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1. Finite fields - properties

(1.1) Basic properties of finite fields
The characteristic of a unitary commutative ring is the smallest positive integer n

such that 1 + 1 + · · ·+ 1 (n times) equals 0. If there is no such integer n, one says that the
characteristic is 0. If R is a finite ring, and a fortiori a finite field, then its characteristic is
finite. Hence, if F is a finite field, the homomorphism Z → F which sends 1 ∈ Z to 1 ∈ F
must have kernel a prime ideal, i.e., pZ for some prime p.

Conversely, if p is a prime number, then pZ is a maximal ideal of Z and Z/pZ is a field
with p elements. This field is denoted by Fp, and it is the prime field of characteristic p, i.e.,
it is contained in every field of characteristic p (by the above). In a field of characteristic
0, the subring generated by 1 is (isomorphic to) Z, and therefore the field also contains
the field of fractions of Z, Q. We call Q the prime field of characteristic 0.

Let F be a finite field of characteristic p > 0. Since 1 ∈ F , it necessarily contains the
field Fp, and is therefore a vector space over Fp, whence of cardinality pn for some n ∈ N.

Let F be a field of characteristic p having q = pn elements, let K be an algebraically
closed field containing F . Let us consider the multiplicative group F× = F \ {0} of
F . It has q − 1 elements and hence every non-zero element of F satisfies the equation
Xq−1 − 1 = 0. [If G is a finite group of size n, then every element g of G satisfies gn = 1].
Thus all elements of F satisfy Xq −X = 0. Let f(X) = Xq −X, a polynomial over Fp.
Then f ′(X) = qXq−1 − 1 = −1 because “q = 0” since it is a power of the characteristic.
Hence all roots of F (X) = 0 are simple roots, and we obtain

Xq −X =
∏
a∈F

(X − a).

Indeed, since every element of Fq satisfies Xq−X = 0, we know that each (X−a), a ∈ Fq,
divides Xq −X, and therefore so does their product

∏
a∈F (X − a). Degree considerations

and the fact that the coefficient of Xq is 1 imply that these two polynomials are equal.
Conversely, let us consider the set S ⊂ K of all solutions of Xq −X = 0. As above,

its roots are all distinct. S is closed under multiplication, and S \ {0} by multiplicative
inverse. Because we are in characteristic p and q is a power of p, we obtain, using the
binomial expansion of (a + b)n and the fact that “p = 0”, that (a + b)p = ap + bp, and
(a+ b)q = aq + bq. This implies that S is closed under addition, and is therefore a subfield
of K.

So, we have shown:

Theorem. Let F be a finite field. Then for some prime p and q = pn, F has q elements.
Its elements are exactly the roots of the equation Xq −X = 0.

(1.2) Existence? We actually haven’t shown that for every n there is a field with pn

elements. To do that, we accept that Fp exists, and that it embeds into some algebraically
closed field K. Then, one shows, by induction on the degree n of a polynomial f(X), that
f(X) can be written as the product of an element c ∈ K (c is the coefficient of Xn) and
of n linear terms (X − a) for some elements a ∈ K. Thus, in K, the polynomial Xq −X
is the product of q linear factors of this form, and because the derivative of Xq − X is
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identically equal to −1, these roots are simple: i.e., Xq −X has q distinct solutions in K.
By the above, the set S of these roots is a field with q elements, and which is unique up
to isomorphism. We denote this field by Fq.

(1.3) The Frobenius map. We have noticed above that when F is a field of characteristic
p, then (a+ b)p = ap + bp for a, b ∈ F . The map x 7→ xp is therefore a ring morphism (as
it obviously is a multiplicative map). Also, as xp = 0 implies x = 0, it is injective. The
map x 7→ xp is called the Frobenius map, and I will denote it by Frobp, or Frob. Similarly,
if q = pn, then I’ll denote Frobn also by Frobq.

(1.4) The multiplicative group of a finite field. Let F = Fq be a finite field. We
will show that F× is cyclic. It can be written as a finite direct sum of cyclic subgroups,
and if it is not cyclic, then its exponent1 m is a proper divisor of q − 1. But all roots of
Xq−1 = 1 are simple roots, whence all roots of Xm = 1 are simple as well. This implies
that q − 1 = m.

(1.5) Perfect fields. A field F of characteristic p > 0 is perfect if every element of F has
a p-th root. By convention, every field of characteristic 0 is perfect.

If F = Fpn is finite, then the order of F× is prime to p, which implies that every
element is (multiplicatively) divisible by p, i.e., F is perfect. Another way of seeing this is
the fact that the map Frob : x 7→ xp is injective: as F is finite, it must be onto.

An example of imperfect field is Fp(t), where t is transcendental over Fp. Then the
image by Frob of Fp(t) is Fp(tp).

(1.6) The algebraic closure of Fp.
Let m, n be positive integers, p a prime. Then

Fpm ⊆ Fpn ⇐⇒ m divides n,

and in that case we have [Fpn : Fpm ] = n/m.
Indeed, if Fpm ⊆ Fpn then Fpn is in particular an Fpm -vector space, which implies

that for some `, |Fpn | = |Fpm |`, i.e., pn = pm` and n = m`. We then have [Fpn : Fpm ] = `.
Conversely, if m divides n, then pm − 1 divides pn − 1, whence all roots of Xpm−1 = 1 are
contained in Fpn , i.e., Fpm ⊆ Fpn .

It follows easily that for any m,n ≥ 1,

Fpm ∩ Fpn = Fpd and FpmFpn

where d is the greatest common divisor of m and n, and e is the least common multiple of
m and n. Here, FpmFpn denotes the field composite of Fpm and Fpn , i.e., the subfield (of
the large algebraically closed field K) they generate.

Let α be algebraic over Fp. Then Fp(α) is a finite-dimensional Fp-vector space, and
is therefore also finite. This implies that the algebraic closure Falg

p of Fp is
⋃

n∈N Fpn . [I
assume known the fact that every element of the algebraic closure of a field satisfies a

1 The exponent of a group G is the smallest n > 0 such that every element g ∈ G
satisfies gn = 1, and ∞ if such an n doesn’t exist.
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non-trivial equation with coefficients in the field. One can also show the result directly: if
f(X) is a non-constant polynomial with coefficients in

⋃
n∈N Fpn , then it in fact belongs

to Fq[X] for some q = pn; hence the roots of f(X) generate a finite field.]

(1.7) More on the Frobenius map. The Frobenius map is the identity on Fp (since
every element of Fp satisfies Xp − X = 0), and defines an automorphism of each Fpn .
Hence it defines an element ϕ of Aut(Falg

p /Fp). Observe that if d ∈ N, the elements of
Falg

p which are fixed by ϕd are precisely the elements of Fpd . Furthermore, one checks that
the restriction ϕ|F

pd

of ϕ to Fpd has order exactly d: ϕ` being the identity on Fpd means

exactly that all elements of Fpd satisfy Xp`

= X, and therefore that d divides `.
As [Fpd : Fp] = d, we know that Aut(Fpd/Fp) has siez at most d. Since ϕ ∈

Aut(Fpd/Fp) has order exactly d, this therefore implies that

Aut(Fpd/Fp) ' Z/dZ,

and that ϕ generates Aut(Fpd/Fp).

(1.8) Description of Aut(Falg
p /Fp). While we will not explicitly use it, we can now

describe completely Aut(Falg
p /Fp). As Falg

p is a direct limit of the finite fields Fpn , it
follows, by Galois duality, that

Aut(Falg
p /Fp) = lim

←
Z/nZ := Ẑ.

The connecting maps are, for n dividing m, the canonical projection Z/mZ → Z/nZ.
That is, the group Ẑ is described as the set of sequences (an)n ∈

∏
n>1 Z/nZ such that

if n divides m, then an ≡ ammod n. It is a profinite group, i.e., an inverse limit of
finite groups. It is a closed subgroup of

∏
n>1 Z/nZ, where each Z/nZ is equipped with

the discrete topology, and we take the product topology on
∏

n>1 Z/nZ. The element
ϕ = Frobp is a topological generator of Aut(Falg

p /Fp): its restriction to any Fq generates
Aut(Fq/Fp).

2. An aside: a result of Ax

(2.1) The fact that Falg
p is a union of finite fields, has a very nice consequence: Let

X̄ = (X1, . . . , Xn) and f̄(X̄) be an n-tuple2 of polynomials Falg
p [X̄]. Assume that f̄(X̄)

defines an injective map f̃ : (Falg
p )n → (Falg

p )n. Then f̃ is also surjective.

Proof. Indeed, the elements of f̄ have their coefficients in some Fq, and therefore the
restriction of f̃ to Fn

q is also injective; as Fq is finite, f̃ |Fn
q

is surjective. This being true on

all finite fields containing Fq, we obtain the result.

(2.2) Theorem (Ax) Let f̄(X̄) be a n n-tuple of polynomials in C[X̄], X̄ = (X1, . . . , Xn),
and assume that the map f̃ it defines Cn → Cn is injective. Then it is also surjective.

2 In class I forgot to say/insist that f̄ had to be an n-tuple of polynomials for the map
f̃ to make sense. Sorry.
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There are two proofs of this result, which we present below. They are essentially
equivalent, but one of them uses ultraproducts.
Proof 1 of Ax’s result (2.2). One uses the fact that the completions of the theory ACF
of algebraically closed fields3 is obtained by specifying the characteristic. Thus the theory
of algebraically closed fields of characteristic 0 is obtained by adding to ACF an infinite
set of sentences: for each prime p, an axiom saying that “p 6= 0”. Any statement true
in all (or some) algebraically closed fields of characteristic 0 must therefore be true in all
algebraically closed fields of sufficiently large characteristic. Let mi(X̄), i = 1, . . . , N(d),
be an enumeration of the monomials in X̄ = (X1, . . . , Xn) of degree ≤ d, and consider
the formulas ϕ(x̄), ψ(x̄), where x̄ = (xi,j)1≤i≤n,1≤j≤N(n), and ȳ = (y1, . . . , yn), z̄ =
(z1, . . . , zn):

ϕ(x̄) : ∀ȳ, z̄
(∧

i

∑
j

xi,jmi(ȳ) =
∑

i

xi,jmi(z̄)
)
→ (ȳ = z̄)

ψ(x̄) : ∀z̄∃ȳ
∧
i

∑
j

xi,jmi(ȳ) = zi.

