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GEOMETRIC REPRESENTATION IN THE THEORY OF PSEUDO-FINITE
FIELDS

ÖZLEM BEYARSLANAND ZOÉ CHATZIDAKIS

Abstract. We study the automorphism group of the algebraic closure of a substructure A of a pseud-
ofinite field F , or more generally, of a bounded PAC field F . This paper answers some of the questions of
[1], and in particular that any finite group which is geometrically represented in a pseudo-finite field must
be abelian.

Introduction. This paper investigates the relationship between model-theoretic
definable closure and model-theoretic algebraic closure in certain fields. In other
words: if F is a field, andA ⊆ F satisfiesA = dcl(A), what can one say of the group
Aut(acl(A)/A) of restrictions to acl(A) of elements of Aut(F/A)? When is it non-
trivial? A natural assumption to add is to look at a slightly smaller group, and to
impose on A that it contains an elementary substructure of F . Indeed, we certainly
want to impose that our automorphisms fix acleq(∅).
This paper extends some of the results of [1], with completely new proofs, and
answers some of the questions there. We investigate here the particular case of
a pseudo-finite field F , or more generally, of a bounded pseudo-algebraically
closed (PAC) field, i.e., a PAC field which for each integer n, has only finitely
many separable algebraic extensions of degree n. Here are the main results we
obtain:

Theorem 1.7. Let F be a bounded field, A = dcl(A) a subfield of F containing an
elementary substructure of F , and let p be a prime dividing the order of some finite
quotients of Aut(acl(A)/A) and of G(F ). Then p �= char(F ), and the group of all
primitive pn-th roots of unity �p∞ is contained in the field F adjoined a primitive p-th
root of unity �p.

Theorem 1.8.Let F be a pseudo-finite field, or more generally a bounded PAC field.
Assume that for some subfieldA = dcl(A) ofF containing an elementary substructure
of F , the groupH := Aut(acl(A)/A) is non-trivial. Assume in addition that all primes
dividing the order of some finite quotient ofH divide the order of some finite quotient
of #G(F ).
Then H is abelian, the characteristic of F does not divide the order of any finite
quotient ofH , and �p∞ ⊂ F .
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We give an example (2.4) which shows that the hypotheses onF cannot beweakened
to assume that A contains a substucture F0 with acleq(∅) ⊂ dcleq(F0). We also give
a partial answer to a question of [1] on centralisers.

§1. The results.
Notation 1.1. Let F be a field. Throughout the paper, dcl and acl will denote
the model-theoretic definable and algebraic closures, taken within the structure F or
possibly some elementary extension of F .
We let F alg denote an algebraic closure of F (i.e., an algebraically closed field
containing F and minimal such), F s its separable closure and G(F ) its absolute
Galois groupGal(F s/F ).
If A ⊂ B are subfields of F , we denote by Aut(B/A) the set of automorphisms of B
which preserve all L(A)-formulas true in F , and by Autfield(B/A) the set of (field )
automorphisms of B which fix the elements of A. Equivalently, if F is sufficiently
saturated, then Aut(B/A) is the group of restrictions to B of elements of Aut(F/A).
If p �= char(F ) we let �p∞ denote the group of all pn-th roots of unity, and �p a
primitive p-th root of unity.
Let G1, G2 be profinite groups, p a prime. We say that p divides #G1 if G1 has a finite
(continuous) quotient with order divisible by p. We write (#G1,#G2) = 1 if there is
no prime number which divides both #G1 and #G2.

Definition 1.2. Let L be a language, T a complete theory.
(1) We say that the group G is geometrically represented in the theory T if there
existM0 ≺ M |= T andM0 ⊆ A ⊆ B ⊆ M , such that Aut(B/A) � G . We
say that a prime number p is geometrically represented in T if p divides the
order of some finite group G geometrically represented in T .

(2) A field F is bounded if for every integer n, F has only finitely many separable
extensions of degree n. In this case we also say that G(F ) is bounded.

(3) A field F is pseudo-algebraically closed, henceforth abbreviated by PAC, if
every absolutely irreducible variety defined over F has an F -rational point.

(4) A field is pseudo-finite if it is PAC, perfect, and has exactly one extension of
degree n for each integer n > 1.

Remark 1.3 (Folklore). Let F be any field, A a subfield of F , and assume
that A = dcl(A). Then As ∩ F is a Galois extension of A, equals acl(A), and
Aut(acl(A)/A) = Gal(As ∩ F/A). Hence the finite groups Aut(B/A) as above
correspond to the finite quotients of Gal(As ∩ F/A).
Furthermore, F is a separable extension of A.

