is the K -linear subspace
of K defined by the equations

S 2P () =0

alOx®
aEA

as P ranges through a generating set for the ideal of V. For details on this co-
ordinate description for algebraic jet spaces see, for example, Section 2 of [14]
or Section 5.1 of [11].

Asisexplainedin[14].ifa € X = (V. s) then s induces a A-module’ structure on
My /Mt sayd = (d,.....d,). which in turn gives a A-module structure to the

dual space Jet” (V'),. We denote thisby D = (Dy..... D). So for u € My, /M’,’};l

and v € Jet” (V),. we have (D;v)(u) == 8; (v(u)) — v(d;u). The mth A-jet space of
X at a is then defined to be the subspace

Jet{ (X ), := {v € Jet"(V), : Dv = 0}.

The construction is uniform in «, in the sense that if Jet” ¥ — V" is the morphism

of algebraic varieties whose fibres are the algebraic jet spaces, then we have a
A-subvariety Jety X C Jet” V' that maps onto X and whose fibres are the A-jet
spaces.

The above construction was generalised to arbitrary (possibly infinite dimen-
sional) differential subvarieties of algebraic varieties by the third author and Scanlon
in [12], where also various other theories of fields with operators were treated uni-
formly (the difference case was already developed by Pillay and Ziegler). We do not
give the general definition here, and only rely on [12] as a crutch to talk about Jety' X
even when X is not given explicitly as the sharp points of an algebraic D-variety.
Of course, as we are only interested here in the finite dimensional case, we could

IRecall that a A-module is a K-vector space M equipped with additive endomorphisms d =
(dy..... dy) satisfying d; (ra) = 0;(r)a + rd;(a). forallr € K anda € M.
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always give such a presentation of X after A-birational change — but it is convenient
for us not to always insist on this.

Here are some basic facts about A-jet spaces that can be easily deduced from the
construction and can be found in [14] (though sometimes only implicitly).

Fact2.1. Fixm > 0.

(a) If X is finite dimensional and a € X then Jety (X), is a finite dimensional
C-vector space.

(b) Given a morphism of A-varieties. { : X — Y. there is a canonical morphism
Jet)' [ :Jeth X — Jeth Y such that the following commutes:

J tl” o
Jetn X — 28T geny
b / Y

and making Jet a covariant functor on the category of A-varieties.

(©) If f + X — Y is A-dominant and a € X is generic, then Jet{(f), :
Jety (X), — JetX(Y) () is a surjective C-linear map. If moreover, [ is
generically finite-to-one. then Jety (f), : Jety (X)a — Jety (Y) (. is an
isomorphism.

(d) If X = V(C) where V is an algebraic variety over C, then Jet{' X is the set of
C-points of the algebraic jet space Jet™ V.

The following is a property of A-jet spaces that does not seem to be covered in
the literature.

PROPOSITION 2.2. Suppose that for i = 1,2 we have a; € X; = (V;.s;)t. Then
JetZ’(Xl X X2)(al‘az) C dcl (JetZ’(Xl)al,Jet'A"(Xz)az,C).

REMARK 2.3. When m = 1 the differential mth jet spaces is nothing other than
Kolchin’s differential tangent space from [4]. In that case, Proposition 2.2 is much
easier to see as differential tangent spaces commute with products. Except for the
proof of this proposition (which becomes unnecessary), the proof of Theorem 1.2
does not change if we restrict our attention to the case of m = 1 only, and the reader
is therefore invited to do so if he or she prefers.

Proor. We begin with some preliminary observations about A-modules.

First, recall from [14] that if (M.d) is a A-module then we obtain a dual A-
module. (homg (M. K). D), by defining D;v : M — K by a — 8;(v(a)) — v(d;a).
Let us, somewhat unusually, set

M = {v € homg(M.K) : Dv = 0}.

Then Lemma 3.1 of [14] tells us that M is a C-vector space of dimension dimg M.,
when the latter is finite.