Thus ϕ(x̄) says that the map f̃ defined by the n-tuple f̄(X̄) of polynomials, with fi(X̄) =∑
j xi,jmj(X̄), i = 1, . . . , n, is injective, while ψ(x̄) says that f̃ is surjective.

All algebraically closed fields of positive characteristic satisfy ∀x̄ ϕ(x̄) → ψ(x̄), hence
also C satisfies this sentence. This proves the theorem.

(2.3) Ultraproducts
Definitions. Let I be a set, (Ai, i ∈ I), a family of L-structures, and F a subset of P(I)
(P(I) is the set of subsets of I).
(1) F is a filter (on I) iff: (i) ∅ /∈ F ; (ii) if X,Y ∈ F then X ∩ Y ∈ F ; (iii) if X ∈ F and

Y ⊇ X then Y ∈ F .
(2) F is an ultrafilter iff it is a maximal filter, i.e., is contained properly in no filter. One

shows easily that a filter F is an ultrafilter if and only if, for every X ⊆ I, either X
or I \X is in F .

(3) A filter F is principal iff there is some i ∈ I such that {i} ∈ F . If there is no such i,
it is called non-principal.

(4) We define an L-structure on the Cartesian product
∏

i∈I Ai as follows. We view an
element a of

∏
i∈I Ai as a function from I to the disjoint union of the Ai’s, whose value

at i is in Ai. If f is an n-ary function symbol, R is an n-ary function symbol, and
(a1, . . . , an) ∈

∏
i∈I Ai, then f(a1, . . . , an)(i) = f(a1(i), . . . , an(i)), and

∏
i∈I Ai |=

R(a1, . . . , an) iff Ai |= R(a1(i), . . . , an(i)) for every i ∈ I. Finally, the interpretation
of a constant c is the function which to i associates the interpretation of c in Ai.

(5) Let F be a filter on I. We define an equivalence relation ≡F on
∏

i∈I Ai by setting

a ≡F b ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ F .

3 The theory ACF is axiomatised by adding to the theory of fields for every n ≥ 1 the ax-
iom expressing that every polynomial of degree exactly n has a solution: ∀y0, . . . , yn−1 ∃x xn+∑n−1

i=0 yix
i = 0.
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The equivalence class of a ∈
∏

i∈I Ai will be denoted by [a]F , and the set of equiv-
alence classes by

∏
i∈I Ai/F .

∏
i∈I Ai/F has a natural L-structure: the constant c

is interpreted by [c]F ; f([a1]F , . . . , [an]F ) = [f(a1, . . . , an)]F , and R([a1]F , . . . , [an]F )
holds iff {i ∈ I | Ai |= R(a1(i), . . . , an(i))} ∈ F . The structure

∏
i∈I Ai/F is called

the reduced product of the structures Ai with respect to F . If F is an ultrafilter, then∏
i∈I Ai/F is called the ultraproduct of the Ai with respect to F . If all Ai are equal

to the same structure A, then we talk of reduced power and of ultrapower of A.
(6) Observe that the natural map

∏
i∈I Ai →

∏
i∈I Ai/F is a homomorphism of L-

structures.

(2.4) Examples. If I is finite, then all ultrafilters on I are principal. Note that if F is
principal, say {j} ∈ I, then the ultraproduct

∏
i∈I Ai/F is naturally isomorphic to Aj .

The best known non-principal filter (on an infinite set I) is called the Fréchet filter and
is the set of all subsets X of I such that I \X is finite. It is contained in all non-principal
ultrafilters on I (Exercise).

Observe that if A ⊆ I is infinite, then it intersects every cofinite subset of I; hence A
and the Fréchet filter generate a (proper) filter, and A belongs to a non-principal ultrafilter.

(2.5)  Los’ Theorem. Let I be infinite, F a filter on I, (Ai)i∈I a family of L-structures,
and A =

∏
i∈I Ai/F .

(1) Let ϕ(x) be a positive L-formula, a a tuple in
∏

i∈I Ai. Then

A |= ϕ([a]F ) ⇐⇒ {i ∈ I | Ai |= ϕ(a(i))} ∈ F .

(2) Assume in addition that F is an ultrafilter, and let ϕ(x) be any formula, a a tuple in∏
i∈I Ai. Then

A |= ϕ([a]F ) ⇐⇒ {i ∈ I | Ai |= ϕ(a(i))} ∈ F .

This result is not difficult to prove, using induction on the complexity of the formulas.
Note the restriction in (1) of ϕ(x) being positive: the result definitely doesn’t hold for
formulas involving a negation, as can be shown by the following easy example. Let a, b ∈∏

iAi. Then [a]F = [b]F ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ F . But if F is not an ultrafilter,
choose A ⊂ I such that A and I \A are not in F ; then (assuming |Ai| ≥ 2 for all i, choose
b such that {i ∈ I | a(i) = b(i)} = A. Clearly [a]F 6= [b]F but {i ∈ I | a(i) 6= b(i)} /∈ F .

(2.6) One immediate consequence of  Los’ theorem is that if F is an ultrafilter on I, then
the L-structure A embeds elementarily into its ultrapower AI/F , via the map which to an
element a associates [â]F , where â is the function taking the value a on I.

(2.7) Theorem (Keisler-Shelah). Two L-structures A and B are elementarily equivalent
if and only if they have isomorphic ultrapowers.

(2.8) Second proof of Ax’s result (2.2). Let U be a non-principal ultrafilter on the set of
all primes p, and consider K =

∏
p Falg

p /U . Then this is an algebraically closed field of
characteristic 0, of size 2ℵ0 , and therefore is isomorphic to C. By  Los’s theorem, since
every Falg

p satisfies the sentence ∀x̄ ϕ(x̄) → ψ(x̄), so does C.
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3. Axiomatisation of a candidate for the theory of finite fields
In this section, we will give an axiomatisation of a theory, which we will call T ∗f , and

verify that finite fields are models of T ∗f . We will also study its infinite models. In the
next section, we will show that this theory is the theory Tf of all finite fields, i.e., is the
set of sentences which are true in all finite fields.

(3.1) The theory T ∗f will be obtained by adding to the theory of fields the following axiom
schemes:

– Axiom 1 saying that the fields are perfect,
– Axiom 2(`) saying that the field has exactly one algebraic extension of degree `, for

every ` > 1,
– Axiom 3(m,n, d) a scheme of axioms expressing that the field is pseudo-algebraically

closed (abbreviated by PAC), see definition below (3.8) (for every m,n, d ∈ N).

(3.2) Axiom 1. This one is easy: for each prime p, add the axiom

p = 0 → ∀y∃x y = xp.

(3.3) First half of Axiom 2(`). Fix `, we will first define a formula Irr`(ȳ), where ȳ =
(y0, . . . , y`−1), which says that the polynomial P`(ȳ)(X) := X` + y`−1X

`−1 + y`−2X
`−2 +

· · · + y0 is irreducible, i.e., is not the product of two polynomials of lower (non-zero)
degree. The formula Irr`(ȳ) expresses that ∀z0, . . . , z`−1, for all 1 ≤ d < ` the polynomials
X` +y`−1X

`−1 +y`−2X
`−2 + · · ·+y0 and (Xd +zd−1X

d−1 + · · ·+z0)(X`−d +z`−1X
`−d−1 +

z`−2X
`−d−2 + · · ·+ zd) are not equal.

I.e., Irr`(ȳ) is the disjunction over j = 0, . . . , `− 1, of the formulas

yj 6=
d−1∑
i=0

ziz
′
j−i

where z′m = z`−d+m if 0 ≤ m < `− d, z′m = 1 if m = `− d, and z′m = 0 otherwise.
So the first half of axiom 2(`) will say ∃ȳ Irr`(ȳ). A field F which satisfies this axiom

will therefore have an algebraic extension of degree `.

(3.4) Second half of Axiom 2(`). To finish this axiomatisation, we need to say that
this extension is unique. Equivalently, that if P (X) and Q(X) are irreducible polynomials
of degree `, then the extension of F generated by a root of P (X) contains a root of Q(X).

In order to do that, we first need to show that we can interpret, uniformly in the
`-tuple ȳ (which satisfies Irr` in the field F ) the extension generated over F by a root of
the polynomial P`(ȳ)(X).

(3.5) Interpretation of a finite algebraic extension of a field inside the field. Let
ā = (a0, . . . , a`−1) be an `-tuple satisfying Irr` in the field F . Let α be a root of P`(ā)(X),
and recall that

F (α) 'F F [X]/(P`(ā)(X)).

In particular F (α) is an F -vector space of dimension `, with basis {1, α, α2, . . . , α`−1}.
This remark allows us to interpret easily, inside F and uniformly in the `-tuple ā, the

7



structure (F (α),+,×, 0, 1, PF ), where +,×, 0, 1 are the usual addition, multiplication and
constants on the field F (α), and PF is a unary predicate for the subfield F .
We let S = F ` (the direct sum of ` copies of F ), +∗ the usual addition on the vector space
S, and 0∗ = (0, 0, . . . , 0), 1∗ = (1, 0, . . . , 0), P ∗F the set of elements {(b, 0, . . . , 0) | b ∈ F}.
Clearly these sets, elements and relations are definable in F , with no parameters.

Multiplication by α induces a linear transformation of the vector space F (α), and its
matrix is

Mα =


0 0 · · · 0 −a0

1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −a`−1


since α` = −

∑`−1
i=0 aiα

i. Note that multiplication by αi is also a linear transformation,
and its matrix is simply M i

α. So, we define ×∗ as follows

(x1, . . . , x`)×∗ (y1, . . . , y`) = (x1I` + x2Mα + · · ·x`M
`−1
α )


y1
y2
...
y`

 .

Here I` denotes the identity (` × `)-matrix. Observe that the definition of ×∗ uses the
tuple (a0, . . . , a`−1), but is totally uniform.