Indeed, if α ∈ acl(A), let α = α1, α2, . . . , αn be the conjugates of α over A.
Then the symmetric polynomials in n variables evaluated at (α1, . . . , αn) are in
dcl(A) = A, i.e.: α satisfies a monic separable polynomial with its coefficients in
A and F contains all the roots of this polynomial. This shows the first assertion and
the second assertion is immediate.
For the last assertion, assume thatF is not separable overA. Then there are elements
a, a1, . . . , an ∈ A which are linearly independent in the Ap-vector space A, but for
some c1, . . . , cn ∈ F we have a =

∑
cpi ai . This equation defines uniquely the ci ’s,

which must therefore belong to A.
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1.4. Properties of pseudo-finite fields and bounded PAC fields.We list some of the
properties of these fields that we will use all the time, often without reference. The
language is the ordinary language of rings L = {+,−, ·, 0, 1}, often expanded with
parameters. Pseudo-finite fields are the infinite models of the theory of finite fields.
They were studied by Ax in the 60’s.

An algebraic extension of a PAC field is PAC (Corollary 11.2.5 of [4]). Theorem
20.3.3 of [4] (applied toK = A,L =M = As ∩F ,E = F = F ) gives the following:
Fact 1. Let F be a PAC field, A a subfield of F over which F is separable, and
assume that A has a Galois extension C such that the restriction map G(F ) →
Gal(C/A) is an isomorphism, andC ∩F = A. Let B = As ∩F ; thenAutfield(B/A) =
Aut(B/A).
It suffices to notice that CF = F s , and therefore also CB = Bs . So, if ϕ0 ∈
Autfield(B/A), extend ϕ0 to Φ0 ∈ Autfield(Bs/CA) by imposing Φ0 to be the identity
on C . Then Φ0 induces the identity on Gal(C/A) � G(B). The result now follows
immediately from 20.3.3 in [4]. It also has the following consequence:
Fact 2. IfF0 ⊂ F arePACfields of the same degree of imperfection,F is separable
over F0, and the restriction map G(F )→ G(F0) is an isomorphism, then F0 ≺ F .
The following remark is folklore, but for want of a good reference we will discuss it.
Fact 3. Let F0 ≺ F and assume that G(F ) is bounded. Then the restriction map
G(F )→ G(F0) is an isomorphism.
From F0 ≺ F , it follows immediately that F is a regular extension of F0, so that
the restriction mapG(F )→ G(F0) is onto. HenceG(F0) is bounded. Fix an integer
n > 1, and let m(n) be the number of distinct separably algebraic extensions of F0
of degree n. Then there is an L(F0)-sentence which expresses this fact: that there
are m(n) distinct separably algebraic extensions of F0 of degree n, and that each
separably algebraic extension of degree n is contained in one of these. As F0 ≺ F , F
satisfies the same sentence, and this implies that F s = F s0 F , and that the restriction
map G(F )→ G(F0) is an isomorphism.
Putting all these facts together, and summarising, we obtain:
Fact 4. Let F be a PAC field, and assume that A is a subfield of F over which F
is separable, and such that (∗): whenever L is a finite Galois extension of F , then L
has a generator with minimal polynomial over F in A[X ]. Then

Aut(acl(A)/A) = Autfields(As ∩ F/A).
The hypothesis (∗) is satisfied when F is bounded and A contains an elementary
substructure of F .
Lemma 1.5. Let F be a bounded field, and A = dcl(A) a subfield of F containing
an elementary substructure F0 of F , and let B = As ∩ F . Then G(A) � G(F0) ×
Gal(B/A).
Proof. Because G(F0) is bounded and F0 ≺ F , we know that F s = F s0 F and
the fields F s0 and F are linearly disjoint over F0. Hence B