We can also take tensor products of A-modules. If (M, dy;) and (N.dy) are
A-modules then it is not hard to verify that we get a A-module (M ®x N.d) by
dla®b)=dya®b+a®dyb.
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Fix finite K-dimensional A-modules (M,d);) and (N.dy) and consider the
K -bilinear map

¢ :homg (M, K) x homg (N, K) — homg (M ®x N, K)

given by ¢(v.w)(a @ b) = v(a)w(b). Note that this is the natural map in linear
algebra that induces an isomorphism between the tensor product of duals with the
dual of a tensor product.

CLAIM 2.4. ¢ restricted to M™ x N2 induces an isomorphism of C-vector spaces,
M* ®c¢ N* ~ (M @k N)™. In particular, spang (p(M* x N)) = (M @ N)A.

PrOOF OF CLamM 2.4. First, if v € M? and w € N?. then the following
computation shows that ¢(v.w) € (M @g N)*,
D(¢p(v.w))(a ®b) =3(¢>( )(a®b)) ¢(v.w)(d(a @ b))

O(w(a)w(d)) — ¢p(v.w)(dya @b+ a @ dyb)

= (0v(a))w(b) + ( )( (b)) —v(dya)w(b) — v(a)w(dyb)

= (8v(a) —v(dya))wb) +v(a)(Ow(b) — w(dyb))

= (Dyv(a))w(b) +v(a)(Dyw(b))
=0
=0

w(b) 4+ v(a)0

Hence by C-bilinearity we do get an induced C-linear map
M2 ®c N* — (M @g N)A.

Injectivity follows exactly as it does for the injectivity of the K-linear map induced
by ¢. As both have the same dimension, this induced map is an isomorphism.
We are going to apply this claim to the A-modules M = M| := Oy, 4,/ M’{}fall and

N = M, = Oy, 4, /M’{}f;z Note that M; = K ® My, /M’,’}f;i so that canonically
hOHlK(Mi,K) =K @Jet’"(Vi)a,,

where the direct sum is also in the sense of A-modules if we put on K the A-module
structure given by 9. Hence, taking constants, we get

— Ca k(X)) (1)

as C-vector spaces.
To represent things in co-ordinates, let us fix affine embeddings V; C A", set
n:=n;+nyz:=(x1,....Xn. V..., Vn,) co-ordinates for A", and

a = (Cll,az) eXixXoC Vi xV,CA".
Consider the standard “monomial” basis for M,/ MX”; (z—a)*:ae A}

where A == {a € N" : 0 < 37, «; < m}. Denote by (z —4)" their images in
My, xvya/ My, - There is a natural embedding

MV1>< Vz,a/M'7z+l C M] QK Mz

VixVsa
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induced by writing (z — a)a = (x—a)" (y — az)az. Note that a; may be zero for
one of i = 1,2, and this is why we work with M; = Oy, .,/ M"1}+01 rather than with
Myia/ M’,ﬁ*ul Now, we obtain a corresponding embedding of the dual spaces

Jet'"(Vl X Vz)a C homK(Ml KRk Mz,K)

by extending K-linear functionals on My, x 1,4/ M’I’}l*xl V. 10 My @k M by setting
them to be zero where they were not defined. The above embedding is also as
A-modules. So

Jet’A"(Xl X Xz)a C (M] Rk Mz)A.
Putting this together with Claim 2.4 as well as (1), implies
Jeth (X1 x X2)y C (C&Jeth (X1)a) ®c (C ety (X2)a,). (2)

It remains to trace through the various identifications to verify in co-ordinates
that (2) does in fact lead to a proof of Proposition 2.2.

Fixv € Jet} (X1 x X2),. AsJet} (X; x X3), isa C-linear subspace of K* we can thus
write v = (va)aea. Note that viewing v as linear function on My, y, ./ M!