Hence, there is a formula θ∗(x̄, ȳ) of the language of fields, such that if Irr`(ā) and
Irr`(b̄) hold for some `-tuples ā and b̄ in F and α is a root of P`(ā)(X), then F |= θ∗(ā, b̄)
if and only if F (α) |= ∃z P`(b̄)(z) = 0.

So, axiom 2 (`) is:

∃x̄ Irr`(x̄) ∧ ∀ȳ [Irr`(ȳ) → θ∗(x̄, ȳ)].

(3.6) A comment on this condition. The condition of having at most one extension
of each degree is equivalent to the following: whenever L is an algebraic extension of F of
degree n, then Aut(L/F ) ' Z/nZ. In particular, Aut(L/F ) is abelian and cyclic. For a
proof, see e.g. (3.6) in the Madrid notes. You may also want to read some very basic facts
on Galois theory which appear in that section.

(3.7) Algebraic sets, varieties . . . . Let F be a perfect field, Ω a large algebraically
closed field containing it, and F alg the algebraic closure of F (inside Ω). Given an n-tuple
ā in Ω, we look at

I(ā/F ) = {f(X̄) ∈ F [X̄] | f(ā) = 0}.

We then have the following result:

I(ā/F )Ω[X̄]is prime ⇐⇒ F (ā) ∩ F alg = F.

Here X̄ = (X1, . . . , Xn), I(ā/F )Ω[X̄] denotes the ideal generated by I(ā/F ) inside Ω[X̄].
If I(ā/F ) satisfies one of these equivalent conditions, then we say it is absolutely prime.
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This terminology also applies to any prime ideal of F [X̄] which generates a prime ideal in
Ω[X̄].

An algebraic subset of Ωn is the set of solutions of some (finite) set of polynomial
equations with coefficients in Ω. The algebraic sets are the closed subsets of a topology
on Ωn, the Zariski topology. This topology is Noetherian, and therefore every closed set is
the union of finitely many irreducible closed subsets4. Thus to an algebraic set S we can
associate I(S), the set of polynomials in Ω[X̄] which vanish at all points of S. The set S
is a variety iff the ideal I(S) is prime, iff it is closed irreducible. It will be defined over
F if I(S) is generated by its intersection with F [X̄]. A point of S is F -rational if all its
coordinates are in F , and the set of F -rational points is denoted S(F ).

(3.8) Pseudo-algebraically closed fields. A field F is pseudo-algebraically closed (ab-
breviated by PAC) if every variety V defined over F has an F -rational point.

Before showing that being PAC is an elementary property, we will show an easy
property of PAC fields:

(3.9) Lemma. Let F be a perfect PAC field, L a field containing F , and assume that
L ∩ F alg = F . Then F is existentially closed in L, denoted F ≺1 L, i.e.: every existential
formula with parameters in F which is true in L is true in F .

Proof. An existential formula of L(F ) is of the form ∃ ȳϕ(ȳ), where ϕ(ȳ) is a boolean
combination of polynomial equations with coefficients in F . Hence a disjunct of conjuncts
of polynomial equations and inequations (over F ), and we may therefore assume it is a
conjunction of equations and inequations5. Using the fact that modulo the theory of fields,
the formula x 6= 0, is equivalent to ∃y xy = 1, we may assume that ϕ(ȳ) is a conjunction
of polynomial equations with coefficients in F .

Let ā ∈ L be a solution of ϕ(ȳ). Since L ∩ F alg = F , we know that the ideal
I(ā/F ) = {f(X̄) ∈ F [X̄] | f(ā) = 0} is an absolutely prime ideal, see (3.7). I.e., the set V
of tuples on which all elements of I(ā/F ) vanish is a variety, which is defined over F . Since
F is PAC, it follows that there is some tuple b̄ on which all polynomials of I(ā/F ) vanish.
Hence, b̄ satisfies every polynomial equation over F that ā satisfies, and in particular, will
satisfy ϕ.

(3.10) Comments. The condition L∩F alg = F is clearly necessary: if α ∈ L∩F alg and
α /∈ F , and if p(X) is the minimal polynomial of α over F , then L |= ∃y p(y) = 0, but
F |= ∀y p(y) 6= 0.

It is in general not a sufficient condition. E.g., we will see that one can find a pseudo-
finite field F such that F ∩ Falg

p = Fp, and clearly Fp 6≺1 F .

(3.11) Theorem. There is a theory (in the language of rings) whose models are exactly
the PAC fields.

Proof. Fix integers m,n, d. We need to express the following:

4 A closed set U is irreducible if whenever U = U1∪U2 with U1, U2 closed, then U1 = U
or U2 = U

5 Use that each of ∃ȳ ϕi(ȳ), i = 1, 2, implies ∃ȳ (ϕ1∨ϕ2)(ȳ) to get rid of the disjunctions.
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Let f1(X̄), . . . , fm(X̄) be polynomials in X̄ = (X1, . . . , Xn) of degree ≤ d, and assume
they generate an absolutely prime ideal. Then they have a common zero.

This follows from results of Hermann, see below (3.14). If d is an integer, then we
denote by F [X̄]≤d the set of polynomials of degree ≤ d. They form a finite dimensional
F -vector space, and are therefore definable in F . The following maps are also definable:
Addition: F [X̄]≤d × F [X̄]≤d → F [X̄]≤d,
Multiplication: F [X̄]≤d × F [X̄]≤d → F [X̄]≤2d.

(3.12) Results of Hermann. (For a proof, see [He] or [S].)
(1) There is a constant A = A(n, d) such that for every field F , polynomials f1, . . . , fm, g ∈

F [X̄]≤d, if g belongs to the ideal of F [X̄] generated by f1, . . . , fm, then there are
h1, . . . , hm ∈ F [X̄]≤A such that g =

∑m
i=1 fihi.

(2) There is a constant B = B(n, d) such that for every field F , for every ideal I of F [X]
generated by elements of F [X]≤d and for every g ∈ F [X]≤d, if gk ∈ I for some integer
k, then gB ∈ I.

(3) There is a constant C = C(n, d) such that for every field F , ideals I and J generated
by elements of F [X]≤d, the ideals I∩J and J : I = {f ∈ F [X] | fI ⊆ J} are generated
by elements of F [X]≤C .

(4) There is a constant D = D(n, d) such that for every field F and ideal I of F [X]
generated by elements of F [X]≤d, if I is not prime, then there are g, h ∈ F [X]≤D such
that gh ∈ I but g, h /∈ I.

(5) There is a constant E = E(n, d) such that for every field F and ideal I of F [X]
generated by elements of F [X]≤d, there are at most E minimal prime ideals containing
I, and they are generated by elements of F [X]≤E .

(3.13) Corollary. Let n, d ≥ 1. There is a formula ϕ(ȳ), ȳ an mN(d)-tuple of variables,
such that in every field F , for every mN(d)-tuple ā in F , if f1, . . . , fm is the m-tuple of
elements of F [X̄]≤d encoded by ā, then

F |= ϕ(ā) ⇐⇒ the ideal of F [X̄] generated by f1, . . . , fm is prime.

Proof. Let D = D(n, d), A = A(n,D). Then
f1, . . . , fm generate a prime ideal I in F [X̄]
if and only if for all g, h ∈ F [X̄]≤D, either gh /∈ I or one of g, h is in I,
if and only if for all g, h ∈ F [X̄]≤D, either for all h1, . . . , hm ∈ F [X̄]≤A, gh 6=∑m

i=1 hifi, or there are h1, . . . , hm ∈ F [X̄]≤A such that [g =
∑m

i=1 hifi or h =
∑m

i=1 hifi].
This last statement is clearly an elementary property of the mN(d)-tuple ā of coeffi-

cients of f1, . . . , fm.

(3.14) Corollary. Let n, d ≥ 1. There is a quantifier-free formula ψ(ȳ), ȳ an mN(d)-
tuple of variables such that in every field F , for every mN(d)-tuple ā in F , if f1, . . . , fm is
the m-tuple of elements of F [X̄]≤d encoded by ā, then

F |= ψ(ā) ⇐⇒ the ideal of F alg[X] generated by f1, . . . , fm is prime.
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Proof. Take the formula ϕ(ȳ) given by (3.13). By quantifier-elimination of the theory
of algebraically closed fields6, there is a quantifier-free formula ψ(ȳ) such that in every
algebraically closed field K, for every mN(d)-tuple ā in K we have

K |= ϕ(ā) ⇐⇒ K |= ψ(ā).

But if the tuple ā is in the subfield F of K, we have

K |= ψ(ā) ⇐⇒ F |= ψ(ā).

Thus F |= ψ(ā) if and only if the m-tuple (f1, . . . , fm) of F [X̄]≤d encoded by ā generates
a prime ideal in F alg[X̄].

(3.15) The theorem of Lang-Weil ([LW]). For every positive integers n, d, there is
positive constant C (= C(n, d)) such that for every finite field Fq and variety V defined
by polynomials in Fq[X1, . . . , Xn]≤d,∣∣|V (Fq)| − qdim(V )

∣∣ ≤ Cqdim(V )−1/2.

[Recall that V (Fq) is the set of points of V ∩ Fn
q , and dim(V ) is the dimension of V , i.e.,

tr.deg(Fq(V )/Fq).]
In particular, if q > C2, then any variety V as above will have a rational point in Fq.

Indeed, we get
0 < −Cqdim(V )−1/2 + qdim(V ) ≤ |V (Fq)|.

The constant C can be effectively computed.

(3.16) Axiom 3(m,n, d). So the third axiom will simply say: whenever f1(X̄), . . . , fm(X̄)
are polynomials in X̄ = (X1, . . . , Xn) of degree ≤ d and which generate an absolutly prime
ideal, then there is an n-tuple ā such that

∧
i fi(ā) = 0, unless the field has less than

C(n, d) elements.

(3.17) Definition A field F is pseudo-finite iff it satisfies the axioms 1, 2(`) and if it is
PAC. In other words, if it is an infinite model of the theory T ∗f .
Theorem.
(1) Finite fields are models of the axioms 1, 2(`) and 3(m,n, d). In other words they are

models of the theory T ∗f introduced in (3.1).
(2) Let Q be the set of all prime powers, and let U be a non-principal ultrafilter on Q.

