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Introductory notes on the model theory of
valued fields

Zoé Chatzidakisa (CNRS - Université Paris 7)

These notes will give some very basic definitions and results from model
theory. They contain many examples, and in particular discuss exten-
sively the various languages used to study valued fields. They are in-
tended as giving the necessary background to read the papers by Cluck-
ers, Delon, Halupczok, Kowalski, Loeser and Macintyre in this volume.
We also mention a few recent results or directions of research in the
model theory of valued fields, but omit completely those themes which
will be discussed elsewhere in this volume. So for instance, we do not
even mention motivic integration.

People interested in learning more model theory should consult standard
model theory books. For instance: D. Marker, Model Theory: an Intro-
duction, Graduate Texts in Mathematics 217, Springer-Verlag New York,
2002; C.C. Chang, H.J. Keisler, Model Theory, North-Holland Publish-
ing Company, Amsterdam 1973; W. Hodges, A shorter model theory,
Cambridge University Press, 1997.
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1 Languages, structures, satisfaction

Languages and structures

1.1 Languages. A language is a collection L, finite or infinite, of
symbols. These symbols are of three kinds:

– function symbols,
– relation symbols,
– constant symbols.

To each function symbol f is associated a number n(f) ∈ N>0, and
to each relation symbol R a number n(R) ∈ N>0. The numbers n(f)
and n(R) are called the arities of the function f , resp., the relation
R. In addition, the language will also contain variable symbols (usually
denoted by x, y, . . .), the equality relation =, as well as parentheses and
logical symbols ∧, ∨, ¬, → (and, or, negation, implies), quantifiers ∃, ∀
(there exists, for all).

1.2 L-structures. We fix a language L = {fi, Rj , ck | i ∈ I, j ∈ J, k ∈
K}, where the fi’s are function symbols, the Rj ’s are relation symbols,
and the ck’s are constant symbols.
An L-structure M is then given by

– A set M , called the universe of M,
– For each function symbol f ∈ L, a function fM : Mn(f) → M ,

called the interpretation of f in M,
– For each relation symbol R ∈M, a subset RM of Mn(R), called the

interpretation of R in M,
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– For each constant symbol c ∈ L, an element cM ∈ M , called the
interpretation of c in M.

The structure M is then denoted by

M = (M,fMi , RMj , cMk | i ∈ I, j ∈ J, k ∈ K).

In fact, the superscript M often disappears, and the structure and its
universe are denoted by the same letter. This is when no confusion is
possible, for instance when there is only one type of structure on M.

1.3 Substructures. Let M be an L-structure. An L-substructure of
M , or simply a substructure of M if no confusion is likely, is an L-
structure N , with universe contained in the universe of M , and such
that the interpretations of the symbols of L in N are restrictions of the
interpretation of these symbols in M , i.e.:

– If f is a function symbol of L, then the interpretation of f in N is
the restriction of fM to Nn(f),

– If R is a relation symbol of L, then RN = RM ∩Nn(R),
– If c is a constant symbol of L, then cM = cN .

Hence a subset of M is the universe of a substructure of M if and only
if it contains all the (elements interpreting the) constants of L, and is
closed under the (interpretation in M of the) functions of L. Note that
if the language has no constant symbol, then the empty set is the
universe of a substructure of M .

1.4 Morphisms, embeddings, isomorphisms, automorphisms.
Let M and N be two L-structures. A map s : M → N is an (L)-
morphism if for all relation symbols R ∈ L, function symbols f ∈ L,
constant symbols c ∈ L, and tuples ā, b̄ in M , we have:

if ā ∈ R, then s(ā) ∈ R; s(f(b̄)) = f(s(b̄)); s(c) = c.

An embedding is an injective morphism s : M → N , which satisfies in
addition for all relation R ∈ L and tuple ā in M , that

ā ∈ R ⇐⇒ s(ā) ∈ R.

An isomorphism between M and N is a bijective morphism, whose in-
verse is also a morphism. Finally, an automorphism of M is an isomor-
phism M →M .

1.5 Reducts and expansions Let L ⊆ L′ be languages, and M an
L′-structure. The reduct of M to L is the L-structure (denoted by M |L
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with universe the same as M , in which one forgets the interpretation of
symbols of L′ \ L. For instance, the ring of real numbers (R,+, ·, 0, 1) is
a reduct of the ordered ring of real numbers (R,+,−, ·, 0, 1, <), which is a
reduct of the exponential ordered ring of the real numbers (R,+,−, ·, 0, 1, <
, exp). Conversely, M is an expansion of the L-structure M |L to the lan-
guage L′.

Thus taking a reduct of a structure is forgetting some of the relations,
constants or function symbols, while taking an expansion of a structure
means adding new relations, constants or function symbols.

1.6 Examples of languages, structures, and substructures.
The concrete structures considered in model theory all come from stan-
dard algebraic examples, and so the examples given below will be very
familiar to you.

Example 1 - The language of groups (additive notation). The
language of groups, LG, is the language {+,−, 0}, where + is a 2-ary
function symbol, − is a unary function symbol, and 0 is a constant sym-
bol.

Any group G has a natural LG-structure, obtained by interpreting +
as the group multiplication, − as the group inverse, and 0 as the unit
element of the group.

A substructure of the group G is then a subset containing 0, closed un-
der multiplication and inverse: it is simply a subgroup of G. The notions
of homomorphisms, embeddings, etc. between groups, have the usual
meaning.

This is a good place to remark that the notion of substructure is sensitive
to the language. While the inverse function and the identity element of
the group G are retrievable (definable) from the group multiplication of
G, the notion of “substructure” heavily depends on them. For instance,
a {+, 0}-substructure of G is simply a submonoid of G containing 0,
while a {+}-substructure of G can be empty.

If the group is not abelian, then one usually uses the multiplicative
notation, i.e. one replaces + by ·, − by −1 and 0 by 1. Here are some
examples of LG-structures:

(1) (Z,+,−, 0), the natural structure on the additive group of the inte-
gers,
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(2) (R,+,−, 0), the natural structure on the additive group of the reals,
(3) (multiplicative notation)

(R>0, ·,−1, 1) the multiplicative group of the positive reals.
(4) (multiplicative notation), K a field, n > 0:

(GLn(K), ·,−1, 1), the multiplicative group of invertible n×n ma-
trices with coefficients in K.

(5) An LG-structure is not necessarily a group. E.g., define + on Z by
a +Z b = 1, −Za = 0 for all a, b ∈ Z, and 0Z = 2. The resulting
structure (Z,+Z,−Z, 0Z) is not a classical structure.

Example 2 - The language of rings. The language of rings, LR, is
the language {+,−, ·, 0, 1}, where + and · are binary functions, − is a
unary function, 0 and 1 are constants.

A (unitary) ring S has a natural LR-structure, obtained by interpreting
+,−, · as the usual ring operations of addition, subtraction and multi-
plication, 0 as the identity element of +, and 1 as the unit element of
S.

A substructure of the LR-structure S is then simply a subring of S. Note
that it will in particular contain the subring of S generated by 1, i.e.,
a copy of Z or of Z/nZ for some integer n. Again homomorphisms and
embeddings between rings have the usual meaning.

When one deals with fields, it is sometimes convenient to add a function
symbol for the multiplicative inverse (denoted −1). By convention 0−1 =
0. Most of the time however, one studies fields in the language of rings.

Example 3 - The language of ordered groups, of ordered rings.

One simply adds to LG, resp. LR, a binary relation symbol, ≤ (or some-
times <). I will denote these languages by Log and Lor respectively. I
will also use the abbreviation x < y for x ≤ y ∧ x 6= y.

Example 4 - Valued fields. Here there are several possibilities.

Recall first that a valued field is a field K, with a map v : K× → Γ∪{∞},
where Γ is an ordered abelian group, and satisfying the following axioms:

• ∀x v(x) =∞ ⇐⇒ x = 0,
• ∀x, y v(xy) = v(x) + v(y),
• ∀x, y v(x+ y) ≥ min{v(x), v(y)}.

By convention, ∞ is greater than all elements of Γ. Note that we do not
assume that Γ is archimedean, e.g. Z ⊕ Q with the anti-lexicographical
ordering is possible. (Recall that the anti-lexicographical ordering on a
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product A × B of ordered groups is defined by: (a1, b1) ≤ (a2, b2) ⇐⇒
(b1 < b2) ∨ [(b1 = b2) ∧ (a1 ≤ a2)]).

1. Maybe the most natural language (used in the definition) is the two-
sorted language with a sort for the valued field and one for the value
group; each sort has its own language (the language of rings for the
field sort, and the language of ordered abelian groups with an additional
constant symbol ∞ for the group sort); there is a function v from the
field sort to the group sort. Thus our structure is(

(K,+,−, ·, 0, 1), (Γ ∪ {∞},+,−, 0,∞,≤), v
)
.

Formulas are built as in classical first-order logic, except that variables
come with their sort. Thus for instance, in the three defining axioms, all
variables are of the field sort. To avoid ambiguity, one sometimes write
∀x ∈ K, or ∀x ∈ Γ. Or one uses a different set of letters. For instance,
the axiom stating that the map v is surjective will involve both sorts,
and can be written

∀γ (∈ Γ)∃x (∈ K) v(x) = γ.

2. Another natural language is the language Ldiv obtained by adding to
the language of rings a binary relation symbol | , interpreted by

x | y ⇐⇒ v(x) ≤ v(y).

Note that the valuation ring OK is quantifier-free definable, by the for-
mula 1 |x, and that the group Γ is isomorphic to K×/O×K , the ordering
been given by the image of | . Hence the ordered abelian group Γ is
interpretable in (K,+,−.·, 0, 1, | ). See 1.17 for a formal definition.

3. A third possibility is to look at the fieldK in the language of rings aug-
mented by a (unary) predicate for its valuation ring OK . The divisibility
relation is then definable (x | y ⇐⇒ x 6= 0 ∧ (∀z zx = 1→ yz ∈ OK)).

The following language has been used to study valued rings or fields
with additional analytic structure.

4. The ring OK , in the language of rings augmented by a binary function
Div, interpreted by:

Div(x, y) =

{
xy−1 if y | x,
0 otherwise.

In all four languages, the residue field kK , as well as the residue map
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OK → kK , are interpretable: kK is the quotient of OK by the maximal
ideal MK of OK . And MK is of course definable by the formula ex-
pressing that the element x is not invertible in OK .

5. In the same spirit as the first language, here are three more examples
of natural many-sorted languages in which one can study valued fields.
The first one has three sorts: the valued field, the value group and the
residue field, in their natural language, together with the valuation map
v, and the residue map res, which coincides with the usual residue map
on the valuation ring, and 0 outside. Our valued field K will then be the
structure(

(K,+,−, ·, 0, 1), (Γ ∪ {∞},+,−, 0,∞, <), (kK ,+,−, ·, 0, 1), v, res
)
.

