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Introduction. The original motivation of this paper was to study the asymptotic theory
of the difference fields (Fp(t)s, x 7→ xp) as p goes to∞, where Fp(t)s denotes the separable
closure of the field Fp(t). For each p, the field Fp(t)s has a rich structure. For instance,
the endomorphism x 7→ xp is definable, as is the derivation Dp which satisfies Dp(t) = 1
(in the pure field language augmented by a constant symbol for t).

The asymptotic theory of the differential fields (Fp(t)s, Dp) was shown in [5] to be
undecidable. Moreover, the map x 7→ xp is definable, uniformly in p, in the differential
field (Fp(t)s, Dp). In this paper we show that, a contrario, the asymptotic theory of the
difference fields (Fp(t)s, x 7→ xp) is decidable. It would be interesting to see where exactly
the border between decidability and undecidability lies, among asymptotic theories of
reducts of the differential fields (Fp(t)s, Dp). Other canonical theories in characteristic p
are the theory of algebraically closed valued fields with distinguished Frobenius, and the
theory of differentially closed fields with distinguished Frobenius. The asymptotic theory
is decidable in both these cases. The differential case depends on the results of this paper.
These facts, mentioned for the sake of comparison, will be shown elsewhere.

The study of the asymptotic theory of these difference fields led naturally to the
concept of generic endomorphisms of fields, subject to certain constraints (K is a regular
extension of the perfect closure of σ(K)). The theory of these difference fields, denoted
SCFEe, is then model complete in a language extending the language of difference fields:
if K ⊂ L are models of SCFEe, and K and σ(L) are linearly disjoint over σ(K), then
K ≺ L. Many of the results obtained for the theory ACFA of generic difference fields
(see (1.13) for a definition) generalise easily to this context, and we obtain for instance
the decidability of the theories SCFEe, a description of their completions, of the types, of
independence (including the independence theorem over algebraically closed sets, which
shows that their completions are simple). Much of this study depends on results obtained
for the reducts to the language of pairs (namely, the pair (K,σ(K)), for (K,σ) a field with
generic endomorphism σ). In addition, given a model (K,σ) of SCFEe, we investigate a
few natural difference fields associated to K: its inversive closure, its perfect closure and
the field k =

⋂
n∈N σ

n(K). We show that they are models respectively of ACFA, SCFE0

(provided K is ω-saturated), and ACFA. Furthermore, the only structure induced on k
by K is the difference field structure, and k is stably embedded. Let us mention a result
of independent interest involved in the proof of this last statement:

Theorem (5.3). Let L be a model of ACFA, and let A ⊂ B be algebraically closed
inversive difference subfields of L. Assume that if b ∈ B is transformally algebraic over
A, then b ∈ A. Then tp(B/A) is stationary.

The machinery and results holding for models of ACFA also yield a characterisation
of definable modular sets: they have finite SU-rank and are orthogonal to all fixed fields.

The paper is organised as follows. Section 1 contains a review of separably closed
fields and difference fields, and sets up the notation. Section 2 studies pairs of separably
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closed fields (the inclusion not being an elementary one: the larger field contains the
algebraic closure of the smaller field). Section 3 gives the axiomatisation of the theory of
separably closed fields with a generic endomorphism, and shows that it is model complete
in a natural language. It also shows that non-principal ultraproducts of the difference
fields (Fp(t)s, x 7→ xq) are models of this theory. Section 4 studies the elementary invari-
ants, algebraic closure and independence, and gives a proof of the independence theorem.
Section 5 studies the induced structure on the various difference fields which “live” in
our models. Section 6 gives results on modular sets. Appendix A discusses the notion of
“stationarity almost over a predicate”, and Appendix B gives a proof of Claim (5.3) not
relying on the results of [13].

1 Preliminaries

In this section we review classical results on separably closed fields (and fields of char-
acteristic p > 0), on difference fields and on models of ACFA. We assume familiarity
with the basic notions of algebraic geometry: algebraic sets and varieties (or absolutely
irreducible algebraic sets), generic points of varieties, dominant morphisms, linear dis-
jointness, separable, primary and regular extensions, see e.g. Ch. I to III in [16]. For an
introduction to classical model theory, one can consult [11].

(1.1). Setting and notation. We will always work inside a large algebraically closed
field Ω, which will contain all fields considered. If K and L are subfields of Ω, we denote
by KL the subfield of Ω composite of K and L, by Ks the separable closure of K inside
Ω, i.e., the set of elements of Ω which are separably algebraic over K, and by Kalg the set
of elements of Ω which are algebraic over K. Throughout the main body of the paper, L
will denote the language of rings {+,−, ·, 0, 1}, LC the language L ∪ {C}, where C is a
unary relation symbol, and Lσ the language L∪{σ}, where σ is a unary function symbol.

Let p be the characteristic of Ω, and K a subfield of Ω, n ∈ N. Frob will denote
the identity map if p = 0, and the Frobenius automorphism x 7→ xp if p > 0. For
n ∈ Z, Kpn denote the subfield of Ω image of K by Frobn, and Kp∞ =

⋂
n∈NK

pn , and

Kp−∞ =
⋃
n∈NK

p−n the perfect closure of K. Thus, if p = 0, all these fields are equal to
K.

(1.2). p-bases. Up till (1.10), we assume p > 0. Details and proofs can be found in
[1] §13. Let K be a subfield of Ω and k a subfield of K. Then kKp is a subfield of K,
and so K is a kKp-vector space. We say that elements b1, . . . , bn ∈ K are p-independent
over k if the set of p-monomials in b1, . . . , bn, i.e., monomials of the form b

i(1)
1 · · · bi(n)

n

with 0 ≤ i(1), . . . , i(n) ≤ p − 1, is linearly independent in the kKp-vector space K.
Equivalently, if bi /∈ kKp(b1, . . . , bi−1) for i = 1, . . . , n.

A subset B of K is p-independent over k if every finite subset of B is p-independent
over k. If B ⊂ K is not p-independent over k, then there is a finite subset B0 of B and
b ∈ B \B0 such that b ∈ kKp[B0]. A maximal p-independent over k subset of K is called
a p-basis of K over k; if B is a p-basis of K over k, then K = kKpn [B] for any n ∈ N.
Any two p-bases of K over k have the same cardinality. A p-basis of K is a p-basis of K
over Fp. We define the degree of imperfection of a field K as follows: if K has a finite
p-basis B, then it is the size of B, and otherwise it is ∞. Observe that if B is a p-basis
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of K over k, then B is also a p-basis of Ks over k and over ks, and the elements of B are
algebraically independent over k.

(1.3). Recall that K is a separable extension of k if k and Kp are linearly disjoint over kp.
Equivalently, if any p-basis of k extends to a p-basis of K. If B ⊂ K is a transcendence
basis of K over k such that K is separably algebraic over k(B), then B is called a
separating transcendence basis of K over k. If K is finitely generated and separable over
k then K has a separating transcendence basis over k. This result does not hold when K
is infinitely generated over k: if t is transcendental over k, then the field

⋃
n∈N k(tp

−n
) is

a separable extension of k, but does not have a separating transcendence basis over k. If
B ⊂ K is such that K is separably algebraic over k(B), then B will contain a p-basis of
K over k, and therefore a separating transcendence basis of K over k is always a p-basis
of K over k. The converse however only holds if K is finitely generated over k as a field.

(1.4). The λ-functions.

For each n fix an enumeration mi,n(x̄) (0 ≤ i < pn) of the p-monomials x
i(1)
1 · · · xi(n)

n

with 0 ≤ i(1), . . . , i(n) ≤ p−1, and define the (n+1)-ary functions λi,n : Kn×K → K as
follows: If the n-tuple b̄ is not p-independent, or if the (n+1)-tuple (b̄, a) is p-independent,

then λi,n(b̄; a) = 0. Otherwise, the λi,n(b̄; a) satisfy

a =

pn−1∑

i=0

λi,n(b̄; a)pmi,n(b̄).

Note that these functions depend on the field K, and that the above properties define
them uniquely. These functions are definable in the pure ring K, and we call them the
λ-functions of K. One checks easily that a subfield k of K is closed under the λ-functions
of K if and only if K is a separable extension of k. Furthermore, if k is closed under the
λ-functions of K and a ∈ ks, then k(a) is also closed under the λ-functions of K, since
k(a) = k(ap).

(1.5). Separably closed fields. For each e ∈ N ∪ {∞}, the theory expressing that
K is a separably closed field of degree of imperfection e, is a complete theory (Ershov
[10]), which we denote by SCFe, and is stable (Wood [19]). If K is separably closed and
{b1, . . . , be} is a p-basis of K, then SCFe,b = Th(K, b1, . . . , be) is model complete in the
language L(b1, . . . , be) and eliminates imaginaries. By a result of Delon [8], in the language
Lλ = {+, ·, 0, 1, λi,n, n ∈ N, 0 ≤ i < pn}, the theory of separably closed fields, expanded
by axioms expressing the defining properties of the λ-functions, eliminates quantifiers; its
completions are obtained by specifying the degree of imperfection. We will fix a bijection
between the set of pairs (i, n) with n ∈ N and 0 ≤ i < pn and a set I.

(1.6). Algebraic and definable closures in separably closed fields.
We fix a degree of imperfection e ∈ N ∪ {∞}, a separably closed field K of degree of

imperfection e and characteristic p > 0. The model theoretic results on separably closed
fields which appear below can be found in [8].

Let B be a subfield of K. Then dclK(B), the definable closure of B in the field K, is
the field generated by closing B under the λ-functions of K. The algebraic closure of B,
denoted by aclK(B), is the separable closure of dclK(B).
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(1.7). Generics in separably closed fields. LetK be as above, B = aclK(B) ⊆ K, and
let n ∈ N. By stability of SCFe, the generic n-type overB is unique. Let a = (a1, . . . , an) ∈
Kn. The following are necessary and sufficient conditions for tp(a1, . . . , an/B) to be
generic:

(1) If e = 0, a1, . . . , an are algebraically independent over B.

(2) If e =∞, then a1, . . . , an are p-independent over B in K.

(3) Assume e ∈ N and B contains a p-basis {b1, . . . , be} of K, and define Am by induction
on m as follows: A0 = {a1, . . . , an}; Am+1 = {λi,e(b1, . . . , be; b) | b ∈ Am, 0 ≤ i < pe}.
Then for each m the elements of Am are algebraically independent over B. Note
also that dclK(B, a) = B(Am | m ∈ N).

(4) Assume e ∈ N, {b1, . . . , bf} is a p-basis of B, and f < e. If n ≥ (e− f) and c is any
(e − f)-sub-tuple of a, then c is p-independent over B, and tp(a \ c/B(c)s) is the
generic (n− e+ f)-type over B(c)s. If n ≤ e− f , then a is p-independent over B.

Observation. Assume that tp(a/E) is generic and that B is a subfield of K p∞ . Then
tp(a/EB) is also generic: this is because the generic type is orthogonal to all types realised
in Kp∞ .

(1.8). Forking in separably closed fields. Let K be as above, and A = aclK(A),
B = aclK(B) and C = aclK(C) be subsets of K, with C ⊆ A ∩ B. We will describe
necessary and sufficient conditions for tp(A/B) not to fork over C (in that case we also
say that A and B are independent over C). Fix p-bases A0 ⊂ A of A over C and B0 ⊂ B
of B over C.

(a) If e = ∞, then A and B are independent over C if and only if A0 ∪ B0 remain
p-independent over C in K, and A and B are linearly disjoint over C.

(b) If e ∈ N and one of A0, B0 is empty, then A and B are independent over C if and
only if they are linearly disjoint over C.

(c) Assume that e ∈ N, and A0, B0 6= ∅. Then tp(A/B) does not fork over C if
and only if tp(A0/B) does not fork over C, and tp(A/B,A0) does not fork over (C,A0).
Clearly, tp(A0/B) does not fork over C if and only if A0 realises the generic |A0|-type over
B. Hence, tp(A/B) does not fork over C if and only if A0 realises the generic |A0|-type
over B, and A and dclK(A0, B) are linearly disjoint over dclK(C,A0) = C(A0).

Assume that A and B are independent over C. In cases (a) and (b), the composite field
AB is closed under the λ-functions of K, and therefore dclK(A,B) = AB, aclK(A,B) =
(AB)s. In case (c), we get dclK(A,B) = AdclK(A0, B), and therefore aclK(A,B) =
(AdclK(A0, B))s. By (1.7)(3), dclK(A0, B) is the union of purely transcendental extensions
of B, and we get dclK(A,B) =

⋃
mAB(Am) (in the notation of (1.7)(3)).

(1.9). Remarks. Let K |= SCFe.

(1) Let A = dclK(A) ⊆ K, and let B be a countable subset of K. Then dclK(A,B) is
countably generated over A. If B ⊆ Aalg, then dclK(A,B) = A(B).
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(2) Let A = dclK(A), B = dclK(B) and C = dclK(C) be subfields of K, with C ⊆ A∩B,
and tp(A/B) not forking over C. The following conditions are equivalent:

(i) tp(A/C) has a unique non-forking extension to B.

(ii) A and B ∩ Cs are linearly disjoint over C.

Proof. (1) The second assertion is obvious. For the first assertion, if e ∈ N, this is clear.
If e ∈ ∞, see [8].

(2) That (i) implies (ii) is clear. Assume (ii) holds, and note that it implies that
A⊗C B is an integral domain, with field of fractions the field AB. Hence, if AB is closed
under the λ-functions of K, then dclK(AB) = AB, so that (i) is clear.