Then the field F ∗ =
∏

q∈Q Fq/U is a pseudo-finite field.
Proof. Clearly any infinite model of the scheme of axioms 3(m,n, d) is pseudo-algebraically
closed, so it suffices to show the first assertion. The result of Lang-Weil (3.15) gives scheme
of axioms 3(m,n, d). We also know that finite fields are perfect, and that they have exactly
one algebraic extension of each degree.

6 Modulo the theory ACF, every formula is equivalent to a quantifier-free formula.
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4. Showing that T ∗f ` Tf .

So, we have shown that the theory T ∗f is satisfied by every finite field, and therefore
is contained in the theory Tf of all finite fields. In order to show that T ∗f axiomatises the
theory of all finite fields, we need to show the converse. I.e., that if a sentence θ is true in
all finite fields, then it is true in all models of T ∗f . Since such a sentence is obviously true
in all finite models of T ∗f , it remains to show that it is true in all pseudo-finite fields. In
other words, we need to show that the pseudo-finite fields are exactly the infinite models
of the theory Tf .

To do that, it is enough to show that if F is a pseudo-finite field, then F is elementarily
equivalent to an ultraproduct of finite fields. Indeed, this will imply that a formula which
is true in all finite fields is also true in this arbitrary infinite model of T ∗f (by  Los’ theorem),
and therefore that Tf = T ∗f (or rather, T ∗f ` Tf ).

The strategy to do that, is to describe the completions of the theory T ∗f , or rather, of
the theory Psf of pseudo-finite fields, obtained by adding to T ∗f axioms saying that there
are infinitely many elements.

Once we have described the completions of Psf, we will relatively easily obtain the
result, as well as some “quantifier-elimination” results.

The main tool in the description of the completions of Psf is the following

(4.1) The embedding Lemma. (Simplified version). Let K,E,K∗ be perfect fields,
contained in some large algebraically closed field Ω, and such that
(1) K ⊂ E,K∗,
(2) Kalg ∩K∗ = Kalg ∩ E = K,
(3) K∗ is pseudo-finite and ℵ1-saturated,7

(4) E is countable, has at most one extension of each degree.
Then there is a field embedding ϕ : Ealg → K∗alg such that ϕ|K = id and ϕ(E) ⊆ K∗.

Thus in particular, ϕ(E)alg ∩K∗ = ϕ(E).

I will not give a proof of this result, as it uses the Galois correspondence in an essential
way. You can find a proof in (6.8) of the Madrid notes, or in the book of Fried and Jarden.

(4.2) Theorem. Let K and L be pseudo-finite fields, containing a common subfield k.
Assume that

kalg ∩K = kalg ∩ L = k.

Then K ≡k L (i.e., K and L are elementarily equivalent in the language L(k) obtained by
adding to the language of rings constant symbols for the elements of k).

Proof. If the result is false, then a formula showing it is false will only involve finitely many
parameters from k. Hence, we may assume that k is countable. Passing to elementary
extensions of K and L, we may also assume that K and L are ℵ1-saturated: if K ≺ K∗,
L ≺ L∗ and K∗ ≡k L

∗, then also K ≡k L.

7 Recall that a model M is ℵ1-saturated if for every countable subset A of M , and set
Σ(x) of formulas with parameters in A, if Σ is finitely consistent, then it has a realisation
in M . Every model has an elementary extension which is ℵ1-saturated.
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We now consider the following family I of partial isomorphisms: f : A → B, where
A ⊂ K and B ⊂ L, is in I if and only if it is a field isomorphism, A and B are countable,
and Aalg ∩K = A, Balg ∩ L = B.

We will show that the family I has the back-and-forth property, i.e.:
– If f ∈ I and a ∈ K there is g ∈ I extending f and with a in its domain,
– and if b ∈ L, there is g ∈ I extending f and with b in its image.
Suppose we have f and a as above. Let E = A(a)alg ∩ K. We first extend f to

an automorphism f̃ of the big algebraically closed field Ω in which we are working, and
let E0 = f̃(E). We wish to use the Embedding lemma (4.1). We already know that
E0∩Balg = B, since we had E∩Aalg ⊂ K∩Aalg = A. Furthermore, as Ealg∩K = E, and
K has at most one algebraic extension of each degree, we know that E has at most one
algebraic extension of each degree: indeed, if M is an algebraic extension of E of degree
n, then MK is an algebraic extension of K of degree n also. This property is preserved
by f̃ , and we may therefore apply the Embedding lemma to B,E0, L: there is ψ : E0 → L
which is the identity on B and such that ψ(E0)alg ∩ L = ψ(E0). Then g = ψf̃ |E is our
desired element of I.

The other direction (back) follows by symmetry.

(4.3) Back and forth? This is just a saturated version of Ehrenfeuch-Fräıssé games.
One shows by induction on the number of quantifiers, that if f ∈ I, then f preserves all
formulas with n quantifiers, i.e., if ϕ(x̄) has n quantifiers, and ā is in the domain of f , then
K |= ϕ(ā) if and only if L |= ϕ(f(ā)).

(4.4) Definition. If K is a field and k0 ⊆ K the prime subfield of K (i.e., the field of
fractions of the subring of K generated by 1; it equals Q or Fp), then the (field of) absolute
numbers of K is the field kalg

0 ∩K.

(4.5) Corollary. The completions of Psf are obtained by describing the isomorphism type
of the field of absolute numbers of a model.
Proof. Clear from Theorem (4.2): if F1 and F2 are pseudo-finite and have isomorphic fields
of absolute numbers k, then F1 ≡ F2.

(4.6) Corollary. If F1 ⊆ F2 are pseudo-finite fields then

F1 ≺ F2 ⇐⇒ F alg
1 ∩ F2 = F1.

Proof. This follows from Theorem (4.2), with k = F2.

(4.7) Corollary (Kiefe). Modulo the theory Psf, any formula ϕ(x̄) is equivalent to a
Boolean combination of formulas of the form ∃t f(x̄, t) = 0, where f(X̄, T ) ∈ Z[X̄, T ].
Proof. By compactness, it suffices to show that if F1, F2 are two pseudo-finite fields of
the same characteristic, and ā, b̄ are n-tuples in F1, F2 respectively, such that for every
f(X̄, T ) ∈ Z[X̄, T ],

(1) F1 |= ∃t f(ā, t) = 0 ⇐⇒ F2 |= ∃t f(b̄, t) = 0,

13



then for any formula ϕ(x̄), we have

F1 |= ϕ(ā) ⇐⇒ F2 |= ϕ(b̄).

By Theorem (4.2), this last condition is equivalent to the existence of an isomorphism
between the fields A = k0(ā)alg ∩F1 and B = k0(b̄)alg ∩F2, where k0 is the prime subfield
of F1 and F2. We will show that (1) implies that such an isomorphism exists. First
of all note that there is an isomorphism ϕ : k0(ā) → k0(b̄) which sends ā to b̄: this is
because the tuples ā and b̄ satisfy the same polynomial equations over k0. Extend ϕ to
ϕ : k0(ā)alg → k0(b̄)alg. We need to show that such a ϕ can be chosen with ϕ(A) = B.
Equivalently, we need to find σ ∈ Aut(k0(b̄)alg)/k0(b̄)) such that σ(ϕ(A)) = B. We know
that for any f(X̄, T ) ∈ Z[X̄, T ], we have

ϕ(A) |= ∃t f(b̄, t) = 0 ⇐⇒ B |= ∃t f(b̄, t) = 0.

The result will now follow from the following lemma:

(4.8) Lemma. Let B be a field, and B1, B2 two perfect subfields of Balg. Assume that
for every f(T ) ∈ B[T ] we have

B1 |= ∃t f(t) = 0 ⇐⇒ B2 |= ∃tf(t) = 0.

Then there is σ ∈ Aut(Balg/B) such that σ(B1) = B2.
Proof. If the characteristic is p > 0 and b ∈ B, then there is a unique element of Balg

satisfying Xp = b, so we can assume that B is also perfect. As Balg is the the union of
finite normal extensions of B, we will show that for any finite normal8 extension L of B,
we have

B1 ∩ L 'B B2 ∩ L.

For each finite normal extension L of B consider

SL = {σ ∈ Aut(Balg/B) | σ(L ∩B1) = L ∩B2}.

Claim. SL is not empty.
Let α ∈ L be such that L ∩ B1 = B(α), and let f(T ) be its minimal polynomial9.

Then B1 |= f(α) = 0, and so there is some β ∈ B2 such that f(β) = 0. Let σ ∈ Aut(L/B)
be such that σ(α) = β. Then certainly σ(B1) ⊆ B2, and therefore [B1 : B] ≤ [B2 : B].
The symmetric argument gives [B2 : B] ≤ [B1 : B], and this implies that the degrees are
equal, and σ(B1) = B2. Lift σ to an element of Aut(Balg/B).

Thus the family SL, L ranging over all finite normal extensions of B, has the finite
intersection property: If L and M are finite normal extensions of B, then so is their field

8 A normal extension of a field B is an extension L which is stable under all elements
of Aut(Balg/B). Equivalently, if f(T ) is an irreducible polynomial of B[T ], then either L
contains all roots of f(T ), or it contains none.

9 That such an element exists is because B is perfect
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composite10 LM ans we have SLM ⊆ SL ∩ SM . By compactness of the profinite group
Aut(Balg/B), there is some σ in the intersection of all SL, and this σ satisfies σ(B1) = B2.

(4.9) Another way of stating Corollary (4.5) is to say that modulo Psf, every sentence is
equivalent to a Boolean combination of sentences ∃t f(t) = 0, where f(T ) ∈ Z[T ].

What are the constraints on fields of absolute numbers of pseudo-finite fields? Actu-
ally, none, beside the fact that they must have at most one extension of each degree. [Recall
that they must be relatively algebraically closed in a field having exactly one extension of
each degree]. Hence Qalg is allowable, as is any subfield of Falg

p .
To finish the proof that Tf = T ∗f , it therefore suffices to prove the following:

(4.10) Theorem. Let k = Fp or k = Q, and let E ⊆ kalg have at most one extension
of each degree. Then there is an ultraproduct K∗ of finite fields such that the field of
absolute numbers of K∗ is isomorphic to E. When the characteristic of E is 0, K∗ can be
chosen to be an ultraproduct of prime fields.