s = F s0 B, the fields B and
AF s0 are linearly disjoint over A, both are Galois extensions of A, and therefore
G(A) = Gal(Bs/A) � G(F0)×Gal(B/A). �
Theorem 1.6 (Koenigsmann, Theorem 3.3 in [6]). LetK be a field with G(K) �
G1×G2. If a primep divides (#G1,#G2), then there is a non-trivialHenselian valuation
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v onK , char(K) �= p, and�p∞ ⊂ K(�p). Furthermore, ifKv denotes the residue field
of v and � : G(K) → G(Kv) the canonical epimorphism, then G(K) is torsion-free
and (#�(G1),#�(G2)) = 1.
Theorem 1.7. Let F be a field with bounded Galois group. Assume that p is a
prime number geometrically represented in Th(F ) and that p divides #G(F ). Then
char(F ) �= p, and F (�p) contains �p∞ .
Proof. Let F0 ≺ F , and A a subfield of F containing F0, with A = dcl(A).
Let B = As ∩ F , and assume that p divides #Gal(B/A), as well as #G(F0).
By Lemma 1.5, we know that G(A) � G(F0) × Gal(B/A). The result follows
immediately from Theorem 1.6. �
Theorem 1.8. Let F be a pseudo-finite field, or more generally a bounded PAC
field. Assume that for some subfield A = dcl(A) of F containing an elementary
substructure of F , the groupH := Aut(acl(A)/A) is non-trivial. Assume in addition
that all primes dividing #H divide #G(F ) (This hypothesis is alsways satisfied when
F is pseudo-finite).
Then H is abelian, and for any prime p dividing #H we have p �= char(F ) and
�p∞ ⊂ F .
Proof. Let F0 ≺ F , and A = dcl(A) a subfield of F containing F0, let B =
As ∩ F , and assume that p divides #Gal(B/A). By assumption, p divides #G(F0),
and by Lemma 1.5, G(A) � Gal(B/A) × G(F0), with p dividing the order of
both factors. Let v be the Henselian valuation on A given by Theorem 1.6, and
� : G(A) → G(Av) the corresponding epimorphism of Galois groups. As F0 is
relatively algebraically closed inA, the valuation v restricts to aHenselian valuation
on F0; but because F0 is PAC, the only Henselian valuation on F0 is the trivial
valuation ([4], Corollary 11.5.6). Hence F0 ⊆ Av, and by Henselianity of v, F s0 ∩
Av = F0. Hence the map � is an isomorphism between G(A) and G(F0). It follows
that Gal(BF s0 /AF

s
0 ) is contained in Ker(�), the inertia subgroup of v, and its order

is prime to the characteristic. Hence As is the composite of the purely residual
extension AF s0 of A, and the totally ramified extension B of A. The characteristic
of F does not divide #Gal(B/A), and this implies that Gal(B/A) is abelian: indeed,
by Theorem 5.3.3 and Section 5.3 in [3], we have

Gal(B/A) � Gal(BF s0 /AF s0 ) � Hom(Γ(As )/Γ(AF s0 )), (Aw)s×),
where w denotes the unique extension of v to As , and Γ(As ), Γ(AF s0 ) the value
groups w(As ) and w(AF s0 ) = v(A).
We also know that �p∞ ⊂ F (�p). Assume first that G(F ) is abelian. Then so is
G(A), and therefore any field between A and As is a Galois extension of A. In
particular, because p divide #H , some element � ∈ v(A) is not divisible by p in
v(A). Thus, if v(a) = �, then a1/p ∈ As , and generates a Galois extension ofA: this
implies that �p ∈ A, and by the above that �p∞ ⊂ F0.
Assume now thatG(F ) is arbitrary, and that �p /∈ F0. Then there is some � ∈ G(F )
such that �(�p) �= �p, and the closed subgroup generated by � has order divisible
by p (here we use that p divides #G(F )). Then the restriction of � to As commutes
with all elements of Gal(As/F s0A), and so we may apply the previous result to
the PAC field K , subfield of F s fixed by �, and its elementary substructure K0,
subfield of F s0 fixed by �, to deduce that �p ∈ K0, which contradicts our choice
of �. �
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Corollary1.9. Let F be a pseudo-finite field, or a boundedPACfield with#G(F )
divisible by every prime number. Then every group geometrically represented in Th(F )
is abelian. Furthermore, if p is a prime geometrically represented in Th(F ), then
�p∞ ⊂ F and p �= char(F ).
Corollary 1.10. Let F be a pseudo-finite field such that if p is a prime number

�= char(F ), then �p∞ �⊂ F . Then definable closure and algebraic closure agree on
subsets of F containing an elementary substructure of F .