We will see later a variant of this language given by Denef-Pas. Another
natural language is the following: given a valued field K, let RV(K) =
K×/1 +MK . We then have an exact sequence

0→ k×K → RV(K) valrv→ Γ→ 0,

where valrv is the natural map induced by the valuation map. To K one
associates the following two-sorted structure:(

(K,+,−, ·, 0, 1), (RV(K) ∪ {0}, ·, /, 1,≤, k×,+, 0), v, rv,
)
,

where the map rv : K → RV(K) is the natural quotient map on K× and
sends 0 to 0; ·, / and 1 give the group structure of RV(K) (multiplication
or division by 0 can be defined to be 0); k× is a unary predicate (for
a subgroup of RV(K)), and + is a binary operation on k = k× ∪ {0};
finally ≤ is interpreted by x ≤ y ⇐⇒ valrv(x) ≤ valrv(y). You then
see that while the residue field k is definable in RV(K), the value group
Γ is only interpretable in it.
Finally, in mixed characteristic, it is sometimes convenient or necessary
to work with

RVn(K) = K×/1 + nMK ,

together with the natural maps rvn : K → RVn(K)∪{0}. The language
has now sorts indexed by the integers, and is similar to the one above.

1.7 Multi-sorted structures. Multi-sorted structures appeared nat-
urally in example 4. The difference with the classical (“1-sorted”) struc-
tures is that a structure will have several sorts or universes, say indexed
by a set I which may be infinite. As already mentioned, each sort comes
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with its own language, and there may be relations or functions between
different sorts or cartesian products of sorts. Some authors require that
the universes of distinct sorts be disjoint, but it is not necessary.

Formulas

This subsection and the next are fairly boring, and I would recommend
that the reader at first only reads paragraphs 1.10 and 1.13 which give
examples. Formulas are built using some basic logical symbols (given
below) and in a fashion which ensures unique readibility. Satisfaction is
defined in the only possible manner. We give here the formal definitions,
and the idea is that the reader can come back to them when he needs a
precise definition.

1.8 Terms. We can start using the symbols of L to express properties
of a given L-structure. In addition to the symbols of L, we will consider
a set of symbols (which we suppose disjoint from L), called the set of
logical symbols. It consists of

– logical connectives ∧, ∨, ¬, and also (for convenience) → and ↔,
– parentheses ( and ),
– a (binary relation) symbol = for equality,
– infinitely many variable symbols, usually denoted x, y, xi, etc . . .
– the quantifiers ∀ (for all) and ∃ (there exists).

Fix a language L. An L-formula will then be a string of symbols from L
and logical symbols, obeying certain rules. We start by defining L-terms
(or simply, terms). Roughly speaking, terms are expressions obtained
from constants and variables by applying functions. In any L-structure
M , a term t will then define uniquely a function from a certain cartesian
power of M to M . Terms are defined by induction, as follows:

– a variable x, or a constant c, are terms.
– if t1, . . . , tn are terms, and f is an n-ary function, then f(t1, . . . , tn)

is a term.
Given a term t(x1, . . . , xm), the notation indicating that the variables

occurring in t are among x1, . . . , xm, and an L-structure M , we get a
function Ft : Mm → M . Again this function is defined by induction on
the complexity of the term:

– if c is a constant symbol, then Fc : M0 →M is the function ∅ 7→ cM ,
– if x is a variable, then Fx : M →M is the identity,
– if t1, . . . , tn are terms in the variables x1, . . . , xm and f is an n-ary
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function symbol, then Ff(t1,...,tn) : (x1, . . . , xm) 7→ f(Ft1(x̄), . . . , Ftn(x̄))
(x̄ = (x1, . . . , xm)).

1.9 Formulas. We are now ready to define formulas. Again they are
defined by induction.

An atomic formula is a formula of the form t1(x̄) = t2(x̄) orR(t1(x̄), . . . , tn(x̄)),
where x̄ = (x1, . . . , xm) is a tuple of variables, t1, . . . , tn are terms (of
the language L, in the variables x̄), and R is an n-ary relation symbol
of L.

The set of quantifier-free formulas is the set of Boolean combinations of
atomic formulas, i.e., is the closure of the set of atomic formulas under
the operations of ∧ (and), ∨ (or) and ¬ (negation, or not). So, if ϕ1(x̄),
ϕ2(x̄) are quantifier-free formulas, so are (ϕ1(x̄)∧ϕ2(x̄)), (ϕ1(x̄)∨ϕ2(x̄)),
and (¬ϕ1(x̄)).

One often uses (ϕ1 → ϕ2) as an abbreviation for (¬ϕ1)∨ϕ2, and (ϕ1 ↔
ϕ2) as an abbreviation for (ϕ1 ∧ ϕ2) ∨ [(¬ϕ1) ∧ (¬ϕ2)].

A formula ψ is then a string of symbols of the form

Q1x1Q2x2 . . . Qmxm ϕ(x1, . . . , xn) (1)

where ϕ(x̄) is a quantifier-free formula, with variables among x̄ = (x1, . . . , xn),
and Q1, . . . , Qm are quantifiers, i.e., belong to {∀,∃}. We may assume
m ≤ n.

Important: the variables x1, . . . , xn are supposed distinct - ∀x1∃x1 . . .

is not allowed. If m ≤ n, the variables xm+1, . . . , xn are called the free
variables of the formula ψ. One usually writes ψ(xm+1, . . . , xn) to indi-
cate that the free variables of ψ are among (xm+1, . . . , xn). The variables
x1, . . . , xm are called the bound variables of ψ. If n = m, then ψ has no
free variables and is called a sentence.

If all quantifiers Q1, . . . , Qm are ∃, then ψ is called an existential for-
mula; if they are all ∀, then ψ is called a universal formula. One can
define a hierarchy of complexity of formulas, by counting the number of
alternations of quantifiers in the string Q1, . . . , Qn. Let us simply say
that a Π2-formula, also called a ∀∃-formula, is one in which Q1 . . . Qn
is a block of ∀ followed by a block of ∃, that a Σ2-formula, also called a
∃∀-formula, is one in which Q1 . . . Qn is a block of ∃ followed by a block
of ∀. In these definitions, either block is allowed to be empty, so that an
existential formula is both a Π2 and a Σ2-formula. Let us also mention
that a positive formula is one of the form Q1x1 . . . Qmxmϕ(x1, . . . , xn),
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where ϕ(x̄) is a finite disjunction of finite conjunctions of atomic formu-
las.

1.10 Warning. This is not the usual definition of a formula. A for-
mula as in (1) is said to be in prenex form. The set of formulas in
prenex form is not closed under Boolean operations. One has however
a notion of “logical equivalence”, under which for instance the formulas
Q1x1 . . . Qmxm ϕ(x1, . . . , xm, xm+1, . . . , xn) and Q1y1 . . . Qmym
ϕ(y1, . . . , ym, xm+1, . . . , xn) are logically equivalent. It is then quite easy
to see that a Boolean combination of formulas in prenex form is logically
equivalent to a formula in prenex form. E.g,

(Q1x1 . . . Qmxm ϕ1(x1, . . . , xn)) ∧ (Q′1x1 . . . Q
′
mxm ϕ2(x1, . . . , xn))

is logically equivalent to

Q1x1Q
′
1y1 . . . Q

′
mym(ϕ1(x1, . . . , xn) ∧ ϕ2(y1, . . . , ym, xm+1, . . . , xn)).

If one wants to be economical about the number of quantifiers, one
notes that in general ∀xϕ1(x, . . .) ∧ ∀xϕ2(x, . . .) is logically equivalent
to ∀x (ϕ1(x, . . .)∧ϕ2(x, . . .)), and ∃xϕ1(x, . . .)∨∃xϕ2(x, . . .) is logically
equivalent to ∃x (ϕ1(x, . . .)∨ϕ2(x, . . .)). For negations, one uses the logi-
cal equivalence of ¬(Q1x1 . . . Qmxm ϕ(x1, . . . , xn)) with Q′1x1 . . . Q

′
mxm

¬(ϕ(x1, . . . , xn)), where Q′i = ∃ if Qi = ∀, Q′i = ∀ if Qi = ∃. Thus the
negation of a Π2-formula is a Σ2-formula, etc.

Logical equivalence can also be used to rewrite Boolean combinations,
and one can show that any quantifier-free formula ϕ(x̄) is logically equiv-
alent to one of the form

∨
i

∧
j ϕi,j(x̄), where the ϕi,j are atomic formulas

or negations of atomic formulas.

1.11 Adding constant symbols, diagrams. Let L be a language,
M an L-structure, and A a subset of M . The language L(A) is obtained
by adding to L a new constant symbol symbol a for each element a in A.
M has then a natural (expansion to an) L(A)-structure: interpret each
a by the corresponding a. The basic diagram, or atomic diagram of A in
M , Diag(A) (or DiagM (A)), is the set of quantifier-free L(A)-sentences
satisfied by M .

Example. Let L = LG, and M = Z with the usual group structure,
and A = {n ∈ Z | n ≥ −1}. Then Diag(A) will contain L(A)-sentences
of the following form:

1 + 1 = 2, −1 = −1, 1 + 4 6= 3,
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and so on. Thus, an LG(A)-structure which is a group and a model of
Diag(A) will be a group in which we have named the elements of a copy
of {−1} ∪ N.

One can also look at more complicated formulas: the elementary diagram
of A in M , DiagMel (A)1, is the set of all L(A)-sentences which are true in
M . Thus for instance with A and M as above, Diagel(A) will express the
fact that 1 is not divisible by 2 (∀x x+x 6= 1). So, the natural expansion
of the group Q to an LG(A)-structure is a model of Diag(A), but not of
Diagel(A).

In most (all?) situations, we omit the underline on the constant symbol,
i.e., denote the same way the constant and its interpretation.

1.12 Examples of formulas. The definitions given above are com-
pletely formal. When considering concrete examples, they get very much
simplified, to agree with current usage. The first thing to note is that
the formula ¬(x = y) is abbreviated by x 6= y.

Example 1. Log = {+,−, 0, <}. A term is built up from 0, +, −, and
some variables. E.g., +(0,−(+(x1,−(x1)))) is a term, in the variable x1.
If we work in an arbitrary Log-structure, i.e., not necessarily a group,
this expression cannot be simplified. If we work in a group, then we will
first of all switch to the usual notation of x + y instead of +(x, y), −x
instead of −(x) and x−y instead of x+(−y); then we allow ourselves to
use the associativity of the group law to get rid of extraneous parenthe-
ses. The term above then becomes 0 − (x1 − x1), which can be further
simplified to 0 (we are now using the fact that in all groups, the sen-
tence ∀x x − x = 0 holds. I.e., this reduction is only valid because we
are working modulo the theory of groups).