Proof. We will start with the easy cases, when the characteristic of E is p > 0. The
characteristic 0 case will need Chebotarev’s theorem, see below (4.11)

Case 1. E is infinite (and of characteristic p).
Let nm be a sequence of integers such that nm divides nm+1, and E =

⋃
m Fpnm .

For instance, as Fp =
⋃

m Fpm! , we can define nm by Fpnm = E ∩ Fpm! . Let U be any
non-principal ultrafilter on N such that {nm | m ∈ N} ∈ U , and let K∗ =

∏
m Fpnm /U .

Then K∗ ∩ Falg
p ' E.

Indeed, clearly K∗ is of characteristic p. Let d ∈ N. If Fd
p ⊂ E, then Fpd will be

contained in all fields Fpnm with m ≥ d. Hence, by  Los’ theorem, K∗ will satisfy the
sentence “there is an element of multiplicative order exactly pd − 1”, and therefore will
contain (a copy of) Fpd . On the other hand, if Fd

p 6⊂ E, then Fpd is contained in no Fpnm ,
therefore K∗ will satisfy “there is no element of multiplicative order exactly qd − 1”, and
K∗ will not contain Fqd . Hence we will have K∗ ∩ Falg

p = Fq.

Case 2. E is finite.
Let q = |E|, so that E = Fq. Consider any non-trivial ultrafilter U on the set P of

prime numbers, and let K∗ =
∏

`∈P F`
q/U . Then K∗ is of characteristic p and contains Fq.

But, if d > 1, all but at most one field Fq` satisfy “there is no element of multiplicative
order exactly pd − 1”, and therefore K∗ ∩ Falg

p = Fq.

Case 3. E is of characteristic 0.
Write Qalg as the union of an increasing chain Ln, n ∈ N, of finite Galois extensions

of Q. For each n, let En = Ln ∩ F , and let I(n) be the (finite) set of subfields of Ln

which properly contain En. We will find a sentence θn which describes Ln ∩ F . Choose
a generator α of En over Q, and let fn(T ) be its minimal polynomial over Q. Similarly,
for each M ∈ I(n), choose a generator βM of M over Q, let gM (T ) be the minimal
polynomial of βM over Q, and define gn(T ) =

∏
M∈I(n) gM (T ). Consider now the sentence

θn : ∃t fn(t) = 0 ∧ ∀t gn(t) 6= 0. This is a sentence satisfied by E, and if F is any field of
characteristic 0, then F |= θn ⇐⇒ F ∩ Ln ' En.

10 the subfield of Balg generated by L and M .
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As the Ln’s form an increasing chain, so do the En’s, and we have θn → θn−1. In
order to find an ultraproduct of prime fields with field of absolute numbers isomorphic to
F , it is therefore enough to show that for each n, the set

Sn := {p ∈ P | Fp |= θn}

is infinite. As Sn ⊃ Sn+1, there will be a non-principal ultrafilter U containing all Sn’s,
and if K∗ =

∏
p∈P Fp/U , then K∗ |= θn for each n, i.e.: K∗ ∩Qalg ' E.

That Sn is infinite follows from Tchebotarev’s theorem. Here is the consequence of
Tchebotarev’s theorem that we will use:

(4.11) Let f1(T ), . . . , fm(T ), g(T ) ∈ Z[T ], T a single variable. Let L be the Galois exten-
sion of Q obtained by adjoining all roots of the polynomials fi(T ), i = 1, . . . ,m. Assume
that there is a subfield E of L such that Aut(L/E) is cyclic and

E |=
m∧

i=1

∃t fi(t) = 0 ∧ ∀t g(t) 6= 0.

Then the set of prime numbers p such that Fp |=
∧m

i=1 ∃t fi(t) = 0∧∀t g(t) 6= 0 is infinite.

(4.12) Decidability issues. Observe first that by Theorem (4.10) we have

Psf ⊂ Psf0 ⊂ Tprime and Psf ⊂ Tf ⊂ Tprime.

(Here Psf0 denotes the theory of pseudo-finite fields of characteristic 0 and Tprime the
theory of all prime fields. We will first show that the theory Psf is decidable, that is,
that there is an algorithm which decides, given a sentence θ, whether it is true in all
pseudo-finite fields or not. From this we will be able to derive the decidability of the other
theories.

We have an enumeration of a set Γ consisting of axioms for the theory Psf (this assumes
that the bounds given in (3.12) on degrees of polynomials can be computed effectively, but
they can). Hence, we can produce an enumeration of the set of all proofs made using axioms
of Γ, and therefore of the theory Psf (by the completeness theorem, if a sentence is true in
all pseudo-finite fields, then it is provable from Γ). Similarly, we have an enumeration of
a set Γ0 of axioms for the theory Psf0 of all pseudo-finite fields of characteristic 0, and of
the theory Psf0. Note that Γ0 = Γ ∪ {p 6= 0 | p a prime}.

This tells us that if θ is in Psf, then going through the enumeration of Psf we will
find it. However, we need another procedure to decide if θ /∈ Psf. This is what we will do
below. Let us fix a sentence θ.

Let ψn, n ∈ N, be an enumeration of all sentences which are Boolean combinations of
sentences of the form ∃t f(t) = 0, where f(T ) ∈ Z[T ]. By (4.9), we know that Γ ` θ ↔ ψn

for some n, i.e., θ ↔ ψn ∈ Psf, and therefore we can effectively find this ψn. Note that the
proof of θ ↔ ψn uses only a finite number of axioms expressing the PAC property, and we
can therefore find a constant C1 (given by Lang-Weil (3.15)) such that in all finite fields
Fq with q > C1 we have

Fq |= θ ↔ ψn.
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It now remains to decide whether ψn is true in all pseudo-finite fields. I.e., we need to
show that if k is a prime field, and E ⊆ kalg has at most one algebraic extension of each
degree, then E |= ψn.
Step 1. Decide whether ψn ∈ Psf0 or not.

We know that ψn is (equivalent to) a disjunction of sentences of the form
∧

i ∃t fi(t) =
0 ∧ ∀t g(t) 6= 0. Let L be the extension of Q generated by all roots of all polynomials
appearing in ψn. Then one can compute effectively Aut(L/Q), as well as those subfields
E of L such that Aut(L/E) is cyclic. Hence we can decide whether or not ψn is true in all
subfields E of L such that Aut(L/E) is cyclic. If it is not, then ψn /∈ Psf0 and therefore
ψn /∈ Psf, i.e., θ /∈ Psf0, θ /∈ Psf.
Step 2. Decide whether ψn ∈ Psf.

Assume that ψn ∈ Psf0. Then it is provable from Γ0, and its proof only uses finitely
many axioms expressing that the characteristic is 6= p; therefore there is a constant C2 such
that ψn holds in all pseudo-finite fields of characteristic p > C2. It therefore remains to
check whether ψn holds in all pseudo-finite fields of characteristic p ≤ C2. Fix one such p.
Then, as in step 1 we let Fpm be the extension of Fp generated by all roots of polynomials
appearing in ψn. It then suffices to check whether Fpd |= ψn or not for all d dividing m.
This is certainly decidable, and finishes the proof that Psf is decidable.
Step 3. Decidability of Tf and of Tprime.

We assume now that all pseudo-finite fields satisfy θ. Hence there is a proof of θ from
Γ, and this proof will involve only finitely many axioms saying that varieties have points.
Hence, there is a constant C3 such that Tf ∪ {there are at least C3 elements} proves θ. It
now remains to check whether θ holds in the finitely many finite fields of size < C3. But
this is decidable.

Similarly, assume that all pseudo-finite fields of characteristic 0 satisfy θ. Then the
proof of θ from Psf0 uses only finitely many axioms saying that varieties have points and
that “p 6= 0”, and there is a constant C4 such that Tf ∪ {“p 6= 0”, p < C4} proves θ. It
now remains to check whether θ holds in the finitely many prime fields of size < C4.
[So we didn’t need C1 after all].

5. More results on pseudo-finite fields
If M is a structure, and ϕ(x̄) is a formula in the language of M , we denote by ϕ(M)

the set of tuples in M satisfying ϕ.

(5.1) Examples of pseudo-finite fields. If F is an infinite subfield of Falg
p , then F is

PAC by the theorem of Lang-Weil (3.15), and is perfect. Hence, any infinite subfield F of
Falg

p pseudo-finite as soon as it satisfies axiom 2(`) for all `. (By group theory results, it
actually suffices to have it for all primes). Hence, if f is any function from the set of prime
numbers to the positive integers, and F is the field composite of all Fpf(`) , ` a prime, then
F is pseudo-finite.

This gives us many pseudo-finite fields of positive characteristic. In characteristic 0,
there are no such explicit examples. However a result of Jarden (see [FJ] for a proof)
shows that there are many such fields. The profinite group Aut(Qalg/Q) is compact,
and has a unique Haar probability measure. In the sense of this measure, for almost all
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σ ∈ Aut(Qalg/Q), the subfield of Qalg fixed by σ is pseudo-finite. Other examples are of
course non-principal ultraproducts of prime fields.

(5.2) Quantifier-elimination results for pseudo-finite fields. An easy consequence
of Kiefe’s result (4.7) is:

Theorem. Let L′ be the language obtained by adding to the language of rings an (n+ 1)-
ary predicate Rn for every n > 1, and add to the theory Psf the axioms

Rn(x0, . . . , xn) ⇐⇒ ∃y
n∑

i=0

xiy
i = 0,

to obtain a theory Psf ′. Then Psf ′ eliminates quantifiers.

Proof. Let F1 and F2 be pseudo-finite fields, containing a common L′-substructure A.
Then A is a subring. We need to show that F1 ≡A F2. By Lemma (4.8) (or its proof),
there is an isomorphism f : Aalg ∩ F1 → Aalg ∩ F2 which is the identity on A. Now apply
Theorem (4.2).