§2. Other comments and remarks. As was shown in Theorem 7 of [1], if F is a
pseudo-finite field not of characteristic p and containing �p∞ , then every abelian
p-group is geometrically represented in Th(F ). I.e., a certain statement about the
relative algebraic closure of the prime field in F implies that p is geometrically rep-
resented in Th(F ). Our Theorem 1.8 shows that this is an if and only if condition:
which primes are geometrically represented in Th(F ) depends uniquely on the char-
acteristic of F and which �p∞ it contains. Moreover, by Remark 12 in [1], the class
of groups geometrically represented in Th(F ) is stable under direct products, and
it follows that which groups are geometrically represented in Th(F ) only depends
on the relative algebraic closure of the prime field in F .
Remark 12 of [1] applies to any perfect PAC field F , as they do have a notion of
amalgamation over models. The construction given in Theorem 7 of [1] does not
use the pseudo-finiteness of F , only the fact that F is PAC. We give here again this
construction, as it will be used in example 2.4.

2.1. The construction. Let F be a perfect field containing all primitive roots of
unity, and consider the field K of generalized power series F s((tQ)) over F s . Its
members are formal sums

∑
� a�t

� , with � ∈ Q, a� ∈ F s , satisfying that {� | a� �= 0}
is well-ordered. Then K is algebraically closed. We define an action of G(F ) on K
by setting

	(
∑

�

a� t
�) =

∑

�

	(a�)t�

for all 	 ∈ G(F ). So, the subfield of K fixed by G(F ) coincides with F ((tQ)).
For each n ∈ N not divisible by the characteristic of F , choose a primitive n-th
root of unity �n , and choose them in a compatible way, i.e., such that �mnm = �n. Let
� ∈ Aut(K) be defined by defining �(t1/n) = �nt1/n for n prime to the characteristic,
and if q is a power of the characteristic, then �(t1/q) = t1/q ; extend � to the
multiplicative group t1/n, n ∈ Z, and then to K by setting

�(
∑

�

a�t
�) =

∑

�

a��(t�).

Let A be the subfield ofK fixed byG(F ) and by �. Then G(A) � G(F )×〈�〉, with
〈�〉 � Ẑ if char(F ) = 0, 〈�〉 � ∏


 �=p Z
 if char(F ) = p > 1.

2.2. Remark. Let F be a perfect PAC field, and let A be the field constructed
above in 2.1. So A contains a copy of F and is contained in F ((tQ)); as F ((tQ)) is
a regular extension of F , it follows that F has an elementary extension F ∗ which
containsB = As ∩F ((tQ)). Then Aut(B/A) = Gal(B/A) � 〈�〉. This proof already
appears in [1] (Theorem 7).
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2.3. Comment 1. The proof of Lemma 1.5 works exactly in the same fashion as
soon as the field A contains enough information about G(F ), more precisely:

AssumeA contains acl(∅), and that for each finite extensionL ofF , there isα such that
L = F (α) and the minimal polynomial of α over F has its coefficients in A = dcl(A).

This hypothesis implies that A has a Galois extension C which is linearly disjoint
from F over A, and is such that CF = F s . Then again one has G(A) � G(F ) ×
Gal(As ∩ F/A). The proof of Theorem 1.7 goes through verbatim and gives:
If p is a prime number dividingAut(As∩F/A) and dividing#G(F ), then char(F ) �= p
and �p∞ ⊂ F (�p).
Wewere trying to weaken the hypotheses onA in Theorem 1.8, and a naturalweaker
assumption is to assume thatA contains a subfield F0 such that acleq(∅) ⊆ dcleq(F0)
and acl(F0) = F0. However the proof of Theorem 1.8 used in an essential way the
fact that F0 was PAC. The example below shows that this condition is not sufficient.

2.4. An example showing that the hypothesis of containing an elementary substruc-
ture is necessary. Let A0 be a field containing Qalg , and consider A

alg
0 ((t

Q)); define
actions of G(A0) and of � on A

alg
0 ((t

Q)) as in 2.1 above. Then G(A0((t))) �
G(A0) × 〈�〉. Let F0 = Qalg((t)), the subfield of Qalg((tQ)) fixed by �, and
A = A0((t)). Then G(F0) � Ẑ, and A contains F0. Furthermore, because G(F0)
is isomorphic to Ẑ, there is a pseudo-finite field F which is a regular extension
of F0 (this follows easily from Theorem 23.1.1 in [4]), so that the restriction map
G(F ) → G(F0) is an isomorphism. By Corollary 3.1 in [5], the theory of F elim-
inates imaginaries in the language augmented by constants for elements of F0.
As F0 also contains acl(∅) = Qalg , it follows that acleq(∅) ⊂ dcleq(F0). Further-
more, by standard results on pseudo-finite fields, F has an elementary extension
F ∗ which contains A and is a regular extension of B = Aalg ∩ Aalg0 ((t)). Then
Gal(B/A) = Aut(B/A) � G(A0), even though G(A0) may be nonabelian.
This shows that the hypothesis of A containing an elementary substructure of F ∗

cannot be weakened toA containing a substructure F0 with acleq(∅) ⊂ dcleq(∅) and
F0 = acl(F0).