From now on, we will assume that our Log-structures are commuta-
tive groups. We add to the language some new symbols of constants,
c1, . . . , cn.

Here are some terms: x + x, x + x + x, . . . , nx, −nx (n ∈ N), c1 + c2,
2c3. General form of a term t(x1, . . . , xm):

m∑
i=1

nixi +
n∑
j=1

`jcj ,

where the ni, `j belong to Z. This notation can be a little dangerous,

1 When the theory T is complete, one often writes T (A) instead of DiagMel (A)
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as it suggests a uniformity in the coefficients. One should insists on the
fact that if n and m are distinct integers, then the terms nx and mx are
different. [So, in general, the set of torsion elements of a group is not
definable in the group G, since an element g is torsion if and only if for
some n in N, ng = 0. There are of course exceptions, e.g., if the order
of torsion elements is bounded.]

Quantifier-free-formulas: apply relations and Boolean connectives to terms:
x̄ = (x1, . . . , xm), t1(x̄), . . . , t4(x̄) terms:

(
t1(x̄) = t2(x̄) ∧ t3(x̄) < t4(x̄)

)
∨
(
t1(x̄) < t2(x̄)

)
.

Example 2. LR = {+,−, ·, 0, 1}. Again, terms as defined formally, are
extremely ugly. But, in case all LR-structures considered are commuta-
tive rings, they can be rewritten in a more natural fashion. From now
on, all LR-structures are commutative rings.

If n ∈ N>1 the term 1 + 1 + · · ·+ 1 (n times) will simply be denoted by
n. Similarly x+x+ · · ·+x (n times) is denoted by nx, and x · . . . ·x (n
times) by xn. An arbitrary term will then be of the form f(x1, . . . , xn),
where f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn].

Quantifier-free formulas are finite disjunctions of finite conjunctions of
equations and inequations. Thus, in the ring C, they will define the
usual constructible sets which are defined over Z. If we want to get all
constructible sets, we should work in the language LR(C), obtained by
adding constant symbols for the elements of C.

If one adds ≤ to the language, and assumes that our structures are
ordered rings, then quantifier-free formulas can be rewritten as finite
conjunctions of finite disjunctions of formulas of the form

f(x̄) = 0, g(x̄) > 0, (2)

where f , g are polynomials over Z. Here, x < y stands for x ≤ y∧x 6= y,
and one uses the equivalences x 6= 0 ⇐⇒ x < 0 ∨ x > 0, x > 0 ⇐⇒
(−x) < 0. If M is an ordered ring, then Lor(M)-quantifier-free formulas
will be as above, except that f and g are polynomials over M . In case
M is the ordered field R, one then gets the usual semi-algebraic sets.

Satisfaction

1.13 Satisfaction. Let M be an L-structure, ϕ(x̄) an L-formula,
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where x̄ = (x1, . . . , xn) is a tuple of variables occurring freely in ϕ,
and ā = (a1, . . . , an) an n-tuple of elements of M . We wish to define the
notion M satisfies ϕ(ā), (or ā satisfies ϕ in M , or ϕ(ā) holds in M , is
true in M), denoted by

M |= ϕ(ā).

(The negation of M |= ϕ(ā) is denoted by M 6|= ϕ(ā), or . . . by M |=
¬ϕ(ā).) Satisfaction is what it should be if you read the formula aloud.
Here is a formal definition, by induction on the complexity of the for-
mulas. It is fairly boring, and if you wish you can skip it. Let ā, b̄ be
tuples in M ,

– If ϕ(x̄) is the formula t1(x̄) = t2(x̄), where t1, t2 are L-terms in the
variable x̄, then

M |= t1(ā) = t2(ā) if and only if Ft1(ā) = Ft2(ā).

– If ϕ(x̄) is the formula R(t1(x̄), . . . , tm(x̄)), where t1, . . . , tm are terms
and R is an m-ary relation, then

M |= R(t1(ā), . . . , tm(ā)) if and only if (Ft1(ā), . . . , Ftm(ā)) ∈ RM .

– If ϕ(x̄) = ϕ1(x̄) ∨ ϕ2(x̄), then

M |= ϕ(ā) if and only if M |= ϕ1(ā) or M |= ϕ2(ā).

– If ϕ(x̄) = ϕ1(x̄) ∧ ϕ2(x̄), then

M |= ϕ(ā) if and only if M |= ϕ1(ā) and M |= ϕ2(ā).

– If ϕ(x̄) = ¬ϕ1(x̄), then

M |= ϕ(ā) if and only if M 6|= ϕ1(ā).

– If ϕ(x̄) = ∃y ψ(x̄, y), where the free variables of ψ are among x̄, y,
then

M |= ϕ(ā) if and only if there is c ∈M such that M |= ψ(ā, c).

– If ϕ(x̄) = ∀y ψ(x̄, y), then

M |= ϕ(ā) if and only if M |= ¬(∃y ¬ψ(ā, y))

if and only if for all c in M, M |= ϕ(ā, c).

Note that of course, for all ā in M , one has

M |= ∀y ψ(ā, y) if and only if M |= ¬(∃y ¬ψ(ā, y)).
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1.14 Parameters, definable sets. Let M be an L-structure, ϕ(x̄, ȳ)
a formula (x̄ an n-tuple of variables, ȳ an m-tuple of variables), and
ā ∈Mn. Then the set {b̄ ∈Mm |M |= ϕ(ā, b̄)} is called a definable set.
We also say that it is defined over ā by the formula ϕ(ā, ȳ), or that it is
ā-definable. The tuple ā is a parameter of the formula ϕ(ā, ȳ). When ā

varies over Mn, the sets {b̄ ∈Mm |M |= ϕ(ā, b̄)}, which are sometimes
denoted by ϕ(ā,Mm) or by ϕ(ā,M), form a family of uniformly definable
sets.

Let M be an L-structure. The set of L(M)-definable subsets of Mn is
clearly closed under unions, intersections and complements (correspond-
ing to the use of the logical connectives ∨, ∧ and ¬). If S ⊆ Mn+1 is
defined by the formula ϕ(x̄, ā), x̄ = (x1, . . . , xn+1), and π : Mn+1 →M

is the projection on the first n coordinates, then π(S) is defined by
the formula ∃xn+1 ϕ(x̄, ā), and the complement of π(S) by the formula
∀xn+1 ¬ϕ(x̄).

Thus an alternate definition of L-subsets of M is as follows: it is the
smallest collection S = (Sn)n∈N, where each Sn is a set of subsets of
Mn, which satisfies the following conditions:

• S1 contains all singletons of constants; if f ∈ L is an n-ary function
symbol, then the graph of f is in Sn+1; if R is an n-ary function
symbol, then the interpretation of R is in Sn; S2 contains the diagonal.
• Each Sn is closed under Boolean operations ∪, ∩, and complement.
• S is closed under (finite) cartesian products.
• If π : Mn+1 →Mn is a projection on an n-subset of the coordinates,

and S ∈ Sn+1, then π(S) ∈ Sn.

1.15 An example. Consider the Log-formula

ϕ(x, y) := x < y ∧ (∀z x < z → z = y ∨ y < z),

where as usual x < y is an abbreviation for x ≤ y∧x 6= y. In an ordered
group G, this formula expresses that y is an immediate successor of x.
Thus, in (Z,+,−, 0,≤), the formula will define the graph of the successor
function. But in (Q,+,−, 0,≤) it will define the empty set, as Q is a
dense ordering.

Definability, interpretability

1.16 Definability of a structure in another one. Let M be an
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L-structure, and N an L′-structure. We say that N is definable in M if
there are

– an ∅-definable set S ⊆Mn for some n,
– for each m-ary relation R of the language L′, an ∅-definable subset

R∗ of Sm,
– for each m-ary function f of L′, an ∅-definable subset Γf of Sm+1

such that Γf is the graph of a function f∗ : Sm → S,
– for each constant c, an ∅-definable tuple c∗ ∈ S,
– and a bijection F : N → S, which defines an L′-isomorphism be-

tween the structure N = (N,R . . . , f, . . . , c, . . .) and the structure

N∗ = (S,R∗, . . . , f∗, . . . , c∗ . . .).

1.17 Interpretability of a structure in another one. Let M be
an L-structure, N an L′-structure. We say that N is interpretable in N

if there are
– an ∅-definable set S of some M `,
– an ∅-definable equivalence relation E on S,
– for each m-ary relation R of the language L′, an ∅-definable subset

R′ of Sm, which projects to a subset R∗ of (S/E)m,
– for each m-ary function f of L′, an ∅-definable subset Γf of Sm+1

such that Γf induces the graph of a function f∗ : (S/E)m → S,
– for each constant c, an ∅-definable E-equivalence class c∗ ∈ S/E,
– and a bijection F : N → S/E, which defines an L′-isomorphism

between the structure N = (N,R . . . , f, . . . , c, . . .) and the structure

N∗ = (S/E,R∗, . . . , f∗, . . . , c∗ . . .).

1.18 Adding parameters. In both definitions, if instead of working
in the L-structure M , one works in the L(A)-structure M for some
A ⊂M , one will say that N is A-definable, resp. A-interpretable, in M .

1.19 Bi-interpretability of two structures. LetM be an L-structure,
N an L′-structure. We say that M and N are bi-interpretable if

(i) N is interpretable in M , and M is interpretable in N ,
(ii) the bijections F and F ′ which give the interpretations of N in M

and of M in N respectively, can be chosen so that the maps F ◦ F ′
and F ′ ◦ F are ∅-definable in M and N respectively.

1.20 Example. Let R be an integral domain, in the usual ring lan-
guage, and let Q be its field of fractions. Then the ring Q is interpretable
in R: indeed, we know that Q is the set of quotients a/b with a ∈ R,
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0 6= b ∈ R, so we can identify it with the set of elements of R × R∗

quotiented by the equivalence relation (a, b) ∼ (c, d) ⇐⇒ ad = bc. In
general, Q is not definable in R, because there is no way of selecting a
particular pair in each equivalence class. However, Q is definable in Z: Z
is a principal ideal domain, in which an ordering is definable, and with
only units −1 and 1.

2 Theories, and some important theorems

In this section we will introduce many definitions and important con-
cepts. We will also mention the very important Compactness theorem,
one of the crucial tools of model theory.