(5.3) A language in which Psf is model complete. We form the language Lc by
adjoining to the language L of rings new constant symbols ci,n, where 2 ≤ n ∈ N and
0 ≤ i ≤ n − 1. The theory Psfc is obtained by adding to the theory Psf for each n an
axiom stating that the polynomial Xn +

∑n−1
i=0 ci,nX

i is irreducible.
Note that every pseudo-finite field expands to a model of Psfc: if F is pseudo-finite,

for each n choose the ci,n to be the coefficients of some (monic) irreducible polynomial of
degree n.

Recall that a theory T is model complete if whenever M ⊆ N are models of T , then
M ≺ N . If T is model complete, then every formula is equivalent modulo T to an existential
formula (and to a universal formula).

Theorem. The theory Psfc is model complete.

Proof. Let F1 ⊆ F2 be models of Psfc. If L is an algebraic extension of F1 of degree n, then
L is generated over F1 by a solution of the equation Xn +

∑n−1
i=0 ci,nX

i. Since Fi |= Psfc,
this polynomial stays irreducible over F2, i.e., F2 ∩ L = F1. By (4.6), we obtain F1 ≺ F2.

(5.4) Other quantifier-elimination results. Fried and Sacerdote introduce a more geo-
metric language, in which one has quantifier elimination. They are using “Galois formulas”,
and the process is called “elimination through Galois stratification”. The elimination pro-
cedure is primitive recursive. For details see [FHJ1] or [FJ]. One should note that this is
the language that Denef and Loeser found more convenient to set up motivic integration
in [DL].

(5.5) Results of Kiefe on Zeta and Poincaré series. Recall that if R is a ring, then
R[[t]], the ring of formal power series over R, is the set of formal sums

∑∞
i=0 ait

i. Addition
and multiplication are defined by∑

ait
i +

∑
bjt

j =
∑

(ai + bi)ti,
∑

i

ait
i
∑

bjt
j =

∑
n

(
∑

i+j=n

aibj)tn.
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[Note that there are only finitely many non-negative integers such that i+ j = n, so that∑
i+j=n aibj is a finite sum and is well defined].

Let ϕ(x̄) be an L-formula, with parameters in Fq, some q = pn, p a prime. For each
s ≥ 1, we define

Ns(ϕ) = |ϕ(Fqs)|.

We then define two formal series over Q, the Poincaré series P and the Zeta series Z by

P (ϕ, t) =
∞∑

s=1

Ns(ϕ)ts, Z(ϕ, t) = exp(
∞∑

s=1

Ns(ϕ)
s

ts).

Theorem (Kiefe). P (ϕ, t) is rational in t (i.e., is of the form p(t)/q(t), with p(t), q(t) ∈
Q[t], and q(0) 6= 0), and Z(ϕ, t) = exp(f(t))(g(t)/h(t))1/` for some integer ` and polyno-
mials f(t), g(t), h(t) ∈ Q[t].

Note that we have the functional equation

P (ϕ, t) = t
d

dt
(log(Z(ϕ, t))), Z(θ, 0) = 1.

Hence the first assertion will follow from the first. When ϕ is a quantifier-free formula,
this is a result of Dwork. For a proof, see the book of Fried and Jarden [FJ], for instance.
The proof given there uses Galois formulas.

6. Measure, definability, and other applications

(6.1) Counting points. We saw in Theorem (4.10) that every pseudo-finite field is
elementarily equivalent to an ultraproduct of finite fields. This implies in fact that every
pseudo-finite field elementarily embeds into an ultraproduct of finite fields (an ultrapower
of ultraproducts is an ultraproduct). Now, every finite field can be equipped with a measure
(the counting measure), and one would think that the ultraproduct of these measures might
define something interesting on F . It turns out that this is the case, and we will see below
how it works. The main tool is the following
Theorem ([CDM]). Let ϕ(x̄, ȳ) be a formula, x̄ an n-tuple of variables (ȳ an m-tuple of
variables). Then there is a finite set D ⊂ {0, 1, . . . , n} ×Q>0 ∪ {(0, 0)} of pairs (d, µ), and
a constant C > 0, formulas ϕd,µ(ȳ) for (d, µ) ∈ D such that:
(1) If Fq is a finite field and ā an m-tuple in Fq, then there is some (d, µ) ∈ D such that∣∣|ϕ(Fq, ā)| − µqd

∣∣ < Cqd−1/2. (∗)

[Here ϕ(Fq, ā) denotes the set {b̄ ∈ Fn
q | Fq |= ϕ(b̄, ā)}.]

(2) The formula ϕd,µ(ȳ) defines in each Fq the set of tuples ā such that (∗) holds.
I am not going to give a proof of this result, although I will later sketch a strategy for

the proof. With some work one can show that the constant C can be found effectively, see
[FHJ2], and also [FS], [FHJ1]. First a few remarks.

(6.2) Remarks.
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(1) Observe that the pair (0, 0) has been put in D to take care of the case when ϕ(Fq, ā)
is empty.

(2) If ϕ(x̄, ā) defines a variety V , then this is simply the Theorem of Lang-Weil, with
d = dim(V ) and µ = 1.

(3) Thus, if ϕ(x̄, ā) defines an algebraic set W , all of whose irreducible components are
defined over Fq, then d will be the maximal dimension of the irreducible components
of W , and µ the number of these components of maximal dimension. Note that
therefore, if ϕ(x̄, ȳ) is quantifier-free, then the associated set of pairs will be contained
in {0, . . . , n} × N>0 ∪ {(0, 0)}.

(4) If q is sufficiently large, the formulas ϕd,µ(ȳ) will define a partition of the parameter
set Fm

q .
(5) If n = 1, then there are positive numbers A ∈ N and r ∈ Q such that for every Fq and

tuple ā in Fq,
either |ϕ(Fq, ā)| < A or |ϕ(Fq, ā)| ≥ rq.

Indeed, let D be the set of pairs (d, µ) associated to ϕ(x, ȳ); define A0 = sup{µ |
(0, µ) ∈ D}, r0 = inf{µ | (1, µ) ∈ D}. Let r = r0/2 and A = sup{A0 + C, 4C2/r20}.
Using (∗), this gives the assertion.

(6) Observe that if q is sufficiently large, (0, µ) ∈ D and Fq |= ϕ0,µ(ā), then, because
q−1/2 becomes very small, and in particular < 1/2, the number µ must give the exact
size of the set ϕ(Fq, ā) defined by ϕ(x̄, ā).

(6.3) Some simple applications of this result.
(1) There is no formula of the language of rings which defines in each field F2

q the subfield
Fq.

(2) We know that the multiplicative group of Fq is cyclic, of order q − 1. There is no
formula which defines in all fields Fq the set of generators of the multiplicative group
F×q .

(3) Let G,H be groups definable in the pseudo-finite field F , and assume that f : G→ H
is definable, ker(f) is finite, and dim(G) = dim(H) = d. Then

µ(G)[H : f(G)] = µ(H)| ker(f)|.

Proof. (1) If ϕ(x) is a formula, there are A > 0 and r ∈ Q>0 such that for every finite
field Fq, the size of the set defined by ϕ is either ≤ A or greater than rq. hence, we cannot
have a formula which defines in all Fq2 a set of size q =

√
q2.

(2) The function φ (called the Euler function) giving the number of generating elements
of a cyclic group can be computed. Note that if m,n are relatively prime integers then
φ(nm) = φ(n)φ(m) (since Z/mnZ ' Z/nZ×Z/mZ). Also, φ(pn) = (p−1)pn−1, since any
lifting of a generator of Z/pZ to Z/pn/Z is a generator of Z/pnZ.

First observe that if pn > 2, then φ(pn) ≥
√
n. Hence, for every A ∈ N, the set of

integers n such that φ(n) < A is finite.
We will now show that for every ε > 0, there is some prime power q such that

φ(q − 1) < ε(q − 1). Observe that

φ(n)/n =
∏

` a prime divisor of n

(1− 1
`

).
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Fix some prime p, and let `1, . . . , `m be distinct prime numbers, M =
∏m

i=1(`i − 1). Then
for every i, we have pM ≡ 1 mod(`i) and therefore φ(pM − 1) ≤ (pM − 1)

∏m
i=1(1− 1/`i).

Hence we can find arbitrarily small values of φ(pM−1)
pM−1

, which shows our assertion.
The existence of a formula defining the set of generators in all Fq would then, as in

(1), contradict (6.2)(5).
(3) Let F ∗ =

∏
i∈I Fqi/U be an elementary extension of F , let a be a tuple of elements

of F needed to define f,G and H (and their group law, and (a(i))i a sequence such that
[a(i)i]U = a.

Let ϕ1(x̄, ā) be the formula defining G, ψ1(x̄, ȳ, z̄, ā) the one defining its group law,
ϕ2(x̄, ā) the formula defining H, ψ2(x̄, ȳ, z̄, ā) the one defining its group law, and θ(x̄, ȳ, ā)
the formula defining the graph of f . The following property is then a first order property
of the parameter ā:

ψi(x̄, ȳ, z̄, ā) is the graph of a group operation on the set defined by ϕi(x̄, ā) (i = 1, 2),
and θ(x̄, ȳ, ā) is the graph of a group morphism between the set defined by ϕ1(x̄, ā) and
the set defined by ϕ2(x̄, ā), whose kernel is of size m.

Hence, by  Los’ theorem, for a set J ∈ U , we have, for all j ∈ J , that the following
statement holds in Fqj :
ψ1(x̄, ȳ, z̄, ā(j)) is the graph of a group operation on the set Gj defined by ϕ1(x̄, ā(j)),
ψ2(x̄, ȳ, z̄, ā(j)) is the graph of a group operation on the set Hj defined by ϕ2(x̄, ā(j)), and
θ(x̄, ȳ, ā(j)) is the graph of a group morphism fj : Gj → Hj , whose kernel is of size m.