2.5. Comment 2. One can wonder what happens for a bounded PAC field F
with G(F ) not divisible by all primes. If S is the set of prime numbers �= char(F )
and which do not divide #G(F ), and if H is a projective S-group (i.e., the order
of the finite quotients of S are products of members of S), then G(F ) × H is a
projective profinite group. Hence F has a regular extension K which is PAC and
with G(K) � G(F ) × H (Theorem 23.1.1 in [4]). We may also impose, if the
characteristic is positive, that K and F have the same degree of imperfection. As
K is a regular extension of F , the restriction map G(K) → G(F ) restricts to an
isomorphismonG(F )×(1), and sends (1)×H to 1.LetK1 be the subfield ofKs fixed
by G(F ) × (1). Then K1 is PAC, and because the restriction map G(K1) → G(F )
is an isomorphism, we have F ≺ K1. If A is the subfield of Ks fixed by G(F )×H ,
then A ⊂ F1, and Gal(F1/A) = Aut(F1/A) � H .
2.6. Comment 3. Let K be a field, H := Aut(K(t)alg/K(t)), and � ∈ H . Con-
sider H (�), the centralizer of � in H . Let B be the subfield of K(t)alg fixed by �,
F0 = Kalg ∩ B, and assume that F0 is pseudo-finite, and that the centraliser of



GEOMETRIC REPRESENTATION IN THE THEORY OF PSEUDO-FINITE FIELDS 7

G(F0) in G(K) is G(F0). Because G(B) = 〈�〉 projects onto G(F0) � Ẑ, we have
G(B) � Ẑ, and F0 has an elementary extension F which is a regular extension of B.
We work inside F , and are interested in Aut(B/F0(t)) and in Autfield(B/F0(t));
as B ∩ F alg0 = F0, B is linearly disjoint from F

alg
0 (t) over F0(t), and therefore

Autfield(B/F0(t)) = Aut(B/F0(t)), and its elements commute with �.
Let U be a closed subgroup of H (�) such that U ∩ 〈�〉 = 1. Then Theorem 1.8
tells us that U is abelian, and that the subfield A of B fixed by U has a nontrivial
Henselian valuation v, which is trivial on F0. Furthermore, if p divides #U , then
p �= char(F0) and �p∞ ⊂ F0. We take the unique extension of v toAs (and also call
it v); then the residue fields Av and Bv equal F0, and (Av)s = F s0 . Furthermore U
is procyclic, because Γ(A) � Z, and U � Hom(Q/Z, F s0 ×). The restriction of v to
F0(t) corresponds to a point of P1(F0) (because Av = F0), i.e., either v(t − a) = 1
for some a ∈ F0, or v(t) = −1. On the other hand, the field B can carry at most
one Henselian valuation (see Theorem 4.4.1 of [3]). It follows that Autfield(B/F0(t))
is abelian, procyclic. HenceH (�) splits as 〈�〉 × 〈	〉 for some 	 ∈ Autfield(B/F0(t)).
The result generalises to any bounded PAC subfield F0 ofK withG(F0) containing
its centraliser in G(K), with exactly the same reasoning.

This gives a partial answer to Questions 15 and 16 of [1].

Consider K = Q, and endow G(Q(t)) with the Haar measure. Then the set

{	 ∈ G(Q) | Qalg(	) is pseudo-finite and CG(Q)(	) = 〈	〉}
has measure 1, see Theorem 18.6.1 in [4] and Corollary 2.3 in [2]. Here Qalg(	)
denotes the subfield of Qalg fixed by 	. Moreover, it is easy to see that with proba-
bility 1, Qalg(	) does not contain �p∞ for any prime p. Hence, with probability 1
for 	 ∈ G(Q), if � extends 	 to Q(t)alg , if B = Q(t)alg(�) and F0 = B ∩Qalg , then
Aut(B/F0(t)) = 1, the centraliser of 〈�〉 in G(Q(t)) is 〈�〉, and the theory of the
pseudo-finite field F0 does not geometrically represent any prime.
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