Theories and models

2.1 Theories, models of theories, etc.. Let L be a language. An
L-theory (or simply, a theory), is a set of sentences of the language L. A
model of a theory T is an L-structure M which satisfies all sentences of
T , denoted by M |= T . The class of all models of T is denoted Mod(T ).
If K is a class of L-structures, then Th(K) denotes the set of all sentences
true in all elements of K, and Th({M}) is denoted by Th(M).

A theory T is consistent iff it has a model. If ϕ is a sentence which
holds in all models of T , this is denoted by T |= ϕ. Two L-structures
M and N are elementarily equivalent, denoted M ≡ N , iff they satisfy
the same sentences, iff Th(M) = Th(N). A theory is complete iff given
a sentence ϕ, either T |= ϕ or T |= ¬ϕ. Equivalently, if any two models
of T are elementarily equivalent. (Observe that if M is an L-structure,
then necessarily Th(M) is complete).

Elementary equivalence is an equivalence relation between L-structures.
Two isomorphic L-structures are clearly elementarily equivalent, how-
ever the converse only holds for finite L-structures. A famous theorem
(of Keisler-Shelah) states that two structures are elementarily equivalent
if and only if they have isomorphic ultrapowers, see definition in Section
2.14.

2.2 Elementary substructures, extensions, embeddings, etc.
Let M ⊆ N be L-structures. We say that M is an elementary sub-
structure of N , or that N is an elementary extension of M , denoted by
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M ≺ N , iff for any formula ϕ(x̄) and tuple ā from M ,

M |= ϕ(ā) ⇐⇒ N |= ϕ(ā).

A map f : M → N is an elementary embedding iff it is an embedding,
and if f(M) ≺ N . In other words, if for any formula ϕ(x̄) and tuple ā
from M , M |= ϕ(ā) if and only N |= ϕ(f(ā)).

Using the language of diagrams introduced in 1.11,

M ≺ N ⇐⇒ N |= DiagMel (M).

Similarly, an elementary partial map from M to N is a map f defined
on some substructure A of M , with range included in N , and which
preserves the formulas in DiagMel (A), i.e., for any formula ϕ(x̄) and tuple
ā from A, M |= ϕ(ā) if and only N |= ϕ(f(ā)). A map f which only
preserves DiagM (A) is called a partial isomorphism.

2.3 Comments. (1) Note that one can have M ⊆ N and M ≡ N

without having M ≺ N . Consider the group Z and its subgroup 2Z:
they are isomorphic, but the inclusion 2Z ⊂ Z is not an elementary
map, since 2 is divisible by 2 in Z but not in 2Z.
(2) Similarly, not every partial isomorphism is elementary. Again, the
inclusion of 2Z into Z provides an example.

Some classical results

2.4 Tarski’s test. Let M be a substructure of N . Then M ≺ N if and
only if, for every formula ϕ(x̄, y) and tuple ā in M , if N |= ∃y ϕ(ā, y),
then there exists b ∈M such that N |= ϕ(ā, b).

Note that while the element b is in M , the satisfaction is taken in N .
This theorem is proved using induction on the complexity of formulas.

2.5 Soundness and completeness theorem. Given a set of sen-
tences, there is a notion of proof, i.e., which statements are deducible
from the given statements using some formal rules of deduction, such as
modus ponens (from A and A → B deduce B), and some substitution
rules (from a sentence of the form ϕ(c) where c is a constant, deduce
∃xϕ(x)). A proof can be thought of therefore as a finite sequence of
sentences, each being obtained from the previous ones by applying some
deduction rules. We use the notation

T ` ϕ
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to indicate that there is a proof of ϕ from T . This is not to be confused
with the notation

T |= ϕ

which means that ϕ is true in all models of T . The first result, the
soundness theorem, tells us that our notion of satisfaction is well-defined:
If a theory T has a model, then one cannot derive a contradiction from
T , i.e., one cannot prove from T the sentence ∀x(x 6= x).

In other words

T ` ϕ ⇒ T |= ϕ.

Gödel’s completeness theorem then states the converse:
If from a given theory T , one cannot derive the sentence ∀x(x 6= x),
then the theory T has a model.

Another way of stating this result is by saying that
the set of sentences deducible from a given theory T is exactly the set
of sentences true in all models of T , i.e., in the notation introduced
above, it coincides with Th(Mod(T )).

2.6 Decidability. A theory T is decidable, if there is an algorithm
allowing to decide whether a sentence ϕ holds in all models of T or not.
If one can enumerate a theory T and one knows (somehow) that T is
complete, then T is decidable: given a sentence ϕ, start enumerating the
proofs from T ; eventually you reach a proof of either ϕ or ¬ϕ.

2.7 Compactness theorem. Let T be a set of sentences in a language
L. If every finite subset of T has a model, then T has a model.

We will present later a proof of this theorem using ultraproducts. Note
that it is a consequence of the completeness theorem, since any proof
involves only finitely many elements of T . It also has for consequence
the first half of the next theorem.

2.8 Löwenheim-Skolem Theorems. Let L be a language, T a the-
ory, and let M be an infinite model of T .

(1) Let κ be an infinite cardinal, κ ≥ |M | + |L|. Then M has an ele-
mentary extension N with |N | = κ.

(2) Let X be a subset of M . Then M has an elementary substructure N
containing X, with |N | ≤ |X|+ |L|+ ℵ0.
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2.9 Comments. These results allow us to use large models with good
properties. For instance, assume that we have a set Σ(x1, . . . , xn) of for-
mulas in the variables (x1, . . . , xn), and that we know that every finite
fragment of Σ(x1, . . . , xn) is satisfiable in some model M of T , i.e., there
is a tuple ā of M which satisfies all formulas of that finite fragment.
Then there is a model N of T containing a tuple b̄ which satisfies si-
multaneously all formulas of Σ(x̄). This is connected to saturation, see
below for a definition.

Using other techniques, one can show that if ā and b̄ are tuples of an
L-structure M , which satisfy the same formulas in M , then M has an
elementary extension M∗, in which there is an automorphism which
sends ā to b̄.

2.10 Craig’s interpolation theorem. Let L1 and L2 be two lan-
guages. Let ϕ be a sentence of L1 and ψ a sentence of L2. If ϕ |= ψ,
then there is a sentence θ of L1 ∩ L2 such that ϕ |= θ and θ |= ψ.

A somewhat different interpolation theorem is given by Robinson:
Let L1 and L2 be two languages, and L0 = L1 ∩ L2. Assume that T1

and T2 are theories in L1 and L2 respectively, such that T0 = T1 ∩ T2 is
complete. Then T1 ∪ T2 is consistent.

Types, saturated models

Fix a complete theory T in a language L, a subset A of a model M
of T . A (partial) n-type over A (in the variables x̄ = (x1, . . . , xn)) is
a collection p(x̄) of L(A)-formulas which is finitely consistent in M . A
complete type over A is an n-type p(x̄) which is maximally consistent,
i.e., given an L(A)-formula ϕ(x̄), one of ϕ(x̄), ¬ϕ(x̄) belongs to p(x̄). The
set of complete n-types over A is denoted Sn(A). Here is an example:
let ā be an n-tuple in M . Then

tp(ā/M) := {ϕ(x̄) ∈ L(A) |M |= ϕ(ā)},

the type of ā over A, is a complete type.

Warning: depending on the context a type can mean either a partial
type, or a complete type. There is no set usage.

Given an n-type p(x̄) over A, a realisation of p in M is an n-tuple a
in M which satisfies all formulas of p(x̄). In any case, there will be an
elementary extension N of M in which p(x̄) will be realised.
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2.11 Topology on the space of types. Given A ⊂M and n > 0 as
above, one defines a topology on Sn(A), whose basic open sets are

〈ϕ(x̄)〉 = {p(x̄) ∈ Sn(A) | ϕ(x̄) ∈ p(x̄)}.

Then Sn(A) is compact, totally disconnected. A type p(x̄) ∈ Sn(A) is
isolated if and only if there is an L(A)-formula which implies all formulas
in p(x̄).

2.12 Saturated models. Let κ be an infinite cardinal, M an L-
structure. We say that M is κ-saturated if for every subset A of M
of cardinality < κ, every n-type over A is realised in M . We say that M
is saturated if it is |M |-saturated. Observe that an infinite L-structure
M can never be |M |+-saturated: consider the set of L(M)-formulas
{x 6= m | m ∈M}.

Expressed in terms of definable sets: let Sn be the set of L(A)-definable
subsets of Mn. Then the |A|+-saturation2 of M means that if (Di)i∈I ⊂
Sn is such that the intersection of any finite collection of Di’s is non-
empty3, then there is a tuple ā in the intersection of all Di’s.

Non-example. Consider the ordered group (R,+,−, 0 <). It is not ℵ0-
saturated: take A = {1}, and consider

Σ(x) = {x > n | n ∈ N}.

This set of formulas is finitely consistent: for any n, the finite fragment
{x > m | 0 ≤ m ≤ n} is satisfied in R by n + 1. However, no element
of R is greater than all elements of N. In fact, a (non-trivial) ordered
abelian group which is ℵ0-saturated cannot be archimedean. Note that
this argument only works because the elements of N can be obtained
as terms in Log(A); one can show that the ordered set (R, <) is ℵ0-
saturated (but not ℵ1-saturated, since N is countable and cofinal in R).

2.13 Important results concerning saturated models:

Let κ be an infinite cardinal, M an infinite L-structure. Then M has an
elementary extension M∗ which is κ-saturated.

In contrast, given an infinite cardinal κ and a theory T , there does not
always exist a saturated model of T of cardinality κ. Under GCH4, a
theory T with infinite models has uncountable saturated models of any
2 if A is finite, one considers instead ℵ0-saturation.
3 One then says that {Di | i ∈ I} has the finite intersection property.
4 The General Continuum Hypothesis, which says that given an infinite cardinal κ,
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cardinality.
A saturated model M of T has the following properties:
(i) (Universality) Any model of T of cardinality < |M | embeds elemen-
tarily into M .
(ii) (Homogeneity). If f : A→ B is an elementary partial map between
subsets A and B of M of cardinality < |M |, then f extends to an auto-
morphism of M .

2.14 Definable and algebraic closures. Let T be a complete L-
theory, A a subset of a model M of T . We say that an element a ∈
M is algebraic over A, noted a ∈ acl(A), if there is an L(A)-formula
ϕ(x) which defines a finite subset of M containing a. We say that a is
definable over A, noted a ∈ dcl(A), if there is such a formula ϕ(x) which
defines {a}. An algebraic, resp. definable, tuple is one whose elements are
algebraic, resp. definable. If ā ∈ acl(A), then tp(ā/A) is isolated. Clearly
one has

dcl(A) ⊆ acl(A), dcl(dcl(A)) = dcl(A), acl(acl(A)) = acl(A).