Let us therefore assume that AB is not closed under the λ-functions of K, and let A0

be a p-basis of A over C. Our assumption implies that tp(A0/B) is the generic |A0|-type
over B, which is unique. To conclude, it will suffice to show that tp(A/A0C) has a unique
non-forking extension to dclK(B,A0). Note that dclK(C,A0) = C(A0). The description of
dclK(B,A0) given in (1.7) shows that dclK(B,A0) is a primary extension of B(A0). Hence
dclK(B,A0)∩C(A0)s = B(A0)∩C(A0)s = (B∩Cs)(A0) = C(A0). Then, AdclK(B,A0) is
closed under the λ-functions of K, and using the previous case, tp(A/C,A0) has a unique
non-forking extension to dclK(B,A0).

(1.10). Difference rings and fields. Difference fields were first studied by Ritt in the
1930’s; we recall briefly definitions and some results, which can be found in Cohn’s book
[7]. Unless otherwise indicated, the references are to [7].

A difference ring is a ring R with a distinguished injective endomorphism σ, and a
difference field is a difference ring which is a field. A difference ring R is naturally an Lσ-
structure, where Lσ = {+, ·, 0, 1, σ}. If σ(R) = R then R is called an inversive difference
ring. If S is an inversive difference ring containing R such for every a ∈ S there is n ∈ N
such that σn(a) ∈ R, then S is called an inversive closure of R. Any two inversive closures
of R are R-isomorphic; if R is a domain, so is its inversive closure ([2.5.2]).

(1.11). Difference polynomial rings. Let k be a difference field contained in an in-
versive difference field Ω, and let X1, . . . , Xn be indeterminates. We define the difference
polynomial ring k[X1, . . . , Xn]σ by taking the ring k[X1, . . . , Xn]σ to be the ordinary poly-
nomial ring k[σj(Xi) | i = 1, . . . , n, j ∈ N], and extending σ to k[X1, . . . , Xn]σ in the way
suggested by the name of the generating elements. Note that σ is not onto. The order of
a difference polynomial f is the largest m such that some indeterminate σm(Xi) appears
in f .

Ideals I of k[X1, . . . , Xn]σ satisfying σ(I) ⊆ I are called σ-ideals. A perfect σ-ideal of
k[X1, . . . , Xn]σ is a σ-ideal I satisfying moreover that aσ(am) ∈ I implies a ∈ I for all
m ∈ N. Thus a perfect σ-ideal is radical. A prime σ-ideal is a σ-ideal which is prime
and perfect. Quotients of k[X1, . . . , Xn]σ by prime σ-ideals are difference domains, on
which σ defines an embedding. While k[X1, . . . , Xn]σ has infinite ascending chains of σ-
ideals, it satisfies the ascending chain condition on perfect σ-ideals and on prime σ-ideals
([3.8.5]); in particular, every perfect σ-ideal of k[X1, . . . , Xn]σ is a finite intersection of
prime σ-ideals.
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Let a be a tuple of elements of Ω. We denote by Iσ(a/k) the ideal of k[X]σ (X a tuple
of indeterminates of the same length as a) of difference polynomials vanishing at a. Then
Iσ(a/k) is a prime σ-ideal.

The difference field generated by a over k is denoted by k(a)N, and if k is inversive,
then k(a)Z denotes the inversive closure of k(a)N, i.e., the difference field k(σi(a) | i ∈ Z).

(1.12). Transformal transcendence bases. Let k ⊆ Ω be as above, and let a be a
tuple of elements of Ω. If the transcendence degree tr.deg(k(a)N/k) of k(a)N over k is finite
then we say that a is transformally algebraic over k. In that case, there is a non-negative
integer m such that k(a)N ⊆ k(a, . . . , σm(a))alg.

An element b ∈ Ω is transformally transcendental over k if the elements σi(b), i ∈ N,
are algebraically independent over k. Observe that a tuple a is either transformally
algebraic over k, or contains an element which is transformally transcendental over k.
We call a set B ⊆ Ω transformally independent over k if the elements σj(b), b ∈ B,
j ∈ N, are algebraically independent over k. If K is a difference subfield of Ω containing
k, and B ⊂ K is transformally independent over k and maximal such, then B is called
a transformal transcendence basis of K over k. Observe that K is then transformally
algebraic over k(B)N ([5.5.1]). Any two transformal transcendence bases of K over k have
the same cardinality, and this cardinality is called the transformal transcendence degree
of K over k, and denoted by ∆(K/k) (see [5.5.2]). If a is a finite tuple, we also define
∆(a/k) = ∆(k(a)N/k); observe that ∆(a/k) ≤ tr.deg(k(a)/k) (the transcendence degree
of k(a) over k).

(1.13). The theory ACFA
Recall that the model companion ACFA of the theory of inversive difference fields in

the language Lσ is axiomatised by the scheme of axioms expressing the following properties
of (K,σ):

(i) K is an algebraically closed field and σ is an automorphism of K.

(ii) If U and V are varieties defined over K and of the same dimension, such that
V ⊆ U ×σ(U) and the projections V → U and V → σ(U) are dominant, then there
is a tuple a such that (a, σ(a)) ∈ V (here σ(U) denotes the variety image by σ of
the variety U).

Models of ACFA are called generic difference fields.

(1.14). Conventions. Unless otherwise stated, we will always view difference fields as
Lσ-structures. If K is a difference subfield of the difference field L, then K ⊆ L. Fix a
sufficiently saturated model (Ω, σ) of ACFA. The uniqueness of the inversive closure of a
difference field and the universal properties of Ω imply the following:

If K ⊂ Ω is a separably closed difference field, and L is a difference field containing K,
with |L| < |Ω|, then there is an Lσ(K)-embedding of L in Ω.

From now on, all difference fields considered will be difference subfields of Ω, unless
otherwise stated. Thus, if k is a difference subfield of Ω, then the inversive closure of k is
simply

⋃
n∈N σ

−n(k).
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(1.15). Proposition ((2.11) in [4]). Let K be a difference subfield of Ω, and n > 0. If a
and b are two n-tuples of transformally transcendental elements over K, then tpΩ(a/K) =
tpΩ(b/K), i.e., the Lσ(K)-isomorphism which sends a to b extends to the algebraic closure
of K(a)Z.

(1.16). Algebraic closure, independence and SU-rank in models of ACFA. We
work in (Ω, σ). Recall from [4] that the model-theoretic algebraic closure of a subset A of Ω
is the smallest algebraically closed inversive difference subfield of Ω containing A, and we
denote it by aclσ(A). Hence, if k denotes the prime subfield of Ω, then aclσ(A) = k(A)algZ .

If A,B,C are subsets of Ω, we say that A and B are independent over C if aclσ(AC)
and aclσ(BC) are linearly disjoint over aclσ(C). This does correspond to non-forking in
models of ACFA.

Let A = aclσ(A) ⊂ Ω, and assume that |A| < |Ω|. Let a be a tuple of elements of Ω.
The SU-rank of a over A, SU(a/A), is a rank based on forking, defined in the same way
the U-rank is. The reader may consult [4] for details. Here we only need the dichotomy
finite/infinite, which is easy to describe:

The tuple a has finite SU-rank over A iff a is transformally algebraic over A, and
otherwise a has infinite SU-rank over A. If S ⊆ Ωn is the set of realisations of some set
of types over A, then S has finite SU-rank iff all its elements have finite SU-rank over A,
and infinite SU-rank otherwise.

(1.17). Definition of modularity. Let T be a complete simple theory, M a sufficiently
saturated model of T . Recall that M eq is the multi-sorted structure obtained by adding to
M all the imaginary elements of M (i.e., all equivalence classes of 0-definable equivalence
relations), and that if A ⊂ M eq then acleq(A) denotes the algebraic closure of A in the
structure M eq. Assume that T eliminates hyperimaginaries (i.e., if a ∈ M ω and R is
a type-definable equivalence relation on Mω, then the R-equivalence class of a is equi-
definable with some subset of M eq), let D ⊆Mn be invariant under Aut(M/E), for some
E = acl(E) ⊂ M . We say that D is modular (also called one-based) if whenever a and b
are tuples of elements of D, then a and b are independent over C = acleq(Ea)∩acleq(Eb).

As ACFA eliminates imaginaries (and hyperimaginaries) we have that acleq(E) =
aclσ(E). Hence, in models of ACFA, modularity translates as:
D ⊆ Ωn is modular if and only if whenever a and b are tuples of elements of D, then a
and b are independent over C = aclσ(Ea) ∩ aclσ(Eb).

In the above condition, one may also replace b by an arbitrary tuple of Ω. For other
properties of modularity in models of ACFA, see [4].

(1.18). Orthogonality. Let T be a complete (simple) theory, M a sufficiently saturated
model of T , and A, B, subsets of M .

(1) Two complete types p overA and q overB are orthogonal if, for any set C containing
A∪B, if a realises p and is independent from C over A, and b realises q and is independent
from C over B, then a and b are independent over C.

(2) Let E = aclσ(E) be a subset of Ω, and let S ⊆ Ωn be a set of realisations of a set of
types over E. We say that S is orthogonal to the fixed fields if over any set E ′ containing
E, every type realised in S is orthogonal to every type containing a formula of the form
σn(x) = Frobm(x) for some n 6= 0 and m ∈ Z. The negation of “orthogonal to the fixed
fields” is non-orthogonal to some fixed field.
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(1.19). The dichotomy theorem for ACFA ([4], [6]). Let D ⊆ Ωn be definable
over an algebraically closed inversive difference field E. If D has infinite SU-rank, then
D is not modular. Assume that D has finite SU-rank. If D is not modular then D is
non-orthogonal to a fixed field.

If the characteristic of Ω is 0 and D is modular, then every type realised in D is
stable, and D is stably embedded, i.e., every subset S of D definable in Ω is definable with
parameters from D.

(1.20). Theorem ([4], [6]). Let G be an algebraic group defined over Ω, and let B be
a definable modular subgroup of G(Ω). If X ⊆ G(Ω) is quantifier-free definable, then
X ∩ B is a Boolean combination of cosets of definable subgroups of B. If char(Ω) = 0,
then the same conclusion holds for arbitrary definable subsets X of G(Ω).

(1.21). Theorem. (Hrushovski [13], Macintyre [17]) Let Q be the set of prime powers,
and for each q = pn, let Fq be the difference field (Falgp , x 7→ xq). Let U be a non-principal
ultrafilter on Q. Then F =

∏
q∈Q Fq/U is a model of ACFA.

2 Pairs of separably closed fields

We are interested in pairs of fields (K,C), where C and K are separably closed, and
Calg ⊆ K. Note that in particular C is usually not an elementary substructure of K. The
examples we have in mind are:

(1) Take a separably closed field K of characteristic p, and consider a non-principal
ultraproduct of the pairs (K,Kpn), n ∈ N.

(2) For each prime p, let Kp be a separably closed field of characteristic p, and q a
power of p, and consider a non-principal ultraproduct of the pairs (Kp, K

q
p), p a prime.

(2.1). Setting, conventions and notations. We keep the notation and conventions
of (1.1) and (1.14). Besides the characteristic p of Ω, we fix e1, e2 ∈ N ∪ {∞}, with
e1 = e2 = 0 if p = 0.

We consider the languages LC = L ∪ {C}, where C is a unary predicate, and L0 =
LC ∪ {Rn | n ∈ N} ∪ {λKi , λCi | i ∈ I}, where each Rn is an n-ary relation, and I is
the index set defined in (1.5) if p > 0, and I = ∅ if p = 0. Let TC be the LC-theory,
whose models are structures K satisfying: K is a field of characteristic p and of degree

of imperfection ≤ e1, C is a subfield of K of degree of imperfection ≤ e2 and Cp−∞ ⊂ K,
Cs ∩K = C.

Consider now the L0-theory T0 obtained by adding to TC axioms expressing the fol-
lowing properties of the L0-structure K:

– For each n ∈ N, Rn(x1, . . . , xn) ⇐⇒ the elements x1, . . . , xn are linearly indepen-
dent in the C-vector space K.

– If p > 0, the λKi are the λ-functions of K, and the λCi are the λ-functions of C.

(2.2). Notation. We will use the notation of pairs, i.e., the notation (L,D) means that
D is the interpretation of C in the model L of TC . If (K,C) is a model of TC , then (K,C)
expands uniquely to an L0-structure model of T0, since the axioms of T0 uniquely define
the interpretation of the symbols Rn and λKi , λ

C
i .
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Given a model (K,C) of T0, we will often work in the L-structure K and in the L-
structure C. We will refer to these structures as the pure fields K and C. Given A ⊂ C
and a tuple a in C, we will denote by tpC(a/A) the type of a over A in the pure field C,
and by dclC(A), aclC(A) the definable and algebraic closure of A in the field C. Similarly,
if A ⊂ K and a is a tuple from K, then tpK(a/A) will denote the type of a over A in the
pure field K, and dclK(A), aclK(A) the definable and algebraic closures of the set A in
the field K.

(2.3). Remarks. (1) Note that if (K1, C1) is an L0-structure extending (K,C) and both
are models of T0, then:

– C1 and K are linearly disjoint over C.
– C1 is a separable extension of C and K1 is a separable extension of K.
(2) Assume that (K,C) and (K1, C1) are models of T0, with K a subfield of K1. Then

the inclusion is an inclusion of L0-structures if and only if the following conditions hold:
K and C1 are linearly disjoint over C; C1 is a separable extension of C and K1 is a
separable extension of K.