VixVsa
we can Compute
o

va =v((z —a) ).
Now fix C-bases W and W’ for Jety (X1),, and Jet} (X2),, respectively. By (2) we
get

U:CI(1®1)+ ch(w®l)+ Z Cw/(1®w/)+ Z Cw,w’(w®w/),
wew w'ew’ weWw' eWw’

where the ¢’s are constants. Evaluating both sides at (z—a)a =

(x — al)a] (y — az)az, we get

Va = Cllal laz + Z CyWey laz + Z Cw/lalw(/xz + Z Cw,w’walwéze (3)

wew w' eWw’ weWw' e Ww’
1 ifg=o, , o .
where 1; = 0 el Equation (3) shows explicitly in co-ordinates that
else.
v € del(W, W'.C). Hence Jety (X, x X5), C del (Jety (X)q,.Jety (X2)a,.C). as
desired. 4

83. The Proof of Theorem 1.2. We continue to work in a sufficiently saturated
model (K, A) = DCF,, with field of total constants C. We begin with some minor
reductions and notational simplifications. First, fix m > 0 and abbreviate Jet} by
T. This will also serve to remind the reader that not much is lost if one considers
simply the A-tangent spaces, that is the case when m = 1. What we will use about
T. freely and more or less axiomatically, are the facts stated and/or proved in
the previous section. Second, by working over k., we can drop all reference to this
base field altogether. Third, it clearly suffices to prove Theorem 1.2 in the case when
the differential field L appearing in the statement of the theorem is the algebraic
closure of a finitely generated differential field (over k). Hence, what we actually
need to prove is that if @ is of finite dimension and stp(a/b) is almost C-internal,
then so is stp(v/b) for v a generic point in T'(loca(a)) .
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Our next reduction is to the case that b € acl(a). In fact this too is for convenience,
in the sense that it is not essential to the proof. However, for nontrivial (but known)
reasons, we can actually reduce to this case: the first author has shown (Lemma 2.3
of [3]) that as a consequence of the Canonical Base Property, if stp(a/b) and
stp(a/b’) are almost C-internal then so is tp (a/ acl(b) Nacl(b’)). Taking b’ = a. we
get that tp (a/ acl(a) N acl(b))is almost C-internal. If we show that tp (v/ acl(a) N
acl(b)) is almost C-internal then we get a fortiori that stp(v/b) is too. That the
Canonical Base Property in the required form holds in DCF, was done by Pillay
and Ziegler in [14], and their argument was shown to extend to finite dimensional
types in DCFy, by Leon Sanchez [5].

We have thus reduced to showing the following statement:

(x) Suppose a is a tuple of finite dimension, b € acl(a). and stp(a/b) is almost
C-internal. If v is a generic point of T(locA(a))a, then stp(v/b) is almost
C-internal.

We will proceed via a series of lemmas.

LemMA 3.1. The statement (x) is equivalent to the version where the conclusion is

made about all v € T (loca(a)) , rather than just the generic v.

ProOF. Indeed. this is because 7 (loca(a)), is an a-definable (additive) group
and hence every element is a sum of generics. So v € dcl(vjv2a) for a pair of generic
points v; and vy, and the almost C-internality of stp(v/b) follows from that of
stp(v1/b), stp(va/b), and stp(a/b). -

In what follows, whenever we say that “(x) holds for (a.b)” we mean that both
the hypotheses and the conclusions of (*) hold. In particular, « is a tuple of finite
dimension and b € acl(a).

Lemma 3.2. Suppose (x) holds for (a.b). If acl(h) C acl(a’) C acl(a) then (x)
holds for (a’.b) as well. In particular, (x) is preserved if one replaces a by anything
interalgebraic with it.

ProOF. Note that the hypotheses of () hold automatically for (a’.b). Since
a' € acl(a) there exists a A-subvariety

Z Clocp(a’) x loca(a)
which projects A-dominantly onto both co-ordinates and is generically finite-to-one
onto locy(a). It follows that T'(Z),r, is a’a-definably isomorphic to T'(loca(a)),
and admits a surjective a’a-definable map onto T( loca(a’ )) - Hence if v is generic
in T'(loca(a)), then its image v’ in T (locs(a’)),, is generic. and the almost
C-internality of stp(v/b) implies that stp(v’/b) is also almost C-internal. -

LemMma 3.3. Suppose (x) holds for (a1, b) and for (ay.b). and a L, a2 Then (%)
holds for (ajay.b).