An alternate way of defining definable and algebraic closures is via au-
tomorphism groups: let M be a saturated model of cardinality > |A|,
and G = Aut(M/A). Then a ∈ dcl(A) if and only if the G-orbit of a has
only one element, and a ∈ acl(A) if and only if the G-orbit of a is finite.

Ultraproducts,  Los Theorem

In this section we introduce an important tool: ultraproducts. They are
at the centre of many applications, within and outside model theory.

2.15 Filters and ultrafilters. Let I be a set. A filter on I is a subset
F of P(I) (the set of subsets of I), satisfying the following properties:

(1) I ∈ F , ∅ /∈ F .
(2) If U ∈ F and V ⊇ U , then V ∈ F .
(3) If U, V ∈ F , then U ∩ V ∈ F .

An ultrafilter on I is a filter on I which is maximal for inclusion. Equiv-
alently, it is a filter F such that for any U ∈ P(I), either U ∈ F or
I \ U ∈ F .

a set I of cardinality κ, the successor cardinal of κ is the cardinality (2κ) of the
set of subsets of I. That is: κ+ = 2κ for all κ ≥ ℵ0.
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2.16 Remarks. (1) Note that condition (1) above forbids that both
U and I \ U belong to the same filter on I.

(2) Using Zorn’s lemma (and therefore the axiom of choice), every
filter on I is contained in an ultrafilter.

(3) If G ⊂ P(I) has the finite intersection property (i.e., the intersec-
tion of finitely many elements of G is never empty), then G is contained
in a filter. The filter generated by G is then the set of elements of P(I)
containing some finite intersection of elements of G.

2.17 Principal and non-principal ultrafilters, Fréchet filter. Let
I be a set. An ultrafilter F on I is principal if there is i ∈ I such that
{i} ∈ F (and then we will have: U ∈ F ⇐⇒ i ∈ U). An ultrafilter
is non-principal if it is not principal. Note that if I is finite, then every
ultrafilter on I is principal.

Let I be infinite. The Fréchet filter on I is the filter F0 consisting of all
cofinite subsets of I. An ultrafilter F on I is then non-principal if and
only if contains the Fréchet filter on I. Note that if S ⊆ I is infinite,
then F0∪{S} has the finite intersection property, so that it is contained
in an ultrafilter.

2.18 Cartesian products of L-structures. Fix a language L. Let
I be an index set, and (Mi), i ∈ I, a family of L-structures. We define
the L-structure M =

∏
i∈IMi as follows:

— The universe of M is simply the cartesian product of the Mi’s,
i.e., the set of sequences (ai)i∈I such that ai ∈ Mi for each i ∈ I. One
sometimes uses the functional notation a(i) instead of ai.

— If c is a constant symbol of L, then cM = (cMi)i∈I .
— If R is an n-ary relation symbol, then RM =

∏
i∈I R

Mi .
— If f is an n-ary function symbol and ((a1,i)i, . . . , (an,i)i) ∈ Mn,

then

fM ((a1,i)i, . . . , (an,i)i) = (fMi(a1,i, . . . , an,i))i∈I .

2.19 Reduced products of L-structures. Let I be a set, F a filter
on I, and (Mi), i ∈ I, a family of L-structures. The reduced product of
the Mi’s over F , denoted by

∏
i∈IMi/F , is the L-structure defined as

follows:
— The universe of

∏
i∈IMi/F is the quotient of

∏
i∈IMi by the

equivalence relation ≡F defined by

(ai)i ≡F (bi)i ⇐⇒ {i ∈ I | ai = bi} ∈ F .
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We denote by (ai)F the equivalence class of the element (ai)i for this
equivalence relation.

The structure on
∏
i∈IMi/F is then simply the “quotient structure”,

i.e.,

• The interpretation of c is (cMi)F , for c a constant symbol of L.
• If R is an n-ary relation symbol, and if a1, . . . , an ∈

∏
i∈IMi/F are

represented by (a1,i)i, . . . , (an,i)i ∈
∏
i∈IMi, then we set∏

i∈I
Mi/F |= R(a1, . . . , an) ⇐⇒ {i ∈ I | (a1,i, . . . , an,i) ∈ RMi} ∈ F .

• If f is an n-ary function symbol and if a1, . . . , an ∈
∏
i∈IMi/F are

represented by (a1,i)i, . . . , (an,i)i ∈
∏
i∈IMi, then we set

fM (a1, . . . , an) = (fMi(a1,i, . . . , an,i))F .

The properties of filters guarantee that the quotient structure is well-
defined. Note that the quotient map :

∏
i∈IMi →

∏
i∈IMi/F , (ai)i 7→

(ai)F , is a morphism of L-structures.

Definitions. If all structures Mi are equal to the same structure M ,
then we write M I/F instead of

∏
iMi/F , and the structure is called

a reduced power of M . If the filter F is an ultrafilter, then
∏
iMi/F is

called the ultraproduct of the Mi’s (with respect to F), and M I/F the
ultrapower of M (with respect to F).

2.20  Los Theorem. Let I be a set, F an ultrafilter on I, and (Mi), i ∈
I, a family of L-structures. Let ϕ(x1, . . . , xn) be an L-formula, and let
a1, . . . , an ∈

∏
i∈IMi/F be represented by (a1,i)i, . . . , (an,i)i ∈

∏
i∈IMi.

Then∏
i∈I

Mi/F |= ϕ(a1, . . . , an) ⇐⇒ {i ∈ I |Mi |= ϕ(a1,i, . . . , an,i)} ∈ F .

2.21 Corollary. Let I be a set, F an ultrafilter on I, and M an
L-structure. Then the natural map M → M I/F , a 7→ (a)F , is an ele-
mentary embedding. (Here (a)F is the equivalence class of the sequence
with all terms equal to a).

2.22 Remarks and comments. Let I be an infinite index set, and
F an ultrafilter on I.

(1) If F is principal, say {j} ∈ F , then
∏
i∈IMi/F 'Mj for any family

of L-structures Mi, i ∈ I.
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(2) Suppose that the Mi’s are fields, with maybe additional structure
(e.g., an ordering, new functions, etc.). Consider the ideal M of∏
iMi generated by all elements (ai)i such that {i ∈ I | ai = 0} ∈ F .

ThenM is a maximal ideal of
∏
iMi, and quotienting by the equiv-

alence relation ≡F is equivalent to quotienting by the maximal ideal
M. The strength of  Los theorem is to tell you that the elementary
properties of the Mi’s, including the ones depending on the addi-
tional structure, are preserved. E.g., that RI/F is a real closed field.

2.23 Keisler and Shelah’s isomorphism theorem. Let M and N
be two L-structures. Then M ≡ N if and only if there is an ultrafilter F
on a set I such that M I/F ' N I/F .

Note the following immediate consequence: if M ≡ N , then there is
M∗ in which both M and N embed elementarily.

2.24 Application 1: another proof of the compactness theo-
rem. Let T be a theory in a language L, and assume that every finite
subset s of T has a model Ms. Then T has a model.

Proof. If T is finite, there is nothing to prove, so we will assume that T
is infinite. Let I be the set of all finite subsets of T . For every ϕ ∈ T ,
let S(ϕ) = {s ∈ I | ϕ ∈ s}. Then the family G = {S(ϕ) | ϕ ∈ T} has the
finite intersection property, and therefore is contained in an ultrafilter
F . We claim that

∏
s∈IMs/F is a model of T : let ϕ ∈ T . Then, by

assumption, {s ∈ I | Ms |= ϕ} contains S(ϕ), and therefore belongs to
F . By  Los’s theorem,

∏
s∈IMs/F |= ϕ.

2.25 Application 2: ℵ1-saturated models. If I is an infinite count-
able set, U is a non-principal ultrafilter on I, and (Mi)i∈I is a family
of L-structures where L is a countable language, then the ultraproduct∏
i∈IMi/U is ℵ1-saturated.

Proof. If there is a finite bound on the cardinalities of the Mi’s, then
M∗ =

∏
i∈IMi/U is finite, and there is nothing to prove, so assume this

is not the case. Let A ⊂
∏
i∈IMi/U be countable, and Σ(x) be a set of

L(A)-formulas which is finitely consistent. Then Σ(x) is countable, and
we choose an enumeration ϕn(x, ān), n ∈ N, of Σ(x̄) (ϕ(x, ȳ) ∈ L, ān
a finite tuple in A, represented by (ān(i))i ∈

∏
iMi). We may assume

that I = N. For each n, let

S(n) = {j ∈ I |Mj |= ∃x
∧
i≤n

ϕi(x, āi(j))}.

By assumption, each S(n) is in U , and S(n) contains S(n + 1). For
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n ∈ I = N, we choose bn ∈Mn in the following fashion: if n ∈ S(n), take
some bn ∈Mn such that Mn |=

∧
i≤n ϕi(bn, āi(n)); if n /∈ S(n), take for

bn any element of Mn. Then, for each n,

{j ∈ I |Mj |= ϕn(bj , ān(j))} ⊇ S(n) ∩ [n,+∞),

and is therefore in U . Hence, M∗ |= ϕn((bj)U , ān).

Elimination of quantifiers

2.26 Elimination of quantifiers. Formulas with more than two alter-
nations of quantifiers are fairly awkward, and usually difficult to decide
the truth of. One therefore tries to “eliminate quantifiers”.

Definition. A theory T eliminates quantifiers if for any formula ϕ(x̄)
there is a quantifier-free formula ψ(x̄) which is equivalent to ϕ(x̄) modulo
T , i.e., is such that

T |= ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Note that the set of free variables in ϕ and ψ are the same. Thus if ϕ is
a sentence, so is ψ. (If the language has no constant symbol, then one
allows ψ to be either > (true) or ⊥ (false); if the language contains a
constant symbol c, then one can use instead the formulas c = c or c 6= c).

Expressed in terms of definable sets, this means: whenever M is a model
of T , S ⊂ Mn+1 is quantifier-free definable (i.e., definable by a formula
without quantifiers), and if π : Mn+1 → Mn is the projection on the
first n coordinates, then π(S) is also quantifier-free definable.

Expressed in terms of diagrams, this is equivalent to: whenever M is a
model of T and A ⊂M , then T ∪DiagM (A) is complete (in the language
L(A)).

2.27 Criterion for quantifier elimination: back and forth ar-
guments. Let T be a theory in a language L, and ∆ a set of L-formulas,
closed under finite conjunctions and disjunctions. The following are equiv-
alent:

(1) Every L-formula is equivalent modulo T to a formula of ∆.
(2) Whenever M and N are ℵ1-saturated models of T , A ⊂ M and

B ⊂ N are countable (non-empty) substructures and f : A → B is
a morphism which preserves the formulas in ∆ (i.e., if ā is a tuple
in M , and ϕ(x̄) ∈ ∆, then M |= ϕ(ā)⇒ N |= ϕ(f(ā))), then
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• (forth) for any a ∈ M there is an extension of f with a in its
domain and which preserves the formulas in ∆,

• (back) for any b ∈ M , there is an extension of f with b in its
range and which preserves the formulas in ∆.