(3) Let (K,C) be a model of T0, and let a be a tuple in K. Consider the variety V
which is the locus of a over C (or rather over Calg) and let k be its field of definition.
Then k ⊆ dcl(a). Indeed, without loss of generality (replacing a by ap

n
for some integer

n), we may assume that C(a) is a separable extension of C, and hence a regular extension
of C. Consider the set M of monomials in the elements of the tuple a, and let M0 ⊂ M
be maximal C-independent. Then all elements of M are in dcl(a), and if b ∈ M \M0,
then b is a C-linear combination of elements of M0, and the coefficients of this linear
combination, being unique, are definable over a.

(4) Let a ∈ K. Then tpK(a/C) is stationary (as Calg = Cp−∞), and we denote by
Cb(tpK(a/C)) the intersection of the canonical base Cb(tpK(a/Calg)) of tpK(a/Calg) with
C. We know that Cb(tpK(a/Calg)) is the perfect closure of the field generated by the
fields of definitions of all algebraic loci over Calg of finite sub-tuples of dclK(a). Hence,
by (3), Cb(tpK(a/C)) is contained in dcl(a). Cb(tpK(a/C)) can also be described as the
smallest subfield A of C such that AdclK(a) and C are linearly disjoint over A.

(2.4). Definition. Consider the theory SCFC(e1, e2) in the language L0 axiomatised by
adding to T0 the following axioms:

– K and C are separably closed fields, of degree of imperfection e1 and e2 respectively.
– ∃x¬C(x).

(2.5). Theorem. Let (K,C) ⊆ (K1, C1), (K2, C2), where (K1, C1) and (K2, C2) are
models of SCFC(e1, e2), and (K,C) |= T0. Then (K1, C1) ≡K (K2, C2). Hence, the theory
SCFC(e1, e2) is model-complete and complete. It is the model companion of the theory
T0.

Proof. Passing to elementary extensions, we may assume that (K1, C1) and (K2, C2) are
sufficiently saturated. The proof is a standard back-and-forth argument. We consider the
class I of partial L0-isomorphisms ϕ satisfying:

– Dom(ϕ) = L1 contains K, is an L0-substructure of K1 and a model of T0.
– Im(ϕ) = L2 contains K, is an L0-substructure of K1 and a model of T0.
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It is enough to show that given ϕ ∈ I and a ∈ K1, there is ψ ∈ I extending ϕ and
with a in its domain, and that given b ∈ K2, there is ψ ∈ I extending ϕ and with b in its
image.

Let a ∈ K1, ϕ ∈ I with domain (L1, D1) and image (L2, D2). We will show that ϕ
extends to an isomorphism ψ ∈ I, with domain (M1, E1) containing a and image (M2, E2).
We know that Li is closed under the λ-functions of Ki.

Consider A = Cb(tpK1(L1, a/C1)); then D1 ⊆ A ⊆ dcl(L1, a) by Remark (2.3)(3), and
tpK1(L1, a/A) has a unique non-forking extension to C1. This implies that tpK1(a/L1A)
has a unique non-forking extension to L1C1, i.e., that (L1A)s ∩ dclK(L1A, a) = L1A.

Let B ⊆ C2 realise ϕ(tpC1(A/D1)). As Ci and Li are linearly disjoint over Di for
i = 1, 2, ϕ extends to an isomorphism ψ : L1dclC1(A) → L2dclC2(B) sending A to B.
Let b ∈ K2 realise the unique non-forking extension of ψ(tpK1(a/L1A)) to L2C2; then
ψ extends to an isomorphism θ : dclK1(L1dclC1(A), a) → dclK2(L2dclC2(B), b) sending a
to b. By definition of A, we know that dclK1(L1dclC1(A), a) and C1 are linearly disjoint
over dclC1(A). Our choice of b implies that dclK2(L2dclC2(B), b) and C2 are also linearly
disjoint over dclC2(B). Hence θ ∈ I.

This shows one direction of the back-and-forth argument, and the other one follows by
symmetry. Hence K1 ≡K K2. The model completeness of SCFC(e1, e2) follows by taking
K = K1, and its completeness by taking K equal to the prime field. Clearly every model
of T0 embeds in a model of SCFC(e1, e2) (this is where we use the axiom Cs ∩K = C).

(2.6). Corollary. SCFC(e1, e2) is stable.

Proof. It suffices to count the types. Let (K,C) be a model of SCFC(e1, e2), and L ⊆ K.
We may assume that L is a model of T0. Let a ∈ K. By the proof of Theorem (2.5),
tp(a/L) is described by the following data:

– The canonical base A of tpK(dclK(L, a)/C) (see Remarks (2.3)(3) and (4)). Note
that dclK(L, a) is countably generated over L. As L and C are linearly disjoint over
D = L∩C, we obtain that A is countably generated over D. Note also that the elements
of A are definable over L∪a. Then tp(a/L) contains the formulas defining the elements of
A from L∪ a, and also says that elements of dclK(L, a) which are A-linearly independent
remain C-linearly independent.

– tpC(A/D): by stability of the theory SCFe2 , there are at most (|L|)ℵ0 possibilities
(since A is countably generated over D).

– tpK(a/LA): again, there are at most |L|ℵ0 possibilities.

(2.7). Corollary. Let (K,C) be a model of SCFC(e1, e2), and let L be a substructure
of K, which is a model of T0 and is relatively algebraically closed in K. Then L is
algebraically closed (in the sense of (K,C)).

Proof. This is immediate from the description of the types given in Corollary (2.6).

(2.8). Corollary. Let (K,C) |= SCFC(e1, e2). Then there is no induced structure on C,
i.e., if S ⊆ Kn is definable, then S ∩ Cn is definable in C in the pure field language.

Proof. By stability, S ∩ Cn is definable with parameters from C. The result follows from
description of types given in Corollary (2.6).
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(2.9). Proposition. Let (K,C) be a model of SCFC(e1, e2), let (L,D) ⊆ (M,E) ⊆ K,
with L and M algebraically closed in the pair (K,C), and let a ∈ K.

(1) Let A be the canonical base of tpK(dclK(L, a)/C). The following are equivalent:

(i) tp(a/M) does not fork over L.

(ii) tpC(A/E) does not fork over D, and tpK(a/MC) does not fork over LA.

(2) tp(a/L) is stationary.

Proof. The fact that tp(a/L) has an extension to M satisfying the conditions of (1)(ii) is
clear, and shows that (1)(i) implies (1)(ii). By stability, to prove (1) and (2) it therefore
suffices to show that the conditions of (1)(ii) uniquely determine tp(a/M).

Claim. MC is a primary extension of LA.
We know that M and C are linearly disjoint over E, and that each of the exten-

sions M/(LE)s, (LE)s/E, and C/(EA)s, (EA)s/E is primary. Hence MC is a primary
extension of (LE)s(EA)s.

From the non-forking of tpC(A/E) over D and the linear disjointness of L and C over
D, we deduce that the fields L, A and E are free over D (i.e., each field is free from
the composite field of the other two over D). By Remark (1.9) in [4], this implies that
(LE)alg(EA)alg ∩ (LA)alg = LalgAalg, and therefore that

MC ∩ (LA)s = (LE)s(EA)s ∩ (LA)s = LalgAalg ∩ (LA)s = LA.

By Remark (1.9)(2), tpK(a/LA) has a unique non-forking extension to MC. Since
tpK(a/MC) describes in particular the isomorphism type overMC of the field dclK(M,a)C,
this implies that A′ = Cb(dclK(M,a)/C) is contained in dclK(MA) ∩ C = EA, so that
A′ = EA. The conditions of (1)(ii) uniquely determine tpC(EA/E) and tpK(a/MA), and
by the discussion in (2.6) they uniquely determine tp(a/M).

(2.10). More on independence. Let L ⊆ M1,M2 be algebraically closed subsets of
(K,C) |= SCFC(e1, e2).

(1) M1 and M2 are independent over L if and only if tpC(M1∩C/M2∩C) does not fork
over L ∩ C, and tpK(M1/M2C) does not fork over L(M1 ∩ C).

(2) The non-forking of tp(M1/M2) over L is equivalent to the following three conditions:

(a) tpK(M1/M2) does not fork over L.

(b) tpK(M1M2/C) does not fork over (M1 ∩ C)(M2 ∩ C).

(c) tpC(M1 ∩ C/M2 ∩ C) does not fork over L ∩ C.

Proof. (1) is clear by Proposition (2.9). For (2), observe that (c) implies that tpK(M1 ∩
C/M2 ∩ C) does not fork over L ∩ C. The result follows using forking calculus.
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(2.11). Description of the algebraic and definable closure.
Let (K,C) |= T0, and let A ⊂ K. Let B = Cb(tpK(A/C)). Then B ⊂ dcl(A), and

hence dclC(B) ⊆ dcl(A). It follows that dclK(AdclC(B)) ⊆ dcl(A). The description of
the types shows that dcl(A) = dclK(AdclC(B)), and therefore that acl(A) = dcl(A)s =
aclK(AdclC(B)).

(2.12). Quantifier-elimination. For 1 ≤ n ∈ N, consider the functions µi,n : Kn+1 →
C, i = 1, . . . , n, defined as follows: if the tuple ā = (a1, . . . , an) is not linearly independent
in the C-vector space K, or if b does not belong to the C-vector space generated by ā,
then µi,n(ā; b) = 0 for i = 1, . . . , n. Otherwise the µi,n(ā; b) are uniquely defined by

b =
n∑

i=1

µi,n(ā; b)ai.

One sees easily that in the language L0 expanded by function symbols for the µi,n, the
theory SCFC(e1, e2), together with the defining axioms for the functions µi,n, eliminates
quantifiers. This follows from that fact that if A ⊂ (K,C) |= SCFC(e1, e2), then dcl(A) is
the smallest field containing A and closed under the functions λKi,n, λ

C
i,n and µi,n. Further-

more, note that for any n, Rn(x1, . . . , xn) is equivalent to x1 6= 0∧µ1,n(x1, . . . , xn;x1) = x1

so that the predicates Rn can be omitted from the language.

3 Fields with an endomorphism

(3.1). Conventions and setting. We keep the notation and conventions of (1.1) and
(1.14). Besides the characteristic p of Ω, we fix some e ∈ N ∪ {∞}, with e = 0 if p = 0.

Let Tσ be the Lσ-theory whose models are the Lσ-structures K satisfying: K is a field

of characteristic p, σ is an endomorphism of K, and σ(K)p
−∞ ⊆ K, σ(K)s ∩K = σ(K).

Let L1 = Lσ ∪ {Rn | n ∈ N}, and consider the L1-theory T1 obtained by adding to Tσ
the scheme of axioms expressing the following properties of the L1-structure K:

– For each n ∈ N, Rn(x1, . . . , xn) ⇐⇒ the elements x1, . . . , xn are linearly indepen-
dent in the σ(K)-vector space K.

(3.2). Remarks. Let K be a difference field, and L a model of T1.

(1) Any difference field which is a model of Tσ expands uniquely to an L1-structure
which is a model of T1. This is because the axioms added to Tσ define uniquely the
predicates Rn.

(2) Assume that K is a model of Tσ and an L1-substructure of L. Then K |= T1 if and
only if K and σ(L) are linearly disjoint over σ(K).

(3) If K ⊆ L are models of T1, then, applying σi, we get that σi(K) and σi+1(L) are
linearly disjoint over σi+1(K) for every i ∈ N. Hence, by induction we obtain that
K and σi+1(L) are linearly disjoint over σi+1(K).

(4) The universal part of T1 is much weaker than T1, but is awkward to describe.
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(3.3). Lemma. Let K ⊆ L be difference fields, and assume that σ(L) and K are linearly
disjoint over σ(K).

(1) If a ∈ L is transformally algebraic over K, then a ∈ K(σ(a))algN .

(2) Assume that L = K(a)N for some finite tuple a. Let b be a subset of a forming a
transcendence basis of L over Kσ(L). Then b is a transformal transcendence basis
of L over K, and K(b)N and σ(L) are linearly disjoint over σ(K(b)N).

(3) If σ(L)p
−∞ ⊆ L, and the elements of the tuple b are p-independent over K in L,

then they are algebraically independent over Kσ(L).

(4) If σ(K)1/p ⊆ K, then L is a separable extension of K.

Proof. (1) Let m be minimal such that there is a non-zero polynomial F (X0, . . . , Xm) ∈
K[X0, . . . , Xm] with F (a, σ(a), . . . , σm(a)) = 0. If the variable X0 occurs in F , then
a ∈ K(σ(a), . . . , σm(a))alg. Assume that X0 does not occur in F . The linear disjointness
of σ(L) and K over σ(K) then implies that F has its coefficients in σ(K). Hence, σ−1(F ) ∈
K[X1, . . . , Xm], and vanishes at (a, . . . , σm−1(a)), contradicting the minimality of m.

(2) By (1), the elements of b are transformally independent over K. Moreover, as
Kσ(L)(b) is a purely transcendental extension of Kσ(L), we get that K(b)N and σ(L) are
linearly disjoint over σ(K(b)N).

It remains to show that b is indeed a transformal transcendence basis of L over K.
Adjoining b to K, we may assume that b = ∅, so that a ∈ K(σ(a))algN . Because a is finite,
there is some integer m such that a ∈ K(σ(a), . . . , σm(a))alg. If i > 0, then applying σi

and using induction, one then shows that

K(a, σ(a), . . . , σi+m(a)) ⊂ K(σi+1(a), . . . , σi+m(a))alg.

This shows that tr.deg(K(a)N/K) is finite (≤ mtr.deg(K(a)/K)), i.e., that a is transfor-
mally algebraic over K.