Proor. Actually, we will show (%) for (bajar.b) which is equivalent by
Lemma 3.2. Let X = loca(bajas). Y; = loca(ba;) for = 1,2, and B = loca(h).
So X = Y; xp Yo C Y| x Y. Suppose for the moment that the Y; are in fact
algebraic D-varieties so that we can apply Proposition 2.2 directly to them. Then

T(X)<170102) g T(Yl X Yz)(bal‘baz)
C del (T (Y1)pa,. T(Y2)pa,.C) by Proposition 2.2.
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The truth of (x) for (a;.b) implies by Lemma 3.2 the truth of (x) for (ba;.b).
and hence by Lemma 3.1, the type of every element of T'(Y;)s, over b is almost
C-internal. It follows that in particular the generic type of T'(X)(,,,,) is almost
C-internal, as desired.

It remains to verify that we may assume the Y; are algebraic D-varieties, that is
that they are of the form ¥; = (V. s;)t. By finite dimensionality there exist algebraic
D-varieties Y; admitting morphisms to B such that X = Y} x p Y is A-birationally
equivalent to Y} x p Y». Since we are trying to prove something about the A-jet space
to X at a generic point, it suffices to prove that statement for Y; x g Y3, instead.

b0102

We now prove an important case of (x).
LemMMA 3.4. Suppose stp(a/b) is almost orthogonal to C. Then (x) holds for (a,b).
PROOF. As tp(a/b) is almost C-internal, for some e extending b, with

a l e (4)
b

and for some finite tuple of constants ¢, we have a € acl(ec). We may assume that
¢ is an algebraically independent tuple over acl(e), and hence

c | e (5)
In particular, ¢ | b. But by the almost orthogonality of stp(a/b) to C, a | b€
This implies

a | c. (6)

Now, let X = loca(a) and Y = loca(e). Choose a (finite) C-basis f for T(Y)..
We may assume that # | a. and hence by (4),

pe | a. (7)
b

Let Z = loca(ae/c) € X x Y. By (5), Y = loca(e/c) and hence the projection
ny : Z — Y is A-dominant. The fact that ¢ € acl(ec) implies that 7y is more-
over generically finite-to-one. By Fact 2.1(c), it therefore induces a cae-definable
linear isomorphism between 7T(Z),. and T(Y),. On the other hand, by (6),
X = locA(a/c), and so the projection 7y : Z — X is also A-dominant, and
we obtain a cae-definable surjective linear map from 7(Z),. to T(X),. Putting
these together we get a cae-definable surjective linear map from 7(Y), to T(X),.

To show (). take v € T(X), generic. We may assume that v L, Be. So (7)
implies

v | pe.
b

On the other hand,

v € dcl(cae. T(Y).) by T(Y), = T(X),
C dcl(caefC) as fis aC-basis for T(Y),
C acl(efC) asa € acl(ec) and c is from C.

That is. stp(v /b) is almost C-internal, as desired. —
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Our final lemma has nothing to do with jet spaces, and is simply a refinement of
how internality to C can be witnessed in DCFy .

LEMMA 3.5. Suppose a and b are tuples of finite rank with stp(a/b) almost internal
to C. Then there exist a tuple e of finite rank and a tuple of constants ¢, such that

(i)al,e.
(i) acl(abe) = acl(cbe).

(iii) stp(e/b) is almost C-internal and almost orthogonal to C, and

(iv) ¢ | be.

ProOF. Almost C-internality of stp(a/b) gives us an e; such thata | ,eranda
is interalgebraic with a tuple of constants over bej. So there is a bej-definable gener-
ically finite-to-finite correspondence, say f.,. between loca(a/b) and the C-points
of an algebraic variety over C. Let M be a prime model over acl(b). independent
from a over b. Then we can find a tuple ¢’ in M such that f, is a be’-definable
generically finite-to-finite correspondence between loca(a/b) and the C-points of
an algebraic variety over C. So there is a tuple of constants ¢’ such that (a.b. e’. c’)
satisfy (i) and (ii). Since M is prime over acl(b) it adds no new constants to acl(b),
and hence, stp(e’/b) is almost orthogonal to C. Setting e := Cb(stp(ac’/be’)).
everything so far is preserved, but now stp(e/b) is finite rank and almost C-internal
(as that is the case for @ and ¢’). So (a.b.c’.e) satisfy (i)—(iii). Letting ¢ be a
transcendence basis for acl(c’) over be. we get (iv) as well. -

We can now put things together.