2.28 Preservation theorems.
Let T be a theory in a language L, and ∆ a set of formulas in the (free)

variables (x1, . . . , xn), closed under finite disjunctions. Let Σ(x1, . . . , xn)
be a set of formulas in the free variables (x1, . . . , xn), such that every
finite fragment of Σ(x1, . . . , xn) is satisfiable in a model of T . The fol-
lowing conditions are equivalent:

(1) There is a subset Γ(x̄) of ∆ such that, if c̄ = (c1, . . . , cn) are new
constant symbols, then

T ∪ Γ(c̄) |= Σ(c̄), T ∪ Σ(c̄) |= Γ(c̄).

(2) For all models M and N of T , and n-tuples ā in M and b̄ in N , if
N |= Σ(b̄) and ā satisfies (in M) all formulas of ∆ that are satisfied
by b̄ (in N), then M |= Σ(ā).

Remark. If the set Σ(x̄) is finite, then so is Γ(x̄). Hence, taking ϕ(x̄)
to be the conjunction of the formulas of Σ(x̄), one obtains that ϕ(x̄) is
equivalent, modulo T , to a finite conjunction of formulas of ∆.

2.29 These two results allow to prove classical preservation theorems.
Here are a few:

(1) A sentence [formula] is preserved under extensions if and only if it
is equivalent to an existential sentence [formula].

(2) A sentence [formula] is preserved under substructures if and only if
it is equivalent to a universal sentence [formula].

(3) A sentence [formula] is preserved under union of chains if and only
it is equivalent to a ∀∃-sentence [formula].

(4) A sentence [formula] is preserved under homomorphisms if and only
if it is equivalent to a positive sentence [formula].

Comments. First a word of explanation of what it means for a formula
to be preserved. For instance, the formula ϕ(x̄) is preserved under union
of chains if whenever ā ∈ M0, and (Mi)i∈N is an increasing chain of
L-structures such that for each i, Mi |= ϕ(ā), then

⋃
i∈N Mi |= ϕ(ā).

If in the above definition, one restrict one’s attention to models of T ,
one will obtain equivalences modulo the theory T .
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Examples of complete theories, of quantifier elimination

Here are some complete and incomplete theories, together with an ax-
iomatisation.

2.30 Divisible ordered abelian groups. One has the obvious ax-
ioms. It is complete and eliminates quantifiers (in Log). Here is a proof
that it eliminates quantifiers, using the criterion 2.27.

Let M and N be two ordered abelian divisible groups, which we assume
ℵ1-saturated. In particular, their dimension as Q-vector spaces is ≥ ℵ1.
We assume that A ⊂ M and B ⊂ N are countable substructures, and
that f : A→ B is an Log-isomorphism. Let a ∈M . We want to show that
there is b ∈ N such that by setting f(a) = b, we define an isomorphism
between the ordered groups 〈A, a〉 and 〈B, b〉. This will give us the forth
direction, and the back direction is symmetric.

Case 1. There is an integer n > 0 such that na ∈ A. Take the smallest
such n; because N is divisible, there is some b ∈ N such that nb = nf(a).
One verifies easily that setting f(a) = b gives us the desired extension
of f . Indeed the elements of 〈A, a〉 are of the form c+ma, where c ∈ A,
0 ≤ m < n, and if c′ + m′a is another such element with m ≤ m′, and
� is one of =, <, or >, we have

c+ma� c′ +m′a ⇐⇒ nc+mna�nc′ +m′na.

This remark implies easily that we have an Log isomorphism.

Case 2. Not case 1. Then, as a group, we have 〈A, a〉 = A⊕〈a〉 ' A⊕Z.
First, using case 1, we may assume that A is divisible. Let C = {c ∈ A |
c < a}, and consider the following set of formulas:

Σ(x) = {x > f(c) | c ∈ C} ∪ {x < f(c) | c ∈ A \ C}.

This set is finitely consistent, since the ordering on N is dense. As A is
countable and N is ℵ1-saturated, there is some b ∈ N which satisfies all
formulas of Σ. We define f(a) = b. Then, as b /∈ f(A), f(A) is divisible,
and N is torsion free, this f defines a group isomorphism A ⊕ 〈a〉 →
B ⊕ 〈b〉. It remains to show that it preserves the ordering: use the same
type of argument as in case 1.

2.31 Ordered Z-groups. An ordered Z-group is an Log-structure G
which is an ordered abelian group, with a (unique) smallest positive
element, which we denote by 1; moreover it satisfies that [G : nG] = n
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for any integer n > 1: we use the axiom

∀x
n−1∨
i=0

∃y x = ny − i.

Clearly, Z is a model of these axioms. This theory does not eliminate
quantifiers: note that 2Z is also a model of this theory, and the smallest
element of 2Z is 2 6= 1.

To eliminate quantifiers, one needs to augment the language, first by
adding a constant symbol for 1 (the smallest positive element), and
binary relation symbols ≡n for congruence modulo n. This language
is called the Presburger language, LPres. The LPres-theory of Z is then
obtained by adding to the above axioms the following:

∀x x > 0→ x ≥ 1,

∀x, y x ≡n y ↔ ∃z x− y = nz,

for all n > 1.

2.32 Algebraically closed fields. The theory ACF of algebraically
closed fields (in the language LR of rings) is axiomatised by saying that
the structure is a (commutative) field, and for each n > 1, by adding
the axiom

∀x0, x1, . . . , xn ∃y (xn = 0 ∨
n∑
i=0

xny
n = 0).

(Every polynomial of degree n > 1 has a root). Note that this theory
is not complete. It becomes complete if one specifies the characteristic:
ACFp says p = 0; ACF0 says that p 6= 0 for all primes p. The com-
pleteness of ACF0 is also known as the Lefschetz principle. Note that
by compactness, if a sentence ϕ holds in the field C, it will hold in all
algebraically closed fields of characteristic p for p sufficiently large.

The theory ACF eliminates quantifiers, this is a classical result of al-
gebraic geometry: quantifier-free definable sets are called constructible
sets by geometers; a famous theorem states that the projection of a
constructible set is constructible.

It can also be easily proved using a back and forth argument.

2.33 Real closed fields. We will first look at real closed fields in
the language of rings. The theory RCF of real closed fields (in LR)
is axiomatised by saying that the structure is a (commutative) field;
∀x∃y y4 = x2; for all n ≥ 1 the axiom ∀x0, . . . , x2n+1, (x2n+1 = 0 ∨
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∃y
∑2n+1
i=0 xny

n = 0). (Every polynomial of odd degree has a root).
This is a complete theory. Observe that the ordering is definable: an
element is positive if and only if it is a non-zero square. However this
definition needs a quantifier (existential; or universal: say that −x is not
a square), and the LR-theory of R does not eliminate quantifiers. For
instance, there are two LR-embeddings of Q(

√
2) into R, but inside R,

the two square roots of 2 do not satisfy the same formulas (since one of
them is a square, while the other is not).

However, if one looks at real closed fields in the language Lor of ordered
rings, then their theory eliminates quantifiers. This is a consequence of
Sturm’s algorithm. The Lor-theory of real closed fields is obtained by
adding to the above axioms the definition of the ordering: x < y ↔
∃z (x− y) = z2 ∧ x 6= y.

2.34 Algebraically closed valued fields. Let Ldiv = {+,−, ·, 0, 1, | },
and view algebraically closed valued fields as Ldiv-structures. The ax-
iomatisation is the obvious one: the theory ACVF says that the struc-
ture is an algebraically closed field, and that | is the divisibility relation
coming from a valuation.

Theorem. The theory ACVF eliminates quantifiers in the language
Ldiv. Its completions are obtained by specifiying the characteristics of
the valued field and of the residue field.

Going back to the usual 2-sorted language, this means that every for-
mula (of Ldiv or even of the 2-sorted language introduced in Example
4 of 1.6 as long as the free variables are all of the valued field sort) is
equivalent to a Boolean combination of formulas of the form

v(f(x̄)) ≤ v(g(x̄)), h(x̄) = 0,

where f , g and h are polynomials over Z. Note that we can work in
either language, as we have a direct translation of atomic formulas in
one language by quantifier-free formulas of the other language:

v(x) ≥ v(y)⇐⇒ y |x.

The proof of quantifier-elimination can be done using a back-and-forth
argument, see 2.27. We are given two ℵ1-saturated algebraically closed
valued fields M and N , and a valued field isomorphism f between two
countable non-empty subrings A and B of M and N respectively. Note
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that A and B both contain 1, and therefore: they have the same char-
acteristic, and the same residual characteristic (since in a valued field of
characteristic 0 with residual characteristic p > 0 we have p 6= 0∧¬p | 1).

We are also given c ∈ M , and wish to extend f to A[c]. First note
that an Ldiv-isomorphism between two domains extends uniquely to
an isomorphism of their field of fractions which respects the valuation.
Furthermore, elementary properties of valuations on fields imply that f
extends to an isomorphism of valued fields between the algebraic closures
of A and B (in M and N respectively). We may therefore assume that
A and B are algebraically closed, and if c ∈ A, there is nothing to do.

Let C = A(c). Then the extension C/A is of one of the following type:

a. C/A pure residual,
b. C/A totally ramified,
c. C/A immediate (same value group, same residue field).

Extending f in each case follows from general results on valuation theory
(in the immediate case, use Kaplansky’s results on pseudo-convergent
sequences [56]). �

The original proof of this result by A. Robinson [75] is slightly different,
and uses a 2-sorted language. Even though the theory ACVF is not com-
plete, ACVF is decidable. Indeed, let ϕ be a sentence, we wish to decide
whether ϕ holds in all algebraically closed valued fields. Let ACVF(0,0)

be the completion of ACVF obtained by saying that the residual char-
acteristic is 0. Either ϕ is false in all (some) algebraically closed fields of
residue characteristic 0, and we find a proof of ¬ϕ from ACVF(0,0); else,
we find a proof of ϕ from ACVF(0,0); this proof uses only finitely many
axioms expressing that the residual characteristic is 0, i.e., for some in-
teger N , if the residual characteristic is p > N , then ϕ is true in all
algebraically closed fields of residual characteristic p. It now remains to
check if all of the finitely many theories ACVF(0,p), ACVF(p,p), p < N ,
prove ϕ, and if they do, then we can give a positive answer: ϕ is true in
all algebraically close valued fields. (Here ACVF(0,p), ACVF(p,p), denote
the theory of algebraically closed fields whose residue field is of char-
acteristic p, and which are of characteristic 0, resp. p. And of course,
if one of these theories does not prove ϕ, then it will prove ¬ϕ.) This
reasoning is of course absolutely non-effective. S.S. Brown [12] has some
effective results on bounds on transfer principles for algebraically closed
and complete discretely valued fields.
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Imaginary elements

2.35 Definition. Let M be an L-structure, let n be an integer, and E
an ∅-definable equivalence relation on Mn. The E-equivalence class of
an n-tuple ā, denoted ā/E, will be called an imaginary element of M .