(3) The assumption σ(L)p
−∞ ⊆ L implies that the elements of b are p-independent

over Kσ(L) in L, and therefore they are algebraically independent over Kσ(L). Now
apply (2).

(4) By hypothesis σ(K)1/p and σ(L) are linearly disjoint over σ(K), and therefore
σ(L) is a separable extension of σ(K). As σ is an isomorphism, L is a separable extension
of K.

(3.4). Definition. Let SCFEe be the L1-theory axiomatised by the scheme of axioms
expressing the following properties of the difference field (K,σ):

(i) T1, ∃xR2(1, x), K is a separably closed field of degree of imperfection e.

(ii) Assume that U and V are varieties defined over K, of the same dimension, and that
V ⊆ U × σ(U) projects dominantly onto U and onto σ(U). If the characteristic is
p > 0 and e > 0, assume moreover that if (a, b) is a generic of the variety V over
K, then a ∈ K(b1/q)s for some q = pn, n ≥ 0. Then there is a ∈ K such that
(a, σ(a)) ∈ V .
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Let us explain why (ii) is indeed first order. Let c be a tuple of elements of K, and
F (T,X), G(T,X, Y ) tuples of polynomials with integer coefficients. It is then well-known
that the following properties of the tuple c are elementary (see e.g. [9]):

F (c,X) = 0 defines an absolutely irreducible variety U , G(c,X, Y ) = 0 defines an
absolutely irreducible variety V contained in U × σ(U) and of the same dimension as U ;
the projections V → U and V → σ(U) are dominant.

If p > 0, e > 0, and V satisfies the last condition given in (ii), then there is a |Y |-tuple
H(T ′, X ′, Y ) of polynomials with integer coefficients such that H(cq, Xq, Y ) belongs to the
ideal J generated by G(c,X, Y ) in K[X,Y ], and the matrix J(c,X, Y ) = ∂H

∂X′ (c
q, Xq, Y ) is

non-singular (modulo the ideal J). This condition is also elementary in c, given F,G,H.
Here we are using the well-known fact that an n-tuple a is separably algebraic over a field
L if and only if there exists an n-tuple F (x) of polynomials over L which vanishes at a
and is such that the determinant of the Jacobian matrix JF (x) of F does not vanish at a.

(3.5). Theorem. The theory SCFEe is the model companion of the theory obtained by
adding to T1 an axiom saying that the degree of imperfection is ≤ e.

Proof. We will first show that every model of T1 of degree of imperfection ≤ e embeds
in a model of SCFEe. Axiom (i) is no problem: σ extends to an endomorphism of K s,
and K is linearly disjoint from σ(Ks) = σ(K)s over σ(K) because σ(K)s ∩ K = σ(K).
If (K,σ) is a model of T1 of characteristic p and degree of imperfection f < e, choose
elements a1, . . . , ae−f ∈ Ω which are transformally independent over the inversive closure

of K. Then the difference field generated over K by {ai, σ(a
1/pn

i ) | n ∈ N, i = 1, . . . , e−f}
is a model of T1 of degree of imperfection e, and is an L1-extension of K. If e 6= 0, then
σ(K) 6= K. If e = 0 and σ(K) = K, let a ∈ Ω be transformally transcendental over K.
Then the difference field K(a)algN is a model of T1 extending K, which is perfect, and on
which the map σ is not onto.

We may therefore assume that K is separably closed and satisfies (i). Let U, V and
q be as in (ii). Choose a ∈ Ω such that (a, σ(a)) is a generic of the variety V over the
inversive closure of K. Since σ(a) is a generic of the variety σ(U) which is defined over
σ(K),

the fields σ(K)(σ(a)) and σ−1(K) are linearly disjoint over σ(K). (1)

Observe that our conditions on U and V imply that for every m ≥ 0,

σm+1(a) ∈ σm(K(a))alg and σm(a) ∈ σm(K(σ(a1/q))s. (2)

Let M = σ(K(a))alg; then σ(K(a)N) ⊆ M and a ∈ (KM)s by (2). Also, M and
σ−1(K) are linearly disjoint over σ(K)alg, by (1). Hence N = (KM)s is a separable
extension of K, is a separably closed difference field containing a and is a model of Tσ,
and therefore expands uniquely to a model of T1. In order to show that (K,σ) is an
L1-substructure of (N, σ), it suffices to show that σ(N) and K are linearly disjoint over
σ(K), or equivalently, that N is linearly disjoint from σ−1(K) over K.

The linear disjointness of M and σ−1(K) over σ(K)alg implies the linear disjointness of
KM and σ−1(K) overK; because K is separably closed, this implies the linear disjointness
of N = (KM)s and σ−1(K) over K.
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We now need to show that the models of SCFEe are existentially closed. Let (K,σ) |=
SCFEe, and let (L, σ) be a model of T1 containing (K,σ) and of degree of imperfection
≤ e. It is enough to show that there is an L1(K)-embedding of L in some saturated
elementary extension K∗ of K. Let us fix this K∗. We may assume that L is separably
closed, since σ(L)s and K are linearly disjoint over σ(K).

It is enough to show the following:

(∗) There is an Lσ(K)-embedding ϕ of L into K∗ such that K∗ is a separable extension
of ϕ(L), and σ(K∗) is free from ϕ(L) over σ(ϕ(L)).

Indeed, the freeness condition will imply that σ(K∗)alg = σ(K∗)p
−∞

and ϕ(L) are linearly
disjoint over σ(ϕ(L))alg = σ(ϕ(L))p

−∞
. The separability of K∗ over ϕ(L) will then imply

the linear disjointness of σ(K∗) and ϕ(L) over σϕ(L). Thus the map ϕ will be an L1(K)-
morphism, and because L |= T1, will be an L1-isomorphism.

Note that in order to show that K∗ is a separable extension of ϕ(L), it is enough
to show that if a1 is a tuple of L which is p-independent over K (in L), then ϕ(a1) is
p-independent over K in K∗. Similarly, to show that σ(K∗) is free from ϕ(L) over σϕ(L),
it is enough to show that a tuple of elements of L which are algebraically independent
over Kσ(L) is sent by ϕ to a tuple of elements which are algebraically independent over
Kσ(K∗). By compactness, it is therefore enough to show that given a finite tuple a in L
and a sub-tuple a1 of a which is p-independent over K in L, there is an Lσ(K)-embedding
ϕ of K(a)N in K∗ such that:

(a) ϕ(a1) is p-independent over K in K∗.

(b) If b ⊆ a is a transcendence basis of K(a)N over K(σ(a))N, then the elements of ϕ(b)
are algebraically independent over Kσ(K∗).

Consider M = σ(K(a)N)alg). Then KM(a) ⊆ L, and KM(a) is a finitely generated
extension of KM , which contains K(a)N. We know that KM(a) is a separable extension
of K, hence linearly disjoint from Kp−∞ over K; hence KM(a) is linearly disjoint from
Kp−∞M over KM ; as M is perfect, this says that KM(a) is a separable extension of
KM .

Let a1 ⊂ a be a tuple which is p-independent over K in L (a1 = ∅ if e ∈ N), and
let b ⊂ a be a separating transcendence basis of KM(a) over KM containing a1 (such
a basis exists by the previous paragraph). Then the elements of b are transformally
independent over K, form a transformal transcendence basis of K(a)N over K (because
∆(a/K) = tr.deg(K(a)N/K(σ(a))N), see lemma (3.3)), and K(a)N ⊆ KM(b)s. Hence, for
some q = pn, we have that

a ⊂ (K(σ(a1/q))N(b))s. (3)

From K |= ∃xR2(1, x), we deduce that σ(K) 6= K. The saturation of K∗ then implies
that the transcendence degree of K∗ over σ(K∗) is infinite. If e =∞, it also implies that
any p-basis of K∗ over K is infinite. If e ∈ N, choose c ∈ K∗ of the same length as b,
whose elements are algebraically independent over Kσ(K∗). If e = ∞, choose c ∈ K∗

of the same length as b, whose elements are p-independent over K (in K∗, and hence
algebraically independent over Kσ(K∗)).
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By Proposition (1.15), there is a K-isomorphism of difference fields ψ : K(b)algN →
K(c)algN which sends b to c. Letting M0 = σ(K(b)algN ), this isomorphism restricts to a
K-embedding ψ of the difference field k = (KM0(b))s into K∗. Note that by our choice of
b, we have that k is free from M over σ(k). Also, (kM)s is a difference field and contains
k(a)N (by (3)).

Consider Iσ(a/k). It is a prime σ-ideal; the ascending chain condition on perfect
σ-ideals and the fact that a is transformally algebraic over k imply that there is an
integer m such that if d ∈ Ω is such that there is a field isomorphism k(d, . . . , σm(d))→
k(a, . . . , σm(a)) which sends σi(a) to σi(d) for i = 0, . . . ,m, and fixes k, then the difference
fields k(a)N and k(d)N are k-isomorphic by an isomorphism sending a to d. Fix such an
m, and let U be the algebraic locus of u = (a, . . . , σm−1(a)) over k, V the algebraic locus
of (u, σ(u)) over k. Because a is transformally algebraic over k and by our choice of m,
we know that σ(u) ∈ k(u)alg and u ∈ k(σ(u))alg. By equation (3), u ∈ k(σ(u1/q))s.

Claim. σ(u) is a generic of the variety σ(U) over k.
From k(a)N ⊂ (kM)s, we obtain σ(k(a)N) ⊆ σ(kM)s ⊆ M . As k is free from M over

σ(k), this implies that tr.deg(σ(u)/k) = tr.deg(σ(u)/σ(k)) = tr.deg(u/k) = dim(σ(U)),
and this proves the claim.

Thus U, V, q satisfy the assumptions of axiom (ii) over the field k. Hence, if U ′ and V ′

are the images of U and V under the isomorphism ψ, axiom (ii) says that there is g ∈ K ∗
such that (g, σ(g)) ∈ V ′. The saturation of K∗ implies that we may assume that (g, σ(g))
is a generic of the variety V ′ over ψ(k). Our choice of m implies that ψ extends to an
isomorphism of difference fields ϕ : k(u)N → ψ(k)(g)N sending u to g. By our choice of b
and c, the map ϕ satisfies conditions (a) and (b), and its domain contains K(a)N.

(3.6). Remark. Let K be a model of SCFEe. Our proof shows that if L is a model of
T1 containing K and of degree of imperfection e, then there is an elementary extension of
K in which L K-embeds. This implies that in (ii) the dimension hypothesis on U , V can
be dropped, i.e., that K satisfies the following scheme of axioms:

(ii’) Assume that U and V are varieties defined over K and that V ⊆ U ×σ(U) projects
dominantly onto U and onto σ(U). If the characteristic is p > 0 and e > 0, assume
moreover that if b is a generic of the variety σ(U), then the field of definition of the
irreducible components of the algebraic set V (b) = {a | (a, b) ∈ V } is contained in
K(b1/q)s for some q = pn, n ≥ 0. Then there is a ∈ K such that (a, σ(a)) ∈ V .

(3.7). Ultraproducts of powers of Frobenius automorphisms. Consider the set
Q of all prime powers, and for each q = pn ∈ Q, choose a separably closed field Kq

of characteristic p, which is not algebraically closed, and consider the difference field
(Kq, σq), where σq : x 7→ xq. Let U be a non-principal ultrafilter on Q, and consider
K∗ =

∏
qKq/U , with the distinguished endomorphism σ = (σq)U . Then K∗ is a model of

Tσ, and therefore expands uniquely to an L1-structure model of T1.

Theorem. K∗ |= SCFEe for some e ∈ N ∪ {∞}.
Proof. Clearly K∗ is a separably closed field, of a certain degree of imperfection e, and
σ is an endomorphism of K∗, which is not onto as the fields Kq are not perfect. Note
however that e > 0 if char(K∗) = p > 0.
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Let us consider an instance (U, V, q) of axiom (ii) (with q = 1 if the characteristic of
K∗ is 0), and let c = (cr)U ∈ K∗ and F (T,X), G(T,X, Y ) be polynomials with integral
coefficients such that the equations F (c,X) = 0 and G(c,X, Y ) = 0 define the varieties
U and V . If the characteristic of K∗ is 0, let J(T,X, Y ) be the matrix ∂G

∂X
(T,X, Y ), and

if the characteristic is p > 0, let J(T q, Xq, Y ) be the matrix defined in (3.4).
For each r ∈ Q consider the difference field Lr = Kalg

r , with the automorphism
σr : x 7→ xr, and let L∗ =

∏
r Lr/U , and σ = (σr)U . Then (K∗, σ) is a difference subfield

of (L∗, σ). There is A ∈ U such that if r ∈ A then r > q and the algebraic sets Ur and Vr
defined by F (cr, X) = 0 and G(cr, X, Y ) = 0 satisfy the following: Ur and Vr are varieties

of the same dimension, Vr ⊆ Ur × σr(Ur), the projection maps Vr → Ur and Vr → σr(Ur)
are dominant, and if (ar, br) is a generic of the variety Vr, then J(cqr, a

q
r, br) has rank |Y |.

By Theorem (1.21), there is a set B ∈ U contained in A and such that for every r ∈ B,
there is a tuple ar ∈ Lr such that (ar, σr(ar)) ∈ Vr and J(cqr, a

q
r, σr(ar)) has rank |Y |. If

r ∈ B then aqr ∈ Fp(cqr, arr)s; since q < r, ar ∈ Fp(cr)s, i.e., ar ∈ Kr. This shows that
a = (ar)U ∈ K∗ and finishes the proof.