PROOF OF () IN GENERAL. We are given b € acl(a) such that stp(a/b) is almost
C-internal. Let e and ¢ be as given by Lemma 3.5.

First, by (iii) of Lemma 3.5, stp(e/b) is almost C-internal and almost orthogonal
to C. Hence (*) holds of (be,b) by Lemma 3.4.

Next we observe that (x) holds for (ch, b). Note that b ¢ acl(c), so it does not
make sense to ask whether () holds for (c.b). We let v be generic in T (loca(ch)) ,
and we show directly that stp(v/b) is C-internal. By (iv) of Lemma 3.5, ¢ | b. so
that loca(ch) = loca(c) x loca(h). Hence

T(locA(c,b))(ab) = T(IOCA(C) X IOCA(b))(c‘b)

C del (T ( locA(c))c, T( locA(b))b,

C) by Proposition 2.2.

To be precise, in order to apply Proposition 2.2, we need to first make A-birational
changes so that the A-varieties in question are the sharp points of algebraic
D-varieties, but this can be done as explained in the proof of Lemma 3.3. Now,
as ¢ is a tuple of constants, loca(c) = V' (C) where V is an algebraic variety over
C, and hence, by Fact 2.1(d), T( locA(c))c is the set of C-point of the algebraic jet
space of V" at ¢. So every element in T( locA(c))c is a tuple of constants. We thus
have

c).

But differential jet spaces at a point are finite dimensional C-vector spaces, so
choosing a C-basis f§ for T (loca(h)),. we have

T (loca(c.b)) e S dcl(B.C).

T(locA(c,b))(c,b) C del (7' (loca (b)),
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As B can be chosen to be independent of v over b, we have shown that stp(v/b) is
C-internal, as desired. So (*) holds for (cb. b).

Now, by Lemma 3.5(iv), ¢ L, e. Therefore putting the previous two cases
together using Lemma 3.3, we get that (x) holds for (cbe. b). But acl(che) = acl(ae)
by (i) of Lemma 3.5, so Lemma 3.2 implies that (x) holds of (ae.b). Finally, by
Lemma 3.2 again, (x) is then true of (. b). as desired. B

84. A Counterexample. Recall from the Introduction that C-algebraic means
being in generically finite-to-finite correspondence with the constant points of an
algebraic variety, or equivalently that the generic type is almost C-internal. We have
shown that if X is a finite dimensional A-variety then the restriction of the A-jet
bundle of X to a C-algebraic subvariety passing through a generic point is again
C-algebraic. One might expect something more: Is the restriction of the A-jet bundle
of X to any C-algebraic subvariety again C-algebraic? Indeed, our experience with
the model theory of compact complex manifolds suggests that the answer should
be “yes”: It follows from GAGA that if X is a compact complex space, 7X — X
is its tangent bundle, and Z C X is a Moishezon? subvariety, then the restriction
(TX)|z is again Moishezon. A similar statement holds true of higher order complex-
analytic jet spaces also.> Somewhat surprisingly. therefore. this strengthening of
Corollary 1.3 does not hold in differential-algebraic geometry:

ProposiTiOoN4.1.  There exists an irreducible finite dimensional A-variety X defined
over C such that the restriction of TaX to X (C) is not C-algebraic.

Here, and throughout this section, 7 denotes Kolchin’s A-tangent bundle
from [4], which agrees with the first A-jet bundle as defined in Section 2 above.
Our example requires only a single derivation, and so to prove Proposition 4.1
we work in a sufficiently saturated model (K., J) = DCF, with constant field C.
We will use the following well known fact.