But Gj and Hj are finite!! Hence we have |Gj |[Hj : fj(Gj)] = |Hj || ker(fj)|. For qj
sufficiently large, dividing by qd

j , we get µ(Gj)[Hj : fj(Gj)] = µ(Hj)| ker(f)|.
There is a first-order formula which expresses that fact, is satisfied in all Fqj for j ∈ J ,

and therefore is satisfied by ā in F ∗, whence also in F . This gives the result.

(6.4) Very rough sketch of the proof of Theorem (6.1). The result is proved by
induction on the complexity of formulas.

Let us first assume that ϕ(x̄, ȳ) is positive quantifier-free, that is, it is a disjunction
of conjunction of equations (over Z).

Let Fq be a finite field, and ā a tuple in Fq. Consider the set S defined by ϕ(x̄, ā).
Then S = W (Fq), where W is the algebraic set given by the equations of ϕ(x̄, ā). However,
we do not know that the Theorem of Lang-Weil can tell us the estimate of how many points
there are: we will be able to apply this theorem only if all irreducible components of W are
defined over Fq. In order to be able to use Lang-Weil, we must therefore find an algebraic
set W ′ such that W ′(Fq) = W (Fq) and all irreducible components of W ′ are defined over
Fq. This is done in the following fashion:

Write W = W1∪· · ·∪Wm where each Wi is irreducible over Fq. If Wi is a variety, then
we know by Lang-Weil (3.15) that |W (Fq)| ∼ qdim(Wi) and we do nothing. If Wi is not a
variety, then Wi has several irreducible components, and any point in Wi(Fq) will belong
to the intersection W ′i of all these components, and we replace Wi by W ′i . We repeat the
procedure and find eventually an algebraic set W ′, all of whose irreducible components are
defined over Fq and such that W ′(Fq) = W (Fq). This procedure is effective, and using the
results on bounds in polynomial rings, and we can write W ′ = W ′1∪· · ·∪W ′` , where the W ′i
are varieties defined over Fq. If d is the maximum of the dimensions of the W ′i , and µ is
the number of components of W ′ of dimension d, the result of Lang-Weil will then give us
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that |W (Fq)| ∼ µqd. One also knows that having dimension d is an elementary property
of the coefficients of a set of polynomials defining a variety. Thus, there is a formula ϕā(ȳ)
satisfied by ā in Fq and which expresses how we obtained W ′ from W , and that W ′ has
exactly µ components of maximal dimension d. For each pair (Fq, ā) we can find such a
formula. By compactness, there are a finite number of those, say ϕ1(ȳ), . . . , ϕk(ȳ) such
that in any finite field F, we have F |= ∀ȳ (∃x̄ϕ(x̄, ȳ)) ↔ (

∨
j ϕj(ȳ)). To each formula

ϕj(ȳ) is associated a pair (d, µ), and we put them together to obtain the desired ϕd,µ.
The case of a quantifier-free formula ϕ(x̄, ȳ) follows, observing that modulo the theory

of fields, an inequation z 6= 0 is equivalent to ∃y yz = 1. Thus, every quantifier-free
definable set is in bijection, via a projection, with an algebraic set. We then use the first
case.

Let us now assume that ϕ(x̄, ȳ) is arbitrary. Then, Theorem (5.3) tells us, using
compactness, that there are positive quantifier-free Lc-formulas ψ1(x̄, ȳ, z̄), . . . , ψm(x̄, ȳ, z̄)
such that

Psf ` ∀x̄, ȳ (ϕ(x̄, ȳ) ↔ ∃z̄
∨
j

ψj(x̄, ȳ, z̄)),

and furthermore such that for some integer N , in any field F one has

F |= ∀x̄, ȳ (∃z̄ ψj(x̄, ȳ, z̄) → ∃≤N z̄ ψj(x̄, ȳ, z̄)).

The same equivalence holds in sufficiently large finite fields, say of size ≥ C ′ for some
C ′ (only depending on ϕ(x̄, ȳ)). Given some sufficiently large finite field F and tuple ā in F,
we know by the previous steps how to estimate the size of the sets defined by the formulas
ψi(x̄, ā, z̄). The problem is that the set defined by

∨
j ψj(x̄, ā, z̄) is not in bijection with the

set defined by ϕ(x̄, ā): given some x̄ in that set, there may be several z̄ such that ψj(x̄, ā, z̄)
holds. One uses a trick to transform the algebraic sets defined by the ψj , in such a way
that we are able to count how many z̄ are sitting above an x̄. Then we use some counting
arguments and induction to conclude. The constant C of the Theorem will be sufficiently
large so that, in field of size smaller than C ′ (and in which we do not necessarily have the
equivalence), the inequality still holds. E.g., one can choose C ≥ C ′

n, where n = |x|.11

(6.5) Definition of the measure on pseudo-finite fields. Let ϕ(x̄, ȳ) be a formula (x̄
an n-tuple of variables), and D, ϕd,µ(ȳ) the set and formulas given by Theorem (6.1). It
follows from Remark (6.2)(6) that if F is a pseudo-finite field and ā a tuple in F , then there
will be a unique pair (d, µ) ∈ D such that F |= ϕd,µ(ā). We then define dim(ϕ(x̄, ā)) = d
and µ(ϕ(x̄, ā)) = µ. If S is the set defined by ϕ(x̄, ā), then we also write dim(S) and µ(S)
respectively.
Proposition. Let F be a pseudo-finite field, S, T two definable sets.
(1) If V is a variety defined over F , then dim(V (F )) = dim(V ) and µ(V (F )) = 1.
(2) Assume that T ∩ S = ∅. Then

µ(S ∪ T ) =

µ(S) + µ(T ) if dim(S) = dim(T ),
µ(S) if dim(S) > dim(T ),
µ(T ) if dim(S) < dim(T ).

11 The argument I gave in class was not completely correct I think; it needs to be refined.
An alternate proof can be given using Galois stratification, see [FHJ1].
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(3) Assume that f : S → T is a definable function, which is onto. If for all ȳ ∈ T ,
dim(f−1(ȳ)) = d, then dim(S) = dim(T )+d. If moreover for every ȳ ∈ T , µ(f−1(ȳ)) =
m, then µ(S) = mµ(T ).

(4) Let us define a function mS on definable subsets of S as follows. Assume that T ⊆ S
is definable, and let (d, µ) = (dim(S), µ(S)), (e, ν) = (dim(T ), µ(T )). Then

mS(T ) =
{

0 if e < d,
ν/µ if d = e.

Then mS is a finitely additive measure on the set of definable subsets of S.
(5) Let S̄ be the Zariski closure of S (in F alg. I.e., the smallest Zariski closed set containing

S. It is defined over F ). Then dim(S) = dim(S̄). [That is, we are saying that the
algebraic dimension of the algebraic set S̄ coincides with the model-theoretic dimension
of the set S]

Proof. (1) is clear.
Recall that F embeds elementarily in some ultraproduct

∏
q∈Q Fq/U of finite fields.

Assume that S is defined by ϕ(x̄, ā), write ā = [āq]U , and Sq for the subset of Fn
q defined

by ϕ(x̄, āq). Note that for some set A ∈ U , we will then have Fq |= ϕd,µ(āq) for all q ∈ A,
and therefore |Sq| ∼ µqd. A moment’s thought shows that this gives items (2) - (4).

(5) By (5.3), there is an algebraic set W (F ) ⊂ Fn+` such that S = π(W (F )) and the
restriction of the projection π to W is finite-to-one. Without loss of generality, W (F ) is
Zariski dense in W , and by (3) we obtain that dim(W ) = dim(S). Working now in F alg,
we have that π is also finite-to-one on a Zariski-dense open subset of W , and therefore
dim(W ) = dim(V ) (algebraic dimensions). Since V ⊇ S̄, we get that dim(V ) = dim(S̄).

(6.6) Existence of certain bounds. Let ϕ(x̄, ȳ) be a formula.
(1) (Not the Strict Order Property)There is a number M such that in any finite or pseudo-

finite field F , the length of a chain of definable subsets of Fn defined by formulas
ϕ(x̄, ā) for some tuples ā in F , is bounded by M .

(2) (Finite Shelah rank) There is a number M such that in any finite field or pseudo-finite
field F , if S is a definable set and (āi)i∈I is a set of tuples such that each ϕ(x̄, āi) defines
a subset of S of the same dimension d as S, and for i 6= j, dim(ϕ(x̄, āi)∧ϕ(x̄, āj)) < d,
then |I| ≤M .

Proof. These two facts follow from general properties of measures. It suffices to show them
for all pseudo-finite fields, since then they will be true in all sufficiently large finite fields,
whence, taking into account the finitely many small finite fields, we will get the bound M .

(1) Assume that this is not the case, i.e., that there are such chains of arbitrarily
large length. Then, going to a sufficiently saturated pseudo-finite field F , we can find
a sequence (āi)i∈N of tuples in F such that if i < j then the set Sj defined by ϕ(x̄, āj)
is strictly contained in the set Si defined by ϕ(x̄, āi). Let D be the finite set of pairs
associated to ϕ. Because D is finite, we may, going to a subsequence, assume that for
every i ∈ N, dim(Si) = d and µ(Si) = µ. The proof is by induction on d.

If d = 0, then we know that µ is the size of the set Si, and therefore |I| = 1. Assume
d > 0 and that the result holds for all definable sets of smaller dimension. For i > 0 let
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Ti = S0 \ Si. Then the sets Ti, i ∈ N, form a strictly increasing chain of subsets of S0,
and we have dim(Ti) < d (since (dim(Si), µ(Si)) = (dim(S0), µ(S0))). This contradicts the
induction hypothesis and proves the result.

(2) Let D be the set of pairs associated to the formula ϕ(x̄, ȳ), and let ν be the inf of
all µ such that (d, µ) ∈ D. If ϕ(x̄, āi), i ∈ I, define subsets Si of S such that dim(Si) = d
and dim(Si ∩ Sj) < d, then we get mS(Si) ≥ ν/µ(S) and mS(Si ∩ Sj) = 0. This gives
|I| ≤ µ(S)/ν.