4 Elementary invariants, algebraic closure, independence, etc.

In this section we show how the proofs for models of ACFA generalise easily to our
context.

(4.1). Theorem. Let e ∈ N ∪ {∞}, let (K1, σ) and (K2, σ) be models of SCFEe, and
assume that E is a separably closed model of T1 and is contained in K1 and in K2. Then
K1 ≡E K2.

Proof. By (1.14), there is some E-embedding ϕ of K2 into Ω such that ϕ(K2) is linearly
disjoint from K1 over E. Then ϕ(K2) ≡E K2, and we may therefore assume that K2 is
linearly disjoint from K1 over E.

Let L = (K1K2)s. Then L is a difference subfield of Ω, as σ(K1K2) ⊆ K1K2. Moreover,
as L contains the perfect closure of σ(K1K2), it is a model of Tσ. Expand L to an L1-
structure so that it is a model of T1. Then K1 and K2 are difference subfields of L, and
we want to show that they are L1-substructures of L. Hence we need to show for i = 1, 2,
that L is a separable extension of Ki and that σ(L) and Ki are linearly disjoint over
σ(Ki).

Since K1 and K2 are linearly disjoint over E, L is a separable extension of K1 and of
K2. Since σ(K2) is linearly disjoint from E over σ(E), and K2 is linearly disjoint from K1

over E, we deduce that σ(K2) is linearly disjoint from K1 over σ(E). Hence σ(K1K2) and
K1 are linearly disjoint over σ(K1). Now σ(L) is the separable closure of the separable
extension σ(K1K2) of the separably closed field σ(K1), and σ(K1K2) is linearly disjoint
from K1 over σ(K1): this implies that σ(L) is linearly disjoint from K1 over σ(K1) and
shows that (K1, σ) is an L1-substructure of (L, σ). Similarly, (K2, σ) is an L1-substructure
of (L, σ).

If e = ∞, or if E has degree of imperfection e, then L has degree of imperfection e,
and therefore embeds in a model (M,σ) of SCFEe. We then have (Ki, σ) ≺ (M,σ) by
model-completeness of SCFEe, and we get the result.

Assume now that p > 0, e ∈ N, and let b1 be a p-basis of K1 over E, b2 a p-basis of
K2 over E. Then b1 and b2 have the same size, and we fix a bijection f : b1 → b2. Note
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that the elements of b1 and of b2 are transformally independent over E. Consider the field
L1 = L((b − f(b))1/pn | b ∈ b1, n ∈ N). This is a purely inseparable extension of L, and
σ(b− f(b))1/pn = σ(b)1/pn − σ(f(b))1/pn ∈ L for n ∈ N. Moreover b1 and b2 are p-bases of
L1 over E, and so L1 is a separable extension of K1 and of K2, of degree of imperfection
e. We now need to show that σ(L1) and Ki are linearly disjoint over σ(Ki) for i = 1, 2,
so that K1 and K2 will be L1-substructures of L1. Since σ(L1) ⊆ σ(L)alg, and σ(L)alg is
linearly disjoint from K1 over σ(K1)alg, we obtain that σ(L1)σ(K1)alg is linearly disjoint
from K1 over σ(K1)alg. Because L1 is a separable extension of K1, the fields σ(L1) and
σ(K1)alg are linearly disjoint over σ(K1), and this implies that σ(L1) and K1 are linearly
disjoint over σ(K1).

Similarly, σ(L1) and K2 are linearly disjoint over σ(K2). Hence L1 embeds in a model
M of SCFEe, and we conclude as in the previous case.

(4.2). Corollary. The completions of SCFEe are obtained by describing the action of σ
on the algebraic closure of the prime field. For each e, the theory SCFEe is decidable, as
well as the theory SCFE =

⋂
e∈N∪{∞} SCFEe.

Proof. The first statement is immediate from Theorem (4.1). The others follow by stan-
dard arguments.

(4.3). Lemma. Let E = acl(E) ⊆ K |= SCFEe. Then E |= T1, and E is separably
closed.

Proof. Clearly E is a difference subfield of K, which is closed under the λ-functions of
K, and is relatively algebraically closed in K, which implies that it is separably closed.
Hence it is enough to show that E and σ(K) are linearly disjoint over σ(E). But this is
clear by Remark (2.3)(3).

(4.4). If E = acl(E) ⊆ K |= SCFEe, then SCFEe ∪ qftp(E) ` tp(E). (Here, qftp(E)
denotes the quantifier-free type of E).

Proof. Immediate from Lemma (4.3) and Theorem (4.1).

(4.5). Let E ⊆ K |= SCFEe, and let a, b be tuples in K. Then tp(a/E) = tp(b/E) if and
only if there is an E-isomorphism acl(Ea)→ acl(Eb) which sends a to b.

Proof. Clear by Theorem (4.1) and Corollary (4.4).

(4.6). Notation. We will work in the (pure) separably closed field K, and we need to
introduce some notation: aclK(−) and dclK(−) will denote the algebraic and definable
closures in the field reduct K, and tpK(−/−) will denote a type in the sense of K.

Corollary. Let E be a difference subfield of the model K of SCFEe, and assume that
aclK(E) = E, and that E and σ(K) are linearly disjoint over σ(E). Then acl(E) = E.

Proof. Our assumption implies that E is separably closed, contains σ(E)alg, and that K is
a separable extension of E. Hence, if K1 is a difference field linearly disjoint from K over
E and E-isomorphic to K, then K, K1 and E satisfy the hypotheses of Theorem (4.1).
Hence any type realised in K \E is realised anew in K1, and this shows that E = acl(E)
(by Corollary (4.5)).
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(4.7). Description of the algebraic closure. Let K |= SCFEe, and let A ⊂ K.
We build by induction on i ∈ N a sequence of subsets of K which are contained in
the definable closure of A as follows: Let B0 = dclK(A), and assume that we have
defined a subset Bi of dcl(A). Let Ci be the canonical basis of tpK(Bi/σ(K)), and let
Bi+1 = dclK(Bi, σ

−1(Ci), σ(Bi), Ci). Then Bi+1 ⊂ dcl(Bi).

Proposition. Let K, A, and the Bn, n ∈ N, be defined as above. Then acl(A) =
(
⋃
n∈NBn)s.

Proof. Let B = (
⋃
n∈NBn)s. Then B is a separably closed difference subfield of K. Each

Bn is closed under the λ-functions of K, and therefore K is a separable extension of B.
Moreover, as Bn contains the perfect closure of σ(Bn−1), the field B contains σ(B)alg. By
definition, each Bn is linearly disjoint from σ(K) over Cn ⊂ σ(Bn+1), and therefore B is
free from σ(K) over σ(B). As σ(K) is a regular extension of σ(B), this implies that B
is linearly disjoint from σ(K) over σ(B). Hence B satisfies the hypotheses of Corollary
(4.6), and B = acl(B).

(4.8). Corollary. Let K be a model of SCFEe, and let D ⊆ Kn be 0-definable, defined
by the formula ϕ(x).

(1) There is m and a set W ⊆ Kn+m defined by a positive quantifier-free formula such
that if π : Kn+m → Kn is the natural projection, then π(W ) = D.

(2) There is a partition D1, . . . , Dr of D into definable sets, and for each i there is a
subset Wi of Kn+mi (for some mi) such that the natural projection πi : Kn+mi → Kn

restricts to a finite-to-one map from Wi onto Di. Each Wi is defined by a formula
ψi(x, y)∧ρi(x, y), where ψi(x, y) is a quantifier-free positive L1-formula, and ρi(x, y)
expresses that certain subtuples of x_y are p-independent.

Proof. (1) By model-completeness, ϕ(x) is equivalent modulo SCFEe to an existential
formula. To conclude, note that modulo SCFEe the formulas y 6= 0 and ¬Rm(y1, . . . , ym)
are equivalent to ∃z yz = 1 and ∃z1, . . . , zm

∑m
i=1 yiσ(zi) = 0 respectively.

(2) Let a be an n-tuple, and let A = a, and B and the Bn’s be defined as in (4.7). We
know that modulo SCFEe, qftp(B) ` tp(a). As the field B is linearly disjoint from σ(K)
over σ(B), the observation made in (1) shows that any formula of qftp(B) is implied by
some positive quantifier-free formula of qftp(B) (modulo the theory SCFEe).

Hence there is a tuple b in B, and a positive L1-formula ψa(x, y) ∈ qftp(a, b) such that

SCFEe ∪ ψa(x, y) ` ϕ(x) or SCFEe ∪ ψa(x, y) ` ¬ϕ(x).

We will then show the following statement (∗): maybe enlarging b, there is a positive
L1-formula θa(x, y) ∈ qftp(a, b) and a formula ρa(x, y) ∈ tp(a, b) which expresses that
certain subtuples of x_y are p-independent, such that whenever a tuple (a′, b′) satisfies
ρa(x, y) ∧ θa(x, y), then the set defined by θa(a

′, y) ∧ ρa(a′, y) is finite or empty. This
will show the result, since by compactness, finitely many of the formulas ∃y ψa(x, y) ∧
θa(x, y) ∧ ρa(x, y) cover ϕ(x).

The proof is done in two steps. We first show how to reduce to the case b ∈ Bn for
some n, then show how the inductive definition of the Bn’s gives the result. Let k denote
the prime field (Fp or Q).
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Choose a tuple c ∈ ⋃nBn such that b is integral algebraic over k[a, c]. Thus there is
a quantifier-free positive L-formula θ(x, y, z) satisfied by (a, c, b), and such that for any
(a′, c′) the set θ(a′, c′, z) is finite. Hence it suffices to show (∗) for tuples (a, b) where
b ∈ ⋃nBn.

Observe that
⋃
nBn is the smallest field containing a, which is closed under the func-

tions σ, σ−1|σ(K)
, the λ-functions of K and the functions µi,n of the pair (K,σ(K)) (see

(2.12)). If n > 0, then there is a positive quantifier-free L-definable set W ⊂ Kn+1+pn

such that for any c ∈ Kn which is p-independent, and d ∈ K, W (c, d) = {y ∈ Kpn |
(c, d, y) ∈ W} defines the tuple (λi,n(c; d))i<pn if d ∈ Kp(c), and is empty otherwise. Sim-
ilarly, if n > 0, there is a positive quantifier-free Lσ-definable set W ⊂ Kn+1+n such that
for any c ∈ Kn which is σ(K)-linearly independent, and d ∈ K, the set W (c, d) defines
the tuple (σ−1(µi,n(a, b)))1≤i≤n if d belongs to the σ(K)-vector space generated by c, and
is empty otherwise. This shows, using induction, that if b ∈ ⋃nBn, then (a, b) satisfies
(∗), and finishes the proof of (2).

Remark. The sets Wi are almost quantifier-free definable. In fact, they are positively
quantifier-free definable in the language L1 to which one has added symbols for the λ-
functions of K. Similarly if e ∈ N and one adds to L1 constant symbols for a p-basis of
K.

(4.9). Independence.

Definition. Let K |= SCFEe, and let A, B, E be subsets of K. We say that A and
B are independent over E iff tpK(acl(E,A)/acl(E,B)) does not fork over acl(E), and
tpK(acl(E,A)/acl(E,B)σ(K)) does not fork over acl(E)σ(acl(E,A)).

(4.10). Remarks and discussion. (1) The pair (K,σ(K)) is a reduct of K, and is a
model of SCFC(e, e). By (2.10), the independence of A and B over E is equivalent to the
non-forking of tp(K,σ(K))(acl(E,A)/acl(E,B)) over acl(E). Here tp(K,σ(K))(−/−) denotes
the type in the L0-structure (K,σ(K)) (but acl is in the sense of the L1-structure K).

(2) Hence independence is symmetric and transitive. We will show below that it
corresponds to non-forking.

(4.11). Lemma. Let K |= SCFEe, E = acl(E) ⊆ B = acl(B) ⊆ K, and let a be a tuple
of elements of K which are transformally algebraic over E.

(1) Then the elements of acl(Ea) are transformally algebraic over E, and acl(Ea) =
E(a)algN ∩K, and E and acl(Ea) have the same p-basis.

(2) a and B are independent over E if and only if acl(Ea) and B are linearly disjoint
over E, if and only if E(a)N is free from B over E.

Proof. (1) Replacing a by a_σ(a)_ · · ·_ σm(a) if necessary, we may assume that E(a)alg =
E(σ(a))alg (by Lemma (3.3)).

Claim. acl(Ea) = E(a)alg ∩K.
Because a is algebraic over E(σ(a)), E is closed under the λ-functions of K, and

σ(a)1/pn ∈ K for every n, we get that A = E(a)alg ∩ K is closed under the λ-functions
of K, and has the same p-basis as E. Hence K is a regular extension of A. To finish
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the proof, we need to show that A and σ(K) are linearly disjoint over σ(A). The linear
disjointness of E and σ(K) over σ(E) ⊂ σ(A) has two consequences:

– it is enough to show that A and Eσ(K) are linearly disjoint over Eσ(A),
– Eσ(K) is a regular extension of Eσ(A) (because σ(K) is a regular extension of

σ(A)).
All elements of A being algebraic over Eσ(A), we obtain that A and Eσ(K) are linearly

disjoint over Eσ(A).
(2) Clearly the independence of a and B over E implies the linear disjointness of

acl(Ea) and B over E. Conversely, assume that A = acl(Ea) and B are linearly inde-
pendent over E. We proved in (1) that a p-basis of E is also a p-basis of A, and this
implies that tpK(A/B) does not fork over E. It remains to show (see Proposition (2.9))
that tpK(A/Bσ(K)) does not fork over Eσ(A): but this is clear, since A ⊂ (Eσ(A))alg.