Fact 4.2. Let G < Gy, be the subgroup defined by o (%) = 0. Then G is not

C-algebraic.

PROOEF. Let us denote by £(x) := 2 the logarithmic derivative operator, which is
a group homomorphism from Gy, to G,. Restricting £ to G we have the short exact
sequence of definable group homomorphisms

4

1 Gn(C) G Ga(C) 0.

Now, a finite dimensional definable group is C-algebraic if and only if it is definably
group isomorphic to the C-points of an algebraic group over C — see Corollary 3.10
of [13]. We may therefore assume, toward a contradiction, that G is definably
isomorphic to H (C) for some algebraic group H over C. By the fact that C is stably
embedded, the above exact sequence shows that H is an extension of G, by Gy,.

2Being Moishezon means being bimeromorphic to a projective algebraic variety. This may seem too
strong to be an analogue of C-algebraicity. but it turns out that a compact complex space admitting a
generically finite-to-finite correspondence with a projective algebraic variety is Moishezon.

3There are various closely related notions of “jet space” in complex geometry, see [8] for an exposition
of them.
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But by the structure of commutative linear algebraic groups, all such extensions
are split, and so H = Gy, x G,. It follows that there is in G, and hence in Gy,
a subgroup definably isomorphic to G,(C). But this is impossible as any infinite
d-definable subgroup of G,, must contain G,,(C) by a theorem of Cassidy [2]. and
hence cannot be torsion-free. -

Now we turn to the construction of the d-variety X whose existence is asserted in
Proposition 4.1. Let X C K? be the §-variety defined by the equations
ox = x* — y?
oy =x(x —y)
and let Z := X(C) = {(c.c¢) : ¢ € C}. Note that X is irreducible and finite
dimensional as it is the set of sharp points of the algebraic D-variety (A2, s) where
s(x.y) = (x.y. x> —y% x> —xy). We want to show that (75 X)| is not C-algebraic.

An easy computation using the formulae given in Chapter VIII Section 2 of
Kolchin [4] for the differential tangent bundle shows that 75X C K* is given by

ox = x> — y?

oy =x(x =)
ou = 2(xu — yv)

ov = 2xu — yu — xv.

Restricting to Z we have that (75X)|, C K*is defined by

xX=y
ox =0
ou=2x(u —v)

ov =x(u—v).

Cramv 4.3, There exists a partial 0-definable function on (Ts5 X )|z whose image is
the group G from Fact 4.2.

ProOF OF CLAM 4.3. The equations for (75X |~ given above imply that for u # v,
o(u — .
) (%) = 0. Hence, if we set W := (T3X)|z N {(x,y.u,v) : u # v}, and
—v
[+ K* = K to be the 0-definable function (x. y,u,v) — u — v, then (W) C G.
On the other hand, to see that /" maps onto G, suppose g € G and let a € C
be such that %g = a. Then it is easy to check that (a.a,2g.g) € (T5X)|z and

fla.a.2g.8) =g. .
Since G is not C-algebraic by Fact 4.2, the Claim implies that (75X )| is not
C-algebraic either. This completes the proof of Proposition 4.1. -

REMARK 4.4. It may be worth pointing out that Proposition 4.1 gives also an
example of another phenomenon that may be of independent interest: There exists
a finite dimensional C-linear space U — V', with V' C C", but such that U is not
C-algebraic. Here, given a A-variety V', by a “C-linear space over V'’ we mean
the relative notion of a C-vector space; that is, a surjective A-morphism U — V,
equipped with A-morphisms +, 4, z where



JET SPACES PRESERVE INTERNALITY TO THE CONSTANTS 1033

e the following diagram commutes

Uxy U hi

S

%

U

e the following diagram commutes

CxU ‘

NS

V

U

e z:V —w Uisasectionto U — V;

such that for all @ € V. the fibre U, is a C-vector space with addition +,. zero z(a),
and scalar multiplication 4,.

PrOOF. Let X be as in Proposition 4.1, set V' := X (C) and U := (TaX)|x(c).
Then U is a non-C-algebraic finite dimensional C-linear space over V' C C". -
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