To M we associate a structure Meq, in the multi-sorted language Leq
whose set of sorts is indexed by the ∅-definable equivalence relations
on cartesian powers of M . On the home sort M , we have the original
L-structure, on the new sorts Mn/E no structure other than the one
induced by the natural projections πE : Mn →Mn/E which are also in
the language. So our structure is

Meq =
(
(M,L),Mn/E, . . . , πE , . . .

)
.

Clearly, each finite cartesian product of sorts is interpretable in the orig-
inal structure M , and if T = Th(M), then we obtain a theory T eq in the
language Leq. One shows that (Meq)eq is definable in Meq, and that if
M ≺ N then Meq ≺ Neq.

2.36 Examples

1. This first example is fundamental. Let ϕ(x̄, ȳ) be an L-formula, x̄ an
m-tuple of variables, ȳ an n-tuple of variables, M an L-structure. Define
the equivalence relation Eϕ on Mn by

Eϕ(ȳ1, ȳ2) := ∀x̄(ϕ(x̄, ȳ1)↔ ϕ(x̄, ȳ2)).

This is clearly an equivalence relation, and it associates to the subset of
Mm defined by the formula ϕ(x̄, ā) the class ā/E, i.e., a canonical param-
eter, or code, for the set ϕ(M, ā). It is sometimes denoted by pϕ(x̄, ā)q

2. Let M be a structure. Then the n-tuples are imaginary elements: Mn

quotiented by the trivial equivalence relation. But also, any n-element
subset of M is an imaginary element: consider the subset S of Mn con-
sisting of n-tuples of distinct elements, and quotient by the (action of
the) symmetric group on n elements.

3. In general, anything interpretable in a structure will be imaginary.
For instance, let G be a group, H a definable subgroup (in any language
containing the language of groups). Then any left-coset of H in G will
be an imaginary element. I.e., the quotient G/H with an action of G by
left translation, lives in Geq.

4. In the particular case of valued fields, we already saw two examples
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of imaginary elements: note that the two-sorted language we introduced
in Example 4 of 1.6 can be obtained from one of the basic languages by
adding sorts of Meq; the same will be true of the language of Pas that
we will introduce later. There are other imaginaries we didn’t add, e.g.,
the elements K/Oα, where Oα is the set {x ∈ K | v(x) ≥ α} (the closed
ball of radius α centered at 0; also noted B(0;≥ α)). There are many
other imaginaries, for a description of imaginaries of algebraically closed
fields, see below 2.39.5.

2.37 Elimination of imaginaries. Let T be a complete theory in a
language L. We say that T eliminates imaginaries if whenever M is a
model of T , E is a ∅-definable equivalence relation on Mn, then there is
a ∅-definable function f : Mn →M ` for some ` > 0, such that the fibers
of f are exactly the E-equivalence classes.

An equivalent statement is as follows: a theory T eliminates imaginaries
if whenever M is a saturated model of T (hence, having many automor-
phisms), and D ⊆ Mr an M -definable set, there is a finite tuple c̄ in
M such that for any σ ∈ Aut(M), σ(D) = D if and only if σ fixes the
elements of the tuple c̄. In other words: if D is defined over ā and over
b̄, then it is defined over dcl(ā) ∩ dcl(b̄). Working in Meq this becomes:
dcleq(pDq) = dcleq(c̄).

The theory T weakly eliminates imaginaries if given any model M of
T and M -definable set D, there is a smallest algebraically closed set
A ⊂ M over which D is defined. In other words: if D is defined over ā
and over b̄, then it is defined over acl(ā) ∩ acl(b̄). Working in Meq, this
becomes: acleq(pDq) = acleq(c̄).

Elimination of imaginaries implies weak elimination of imaginaries. This
is enough for many applications. The property of (weakly) eliminating
imaginaries is preserved under adjunction of constants to the language:
if the L-theory T (weakly) eliminates imaginaries, and A is a subset of
a model M of T , then so does the L(A)-theory DiagMel (A). If one knows
that a theory T weakly eliminates imaginaries, then to show that it elim-
inates imaginaries, it suffices to show that, for all n,m > 0, one can code
m-element subsets of Mn.

2.38 Galois theory. If a theory T eliminates imaginaries, then, given
A ⊂ M |= T , if G is the profinite group consisting of all L(A)-auto-
morphisms of acl(A) which are elementary in M , then there is a Galois
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correspondence between closed subgroups of G and definably closed sub-
sets of acl(A). See e.g. B. Poizat [72].

2.39 Examples.

1. Clearly the theory T eq eliminates imaginaries in the language Leq.

2. Consider the theory T of an infinite set, in the empty language L.
This theory eliminates quantifiers: any definable set will be defined by
a Boolean combination of formulas of the form x = y, or x = a. In this
language, T does not eliminate imaginaries: let M be an infinite set,
a 6= b two elements of M , and consider the definable set {a, b}; consider
any permutation σ of M which sends a to b, b to a, and has no fixed
point. One can however show that T weakly eliminates imaginaries.

3. If K is a field (maybe with extra structure), then any finite subset
of a cartesian power of K has a code. Indeed, let āi = (ai,1, . . . , ai,n),
1 ≤ i ≤ m, n-tuples in K. Consider the polynomial g(X̄) =

∏m
i=1(X0 +∑n

j=1 ai,jXj). Then the tuple of coefficients of g(X̄) is a code for the
finite set {ā1, . . . , ām}.

4. Many theories of fields eliminate imaginaries:
– the theory of algebraically closed fields of a given characteristic,
– the theory of real closed fields,
– the theory of differentially closed fields of characteristic 0,
– any complete theory of pseudo-finite field, in the language of fields to
which one adds enough constant symbols to be able to describe for each
n > 1 the unique algebraic extension of degree n.
– the theory of separably closed fields of characteristic p > 0 and finite
degree of imperfection e, in the language of fields to which one adds e
new constant symbols, which will be interpreted by the elements of a
p-basis.

5. Let T be a complete theory of algebraically closed valued fields, in one
of the languages L introduced before (in 1.6). We already saw examples
of imaginaries which did not have real representatives in that language.
D. Haskell, E. Hrushovski and H.D. Macpherson describe in [50] a lan-
guage LG in which the natural expansion of T eliminates imaginaries.
Let K be a model of T , O its valuation ring, M its maximal ideal, and
k = O/M. LG is obtained by adding to L two sets of sorts: for each
n > 0,
(i) Sn is the set of O-submodules of Kn which are free of rank n. Thus
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an element of Sn corresponds to the GLn(O)-orbit of a basis of the K-
vector space Kn.
(ii) If N ∈ Sn, define red(N) = N/MN . Thus red(N) is isomorphic to
kn. Then Tn is the disjoint union of all red(N), N ∈ Sn. We add to the
language the natural projection Tn → Sn, (a+MN) 7→ N .

T. Mellor shows in [68] that the theory of real closed valued fields elim-
inates imaginaries in the language LG . E. Hrushovski and B. Martin
([55]) show that the field of p-adic numbers eliminates imaginaries in
a sublanguage of LG , and they use this result to show that certain p-
adic integrals are rational functions. One should also be able to use the
language LG to eliminate imaginaries in other valued fields.

3 The results of Ax, Kochen, and Ershov

In this section we will briefly state some early results by Ax and Kochen,
and independently by Ershov. These results are the inspiration for the
later study of the model theory of valued fields. Recall that a valued
field is Henselian if it satisfies Hensel’s lemma (or equivalently, the val-
uation has a unique extension to the algebraic closure of the field). The
references are [2], [3], [4] and [40], [34]–[39].

3.1 Theorem. Let U be any non-principal ultrafilter on the set P of
prime numbers. The valued fields

∏
p∈P Qp/U and

∏
p∈P Fp((t))/U are

elementarily equivalent.

In fact, the proof of Ax and Kochen gives more: assuming CH (the con-
tinuum hypothesis, which states that the smallest uncountable cardinal
ℵ1 is 2ℵ0), they prove that these two valued fields are isomorphic. Note
that these two fields already have isomorphic residue field (

∏
p∈P Fp/U)

and value group (ZP /U). Under CH, these fields are furthermore satu-
rated, and the proof uses this fact.

3.2 Consequences of Ax and Kochen. One of the motivations for
their study was Artin’s conjecture, that the fields Qp are C2, i.e., for
every d, a form of degree d in > d2 variables has a non-trivial zero.
While the conjecture was later proved to be false (see [78]), their result
shows that for every d, there is a number N such that whenever p > N ,
the statement holds for all forms of degree d. Furthermore, they obtain
that the theory of all Qp is decidable, using results of Ax on the theory
of all finite fields [1].
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3.3 Other results: the AKE-principle. The AKE-principle is fairly
easy to state:
Two Henselian valued fields K and L are elementarily equivalent if and
only if their residue fields are elementarily equivalent and their value
groups are elementarily equivalent. The henselianity condition (or some
additional condition) is necessary: Q with the p-adic valuation is not
elementarily equivalent to Qp, even though they have isomorphic residue
field and valuation group. However, the AKE principle does not always
work. Here is a more precise statement of the results of Ax and Kochen
[2] – [4], which were also obtained independently by Eršov:

Theorem. Let K and L be valued fields, with residue fields kK and kL
respectively, and value groups ΓK , ΓL respectively. Assume they satisfy
one of the following set of conditions:

(a) The residue fields of K and L are of characteristic 0.
(b) K and L are of characteristic 0, the residue fields are of character-

istic p > 0, the value groups have a smallest positive element, and
in both fields the value of p is a finite multiple e of this smallest
positive element.

Then

(1)

K ≡ L ⇐⇒ kK ≡ kL and ΓK ≡ ΓL.

(2) If K is a valued subfield of L, then

K ≺ L ⇐⇒ kK ≺ kL and ΓK ≺ ΓL.

Here K and L are equipped with any of the languages we discussed
before, the residue fields are equipped with the ring structure, and the
value group with the ordered group structure (in the languages LR and
Log respectively).