(4.12). Definition. Let K |= SCFEe, and let E = acl(E) ⊂ K. Let a be an n-tuple
from K. We say that a is generic over E if tpK(a/E) is the generic n-type over E of
SCFe. Note that then tpK(a/Eσ(K)) is also generic, since σ(K) ⊆ Kp∞ .

(4.13). Proposition. Let K and E be as above, with K sufficiently saturated, and let
n ∈ N. Then K contains generic n-tuples. Moreover any two generic n-tuples realise the
same type over E.

Proof. By saturation of K, there is a ∈ K realising the generic n-type of SCFe over E
(or over (Eσ(K)alg)s), and this shows the existence. If a is a generic n-tuple over E,
then dclK(Eσ(K), a) is a union of purely transcendental extensions of Eσ(K)alg, gener-
ated over Eσ(K)alg by dclK(E, a). Let M1 be the difference subfield of K generated by
σ(dclK(E, a)), and consider M = (M alg

1 dclK(E, a))s. Then M is separably closed, M and
σ(K) are linearly disjoint over σ(M) = M1 ∩ σ(K), M is closed under the λ-functions of
K, and therefore M = acl(Ea).

If b is another generic n-tuple over E, then similarly acl(Eb) = (N alg
1 dclK(E, b))s = N ,

where N1 is the difference subfield of K generated by σ(dclK(E, b)); moreover there is
an E-isomorphism ϕ : dclK(E, a) → dclK(E, b) which sends a to b; because elements of
dclK(E, a) which are algebraically independent over E are transformally independent over
E, and similarly for elements of dclK(E, b), ϕ extends to a difference field isomorphism
M → N . This shows the uniqueness.

Remark. Let K and E be as above, and B an algebraically closed subset of K containing
E. If a is generic over B, then a is also generic over E, and A = acl(Ea) and B are
independent over E.

(4.14). Lemma. Let K and E be as above, with K sufficiently saturated, and let A, B
be algebraically closed subsets of K. Then there is A′ realising tp(A/E) and independent
from B over E.

Proof. We will first assume that E contains a p-basis of A if e ∈ N. Choose A′ realising
the non-forking extension of tp(K,σ(K))(A/E) to B, and let ϕ : A → A′ be an L0(E)-
isomorphism. Let τ = ϕσ|Aϕ

−1. Then τ ∈ End(A′), and τ and σ agree on E. Our

hypotheses imply that A′ and B are linearly disjoint over E, and that (A′B) has degree of
imperfection ≤ e. Hence there is a unique ρ ∈ End(A′B) which extends σ on B and τ on
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A′: define ρ(a⊗b) = τ(a)⊗σ(b) for a ∈ A′ and b ∈ B, extend by linearity to A′⊗EB, and
then to its field of fractions A′B. As in Theorem (4.1), on shows that (A′B, ρ) expands
to a model of T1 extending A′ and B. Let θ be an extension of ρ to (A′B)s. Then, by
the model completeness of Th(K), we may assume that (A′B)s ⊆ K. This implies that
(A′B)s is algebraically closed in K, and proves the result.

Assume now that e ∈ N, and that A0 6= ∅ is a p-basis of A over E. By Proposition
(4.13), there is A′0 realising the |A0|-generic over B, and A′0 and B are independent over
E. Moving A by an E-automorphism, we may assume that A0 = A′0. Then, by the first
case, there is A′ realising tp(A/EA0), independent from acl(BA0) over acl(EA0). Then
A realises tp(A/E), and A is independent from B over E.

(4.15). Theorem. Let K |= SCFEe be sufficiently saturated, let E = acl(E) ⊆ K. Let
a, b, c1, c2 be tuples of elements in K satisfying:

(i) tp(c1/E) = tp(c2/E).

(ii) a and b are independent over E, a and c1 are independent over E, and b and c2 are
independent over E.

Then there is c ∈ K realising tp(c1/E, a)∪ tp(c2/E, b), such that c and (a, b) are indepen-
dent over E.

Proof. If e ∈ N, we will first treat the case where E contains a p-basis of K. Let
A = acl(E, a), B = acl(E, b), C = acl(E, c1) and C2 = acl(E, c2). Moving C by an
A-automorphism, we may assume that C and acl(AB) are independent over E. Fix
an L1(E)-isomorphism f : C2 → C which sends c2 to c1, and extend it to an L(B)-
isomorphism g : (BC2)s → (BC)s. Consider the field L = (AB)s(AC)s(BC)s. By Remark
(1.9) in [4], we have (AB)s(AC)s∩ (BC)s ⊆ BalgCalg. As BalgCalg is a purely inseparable
extension of BC, this implies that (BC)s and (AB)s(AC)s are linearly disjoint over BC.
By assumption, the endomorphism τ = gσg−1 of (BC)s agrees with σ on B and on C;
hence there is an automorphism ρ of L which agrees with σ on (AB)s(AC)s and with τ on
(BC)s, and we may extend ρ to Ls. Note that ρ(Ls) = ρ(ABC)s = σ(Ls). Clearly also, Ls

is a separable extension of (AB)s and of Cs, and hence (AB)s and Cs are L1-substructures
of (Ls, ρ). Hence, moving L by an (AB)s-automorphism of K, we may assume that ρ = σ.
Since acl(AC) = (AC)s and acl(BC) = (BC)s, c realises tp(c/A) ∪ tp(c2/B). It remains
to show that c is independent from AB over E. Clearly acl(AB) and acl(C) are linearly
disjoint over E, by our choice of C and because acl(AB) = (AB)s. Since L is an L1-
substructure of K and is model of T1, we have that L and σ(K) are linearly disjoint over
σ(L). This implies that Cacl(AB) and σ(K) are linearly disjoint over σ(Cacl(AB)), and
therefore that C is independent from (AB) over E.

If e ∈ N, we will show how to reduce to the case where E contains a p-basis of K. Let
f be the degree of imperfection of E and assume that f < e. Choose an (e − f)-tuple
d which is generic over acl(Eabc1c2), and let F = acl(Ed). By definition, (ii) holds over
F . Moreover, the uniqueness of the generic type implies tp(c1/F ) = tp(c2/F ). Hence
the assumptions of the theorem hold over F . Let c realise tp(c1/F, a) ∪ tp(c2/F, b), and
independent from acl(F, a, b) over F . As c and F are independent over E, the transitivity
of independence implies that c and (a, b) are independent over E.
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(4.16). Corollary. Independence is non-forking, and all completions of SCFEe are sim-
ple.

Proof. Follows from [14].

(4.17). Remarks. (1) One cannot deduce, as in [3], that any of the completions of the
theories SCFE eliminate imaginaries. One can however show, using techniques similar
to those of [3], that the imaginaries of a model K of SCFEe are inter-definable with the
imaginaries of the pair (K,σ(K)).

(2) We will present an alternate proof of the independence theorem at the end of
section 5.

(3) One can however deduce that any of the completions of SCFE eliminates hyper-
imaginaries. This follows immediately from the independence theorem: if (K,σ) is a
model of some SCFEe, E = acl(E) ⊂ K, and tp(a/E) = tp(b/E), then the Lascar strong
types Lstp(a/E) and Lstp(b/E) are equal; this implies that Cb(Lstp(a/E)) ⊆ E and
yields the result (see e.g. section 3.6 of [18]).

(4) If K is a model of SCFEe, and a ∈ K is transformally algebraic over a difference
subfield E of K, then tp(a/E) has finite SU-rank. This follows immediately from Corollary
(4.16) and Lemma (4.11).

5 Various results

Notation and conventions are the same as in the previous sections.

(5.1). Theorem. Let K |= SCFEe, let n ≥ 1, and m ∈ N if e > 0, m ∈ Z if e = 0. Let
τ = σnFrobm. Then (K, τ) |= SCFEe.

Proof. The scheme of axioms (i) is clear: if e > 0, then m ≥ 0 and τ is an endomorphism
of K; if e = 0, then K is perfect, and τ is an endomorphism of K.

Case 1. n = 1 and m 6= 0.
Then p > 0. Let U , V be varieties defined over K, with V ⊂ U × τ(U) projecting

dominantly onto each of the factors, and such that if (a, b) is a generic of the variety V ,
then a ∈ K(b1/q)s for some power q of p. We want to show that there is c ∈ K such that
(c, σ(cp

m
)) ∈ V . Consider the variety W with generic (a, b1/pm). Then b1/pm is a generic

of the variety Frob−mτ(U), i.e., of σ(U). Moreover, a ∈ K(b1/pmq)s. Hence, by axiom (ii),
there is c ∈ K such that (c, σ(c)) ∈ W , i.e., (c, τ(c)) ∈ V .

Case 2. n > 1, m = 0.
By model-completeness of SCFEe, it suffices to show that if (L, τ) is a model of T1

extending (K,σn), there is a model (M,ρ) of T1 containing (K,σ) such that (L, τ) is an
L1-substructure of (M,ρn).

Without loss of generality, L is separably closed. For i = 0, . . . , n − 1, choose by
induction on i isomorphisms fi : L → Li extending σi on K, such that: f0 = idL, and
Li = fi(L) is linearly disjoint from L0 · · ·Li−1 over σi(K) for i > 0. Then L0 · · ·Li−1

and Li · · ·Ln−1 are linearly disjoint over σi(K) if i > 0, and M = L0(L1 · · ·Ln−1)p
−∞

is a
separable extension of L. Define σi : Li−1 → Li for i = 1, . . . , n− 1 and σn : Ln−1 → τ(L)
by

σi = fif
−1
i−1 for i = 1, . . . , n− 1, and σn = τf−1

n−1.
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For 1 < i ≤ n extend σi to Lp
−∞
i−1 . Then σnσn−1 · · · σ1 and τ agree on L0 = L. Moreover,

each σi agrees with σ on σi−1(K); this, together with the linear disjointness assumptions
on the Li’s, shows that σ1 ∪ · · · ∪ σn = ρ extends uniquely to an endomorphism of M
extending σ. Clearly (M,ρ) is a model of Tσ, and therefore expands to a model of T1.

We need to show that ρ(M) and K are linearly disjoint over σ(K), and that ρn(M)
and L are linearly disjoint over τ(L). Because M is a separable extension of L, letting
M0 = L0 · · ·Ln−1, it is enough to show that ρ(M0) and K are linearly disjoint over σ(K),
and that ρn(M0) and L are linearly disjoint over τ(L).

By construction, L and L1 · · ·Ln−1 = ρ(L0 · · ·Ln−2) are linearly disjoint over σ(K),
and hence L and ρ(M0) are linearly disjoint over σ(K)τ(L). We also know that τ(L) and
K are linearly disjoint over σn(K), and hence σ(K)τ(L) and K are linearly disjoint over
σ(K). As L ⊃ Kτ(L), this implies that ρ(M0) and K are linearly disjoint over σ(K).

Since K and ρ(M0) are linearly disjoint over σ(K), also K and ρn(M0) are linearly
disjoint over σn(K) (see Remark (3.2)(3)), and therefore K and ρn(KL1 · · ·Ln−1) are
linearly disjoint over σn(K). The linear disjointness of L and L1 · · ·Ln−1 over σ(K) implies
the linear disjointness of L and ρn(KL1 · · ·Ln−1) over σn(K). As τ(L) = ρn(L) ⊆ L, this
gives that L and ρn(M0) are linearly disjoint over τ(L).

Case 3. n > 1, m 6= 0.
Use Case 2 and Case 1.

(5.2). Proposition. Let K |= SCFEe, and consider L =
⋃
n σ
−n(K), the inversive

closure of K. Then Kalg |= SCFE0 and L |= ACFA.

Proof. If p = 0, then K = Kalg. Assume therefore that p > 0. Clearly Kalg is an
algebraically closed field, and σ is an endomorphism of K which is not onto.

Let U and V be varieties of the same dimension, defined over Kalg, such that V ⊆
U × σ(U) and V projects dominantly onto U and onto σ(U). Let (a, b) be a generic of
the variety V over Kalg. Our assumption on the dimensions of U and V implies that
a ∈ K(b)alg and b ∈ K(a)alg. Choose powers q and r of p such that U and V are defined
over K1/q, and a ∈ K1/q(b1/r)s. The difference fields K and K1/q are isomorphic, and
therefore K1/q is a model of SCFEe. Hence K1/q contains a tuple c such that (c, σ(c)) ∈ V ,
and this shows that Kalg |= SCFE0.

The second assertion follows immediately: observe that L =
⋃
n σ
−n(Kalg), where each

σ−n(Kalg) is a model of SCFE0. As axiom (ii) for ACFA coincides with axiom (ii) for
SCFE0, and σ is an automorphism of the difference field L, it follows that L is a model
of ACFA.

(5.3). Theorem. Let L be a model of ACFA, and let A = aclσ(A) ⊆ B = aclσ(B) ⊆ L.
Assume that A contains all elements of B which are transformally algebraic over A. Then
tp(B/A) is stationary (here tp is the type in the sense of the generic difference field L).

Proof. We may assume that L is sufficiently saturated. Let C = aclσ(C) containing A
and independent from B over A. We want to show that tp(B/A) has a unique non-forking
extension to C. We will first show that we may assume that C is transformally algebraic
over A.
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Step 1. tp(B/A) is orthogonal to all types of finite SU-rank over A, i.e.: if F = aclσ(F ) ⊃
A is linearly disjoint from B over A, and c ∈ aclσ(F,B) is transformally algebraic over F ,
then c ∈ F (see (1.16)).