(6.7) The independence property. Recall that a formula ϕ(x̄, ȳ) has the independence
property (in the model M) iff for every n, there are tuples āi, 1 ≤ i ≤ n, and b̄s, s ∈
P({1, . . . , n}), in M such that

M |= ϕ(āi, b̄s) ⇐⇒ i ∈ s

for every i and s. A complete theory has the independence property if there is a formula
which has the independence property.
Theorem (Duret [D]) The theory of any pseudo-algebraically closed field which is not
separably closed, has the independence property.

We will give here a simple case of his proof, for a pseudo-finite field of characteristic
6= 2. (In characteristic 2, the example can be modified). Let F be a pseudo-finite field and
consider the formula ϕ(x, y) which says that x + y is a square and x 6= y. Let a1, . . . , an

be distinct elements of F , s a subset of {1, . . . , n}, we want to find an element b such
that b + ai is a square if and only if i ∈ s. Renumbering the ai’s, we may assume that
i ∈ s ⇐⇒ i ≤ r.

Because F is pseudo-finite, it contains an element c which is not a square. Then, as
F has a unique extension of degree 2, we have F× = F×

2 ∪ cF×2, and therefore

F |= ∀x [(∀y y2 6= x) ↔ (∃y y2 = cx)].

Let t be transcendental over F , and consider the extension

L = F (t,
√
t+ a1, . . . ,

√
t+ ar,

√
c(t+ ar+1), . . . ,

√
c(t+ an)).

Then L∩ F alg = F (This needs a proof which I will not give). Hence, by Lemma (3.9), in
F there is an element d such that d+ a1, . . . , d+ ar, c(d+ ar+1), . . . , c(d+ an) are squares.
I.e., d+ ai is a square if and only if i ≤ r.

(6.8) Graphs interpretable in pseudo-finite fields. The above proof shows that the
random graph is interpretable in any pseudo-finite field (of characteristic 6= 2), by the
formula expressing that x+ y is a square and x 6= y.

Observe that if −1 is a square in F , then the formula ψ(x, y) saying that x − y is a
square and is non-zero would work as well. If −1 is not a square in F , then the formula
ψ(x, y) defines the random tournament. (a tournament is a binary relation not intersecting
the diagonal and such that given two distinct elements, one exactly of (a, b), (b, a) is in the
relation. The random tournament is a tournament in which given any two disjoint finite
sets A and B there is an element c such that

∧
a∈AR(c, a) ∧

∧
b∈B R(b, c).
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Hrushovski proves in [H1] that one cannot interpret the random triangle-free graph
in any countable pseudo-finite field. Beyarslan proves in [B] that one can interpret in any
pseudo-finite field the random n-hypergraph. Recall that if n ≥ 2, an n-hypergraph is a sn
n-ary relation R satisfying:

– R(x1, . . . , xn) →
∧

i 6=j xi 6= xj ,
– R(x1, . . . , xn) →

∧
σ∈Sym({1,...,n})R(xσ(1), . . . , xσ(n)).

The random n-hypergraph is the existentially closed countable n-hypergraph. I.e., it is
countable, and satisfies, for all m, `,

if a1, . . . , am, b1, . . . , b` are distinct (n − 1)-element subsets, then there is an element
x such that

∧
iR(x, ai) ∧

∧
j ¬R(x, bj).

(6.9) Another interesting result, in the vein of (6.3). Say that I ⊂ Fp is an interval (p
a prime) if there is some interval J in Z such that I is the image of J under the natural
reduction modulo p : Z → Z/pZ = Fp.

Proposition (Kowalski [K]). If ϕ(x) is a formula of the language of rings which defines in
all prime field Fp an interval, then there is a number N such that for every prime p, one
of |ϕ(Fp)|, |¬ϕ(Fp)| has size ≤ N .

Note that an argument using measures is not sufficient, since the interval [0, p−1
2 ] has

size approximately p
2 .

(6.10) N-dimensional asymptotic classes. Let N be a positive integer. A class C
of finite structures is an N -dimensional asymptotic class if to each formula ϕ(x̄, ȳ), x̄ an
n-tuple, ȳ an m-tuple, one can associate a finite set D of pairs (d, µ) ∈ {0, . . . , Nn} ×
R>0 ∪ {(0, 0)}, as well as formulas ϕd,µ for (d, µ) ∈ D, and a constant C > 0 such that
(1) For any M ∈ C and m-tuple ā ∈M , one has, for some (d, µ) ∈ D,∣∣|ϕ(M, ā)| − µ|M |d/N

∣∣ = o(|M |d/N ). (∗)

[Here ϕ(M, ā) denotes the set {b̄ ∈Mn |M |= ϕ(b̄, ā)}.]
(2) The formula ϕd,µ(ȳ) defines in each M ∈ C the set of tuples ā such that (∗) holds.
Here the notation o(|M |d/N ) means: for every ε ∈ R>0, there is Q ∈ N such that if M ∈ C
has size > Q and if ā satisfies ϕd,µ in M , then

∣∣|ϕ(M, ā)| − µ|M |d/N
∣∣ < ε|M |d/N .

The universe M is then thought to be N -dimensional. Because of the definability
condition, it turns out that one only need to verify the properties for formulas with x a
singleton. For more details one can consult the survey paper by Elwes and Macpherson
[EM].

(6.11) Measurable structures. A structure M is measurable if there is a function h =
(Dim, µ) (dimension and measure) from the set Def(M) of definable subsets of cartesian
powers of M , taking values in N× R>0 ∪ {(0, 0)}, and satisfying the following conditions:
(1) For every formula ϕ(x̄, ȳ) there is a finite set D = Dϕ such that for any ā in M

h(ϕ(M, ā)) ∈ D.
(2) If S is finite (or empty), then h(S) = (0, |S|),
(3) For every formula ϕ, and (d, µ) ∈ Dϕ, the set {ā | h(ϕ(M, ā)) = (d, µ)} is definable in

M (without parameters).
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(4) (Additivity) Let S, T be disjoint definable subsets of Mn. Then Dim(S ∪ T ) =
sup{Dim(S),Dim(T )}, and

µ(S ∪ T ) =

µ(S) + µ(T ) if Dim(S) = Dim(T ),
µ(S) if Dim(S) > Dim(T ),
µ(T ) if Dim(S) < Dim(T ).

(5) (Fubini) Assume that f : S → T is a definable function, which is onto. If for all
ȳ ∈ T , Dim(f−1(ȳ)) = d, then Dim(S) = Dim(T ) + d. If moreover for every ȳ ∈ T ,
µ(f−1(ȳ)) = m, then µ(S) = mµ(T ).

(6.12) Comments. The motivating example are pseudo-finite fields. Because of the
definability condition and the Fubini condition, one can restrict one’s attention to definable
subsets of M . Also, as with pseudo-finite fields, it follows that the theory of a measurable
structure is supersimple.

If C is an N -dimensional asymptotic class of finite structures, then any structure in
the elementary class generated by C will be measurable, and we also see that the definitions
and measures will be uniform through the structures in this elementary class.

The converse is however not true: there exists measurable structures which are not
elementarily equivalent to ultraproducts of finite structures. Below we will give such an
example.

(6.13) Definitions.
(1) Recall that a first order theory T is strongly minimal if in any model M of T , any

definable (with parameters) subset of M is finite or cofinite.
(2) In a strongly minimal theory one can define a rank, called the Morley rank as well as

a multiplicity, the Morley degree, of definable sets. I will not give precise definitions,
let me say that the rank satisfies the obvious axioms of a dimension (see properties
(4) and (5) of Dim in (6.11)), and that the Morley degree of a definable set S is the
maximal number n such that S can be definably partitioned into sets of the same
rank as S. Furthermore, the Morley rank of the universe is 1, and of a finite set is
0. A strongly minimal theory T has the DMP (definable multiplicity property) if for
any model M , formula ϕ(x̄, ȳ) and integer n > 0, the set of tuples ā in M such that
ϕ(M, ā) has Morley degree n, is definable.

Important examples of strongly minimal theories with the DMP are the completions of
the theory ACF of algebraically closed fields. Moreover, if T1 and T2 are strongly minimal
with the DMP, then so is the Hrushovski fusion T3 constructed from T1 and T2.

(6.14) Theorem (Ryten-Tomasic [RT]) Let T be a strongly minimal theory with the
DMP and which eliminates imaginaries. Consider the theory Tσ of models of T with an
automorphism σ (so, structures in the language L to which one has added a unary function
symbol σ), let N be an existentially closed model of Tσ, and let F be the L-structure
{a ∈ N | σ(a) = a}. Then F is measurable of dimension 1.

(6.15) Example of a measurable structure not arising from an asymptotic class
of finite structures. So, let T1 be the theory of algebraically closed fields of characteristic
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2 (in a language L1), and T2 the theory of algebraically closed fields of characteristic 3 (in
the language L2). Let T3 be the Hrushovski fusion of T1 and T2, and let F be as above.
Then the reduct of F to L1 is a pseudo-finite field of characteristic 2, the reduct of F to
L2 is a pseudo-finite field of characteristic 3, and F cannot be elementarily equivalent to
an ultraproduct of finite L1 ∪ L2-structures: a power of 2 can never equal a power of 3
unless they both equal 1. But, by the result of Ryten-Tomasic, the L1 ∪L2-structure F is
measurable of dimension 1.

(6.16) Examples of finite dimensional asymptotic classes. By Theorem (6.1), the
collection of all finite fields forms a 1-dimensional asymptotic class, as does any subclass.
Also, for a fixed n > 1, the class of all GLn(Fq) is an (n2−1)-dimensional asymptotic class.
The definability assumption comes from the fact that there is a uniform interpretation of
the field Fq in these groups ([P]). Here is another example.

Fix a prime p, and relatively prime integers m,n with m ≥ 1 and n > 1. Let C(m,n,p)

be the class of all fields Fpkn+m with a distinguished automorphism Frobk, for k ∈ N>0.
One can show that there is no formula of the field language which defines in each field
Fpkn+m the graph of Frobk. These structures appear in a significant way in the study of
certain finite simple groups: for instance C(1,2,2) is uniform parameter biinterpretable with
the classes of Suzuki groups 2B2(22k+1) and the Ree groups 2F4(22k+1), and C(1,2,3) with
the class of Reee groups 2G2(32k+1).
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