3.4 Valued fields of positive characteristic. Note that all fields in
the above result are of characteristic 0. Results in characteristic p > 0 are
few, except for the algebraically closed case. An early result was obtained
by Y. Ershov and states that the AKE-principle holds for valued fields of
positive characteristic which satisfy Kaplansky’s condition A (see [56] for
a definition) and are defectless (i.e., if L is a finite extension of K, then
L has no proper algebraic immediate extension). There are a few other
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positive results, see the work of F. Delon [20] and of F.V. Kuhlmann
[57]. And undecidability results if one adds for instance a section of the
valuation to the language.

When the residue characteristic is positive, but the field is of character-
istic 0, the nicest results are for bounded ramification. For unbounded
ramification, there are still some elementary equivalence results, see sec-
tion 4 of [80], and structure results for definable sets in [17].

4 More results on valued fields

In this section, we will introduce the languages of Macintyre and of
Denef – Pas. The Macintyre language is a language in which the theory
of the field of p-adic numbers Qp eliminates quantifiers5. This result is
instrumental in subsequent proofs of rationality of Poincaré series (see
[22]). The Denef – Pas language is a language which is 3-sorted, and in
which one obtains relative quantifier-elimination, from which an AKE-
principle can be reobtained.

Results on the p-adics, the language of Macintyre

4.1 The language of Macintyre. One of the languages in which the
field of p-adic numbers eliminates quantifiers is the language of Macin-
tyre, LMac, which is obtained by adding to Ldiv predicates Pn, n > 1,
which are interpreted by

Pn(x)↔ ∃y yn = x ∧ x 6= 0.

In fact, the relation | is unnecessary, as it is quantifier-free definable in
Qp: for instance, if p 6= 2, we have:

v(x) ≤ v(y) ⇐⇒ y = 0 ∨ P2(x2 + py2).

The definition however depends on p, and for uniformity questions it is
better to include | in the language.

4.2 Axioms for the p-adics. The Ldiv theory of the valued field Qp

is axiomatised by expressing the following properties:

K is a Henselian valued field of characteristic 0, with residue field Fp.

5 Other people gave languages in which Qp eliminates quantifiers, e.g. Ax and
Kochen [4] and Cohen [19].
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Its value group is an ordered Z-group, with v(p) the smallest positive
element.

4.3 Comments.

• Let K be a subfield of Qp, relatively algebraically closed in Qp. Then
K ≺ Qp. This follows from quantifier elimination in LMac. Thus, the
relative algebraic closure of Q inside Qp is an elementary substructure.
• By adding constant symbols, one may obtain a quantifier-elimination

result for the theory of a finite algebraic extension of Qp.
• The elimination is uniform in p, see [64].
• A valued field satisfying the axioms given above is said to be p-adically

closed.

A detailed study of formally p-adic fields and p-adically closed fields
appears in [73].

The language of Denef – Pas

4.4 The splitting of the proof of the back-and-forth argument into
three cases, residual, ramified and immediate, is also apparent in the
proofs of the results of Ax and Kochen, and of Ershov. This suggests
passing to three sorts: the valued field, the value group, and the residue
field, with additional maps the valuation and the residue map. It turns
out that for quantifier-elimination results this is not quite enough. One
language, which is quite convenient, is the language LPas:

• It has three sorts: the valued field, the value group and the residue
field.
• The language of the field sort is the language of rings.
• The language of the value group is any language containing the lan-

guage of ordered abelian groups (and ∞).
• The language of the residue field is any language containing the lan-

guage of rings.
• In addition, we have a map v from the field sort to the value group

(the valuation), and a map ac from the field sort to the residue field
(angular component map).

4.5 Definition. The angular component map is a map ac : K → kK
(where kK is the residue field of K), which is multiplicative, sends 0
to 0, and on the valuation ring O×K coincides with the residue map. It
therefore suffices to know this map on a set of representatives of the
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value group.

If the valuation map has a cross-section, i.e., a map s : ΓK → K×

satisfying s(γ + δ) = s(γ)s(δ) and vs = idΓK
, then the natural way of

defining an angular component map is by setting

ac(x) = xsv(x−1).

In all natural examples, there is a natural coefficient map:

• On the valued field k((t)), (v(t) = 1, v trivial on k), define ac(0) = 0,
and ac(t) = 1. Thus, if aj 6= 0 then

ac(
∑
i≥j

ait
i) = aj .

• On Qp, define ac by ac(p) = 1.

In most cases we do strengthen the language by adding the angular
component map. In the case of Qp however, ac is definable in the valued
field Qp: indeed, ac equals 1 on the (p−1)-th powers. It therefore suffices
to specify the values of ac on a system of generators of the finite group
Q×p /Q×p

p−1. A similar result holds for finite algebraic extensions of Qp.

It is not true that every valued field has an angular component map.
However, every valued field K has an elementary extension K∗ which
has an angular component map. This is because in every ℵ1-saturated
valued field L, the group morphism v : L× → ΓL has a cross-section,
and we know that every valued field has an elementary extension which
is ℵ1-saturated. See also [70] for a discussion on the non-definability of
angular component maps.

4.6 Theorem. Let (K,ΓK , kK) be an LPas-structure, where K is a
Henselian valued field, and kK has characteristic 0. Then every formula
ϕ(x, ξ, x̄) (x, ξ, x̄, tuples of variables of the valued field, valued group,
residue field sort) of the language is equivalent to a Boolean combination
of formulas

ϕ1(x) ∧ ϕ2(v(f(x)), ξ) ∧ ϕ3(ac(f(x)), x̄),

where f(x) is a tuple of elements of Z[x], ϕ1 is a quantifier-free for-
mula of the language of rings, ϕ2 is a formula of the language of the
group sort, and ϕ3 is a formula of the language of the residue field sort.
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4.7 Other results of Pas include a cell decomposition of definable sets.
See [69]. Even though the theorem speaks about valued fields of residual
characteristic 0, by compactness, it also applies to valued fields Qp for
p sufficiently large. See also [71].

4.8 Adding angular component maps to Qp. If one wishes to
study the p-adics in a three-sorted language with angular component
maps, one is obliged to add angular component maps of higher order,
namely, for each n, a multiplicative map acn : K → Z/pnZ, which on
Zp coincides with the usual mod pn reduction. We also require that
acn = acn+1 mod pn. Note that this requires introducing many count-
ably many new sorts, but that, as we saw above, these maps are inter-
pretable in the valued field Qp. See [8], [9] for details.

4.9 Application to power series. Consider the natural ac map on
k((t)), where k is a field of characteristic 0, and look at the LPas-structure

(K,Z ∪ {∞}, k)

where the language of the group sort is the Presburger language LPres,
see 2.31. Then in the above the formula ϕ2 will be a formula without
quantifiers.

A definable (with parameters) function K → ΓK will therefore be locally
defined by expressions of the form

(
∑
i

miv(fi(x)) + α)/N

where the fi’s are polynomials over K, α ∈ ΓK , and N is some integer.
By locally, I mean that there is a partition of K into definable sets,
and on each definable set of the partition, the function is given by an
expression as above.

Assume now in addition that the theory of the residue field k eliminates
quantifiers in the language of the residue field. Then, in the theorem, the
formula ϕ3 can also be taken to be quantifier-free. Thus we then obtain
full elimination of quantifiers. Useful examples are: C in the language of
rings; R in the language of ordered rings; and also . . . Qp in the language
LMac of Macintyre. Thus we know a language in which the valued field
Qp((t)) eliminates quantifiers.



40 Zoé Chatzidakis

Further reading

The (model) theory of valued fields is extremely rich, and has grown in
several directions. We will here indicate some of the existing literature.
Omissions are most of the time due to the writer’s ignorance.

Quantifier-elimination. Many people worked on quantifier elimina-
tion for valued fields, sometimes with a cross-section for the valuation
map, to cite a few: Ax and Kochen [4], Ziegler [81], Basarab [7], Delon
[20], Weispfenning [80]. The paper of Weispfenning contains a very good
bibliography.

Analytic structures. Complete valued fields can be endowed with an
analytic structure, and several model theorists studied these enriched
valued fields. On the field of p-adic numbers this was done first by Denef
and Van den Dries [24]. On other fields, one of the earliest papers is by
L. Lipshitz, and to-date, the most complete treatment is probably the
one by R. Cluckers and L. Lipshitz [15], which in particular encompasses
earlier results by Lipshitz, Robinson, Schoutens, . . . ; the paper contains
an excellent bibliography. J. Denef gives in [23] an excellent survey of
results obtained using quantifier-elimination. (One should be aware that
later on, a mistake was discovered in the quantifier-elimination result of
Gardener and Schoutens; see [63]).

Valued differential fields. Valued differential fields occur naturally
in analysis. Work on differential valued fields was done by N. Guzy, F.
Point and C. Rivière, see [42] – [47], and also by Bélair [10], Scanlon
[76].

Valued difference fields. Classical examples of difference valued fields
are the maximal unramified extension Qunr

p of Qp or its completion
W (Falgp ), with a lifting of the Frobenius automorphism on the residue
field. The theory of these difference fields was studied by Bélair, Macin-
tyre and Scanlon [11], who prove a relative quantifier-elimination result
for W (Falgp ), as well as an AKE-principle. Azgin and Van den Dries [5]
improve slightly their result. In that connection we should also mention
earlier work by Van den Dries [29] on W (Falgp ) with a predicate for the
set of Teichmüller representatives. Also, Scanlon studies the model the-
ory of D-valued fields (here D is an operator, which on the valued field
originates from an automorphism via σ(x) = eDx+ x for some e in the
valuation ring, and which on the residue field defines either a deriva-
tion or again yields an automorphism), and obtains AKE-type results,
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see [76]. Let me also mention an unpublished result of Hrushovski [52]
on (algebraically closed) valued fields with an automorphism which is
ω-increasing, such as a “non-standard Frobenius”.

Various notions of minimality. Searching to generalize the properties
of strong minimality (of algebraically closed fields) and of o-minimality
(of real closed fields), several notions of minimality were studied. First
by Macpherson and Steinhorn [67], then by other people, see e.g. [49],
[17], [53]. See also the paper by Delon in this volume for more details.

Main omissions. I have not at all spoken about some of the main de-
velopments of the model theory of valued fields, which are taking place
at this very moment and are in constant progress. Some of these develop-
ments started with the work of Denef and Loeser on motivic integration
[25], or, should I say already with the work of Denef on the rationality of
the Poincaré series [22]? This initial work was followed by many others,
by Denef and Loeser, then joined by Cluckers, Hrushovski, Kazhdan,
. . . . I should also mention on-going work around NIP, metastable the-
ories, etc., which has already given important results (e.g., the space of
types of Hrushovski and Loeser [54]). Other people are better qualified
to talk about them.
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