Indeed, let F , c be as above. By (2.13) in [4], the canonical base D of tp(F, c/B) is con-
tained in aclσ(A,F1, c1, . . . , Fn, cn) for some n and independent realisations (F1, c1), . . . , (Fn, cn)
of tp(F, c/B). Hence D is transformally algebraic over aclσ(F1, . . . , Fn). As D ⊆ B, and
B and aclσ(F1, . . . , Fn) are linearly disjoint over A, D must be transformally algebraic
over A, whence D = A and c ∈ F .

Step 2. We may assume that C = A(d)Z where d is transformally algebraic over A.
First of all, we certainly may assume that C = A(d)Z for some finite tuple d. Let

c ⊂ d be a transformal transcendence basis of C over A, and let A′ = aclσ(A, c). By
(1.15), tp(A′/A) has a unique non-forking extension to B, or equivalently, tp(B/A) has
a unique non-forking extension to A′. To show the result, it is therefore enough to show
that tp(aclσ(B, c)/A′) has a unique non-forking extension to A′(d)Z. By step 1, A′ and
aclσ(B, c) satisfy the hypotheses satisfied by A and B.

Step 3.
Let S be an A-definable set of finite SU-rank containing d, defined by the formula

θ(a, x). If tp(B/A) has several non-forking extensions to A(d)Z, then there is a B-definable
subset X of S, such that d ∈ X and some realisation of a non-forking extension of tp(d/A)
to B is in S \ X. By elimination of imaginaries, X has a code b ∈ B. Thus if an A-
automorphism of some elementary extension of L fixes all elements satisfying θ(a, x) then
necessarily it also fixes b. We will assume by way of contradiction that b contains an
element b1 /∈ A.

Claim. There is an elementary extension K of L, and an automorphism of K which is
the identity on all elements of K which are transformally algebraic over A, and which
moves b1.

Proof. By Theorem (1.21), there is an ultrafilter U on the set Q of prime powers, and a
sequence of algebraically closed fields Fq, q ∈ Q, such that the difference field A embeds
in
∏

q∈Q(Fq, F robq)/U , where Frobq : x 7→ xq. Let Kq be an algebraically closed field
properly containing Fq, and fix cq ∈ Kq \ Fq, and hq ∈ Aut(Kq/Fq) such that hq(cq) 6= cq.
Consider the structure Mq = (Kq, Fq, F robq, hq, cq), and let M = (K,F, σ, h, c) be a
highly saturated elementary extension of

∏
q∈QMq/U . Then there is an embedding ϕ

of the difference field A in F , and h ∈ Aut(K/F ), h(c) 6= c. All elements of Kq are
transformally transcendental over Fq (because σq is algebraic), and therefore all elements
of K are transformally transcendental over F .

Since b1 /∈ A, b1 is transformally transcendental overA. Then tp(c/ϕ(A)) = ϕ(tp(b1/A))
(by Proposition (1.15)). Using the saturation of M , there is a difference field embedding
ψ of L in K which extends ϕ and such that ψ(b1) = c. Then ψ(L) ≺ K.

The claim allows us to conclude that b ∈ A: the elements of K satisfying θ(ϕ(a), x)
are transformally algebraic over A, and therefore are in F . Hence they are fixed by h and
this implies that h fixes ψ(b); but this contradicts the claim.

Remark. Another way of stating Theorem (5.3) is to say, that over an algebraically
closed set, all types of SU-rank ωn for some n, are stationary. In Appendix B, we give an
alternate proof of the claim, which does not rely on the results of [13].
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(5.4). Corollary. Let K be a model of SCFEe, and E = acl(E) ⊂ A = acl(A) subfields
of K. Assume that all elements of A \ E are transformally transcendental over E. Then
tp(A/E) is stationary.

Proof. We will first assume that E contains a p-basis of K if e ∈ N. Let B = acl(B) ⊂ K
containing E, and let A1, A2 realise non-forking extensions of tp(A/E) to B. Let L, E ′, A′1,
A′2 and B′ denote the inversive closures of K,E,A1, A2, B respectively. Then all elements
of A′1 are transformally transcendental over E ′, and therefore tpL(A′1/B

′) = tpL(A′2/B
′)

by Theorem (5.3) and Proposition (5.2) (tpL denotes the type in the generic difference
field L). Hence there is an Lσ(B′)-isomorphism ϕ : aclσ(B′, A′1) → aclσ(B′, A′2) which
sends A1 to A2. Since E contains a p-basis of K if e ∈ N, we get that acl(B,A1) =
(BA1)s, acl(B,A2) = (BA2)s, so that ϕ restricts to an L1(B)-isomorphism acl(B,A1)→
acl(B,A2). This shows that tp(A1/B) = tp(A2/B).

Assume now that e ∈ N, and that [E : Ep] = pf , with f < e. Let B = acl(B) contain
E, independent from A over E, and let B0 realise the generic (e − f)-type over (A,B).
Then tp(A/E) has a unique non-forking extension to acl(E,B0) by Proposition (4.13),
and it suffices to show that tp(acl(A,B0)/acl(E,B0)) has a unique non-forking extension
to acl(B,B0). The discussion in (1.8) gives that dclK(A,B0) is contained in A(B0, C)alg,
for some set C of elements which are algebraically independent over AKp∞(B0), and
therefore over Aσ(K)(B0). We then have acl(A,B0) ⊂ A(B0, C)algN ∩K, and the elements
of C are transformally independent over A(B0). By step 1 of the proof of Theorem (5.3),
the elements of acl(A,B0) which are transformally algebraic over acl(E,B0) are already
in acl(E,B0). The previous case gives the result.

(5.5). Proposition. Let K be a model of SCFEe, and let k =
⋂
n σ

n(K). Then k |=
ACFA, and if D ⊂ Kn is definable, then D ∩ kn is definable in the difference field (k, σ).
Thus there is no induced structure on the Lσ-structure k, and k is stably embedded.

Proof. Let L be the inversive closure of K. Then L |= ACFA by Proposition (5.2). Note
that σ(k) = k and k =

⋂
n σ

n+1(K)alg is algebraically closed.
If a ∈ K is transformally algebraic over k, then k(a)Z ⊂ k(σ(a), . . . , σm(a))alg for some

m, so that a ∈ k. By Remark (1.1)(1) in [4], k is a model of ACFA.
Let B = acl(B) ⊂ K, and let A = B ∩ k. Then B and k are linearly disjoint

over A = acl(A), and all elements of B \ A are transformally transcendental over A.
By Corollary (5.4), tp(B/A) is stationary, and in particular has a unique non-forking
extension to k.

This implies (see Lemma 1 in the Appendix of [4]) that k is stably embedded, and that
any elementary automorphism of k lifts to an automorphism of K. But, as k = acl(k) is
perfect, any Lσ-automorphism of k is elementary in K, and this gives the result.

(5.6). Theorem. Let K be a model of SCFEe, let n ≥ 1 and m ∈ Z, and let F be
the subfield of K consisting of the elements satisfying σn(x) = Frobm(x). Then F is a
pseudo-finite field, and every subset D of F ` definable in K is definable using parameters
from F . If n = 1, then D is definable in the pure field F .

Proof. All elements of F are transformally algebraic, and therefore F ⊆ ⋂n∈N σ
n(K) = k.

Let D ⊆ K` be definable. By Proposition (5.5), D ∩ k` is definable in the difference field
(k, σ), and k is a model of ACFA. The result follows by (7.1)(5) in [6].
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(5.7). Proposition. Let K be an ω-saturated model of SCFEe. Then Kp∞ |= SCFE0.

Proof. Clearly Kp∞ is algebraically closed, and σ restricts to an endomorphism of Kp∞ .
Because K is ω-saturated, there is a ∈ Kp∞ , a /∈ σ(K), and therefore σ is not onto.

Let U and V be varieties defined over Kp∞ , of the same dimension, and such that
V ⊂ U × σ(U), and V projects dominantly onto U and onto σ(U). Fix a generic (a, b)
of the variety V over Kp∞ , and for each n ≥ 1, let Un, Vn be the varieties defined over
K of which (a, a1/pn) and (a, a1/pn , b, b1/pn) are generics. Then each pair (Un, Vn) satisfies
the assumptions of (3.4)(ii). By ω-saturation of K, there are c, cn, n ∈ N in K, such that
(c, cn, σ(c), σ(cn)) ∈ Vn for all n. Then (c, σ(c)) ∈ V , and c ∈ Kp∞ .

(5.8). Sketch of an alternate proof of the independence theorem. Let K, E, a,
b, c1 and c2 be as in Theorem (4.15), A = acl(Ea), B = acl(Eb), C1 = acl(Ec1) and
C2 = acl(Ec2). Let A0 be the difference subfield of A consisting of the elements of A
which are transformally algebraic over E, and define similarly B0, C0

1 and C0
2 . By Lemma

(4.11), we know that A0 ⊆ (Eσ(A0))alg, and similarly for B0 and the C0
i . Proceed as

in the first part of the proof of Theorem (4.15) to show that there is C 0, independent
from (A,B) over E, and realising tp(C0

1/A
0) ∪ tp(C0

2/B
0). Then consider isomorphisms

ψ1 : acl(A0, C0
1 ) → acl(A0, C0) and ψ2 : acl(B0, C0

2 ) → acl(B0, C0), fixing A0 and B0

respectively, and which witness the fact that C0 realises tp(C0
1/A

0) ∪ tp(C0
2/B

0). Let
C realise a non-forking extension of ψ1(tp(C1/C

0
1 )) to (A,B). Then C is independent

from (A,B) over E, because C0 is independent from (A,B) over E. By Corollary (5.4),
tp(C1/C

0
1 ) is stationary. Hence, C realises ψ1(tp(C1/A

0, C0
1 )) and ψ2(tp(C2/B

0, C0
2 )). This

implies that C realises tp(C1/A) ∪ tp(C2/B).

6 Study of modularity

(6.1). Proposition. Let E = acl(E) ⊂ K |= SCFE0, and assume that acl(Ea) contains
an element b which is transformally transcendental over E. Then the set S of realisations
of tp(a/E) is not modular.

Proof. Since acl(Ea) = dcl(Ea)s, we may assume that b ∈ dcl(Ea). Choose c ∈ Fix(σ)
independent from a over E, and let d = b · c. Then tp(d/E) = tp(b/E), and the set of
realisations of tp(d/Eb) is in definable bijection with Fix(σ). Hence there is a definable
subset S ′ of S which projects onto Fix(σ). By Theorem (5.6), Fix(σ) has no induced
structure, and every infinite ∞-definable subset of Fix(σ) is non-modular.

(6.2). Remarks. If e 6= 0 and we do not assume that b ∈ Kp∞ , then the result does
not necessarily hold. Let a ∈ K and assume that (the pure field type) tpK(a/E) is
minimal and orthogonal to the generic type of Kp∞ . Using Lemmas (3.3) and (4.11)
one can then show that tp(a/E) is minimal. By (1.15), one also obtains that tpK(a/E)
uniquely determines tp(a/E). Furthermore, if tpK(a/E) is modular [resp. non-trivial], so
is tp(a/E). These observations show that there are many non-trivial minimal modular
types which are realised by non-transformally algebraic elements, using e.g. any of the
types described in [12] or in [2].

In the case of a definable set S however, the result extends to the non-perfect case.

27



(6.3). Proposition. Let K be a model of SCFEe, and let S ⊂ Kn be definable over
E = acl(E). If S contains elements which are not transformally algebraic over E, then S
is non-modular.

Proof. Enlarging E, we will assume that it contains a p-basis of K if e ∈ N. We also
assume that K is sufficiently saturated. By Corollary (4.8), using the fact that modularity
and non-modularity are preserved under finite covers, we may assume that S is defined
by a formula ϕ(x) ∧ θ(x) ∧ ρ(x), where ϕ(x) is a quantifier-free Lσ(E)-formula, θ(x) is
a conjunction of formulas of the form Rn(x1, e), where e is a tuple of elements of E
and x1 ⊆ x, and ρ(x) is an L(E)-formula expressing that certain tuples in x ∪ E are
p-independent in K.

First of all, assume that there is some a ∈ S such that some sub-tuple of a is p-
independent over E in K. This means that a contains a realisation a1 of the generic
1-type over E, and implies that tp(a/E) is non-modular: if c ∈ Fix(σ) is independent
from a1 over E, then tp(a1c/E) also realises the generic 1-type over E. As in (6.1), this
implies that S is non-modular.

Hence we may assume that S is defined by ϕ(x) ∧ θ(x). Let a ∈ S, not transformally
algebraic over E. We will show that there is b in S such that the difference fields E(a)N
and E(b)N are isomorphic, some element b1 of b realises the generic type over E. Reasoning
as in the previous paragraph will then show that non-modularity of S.

We know that E(a)N is a separable extension of E. We proceed exactly as in the
proof in Theorem (3.5) that the models of SCFEe are existentially closed: we let M =
σ(E(a)N)alg, and select a1 ⊂ a, a separating transcendence basis of EM(a) over EM . As
a is not transformally algebraic over E, we know that a1 is non-empty. We then choose
b1 realising the generic |a1|-type, and, as in Theorem (3.5), find b extending b1, such that
the difference fields E(a)N and E(b)N are E-isomorphic, by an isomorphism f sending a
to b. By construction, the elements of b1 are algebraically independent over Eσ(K). This
implies that any formula of the form Rn(y, e) satisfied by a sub-tuple of a will also be
satisfied by the corresponding sub-tuple of b. Hence, b ∈ S.

(6.4). Theorem. Let K |= SCFEe be sufficiently saturated, and let E = acl(E) ⊂ K.
Let S ⊂ Kn be a subset which is invariant under Aut(K/E), and such that the elements
of S are transformally algebraic over E. The following conditions are equivalent:

(1) S is non-modular.

(2) S is non-orthogonal to some fixed field, i.e., there is a tuple a ∈ S, and a set
F = acl(F ) containing E, such that acl(Fa) \ F contains an element b satisfying
σn(b) = Frobm(b) for some n ≥ 1 and m ∈ Z.

Proof. We will work in the inversive closure L of K, and will denote by tpL the types
in the generic difference field L. Without loss of generality, if e ∈ N, then E contains a
p-basis of K.

If S is not modular, there are tuples a and b, with a a tuple of elements of S, such that
a and b are not independent over acleq(Ea) ∩ acleq(Eb). Let A = acl(Ea), B = acl(Eb)
and C = A ∩ B. Then C = acl(C), and therefore aclσ(A) ∩ aclσ(B) = aclσ(C). As
C ⊂ acleq(Ea) ∩ acleq(Eb), we certainly have that A and B are not independent over C.
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Our assumption on the elements of S and Lemma (4.11)(2) imply that A and B are
not linearly disjoint over C. Let d ∈ A be such that the field C(d)N and B are not linearly
disjoint over C. Then aclσ(C)(d)Z and aclσ(B) are not linearly disjoint over aclσ(C). By
Proposition (1.19), tpL(d/aclσ(C)) is non-orthogonal to the formula σn = xp

m
for some

n ≥ 1 and m ∈ Z (where p is the characteristic of K if it is positive, and 1 if it is 0). Let
Fix(τ) be the subfield of L defined by σn = xp

m
. Then Fix(τ) ⊆ K.

Claim. There are independent realisations d1, . . . , dk of tp(d/C) in K, such that Fix(τ)∩
C(d1, . . . , dk)N contains an element b not in C.

Proof. Indeed, since tpL(d/aclσ(C)) is non-orthogonal to σn(x) = xp
m

, there is an integer
k and independent realisations d1, . . . , dk of tpL(d/aclσ(C)), and an element b ∈ Fix(τ)∩
aclσ(C)(d1, . . . , dk)Z, b /∈ aclσ(C). Note that σ(Fix(τ)) = Fix(τ). Hence, replacing b by
σ`(b) for a suitable `, we may assume that b ∈ C(d1, . . . , dk)N.

This only depends on the isomorphism type of the difference field C(d1, . . . , dk)N, and
therefore we may assume that d1, . . . , dk are independent realisations of tp(d/C).

Since d1, . . . , dk are independent realisations of tp(d/C), we may choose a1, . . . , ak in
K such that tp(ai, di/C) = tp(a, d/C). Then b ∈ C(a1, . . . , ak)N.

The other direction is easy: Fix(τ) ⊆ k =
⋂
`∈N σ

`(K), and the only induced structure
on k is that of an Lσ-structure model of ACFA (by (5.5)). By the main result of [6], every
non-algebraic type which is non-orthogonal to a fixed field is non-modular.

(6.5). Concluding remarks.
Let K be a model of SCFEe, E = acl(E) ⊂ K. If D ⊂ Kn is definable and consists of

elements transformally algebraic over E, then we know by Remark (4.17) that D has finite
SU-rank. Moreover forking in K coincides with forking in the sense of the Lσ-structure
L which is the inversive closure of K. Hence, if D is modular and the characteristic of K
is 0, then we know that all types realised in D are stable, and that D is stably embedded
over E, see (1.19).

Let G be a modular group definable over E in K. We know by Proposition (6.3) that
if a ∈ G then a is tranformally algebraic over E, so that by Lemma (4.11), acl(Ea) is
contained in E(a)algN . By the results of [15] and this description of algebraic closure, there
is a definable map f : G1 → H(K), where H is an algebraic group, G1 is a definable
subgroup of G of finite index, and Ker(f) is finite. Theorem (1.23) then yields a nice
description of quantifier-free definable subsets of f(G1).

Appendix A - Stationarity almost over a predicate

In this appendix, we mention a general result that (using Theorem (5.3)) gives another
proof of the validity of the independence theorem in SCFE over bases contained in k.

A.1 Setting. Let T be a complete theory in a language L. We assume that we have a
notion of independence in U eq which is well-behaved, i.e., it is Aut(U)-invariant and, for
all A ⊆ B ⊆ C ⊆ U , and tuple a in U we have:

(i) (Extension property) There is a′ realising tp(a/A) and which is independent from
B over A.
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(ii) (Transitivity) a is independent from C over A if and only if it is independent from
B over A and from C over B.

(iii) (Finite character) For any D ⊆ U , D is independent from B over A if and only if
every finite tuple of elements of D is independent from B over A.

(iv) (Symmetry) a is independent from B over A if and only if B is independent from a
over A.

(v) (Local character) There is A0 ⊂ A, with |A0| ≤ |L|+ℵ0, such that a is independent
from A over A0.

A.2 Definition. Let U be a sufficiently saturated model of a theory T in a language
L. Let S ⊂ U eq be preserved under all automorphisms of U . We say that U is stationary
almost over S if for all subsetsA ⊂ B of U , tp(acleq(B)/acleq(B)∩acleq(S,A)) is stationary.

Here stationarity is meant with respect to our independence notion: if C contains
acleq(B)∩acleq(S,A), then there is a unique type over C extending tp(acleq(B)/acleq(B)∩
acleq(S,A)) and whose realisations are independent from C over acleq(B) ∩ acleq(S,A).

A.3 Remark. If U is stationary almost over S, then S is stably embedded.

Proof. See Lemma 1 in the Appendix of [4].

A.4 Proposition. Assume that U is stationary almost over S. Let A, B, C1, C2, E, be
algebraically closed subsets of U eq satisfying the following conditions:

(1) A is independent from B over E, C1 is independent from A over E and C2 is
independent from B over E.

(2) tp(C1/E) = tp(C2/E).

(3) There is C̃ ⊂ acleq(S) realising tp(C1∩acleq(S)/A∩acleq(S))∪ tp(C2∩acleq(S)/B∩
acleq(S)), which is independent from (A ∩ acleq(S), B ∩ acleq(S)) over Ẽ = E ∩
acleq(S).

Then there is C ⊆ U eq realising tp(C1/A) ∪ tp(C2/B) and which is independent from
(A,B) over E.

Proof. Let C̃ be as given by (3), and independent from (A,B) over Ẽ.
Let A′ = acleq(E,A∩acleq(S)), B′ = acleq(E,B∩acleq(S)). By stationarity almost over

S, tp(A′/A∩acleq(S)) has a unique non-forking extension to (A∩acleq(S), C̃), and therefore
tp(C̃/A′) = tp(C1∩acleq(S)/A′). Hence C ′ = acleq(E, C̃) and C ′1 = acleq(E,C1∩acleq(S))
have the same type over A′. Similarly, C ′ and C ′2 = acleq(E,C2 ∩ acleq(S)) have the same
type over B′.

Choose C independent from (A,B), and such that tp(C,C ′/E) = tp(C1, C
′
1/E). We

know that tp(C1/C
′
1) is stationary, and therefore tp(C/A) = tp(C1/A) because C and C1

are independent from A over C ′, C ′1, respectively. Similarly, tp(C/B) = tp(C2/B).

A.5 Corollary. Let E = acleq(E) ⊆ U eq, and assume that in acleq(S), the independence
theorem holds over Ẽ = E ∩ acleq(S). Then it holds in U over E.
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A.6 Corollary. If Th(acleq(S)) is simple, and the restriction of the independence notion
to acleq(S) coincides with non-forking, then T is also simple, and our notion of indepen-
dence coincides with non-forking.

Proof. By results of Kim-Pillay [14], the independence theorem holds in acleq(S) over
submodels, and our results imply that it holds in U over submodels. Moreover, the
properties satisfied by our independence notion imply that it coincides with non-forking.

Appendix B

In this appendix we provide a proof of Claim (5.3) not relying on the results of [13].

B.1 Proposition. Let T be a first-order theory, with saturated model U . Assume given
a function rk defined on consistent formulas over U , into N∪{∞}. Assume rk(ϕ) ≤ rk(ψ)
if ϕ implies ψ. Define rk(a/B) = inf{rk(ϕ) | ϕ ∈ tp(a/B)}.

Assume

(i) Definability: if rk(ϕ(x, a)) = m ∈ N, then there exists ψ ∈ tp(a) such that ψ(a′)
implies rk(ϕ(x, a′)) = m.

(ii) Density: over any set A, any consistent formula over A is implied by some consistent
formula of finite rank over A.

(iii) Additivity: rk(ab/C) = rk(b/C) + rk(a/Cb).

(iv) Zero: rk(ϕ) = 0 iff ϕ has finitely many solutions.

(v) For any set A, there exists c /∈ A such that if rk(d/A) < ∞ then tp(d/A) implies
tp(d/Ac).

Then there exists an automorphism of U fixing the finite rank part (i.e. fixing pointwise
every 0-definable set of finite rank), and which is not the identity.

B.2 Definition. tp(a/B) is j-isolated if for some ϕ(x) ∈ tp(a/B), whenever ϕ(a′) holds,
then rk(a′/B) = rk(a/B).

B.3 Remark. In the definition of j-isolated, rk(a/B) is necessarily finite (using density.)

B.4 Lemma. tp(b1b2/C) is j-isolated iff both tp(b1/C) and tp(b2/Cb1) are.

Proof. First suppose tp(b1b2/C) is j-isolated, say by ϕ(x1, x2). Then ϕ(b1, x2) j-isolates
tp(b2/Cb1), by additivity of rk. Find ψ(x1) ∈ tp(b1/C) such that ψ(b′1) implies rk(ϕ(b′1, x2)) =
rk(ϕ(b1, x2)). Then ψ(x1) ∧ (∃x2)ϕ(x1, x2) j-isolates tp(b1/C). The converse is similar.

B.5 Definition. (B/C) is j-atomic if for any finite tuple b from B, tp(b/C) is j-isolated.

B.6 Lemma. Assume (B/C) is j-atomic, and (a/BC) is j-isolated. Then (aB/C) is
j-atomic.

Proof. Similar to the above.

B.7 Lemma. Let A ⊂ U . Then there exists a model M , A ⊂M , with (M/A) j-atomic.

Proof. Let B ⊂ U be maximal j-atomic over A, and assume by way of contradiction that
B is not an elementary substructure of U . Then there is a formula ϕ(x) ∈ L(B) which
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is realised in U and not in B. Take such a formula of minimal rank m, which by density
is in N. If m = 0, then any realisation of ϕ is in acl(B) and its type over B is isolated.
Assume m > 0, and take b ∈ U satisfying ϕ. Then rk(b/B) = m (by the minimality of
rk(ϕ)), and so tp(b/B) is j-isolated. By (B.6), (Bb/A) is j-atomic, and this gives us the
required contradiction.

B.8 Proof of Proposition B.1. Now let M0 be a small model (size of language.) Using
(v), construct a large set I such that rk(d/M0) <∞ implies tp(d/M0) ` tp(d/M0I).

Let M be a j-atomic model over M0I. If a ∈M with rk(a/M0) <∞, then tp(a/M0I)
is j-isolated; since tp(a/M0) ` tp(a/M0I), tp(a/M0) is also j-isolated. But this implies
that a ∈ M0. Thus the finite rank part of M is contained in M0. By Morley’s two
cardinal theorem (since I is large compared to M0), if we choose a Skolemization L′, T ′ of
the language, there exists a model M ′ of T ′ with an indiscernible sequence over M0 and
which does not realise any finite rank non-algebraic type over M0. This model clearly has
automorphisms fixing the finite rank part (which is contained in M0). Hence so does U .

B.9 Remarks. (1) Note that Proposition B.1 also holds if (v) is weakened to: For any
set A, there exists c /∈ A such that if rk(d/A) < ∞ and tp(d/Ac) is j-isolated then so is
tp(d/A), and they have the same rank.

Indeed, one constructs a large set I such that if rk(d/M0) < ∞ and tp(d/M0I) is
j-isolated, then so is tp(d/M0) and they have the same rank. Thus all elements of M not
in M0 have infinite rank over M0.

(2) If T satisfies (i) – (v), and A ⊂ U , so does T (A) (= Th(U , a)a∈A)).

B.10 Proposition. The hypotheses hold for ACFA: take rk to be transformal order, i.e.,
rk(ϕ(x, a)) = sup{tr.deg(A(b)Z/A)| |= ϕ(b, a)}, where A is the difference field generated
by a; in (v), take c transformally transcendental over A (see (1.15)).

B.11 Corollary (Claim (5.3)). Let A ⊂ B be algebraically closed difference subfields of
a model L of ACFA, and assume that all elements of B which are transformally algebraic
over A are already in A. Let b ∈ B \A. Then in some elementary extension U of L, there
is an automorphism h of U which is the identity on the set of elements of U which are
transformally algebraic over A, and which moves b.

Proof. By Propositions B.1, B.10 and Remark B.9 (2), there is a saturated model U of
ACFA containing A, and with an automorphism h which is the identity on the set of
elements transformally algebraic over A, and moves some element c. Then c is transfor-
mally transcendental over A, as is b. By (1.15), tp(b/A) = tp(c/A), so that there is an
A-automorphism ϕ of U which sends b to c. Then hϕ(b) 6= ϕ(b), so that ψ = ϕ−1hϕ is
the identity on the set of elements transformally algebraic over A and moves b.
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